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Abstract
In many situations there exists an abundance of positive
examples, but only a handful of negatives. In this paper
we show how in binary or transaction data such rare
cases can be identified and characterised.

Our approach uses the Minimum Description
Length principle to decide whether an instance is drawn
from the training distribution or not. By using frequent
itemsets to construct this compressor, we can easily and
thoroughly characterise the decisions, and explain what
changes in an example would lead to a different verdict.
Furthermore, we give a technique through which, given
only a few negative examples, the decision landscape
and optimal boundary can be predicted—making the
approach parameter-free.

Experimentation on benchmark and real data shows
our method provides very high classification accuracy,
thorough and insightful characterisation of decisions,
predicts the decision landscape reliably, and can pin-
point observation errors. Moreover, a case study on
real MCADD data shows we provide an interpretable
approach with state-of-the-art performance for screen-
ing newborn babies for rare diseases.

1 Introduction
In many situations there is an abundance of samples
for the positive case, but none, or only a handful, for
the negative case. Examples of such situations in-
clude, intrusion detection [10,13], screening for rare dis-
eases [1, 11], monitoring in health care [6] and indus-
try [22], fraud detection [2,12], as well as predicting the
lethality of chemical structures in pharmaceutics [5,14].
In all these cases it is either very expensive, danger-
ous, or virtually impossible to acquire (many) negative
examples. This means that standard classification tech-
niques cannot be applied, as there is not enough training
data for each of the classes. Since there are only enough
examples for one class, this problem setting is typically

known as one-class classification, but for obvious rea-
sons it can also be regarded as outlier detection. The
goal is simple: given sufficient training data for only the
positive class, reliably detect the rare negative cases in
unseen data. That is, to point the odd ones out.

Identification alone is not enough, however: expla-
nations are also very important. This goes for classi-
fication in general, but in the one-class setup descrip-
tions are especially important; we are deciding over rare
events with possibly far-reaching consequences. A hu-
man operator will not follow advice to shut down a com-
plex chemical installation if there is no good explanation
to do so. Similarly, medical doctors are ultimately re-
sponsible for their patients, and hence will not trust a
black-box telling them a patient has a rare disease if it
cannot explain why this must be so.

In this paper we give an approach for identifying
negative examples in transaction data, with immediate
characterisation of the why. Our approach uses the Min-
imum Description Length principle to decide whether
an instance is drawn from the training distribution or
not; examples that are very similar to the data the com-
pressor was induced on will require only few bits to de-
scribe, while an anomaly will take many bits. By using
a pattern-based compressor, thorough characterisation
of its decisions is made possible. As such, our method
can explain what main patterns are present/missing in
a sample, identify possible observation errors, and show
what changes would lead to a different decision, that
is, show how strong the decision is. Furthermore, given
only few negative examples the decision landscape can
be estimated well.

We are not the first to address the one-class classifi-
cation problem. However, important distinctions can be
made between our approach and that of previous pro-
posals. Here we give an overview of these differences, in
Section 3 we discuss related work in more detail.

Most existing methods for one-class classification
focus on numeric data. However, in many cases events



are discrete (e.g. alarms do or do not go off, chemical
sub-structures exist or not, etc.) and therefore are
naturally stored in a binary or transaction database.
Applying these methods on binary data is not trivial.

In classification research, high accuracy is generally
the main goal. However, as pointed out above, for
an expert the explanation of the decision is equally
important. By their black-box nature, existing methods
typically do not offer this. Our approach does, as it uses
discovered patterns to describe and classify instances.

Also, by their focus on accuracy, most existing
methods require the user to set a number of parameters
to maximise their performance. Whereas this has
obvious merit, in practice the expert will then need to
fine-tune the method, while the effect and interplays of
the parameters is often unclear. Our approach does not
have such parameters, making it more easily applicable.

Besides method-specific parameters, a key parame-
ter in one-class classification is the specificity/sensitivity
threshold. As there are not enough negative examples
available, the decision landscape is unknown, and hence,
it is difficult to set this threshold well. Our method also
requires such a decision threshold. However, given only
a couple of outlying examples, our method can estimate
the decision landscape. As such, we provide the user
with an effective way to set the decision threshold, as
well as a way to see whether it is possible to identify
negative examples at all.

As the compressor, here we use Krimp [21], which
describes binary data using itemsets. The high quality
of these descriptions, or code tables, has been well
established [15, 27, 28]. Alternatively, however, other
compressors can be used in our framework, e.g. to apply
it on other data types or with different pattern types.

Summarising, the main contributions of this work
are two-fold. First, we provide a compression-based
one-class classification method for transaction data that
allows for thorough inspection of decisions. Second,
we give a method that estimates the distribution of
encoded lengths for outliers very well, given only few
anomalous examples. This allows experts to fine-
tune the decision threshold accordingly—making our
approach parameter-free for all practical purposes.

Experimentation on our method shows it provides
competitive classification accuracies, reliably predicts
decision landscapes, pinpoints observation errors, and
most importantly, shows why decisions are made.

The remainder of the paper is organised as follows.
Next, Section 2 covers the theory of using MDL for
the one-class classification problem. Related work is
discussed in Section 3. We experimentally evaluate our
method in Section 4. We round up with discussion in
Section 5 and conclude in Section 6.

2 One-Class Classification by Compression
In this section we first give some preliminaries, and then
detail the theory of using the Minimum Description
Length principle for one-class classification and char-
acterisation.

2.1 Preliminaries Throughout this paper we con-
sider transaction databases. Let I be a set of items, e.g.
the products for sale in a shop. A transaction t ∈ P(I)
is a set of items that, e.g. representing the items a cus-
tomer bought in the store. A database D over I is then
a bag of transactions, e.g. the different sale transactions
on a given day. We say that a transaction t ∈ D sup-
ports an itemset X ⊆ I, if X ⊆ t. The support of X
in D is the number of transactions in the database in
which X occurs. Note that categorical datasets can be
trivially converted into transaction databases.

All logarithms are to base 2, and by convention
0 log 0 = 0.

2.2 One-Class Classification In one-class classifi-
cation, or outlier detection, the training database D
consists solely (or, overwhelmingly) of samples drawn
from one distribution Dp. The task is to correctly iden-
tify whether an unseen instance t /∈ D was drawn from
Dp or not. We refer to sample being from the positive
class if they were drawn from distribution Dp, and to
the negative class if they were drawn from any other
distribution Dn. We explicitly assume the Bayes error
between Dp and Dn to be sufficiently low. That is, we
assume well-separated classes—an unavoidable assump-
tion in this setup. (Section 2.8 gives a technique to
evaluate whether the assumption is valid.)

Next, we formalise this problem in terms of the
Minimum Description Length principle.

2.3 MDL, a brief introduction The Minimum
Description Length principle (MDL) [8], like its close
cousin MML (Minimum Message Length) [29], is a
practical version of Kolmogorov Complexity [16]. All
three embrace the slogan Induction by Compression.
For MDL, this principle can be roughly described as
follows.

Given a set of models M, the best model M ∈ M
is the one that minimises

L(M) + L(D |M) ,

in which L(M) is the length in bits of the description
of M , and L(D | M) is the length of the description of
the data when encoded with model M .

The MDL principle implies that the optimal com-
pressor induced on database D drawn from a distribu-
tion D will encode transactions drawn from this distri-



bution more succinct than any other compressor.
More in particular, let L(t | M) be the length, in

bits, of a random transaction t, after compression with
the optimal compressor M induced from database D,
then

L(t |M) = − log(Pr(t | D)) ,

if we assume that the patterns that encode a transaction
are independent [15]. That is, under the Naïve Bayes as-
sumption, given dataset D1 drawn from distribution D1

and dataset D2 drawn from D2, the MDL-optimal mod-
els M1 and M2 respectively induced on these datasets,
and an unseen transaction t, we have the following im-
plication

L(t |M1) < L(t |M2)⇒ Pr(t | D1) > Pr(t | D2) .

Hence, it is the Bayes-optimal choice to assign t
to the class of the compressor that encodes it most
succinct [15].

2.4 MDL for One-Class Classification In our
current setup, however, we only have sufficient training
data for the positive class. That is, while we can induce
Mp, we cannot access Mn, and hence require a different
way to decide whether an unseen t was drawn from Dp
or Dn. At the same time, however, we do know that the
MDL-optimal compressor Mp will encode transactions
drawn from Dp shorter than transactions drawn from
any other distribution, including Dn. As such, we have
the following theorem.

Theorem 2.1. Let t1 and t2 be two transactions over
a set of items I, respectively sampled from distributions
D1 and D2, with D1 6= D2. Further, let D be a bag
of transactions sampled from D1, and M be the MDL-
optimal compressor induced on D. Then, by the MDL
principle we have

L(t1 |M) < L(t2 |M)⇒ Pr(t1 | D) > Pr(t2 | D) .

With this theorem, and under the assumption that
Dp and Dn are dissimilar, we can use the encoded size
of a transaction to indicate whether it was drawn from
the training distribution or not. By MDL we know that
if L(t | M) is small, Pr(t | D) is high, and hence t was
likely generated by the distribution D underlying D.
Otherwise, if L(t |M) is (very) large, we should regard
t an outlier, as it was likely generated by a another
distribution than D. Crucial, of course, is to determine
when L(t |M) is small enough.

The standard approach is to let the user define a
cut-off value determined by the false-negative rate, i.e.
the number of positive samples that will be classified
as negatives. For our setting, this would mean setting

a decision threshold θ on the encoded sizes of transac-
tions, L(t | M), such that at least the given number
of training instances are misclassified. Clearly, this ap-
proach has a number of drawbacks. First, it definitely
incorrectly marks a fixed percentage of training samples
as outliers. Second, it does not take the distribution of
the compressed lengths into account, and so gives an
unrealistic estimate of the real false negative rate.

To take the distribution of encoded sizes into ac-
count, we can consider its first and second order mo-
ments. That is, its mean and standard deviation.
Chebyshev’s inequality, given in the theorem below,
smooths the tails of the distribution and provides us
a well-founded way to take the distribution into ac-
count for setting θ. It expresses that for a given random
variable—in our case the compressed length, L(t |M)—
the difference between an observed measurement and
the sample mean is probability-wise bounded, and de-
pends on the standard deviation.

Theorem 2.2. (Chebyshev’s inequality [7]) Let
X be a random variable with expectation µX and
standard deviation σX . Then for any k ∈ R+,

Pr(|X − µX | ≥ kσX) ≤ 1

k2
.

Note that this theorem holds in general, and can
be further restricted if one takes extra assumptions into
account, e.g. whether random variable X is normally
distributed or not.

Given thatM is the MDL-optimal compressor for a
transaction databaseD over a set of items I,M encodes
D most succinct amongst all possible compressors.
Hence we know that those transactions t over I with

L(t |M) <
1

|D|
∑
d∈D

L(d |M) ,

will have high Pr(t | D). In other words, if M re-
quires fewer bits to encode t than it requires on av-
erage for transactions from D, it is very likely that t
was sampled from the same distribution as D. In or-
der to identify anomalies, we are therefore mainly con-
cerned with transactions that are compressed signifi-
cantly worse than average. To this end, we employ Can-
telli’s inequality, the one-sided version of Chebyshev’s
inequality.

Theorem 2.3. (Cantelli’s inequality [7]) Let X
be a random variable with expectation µX and standard
deviation σX . Then for any k ∈ R+,

Pr(X − µX ≥ kσX) ≤ 1

1 + k2
.
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Figure 1: Code length histograms for the 2 different classes of Mushroom. Shown are the compressed sizes of
transactions of the training class, together with the decision thresholds at false positive rates of respectively 10%,
5% and 1% estimated using Cantelli’s inequality.

Again, like Theorem 2.2, this theorem holds in the
general case, and we can restrict it depending on the
knowledge we have on the distribution of the positive
samples Dp. Cantelli’s inequality gives us a well-
founded way to determine a good value for the threshold
θ; instead of having to choose a pre-defined amount of
false-negatives, we can let the user choose a confidence
level instead. That is, an upper bound for the false-
negative rate (FNR). Then, by θ = µ + kσ, we set the
decision threshold accordingly.

Example. Consider Figure 1, depicting the histograms
of the encoded sizes for the Mushroom database. This
is normally the only information the user is able to
derive based on samples from the positive class. The
standard procedure to set the decision threshold is to
choose a fixed number of known false-negatives. In
our setup, we can choose the expected false-negative
rate instead, for which Cantelli’s gives us the correct
value for θ. The dashed lines in Figure 1 show the
thresholds for confidence levels of respectively 10%, 5%
and 1%. The confidence level of 10%, for instance,
corresponds setting θ at 3 standard deviations to the
right of the average. This means the user has less than
10% chance of observing a future positive transaction
that lies further than the decision threshold.

Note that using only the empirical cumulative dis-
tribution, the decision threshold would always fall inside
the observed range, while by using Cantelli’s inequality
we are able to exceed this range: in the case above from
5% onward. Obviously, the user has no guarantees on
the rate that outliers will be classified as positive sam-
ples, i.e. the false positive rate (FPR). We will discuss
that particular problem in Section 2.8.

2.5 Introducing Krimp In the previous subsec-
tions, we simply assumed access to the MDL-optimal
compressor. Obviously, we have to make a choice for
which compressor to use in practice. In this work we
employ Krimp, an itemset-based compressor [21], to
approximate the optimal compressor for a transaction
database. As such, it aims to find that set of itemsets
that together describe the database best. The models
Krimp considers, code tables, have been shown to be
of very high quality [15, 27, 28]. In this section we will
give a quick overview, and refer to the original publica-
tion [21] for more details.

The key idea of Krimp is the code table. A
code table has itemsets on the left-hand side and a
code for each itemset on its right-hand side. The
itemsets in the code table are ordered first descending on
itemset length, second descending on support and third
lexicographically. The actual codes on the right-hand
side are of no importance: their lengths are. To explain
how these lengths are computed, the coding algorithm
needs to be introduced. A transaction t is encoded by
Krimp by searching for the first itemset X in the code
table for which X ⊆ t. The code for X becomes part of
the encoding of t. If t \X 6= ∅, the algorithm continues
to encode t\X. Since it is insisted that each code table
contains at least all single items, this algorithm gives
a unique encoding to each (possible) transaction. The
set of itemsets used to encode a transaction is called its
cover . Note that the coding algorithm implies that a
cover consists of non-overlapping itemsets. The length
of the code of an itemset in a code table CT depends
on the database we want to compress; the more often a
code is used, the shorter it should be. To compute this
code length, we encode each transaction in the database
D. The usage of an itemset X ∈ CT is the number of
transactions t ∈ D which have X in their cover. The



relative usage of X ∈ CT is the probability that X is
used in the encoding of an arbitrary t ∈ D. For optimal
compression of D, the higher Pr(X | D), the shorter its
code should be. In fact, from information theory [8], we
have the Shannon entropy, that gives us the length of
the optimal prefix code for X, by

L(X | CT ) = − log(Pr(X | D)) =
usage(X)∑

Y ∈CT
usage(Y )

.

The length of the encoding of transaction is now simply
the sum of the code lengths of itemsets in its cover,

L(t | CT ) =
∑

X∈cover(t)

L(X | CT ) .

The size of the encoded database is the sum of the sizes
of the encoded transactions,

L(D | CT ) =
∑
t∈D

L(t | CT ) .

To find the optimal code table using MDL, we need
to take both the compressed size of the database, as
described above, and the size of the code table into
account. For the size of the code table, we only consider
those itemsets that have a non-zero usage. The size of
the right-hand side column is obvious; it is simply the
sum of all the different code lengths. For the size of
the left-hand side column, note that the simplest valid
code table consists only of the single items. This is the
standard code table ST , of which we use the codes to
compute the size of the itemsets in the left-hand side
column. Hence, the size of the code table is given by:

L(CT ) =
∑
X∈CT

usage(X ) 6=0

L(X | ST ) + L(X | CT ) .

Siebes et al. [21] define the optimal set of (frequent)
itemsets as the one whose associated code table min-
imises the total compressed size:

L(CT ) + L(D | CT ) .

Krimp starts with the standard code table and the
frequent itemsets up to a given minsup as candidates.
These candidates are ordered first descending on sup-
port, second descending on itemset length and third lex-
icographically. Each candidate itemset is considered by
inserting it in CT and calculating the new total com-
pressed size. A candidate is only kept in the code ta-
ble iff the resulting total size is smaller. If it is kept,
all other elements of CT are reconsidered to see if they
still contribute positively to the compression. Note that

the minsup parameter is only used to control the num-
ber of candidates: it holds in general that the lower the
minsup, the larger the number of candidates, the larger
the search space and the better the final code table ap-
proximates the optimal code table. In MDL we are after
the optimal compressor, for Krimp this means minsup
should be set as low as practically feasible.

For more details, we refer to the original paper [21].

2.6 Krimp for One-Class Classification By run-
ning Krimp on training database D, consisting of posi-
tive examples, we obtain an approximation of the MDL-
optimal compressor for D. To employ this compressor
for one-class classification, or outlier detection, we com-
bine the insights from Sections 2.4 and 2.5. Formally,
this means that given a decision threshold θ, a code ta-
ble CT for database D, both over a set of items I, for
an unseen transaction t also over I, we decide that t
belongs to the distribution of D iff

L(t | CT ) ≤ θ .

In other words, if the encoded length of the transaction
is larger than the given threshold value, we decide it is
an outlier. We will refer to our approach as OC3, which
stands for One-Class Classification by Compression.

The MDL-optimal compressor for the positive class
can obviously best be approximated when D consists
solely of many samples from Dp. In practice, however,
these demands may not be met.

Firstly, D may not be very large. The smaller D is,
the less well the compressor will be able to approximate
the MDL-optimum. We thus especially expect good
performance for large training databases. Note that
MDL inherently guards against overfitting: adding too
much information to a model would make it overly
complex, and thus degrade compression.

Secondly, D may contain some (unidentified) sam-
ples from Dn. However, under the assumption that Dp
and Dn are well separated, the MDL-optimal compres-
sor for a dataset D with a strong majority of samples
from Dp, and only few from Dn, will typically encode fu-
ture samples from Dp in fewer bits than those from Dn.
As such, the classifier will also work when the training
data contains anomalies. Unless stated otherwise, in the
remainder of this paper we assume that D is sampled
solely from the positive class.

2.7 Characterising Decisions One of the main
advantages of using a pattern-based compressor like
Krimp, is that we can characterise decisions.

As an example, suppose a transaction t is classified
as an outlier. That is, L(t | CT ) > θ. To inspect
this decision, we can look at the itemsets by which



the transaction was covered; this gives us information
whether the outlier shows patterns characteristic for
the positive class. That is, the more t resembles the
patterns of the positive class, the more it will be covered
by long itemsets and less by singletons. On the other
hand, patterns that are highly characteristic for D
that are missing from the transaction cover are equally
informative; they pinpoint where t is essentially different
from the positive class.

Since code tables on average contain up to a few
hundred of elements, this analysis can easily be done
by hand. In addition, we can naturally rank these
patterns on encoded size, to show the user what most
characteristic, or frequently used, patterns are missing
or present. As such, decisions can easily be thoroughly
inspected.

2.8 Estimating the Decision Landscape For
many situations it is not unrealistic to assume that,
while not abundant, some example outliers are avail-
able besides the training data (e.g. less than 10). Even
if these examples are not fully representative for the
whole negative class Dn, we can use them to make a
more informed choice for the threshold parameter.

To this end, we propose to generate artificial out-
liers, based on the given negatives, to estimate the num-
ber of bits our positive-class compressor will require to
encode future samples from Dn; given this estimated
distribution of encoded lengths, and the encoded lengths
for the training data, we can set the decision threshold
θ to maximise expected accuracy—as well as to inspect
whether it is likely we will see good classification scores.

For this, we have to make one further assumption
that builds on the one underlying one-class classifica-
tion, i.e. that the positive and negative distributions are
essentially different, and hence, that the MDL-optimal
compressor for the positive class will badly compress
samples from the negative class. Now, in addition, we
assume that by slightly altering a known outlier it will
still be an outlier. Note that if the positive and nega-
tive distributions are not well-separated, this assump-
tion will not hold.

More formally, let us consider the MDL-optimal
compressorM for a training databaseD of samples from
Dp, all over a set of items I. Further, we have a known
outlier t ∈ Dn for which L(t | M) is large, compared
to L(d | M) for random d ∈ D. Next, let us construct
transactions t′ by removing few (one, two, . . . ) items
X from t, and replacing these with equally many items
Y not in t, i.e. t′ ← (t \X) ∪ Y , with |t′| = |t|, Y ⊆ I
and X \ t = ∅. Now, the main assumption is that on
average, t′ is about as likely as t in Dn, i.e. we have
Pr(t′ | Dn) ≈ Pr(t | Dn), and t′ is unlikely to be drawn

from Dp, i.e. Pr(t′ | Dp) is small and L(t′ |M) relatively
large. Under this assumption, L(t′ |M) gives us a good
estimate of the encoded sizes of real future outliers.

Naturally, the quality of the estimate is strongly
influenced by how we swap items. One option is random
change. Alternatively, we can take the compressor
and the training data into account. Through these,
we can identify those X and Y that will maximally
change L(t′ | M); by choosing X and Y such that t′
is compressed badly, we will (likely) overestimate the
separation between Dp and Dn, and analogously we
underestimate when we minimise L(t′ |M).

We argue that in this setup the latter option is
preferred. First of all, it is possible that the identified
outliers are extremes—otherwise they might not have
been discovered. Second, it is not unlikely the two
distributions share basic characteristics. A pattern very
common in D will likely also occur in samples from Dn;
we should take this into account when sampling t′s.

Given some prototype outliers, we generate new
samples according to the following distribution. First,
we uniformly choose a transaction t among the given
prototype outliers. Next, from t we select an item i to
remove, using the following exponential distribution,

Pr(i) =
2−1/l(i)∑

j∈t
2−1/l(j)

,

where, l(i) = L(Z|CT )
|Z| and i ∈ Z ∈ cover(t) . By this

choice, we prefer to remove those items that require
the most bits to be described—that is, those that fit
the patterns from the positive class least. To complete
the swap, we choose an item from I \ t to add to
t. (Note that if the original dataset is categorical, it
only makes sense to swap to items corresponding to
the same category.) We choose the item j to swap to
according to the following distribution, similar to how
we previously [27] imputed missing values,

Pr(j) =
2−L(tj |CT )∑

k∈I\(t\i)
2−L(tk|CT )

,

with tj = (t \ {i}) ∪ {j}. This distribution generates
transactions t′ with preference to short encoding.

To estimate the expected false positive rate, we gen-
erate a large number of samples and calculate mean and
standard deviation. One can use Cantelli’s inequality,
or assume the encoded lengths of the outliers to follow
a normal distribution. Then, one can update θ by tak-
ing both FPR and FNR into account, e.g. choose the
intersection between the two distributions.



2.9 Measuring Decision Certainty Item swap-
ping is also useful to show how a transaction t needs to
be modified in order to change the classification verdict.
Or, the other way around, to show what items are most
important with regard to the decision of t. However,
we can go one step further, and look at the certainty
of a decision by considering the encoded lengths of al-
tered transactions. The rationale is that the more we
need to change t to let its encoded length reach below
the decision threshold, the more likely it is this example
is indeed an outlier. Alternatively, for a sample with
an observation error, a small change may be enough to
allow for a correct decision.

So, the goal is, given a transaction t, to maximally
reduce the encoded size L(t | CT ) with a limited
number of changes δ. In general, transactions may have
different cardinality, so up to δ elements can be added—
in categorical databases transactions are of the same
size and up to δ items need to be swapped. Clearly,
with

(|I\t|
δ

)
×
(|t|
δ

)
possible altered transactions, solving

this problem exhaustively quickly becomes infeasible for
larger δ and I. However, in our setup we can exploit
the information in the code table to guide us in choosing
those swaps that will lead to a short encoding.

The idea is to cover the transaction t using the
most specific elements, i.e., the itemsets X ∈ CT with
highest cardinality |X|, while tolerating up to δ missing
items. The reason to choose the most specific elements
is that we cover the most singletons by one itemset, and
therewith replace many (on average long) codes by just
one (typically short) code. Note that, alternatively, one
could attempt to greedily cover with the elements with
the shortest codes, or even minimise the encoded length
by dynamic programming.

We present the pseudo-code for finding a δ-fault-
tolerant cover for a transaction t and a code table CT as
Algorithm 1. In order to calculate the resulting encoded
length of t, we simply use the code lengths in the code
table. In the algorithm, while covering t, we keep track
of the number of swaps made so far, denoted as ε. Once
the number of uncovered items in t is smaller or equal
than ε (line 2) we can stop: the items remaining in t
are the items we have to remove, the items S \ t are the
ones we have to add. We only use Algorithm 1 as a step
during analysis of decisions; it would require non-trivial
adaptations to Krimp to let it consider missing items
when constructing the optimal code table, and our focus
here is clearly not to construct a new compressor.

3 Related Work
Much of the existing work on one-class classification tar-
gets record data constructed with numerical attributes.
For a general overview, we refer to [17, 24]. Very few

Algorithm 1 Fault-Tolerant Cover
Input: Transaction t ∈ D and code table CT , with CT

and D over a set of items I. Maximum number of
faults δ, and current number of faults ε.

Output: Fault-tolerant cover of t using the most spe-
cific elements of CT , tolerating at most δ faults.

1. S ← smallest X of CT in Standard Cover Order
with |X \ t| ≤ δ, and X ∈ t if |X| = 1

2. if |t \ S| ≤ ε then
3. Res← {S}
4. else
5. Res← {S} ∪

Fault-TolerantCover(t\S,CT, δ–|S\t|,ε+|S\t|)
6. end if
7. return Res

of these studies are applicable to transaction data, as
many of the these methods rely on density estima-
tions (e.g. Parzen-windows or mixture of Gaussians)
to model the positive class. Two state-of-the-art algo-
rithms that, by respectively using the appropriate ker-
nel or distance measure, are applicable to binary data
are Support Vector Data Description (SVDD) [26], or
one-class SVM [20], and Nearest Neighbour Data De-
scription (NNDD) [24].

He et al. [9] study outlier detection for transaction
databases. The authors assume that transactions hav-
ing less frequent itemsets are more likely to be outliers.
Narita et al. [18], on the other hand, use information
of association rules with high confidence for the outlier
degree calculation. Both these approaches were formu-
lated to detect outliers in a database, but can also be
used for single-class problems. While both methods use
patterns and share the transparency of our approach,
their performance is very parameter-sensitive. For the
former, the authors restrict themselves to the top-k fre-
quent itemsets. In the latter, besides a minimum sup-
port threshold, the user also needs to specify minimum
confidence. Both papers notice large changes in accu-
racy depending on the parameter settings, but postpone
insight in how to set these optimally to future work.

We are not the first to employ the MDL princi-
ple for one-class classification. However, to the best
of our knowledge, we are the first to apply it in a bi-
nary/transaction database setting. Bratko et al. [3] and
Nisenson et al. [19] consider streams of character data
(e.g. text, streams of bytes or keyboards events, etc.).
In these approaches, the compressor is immaterial; that
is, well-known universal compression algorithms, such
as gzip, are used, which do not allow for inspection.
The algorithms compress common shared (sub)strings
of characters that occur often together in the streams.



Table 1: Statistics of the datasets used in the experi-
ments. Given are, per dataset, the number of rows, the
number of distinct items, the number of classes and the
minsup thresholds for the Krimp-compressor.

Krimp

Dataset |D| |I| |K| minsup

Adult 48842 95 2 50
Anneal 898 66 5 1
Breast 699 14 2 1
Chess (k-k) 3196 75 2 400
Chess (kr-k) 28056 58 18 1
Connect-4 67557 129 3 1
Led7 3200 14 10 1
Mushroom 8124 117 2 1
Nursery 12960 27 4 1
Pageblocks 5473 39 5 1
Pen Digits 10992 76 10 10
Pima 768 36 2 1
Typist 533 40 10 1

In transaction databases one is not interested in se-
quences of items, as items are unordered.

We use Krimp, introduced by Siebes et al. [21],
to build a compression model relying on the (frequent)
itemsets to encode transactions. Van Leeuwen et al.
show that these models are able to compete with the
state-of-the-art multi-class classifiers [15]. Alterna-
tively, one could use Pack [23], or any other suited
transaction data compressor, in our framework.

4 Experiments
In this section we experimentally evaluate our approach.
First, we discuss the experimental setup, then investi-
gate classification accuracy. Next, we show how classi-
fication decisions can be characterised, and observation
errors in transactions can be detected. Finally, we esti-
mate the distribution of encoded lengths for outliers to
improve classification results.

4.1 Experimental Setup For the experimental val-
idation of our method we use a subset of publically avail-
able discretised datasets from the LUCS-KDD reposi-
tory [4]. In addition to these datasets, shown in Ta-
ble 1, we also consider the Typist recognition problem
provided by Hempstalk et al. [10], discretised and nor-
malised using the LUCS-KDD DN software [4].

We turn this selection of multi-class classification
datasets into several one-class classification problems.
For each dataset, one class at a time, we consider a

particular class K ∈ K as the positive class and the
samples from the remaining classes K \ K as outliers.
All results reported in this section are 10-fold cross-
validated.

To obtain the Krimp code table CTK for a dataset
DK , we use (closed) frequent itemsets inDK mined with
minsup set as low as practically feasible. The actual
values for minsup are depicted in Table 1.

4.2 Classification We compare our method to two
state-of-the-art [10, 26] one-class classifiers: Support
Vector Data Description (SVDD) [20, 26] and Nearest
Neighbour Data Description (NNDD) [24], both of
which are publically available in DDtools [25].

For the kernel in SVDD, or one-class SVM, we use
the polynomial kernel, and optimise degree parameter
d for high accuracy. While more generally employed
in one-class classification, for binary data the RBF
kernel leads to worse results. One other advantage of
using polynomial kernels with binary data is the close
relatedness to itemsets: the attributes in the feature
space induced by this kernel indicate the presence of
itemsets up to length d.

For NNDD we use the Hamming distance. To deter-
mine the number of neighbouring points that are used to
decide the classification, parameter k, we optimise the
log-likelihood of the leave-one-out density estimation.

To compare the algorithms, we use the AUC, i.e.
area under the ROC curve, as it is independent of ac-
tual decision thresholds. Table 2 shows the AUC scores
averaged over 10-folds and each of the classes of each
dataset. We see, and it is confirmed by pairwise Stu-
dent’s t-tests at α-level 5%, that, in general, the perfor-
mance of OC3 is on par with that of SVDD and both
algorithms clearly outperform NNDD. Especially for
datasets with high numbers of transactions, e.g. Chess
(kr-k), Connect-4, Mushroom, and Pen Digits, OC3 pro-
vides very good performance, while for data with very
small classes, such as Pima and Typist, it does not im-
prove over the competing methods. This is expected,
as MDL requires sufficient samples to properly estimate
the training distribution. In conclusion, OC3 performs
on par with the state of the art, and can improve over
it for large databases.

The sub-par performance of all classifiers on Adult,
Pageblocks, and Pima, can be explained: these datasets
contain large numbers of identical transactions that only
differ on class-label, making errors unavoidable.

In our setup, classification depends on code length
distributions for the different classes. Figures 2a and
2b show the histograms on the training instances of two
classes from the Pen Digits dataset. One can notice that
the positive transactions (shown in hatched red) are bet-



Table 2: AUC scores for the benchmark datasets. Shown are, per dataset, mean and standard deviation of the
average AUC score over the classes. The Krimp-compressor in OC3 ran using the minsup values in Table 1.

Dataset OC3 SVDD NNDD

Adult 68.63 ± 3.71 72.86 ± 6.68 65.64 ± 5.84
Anneal 95.58 ± 0.62 93.62 ± 9.95 97.32 ± 2.36
Breast 87.12 ± 12.76 96.47 ± 1.19 72.77 ± 33.04
Chess (k-k) 68.57 ± 0.58 65.62 ± 7.89 82.27 ± 1.69
Chess (kr-k) 94.89 ± 5.18 86.46 ± 8.71 80.38 ± 9.79
Connect-4 73.73 ± 6.47 55.14 ± 6.98 62.22 ± 5.52
Led7 91.45 ± 3.50 93.41 ± 3.45 79.43 ± 7.26
Mushroom 100.00 ± 0.00 97.69 ± 2.89 99.92 ± 0.07
Nursery 98.43 ± 1.68 98.68 ± 1.68 84.54 ± 7.16
Pageblocks 52.59 ± 23.87 56.79 ± 13.91 51.13 ± 13.07
Pen Digits 98.25 ± 0.89 98.98 ± 0.80 98.32 ± 1.00
Pima 50.94 ± 28.93 65.32 ± 9.66 50.63 ± 12.81
Typist 87.81 ± 6.93 92.30 ± 6.35 87.84 ± 7.73

average 84.62 ± 8.11 84.71 ± 3.35 80.11 ± 8.79

ter compressed than the outliers, i.e. the other classes,
(filled blue) which is in accordance with the MDL as-
sumption. The quality of the classification result is de-
termined by the amount of overlap. Following, the more
the two distributions are apart, the better the results
are. For the sub-par performing datasets in Table 2,
the histograms overlap virtually completely, and hence
the separation-assumption is not met.

If memory or time constraints do not allow us to
mine for frequent itemsets at low minsup, e.g. for the
dense Chess (k-k) dataset, some characteristic patterns
might be missing from the code tables, in turn leading
to sub-par compression and performance. Clearly, at
further expense, mining at lower minsup would provide
better compression, which in turn should provide better
performance on these datasets.

4.3 Inspection and Characterisation One of the
key strengths of our approach is that we can analyse
and explain the classification of transactions. Here, we
investigate how well the approach Section 2.7 outlines
works in practice. Note that black-box methods like
SVDD and NNDD do not allow for characterisation.

To demonstrate the usability of our approach in
a real problem setting, we perform a case study
on real MCADD data, described in detail in Sec-
tion 4.5, obtained from the Antwerp University Hos-
pital. Medium-Chain Acyl-coenzyme A Dehydrogenase
Deficiency (MCADD) [1] is a deficiency newborn babies
are screened for during a Guthrie test on a heel prick
blood sample. This recessive metabolic disease affects
about one in 10 000 people while around one in 65 is a

carrier of the responsible mutated gene. If left undiag-
nosed, this rare disease is fatal in 20 to 25% of the cases
and many survivors are left with severe brain damage
after a severe crisis.

Figure 3, which shows the covers of 4 transactions
from the MCADD dataset, serves as our running ex-
ample. A typical cover of a transaction from the posi-
tive class is shown in Figure 3a (bottom): one or more
larger itemsets possibly complemented with some sin-
gletons. Also note that the lengths of the individual
codes, denoted by the alternating light and dark grey
bars, are short. This is in strong contrast with the cov-
ers of the other transactions, which resemble typical cov-
ers for outlier transactions, where mostly singletons are
used. Also, the code lengths of itemsets in the cover of
an outlier transaction are typically long.

The ‘outlier’ transaction at the top of Figure 3a was
artificially constructed by taking a transaction from the
positive class. If we use Algorithm 1, with δ, the number
of mistakes allowed, set to one, we exactly recover the
true positive transaction (bottom of Figure 3a). This
shows that we are able to detect and correct observation
errors in future samples. Or, the other way around,
if many swaps are needed for the decision to change,
this gives a plausible explanation why the transaction
is identified as an outlier.

The top transaction in Figure 3b is a true outlier.
We first of all observe that the encoded size of the
transaction is large. Next, as the items are labeled
descending on their support, we see that more than
halve of the items belong to the 20% least frequent.
Moreover, we note that by applying Algorithm 1 the
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(c) MCADD - Healthy Class

Figure 2: Code length histograms for MCADD and Pen Digits. Shown are the compressed sizes of transactions
of the positives (in hatched red) and the outliers (in filled blue). The solid black line depicts our estimate, using
4 counterexamples, of the encoded lengths for the outliers. The dashed line represents the decision threshold
bounding the FPR at 10%, while the dotted line, if present, shows the decision threshold after updating.

gains in encoded length are negligible (see bottom
of Figure 3b for one example). This trend holds in
practice, and strengthens confidence in the assumption
made in Section 2.8, that small variations of negative
samples remain ‘negative’. However, as shown above,
perturbing positive samples can cause large variation in
encoded size as larger patterns fall apart into singletons.

4.4 Estimating Outlier Distributions Next, we
investigate how well we can estimate the distribution of
encoded lengths for outliers, by generating samples from
a limited number of negatives, as outlined in Section 2.8.
For both the MCADD and Pen Digits dataset, we
generated 10 000 samples based on 4 randomly selected
outliers. As shown in Figure 2, the so-derived normal
distributions, based on the sample mean and standard
variation, approximate the true outlier distributions
closely. Note that, as intended, the estimate is slightly
conservative.

Alternatively, if we uniformly swap items, the pat-
terns shared by both outliers and positives are more
likely to be destructed. Experiments show this provides
overly optimistic estimates of the separation of the dis-
tributions. Further, in many situations, it is sensible to
estimate pessimistically. That is, closer to the positive
samples. For example, if MCADD is left undiagnosed,
it is fatal in 20% to 25% of the cases, and survivors are
typically left with severe brain damage.

We will now use illustrate through Figure 2a and
2b how a user can use this information to update
the decision threshold θ. Initially, the user only has
information from the positive class, denoted by the
hatched red histograms. By using Cantelli’s inequality,
the decision threshold can be set to allow up to 10% false
negatives (dashed line). After estimating the negative

distribution, we notice this initial choice fits perfect for
class 10 in Figure 2b. However, the decision threshold
for class 1 in Figure 2a is too low (5% FNR, 0.2%
FPR). If we update the decision threshold (dotted line)
to counterbalance both the estimated false negative and
false positive rate using Cantelli’s inequality, we observe
that the false negative and false positive rates on the
hold-out validation set are more in balance: 1.8% FNR
and 1.5% FPR. So, by using information derived from
the artificial outliers, the user can update the threshold
and improve classification results.

4.5 Case study: MCADD In our study, the
dataset contains controls versus MCADD, with respec-
tively 32 916 negatives and only 8 positives. The in-
stances are represented by a set of 21 features: 12 dif-
ferent acylcarnitine concentrations measured by tandem
mass spectrometry (TMS), together with 4 of their cal-
culated ratios and 5 other biochemical parameters. We
applied k-means clustering with a maximum of 10 clus-
ters per feature to discretise the data resulting in 195
different items. We run Krimp using a minimum sup-
port of 15, which corresponds to a relative minsup of
0.05%.

Repeated experiments using 10-fold cross-validation
show that all 8 positive cases are ranked among the top-
15 largest encoded transactions. Besides, we notice that
the obtained performance indicators (100% sensitivity,
99.9% specificity and a positive predictive value of
53.3%) correspond with the state-of-the-art results [1,
11] on this problem. Moreover, analysing the positive
cases by manually inspecting the patterns in the code
table and covers, reveals that particular combinations
of values for acylcarnitines C2, C8 and C10 together
with particular following ratios C8

C2 ,
C8
C10 and C8

C12 were
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Figure 3: Example transactions from MCADD: observation error (top left), true outlier (top right) and corrections
(bottom) suggested by Algorithm 1 (δ = 1). The rounded boxes visualise the itemsets that are used to cover
the transaction; each itemset is linked to its code. Width of the bar represents the length of the code. Swapped
items are displayed in boldface. Clearly, the observation error is correctly identified, as its encoded length can be
decreased much with only swap, whereas the encoded length of the outlier cannot be improved much.

grouped together in the covers of the positive cases.
Exactly these combination of variables are commonly
used in diagnostic criteria by experts and were also
discovered in previous in-depth studies [1, 11].

The largest negative samples stand out as a rare
combination of other acetylcarnitine values. Although
these samples are not MCADD cases, they are very
different from the general population and are therefore
outliers by definition.

5 Discussion
The experiments in the previous section demonstrate
that our method works: transactions that are succinctly
compressed by patterns from the positive class are
indeed highly likely to belong to that class. The
obtained AUC scores are on par with the state-of-the-
art one-class classifiers for binary data, and especially
good for large datasets.

In practice, a user lacks an overall performance mea-
sure to reliably specify the specificity/sensitivity thresh-
old, as examples for the negative class are rare in one-
class classification. Consequently, the ability to inspect
classification decisions is important. In contrast to ex-
isting approaches, our pattern-based method provides
the opportunity to analyse decisions in detail.

Examples in the experiments show possible use
cases. First, we are able to explain why a transaction
is classified as such. Transactions that are covered
with itemsets that are highly characteristic for the
positive class are likely positives as well, while those
transactions that do not exhibit such key patterns
(and thus encoded almost solely by singletons) can be

considered as outliers. Next, our approach is able to
detect, and correct, observation errors in test samples.

Furthermore, if some outliers are available, we pro-
pose to approximate the encoding distributions of the
outliers. By using this information, a user is able to
make a more informed decision when setting the decision
threshold. Here, we choose to generate samples con-
servatively. Visualising the approximated distribution
of encoded lengths for outliers shows whether one-class
classification, based on compressed lengths, is actually
possible.

A case study on the MCADD dataset shows that
true outliers are correctly identified. Different from
the setup explored here, where unseen transactions
are considered as potential outliers, one could also be
interested in detecting outliers in the dataset at hand.
The method discussed in this paper may well provide a
solution for this problem, that is, pointing out the most
likely outlying items and transactions by compressed
size. Related, as a future work, we are investigating a
rigorous approach for cleaning data using MDL.

Although in this work we focus on binary data, the
methods we present can be generalised as a generic
approach using MDL. That is, as long as a suited
compressor is employed, the theory will not differ for
other data types. Variants of Krimp have already been
proposed for sequences, trees, and graphs.

6 Conclusion
In this paper we introduced a novel approach to out-
lier detection, or one-class classification, for binary or
transaction data. In this setting little or no examples



are available for the class that we want to detect, but
an abundance of positive samples exists. Our method
is based on the Minimum Description Length principle,
and decides by the number of bits required to encode an
example using a compressor trained on samples of the
normal situation. If the number of bits is much larger
than expected, we decide the example is an outlier.

Experiments show that this approach provides ac-
curacy on par with the state of the art.

Most important, though, is that it holds three
advantages over existing methods. First, by relying
on pattern-based compression, our method allows for
detailed inspection and characterisation of decisions,
both by showing which patterns were recognised in the
example, as well as by checking whether small changes
affect the decision. Second, we show that given a few
example outliers, our method can reliably estimate the
decision landscape. Thereby, it can predict whether the
positive class can be detected at all, and allows the user
to make an informed choice for the decision threshold.
Third, given this estimate the method is parameter-free.
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