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ABSTRACT
To make query answering feasible in big datasets, practi-
tioners have been looking into the notion of scale indepen-
dence of queries. Intuitively, such queries require only a
relatively small subset of the data, whose size is determined
by the query and access methods rather than the size of the
dataset itself. This paper aims to formalize this notion and
study its properties. We start by defining what it means
to be scale-independent, and provide matching upper and
lower bounds for checking scale independence, for queries in
various languages, and for combined and data complexity.
Since the complexity turns out to be rather high, and since
scale-independent queries cannot be captured syntactically,
we develop sufficient conditions for scale independence. We
formulate them based on access schemas, which combine in-
dexing and constraints together with bounds on the sizes of
retrieved data sets. We then study two variations of scale-
independent query answering, inspired by existing practical
systems. One concerns incremental query answering: we
check when query answers can be maintained in response
to updates scale-independently. The other explores scale-
independent query rewriting using views.

Categories and Subject Descriptors: H.2.1 [Database
Management]: Logical Design – Data Models; H.2.1
[Database Management]: Systems – Query Processing
General Terms: Theory, Languages, Algorithms

Keywords: Scale independence; big data; query answering

1. INTRODUCTION
Big data introduces challenges to the scalability of query

answering. Given a query Q and a dataset D, it is often
prohibitively costly to compute the answers Q(D) to Q in
D when D is big, e.g., of PetaByte (1015 bytes) or ExaByte
(1018) size. To this end, one may want to use heuristics,
“quick and dirty” algorithms which return approximate an-
swers. However, in many applications it is a must to find
exact query answers.
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To cope with these, practitioners have been studying scale
independence (e.g., [4–6]). A query Q is said to be scale-
independent in a dataset D w.r.t. M if Q(D) can be com-
puted by accessing a set DQ of at most M tuples in D,
independent of the size of the underlying dataset D. Here
M is a non-negative integer, indicating the capacity of our
available resources, such as time and space.

The need for scale independence is evident in practice. It
allows us to answerQ in bigD within our available resources.
Moreover, if Q is scale-independent in all datasets, we can
answer Q without performance degradation when D grows,
i.e., make Q scalable.

Scale independence per se is not easy to achieve, nor is
it easy to test for, as we shall show. Nonetheless, there
are many practical scenarios where scale independence is
achievable, roughly classified into three groups below.

(1) Additional information about accessing information in a
dataset, which is typically provided in the form of indices
and/or cardinality constraints, can make rather expressive
classes of queries scale-independent. Such access informa-
tion is in fact commonly available in many large datasets
being used in the real world.

(2) Even if a query Q is not scale-independent, we may still
make it feasible to query big data incrementally, i.e., to
evaluate Q incrementally in response to changes ∆D to D,
by accessing an M -fraction of the dataset D. That is, we
compute Q(D), once and offline, as precomputation, and
then incrementally answer Q on demand.

(3) Additionally, we can sometimes achieve scale indepen-
dence using views, i.e., when a set V of views is defined, we
rewrite Q into Q′ using V, such that for any dataset D, we
can compute Q(D) by using Q′, which accesses materialized
views V(D) and only a bounded amount of data from D (this
is subject to the storage and maintenance costs of V(D)).

We now illustrate these three scenarios by examples.

Example 1.1: Some real-life queries are actually scale-
independent. For example, below are (slightly modified)
queries taken from Graph Search of Facebook [11].

(a) Query Q1 is to find all friends of a person p who live in
NYC, from a dataset D1. Here D1 consists of two relations
specified by person(id, name, city) and friend(id1, id2), record-
ing the basic information of people (with a key id) and their
friends, respectively. Query Q1 can be written as follows:

Q1(p, name) = ∃id
(
friend(p, id) ∧ person(id, name,NYC)

)
.

In personalized social searches we do not want to compute
the entire answer to Q1, but rather do it for a specified



person p0; that is, given p0, we want to find all values of
name so that (p0, name) is in the answer to Q1.

The dataset D1 is often big in real life: Facebook has more
than 1 billion users with 140 billion friend links [10]. A naive
computation of the answer to Q1, even if p0 is known, may
fetch the entire D1, and is cost prohibitive.

Nonetheless, we can computeQ1(p0, D1) by accessing only
a small subset DQ1 of D1. Indeed, Facebook has a limit of
5000 friends per user (cf. [5]), and id is a key of person.
Thus by using indices on id attributes, we can identify DQ1 ,
which consists of a subset Df of friend including all friends
of p0, and a set Dp of person tuples t such that t[id] = t′[id2]
for some tuple t′ in Df . Then Q1(p0, DQ1) = Q1(p0, D1).
Moreover, DQ1 contains at most 10000 tuples of D1, and is
much smaller than D1. Thus Q1 is scale-independent in D1

w.r.t. M ≥ 10000.

This illustrates the key ingredients of the recipe for scale
independence. First, we may have to fix values of some
parameters of the query (p0 for p above). Second, we may
need access information telling us that based on some key
values, tuples can be fetched efficiently, and there is an upper
limit on the number of tuples fetched.

(b) Query Q2 is to find from D2 all restaurants rated A
in NYC, where p’s friends in NYC have been. Dataset D2

consists of four relations: person and friend as above, and
relations specified by restr(rid, name, city, rating) (with rid as
a key) and visit(id, rid). Here Q2 is

Q2(p, rn) = ∃id, rid, pn
(
friend(p, id) ∧ visit(id, rid)

∧ person(id, pn,NYC) ∧ restr(rid, rn,NYC, A)
)
.

Again, we want to find the answers for a given person p0.
However, unlike D1, dataset D2 imposes no restriction on
the number of restaurants in NYC or on the number of
restaurants which a person visits.

Nonetheless, in this case we can incrementally evaluate Q2

scale-independently, leveraging the old output Q2(p0, D2).
Given a set ∆D2 of insertions to visit, one can compute
Q2(D2 ∪∆D2) by fetching at most 3|∆D2| tuples from D2,
where |S| denotes the number of tuples in S. Indeed, for
each tuple (id, rid) in ∆D2, we fetch the restaurant iden-
tified by the key rid, the friend of p0 identified by id, and
person tuple (identified by id) to verify that the friend lives
in NYC, via indexing. Let S be the set of the names of
the restaurants that are fetched and visited by NYC friends.
Then S ∪ Q2(D2) = Q2(D2 ∪∆D2). Note that ∆D2 is of-
ten small in practice. If 3|∆D2| ≤M , then the incremental
evaluation of Q2 is scale-independent w.r.t. M .

(c) Assume that two views are defined: V1 contains all
restaurants in NYC, and V2 is a subset of visit(id, rid) such
that id lives in NYC (restaurants visited by NYC locals).
Using V1 and V2, query Q2 can be rewritten as:

Q′2(p, rn) = ∃id, rid
(
friend(p, id) ∧ V2(id, rid) ∧ V1(rid, rn, A)

)
.

Then for all datasets D2, by using materialized views
V1(D2) and V2(D2), Q′2 needs to fetch at most 5000 friend
tuples from D2 for p = p0, i.e., for a fixed p, Q2 is scale-
independent in all D2 by using V1 and V2. Here we assume
that the views are cached in memory and can be efficiently
retrieved. That is, for scale independence using views to be
effective, the materialized views should be of small size. 2

All three examples thus show that it is feasible to answer a
queryQ in a big datasetD by accessing a bounded amount of

data. To make practical use of scale independence, however,
several questions have to be answered. Given Q and D, can
we decide whether Q is scale-independent in D? If such an
identification is expensive, can we find sufficient conditions
for scale independence, perhaps using indices and other ac-
cess information? If Q is determined to be scale-independent
in D, can we effectively identify a small DQ ⊆ D such that
Q(D) = Q(DQ) and |DQ| ≤ M , by using available indices?
And can we achieve reasonable time bounds for finding this
set and for evaluating the query over it? Similar questions
also arise for incremental scale independence and scale in-
dependence using views.

Contributions. Our goal is to give a formal definition of
scale independence (this has not been previously done) and
study the above questions along the following three lines.

Complexity of scale independence. We look at the problem
of deciding, given a query Q, a dataset D, and a bound M ,
whether Q is scale-independent in D w.r.t. M , i.e., Q(D)
can be computed by accessing at most M tuples in D. We
call it QDSI (with QD emphasizing that both Q and D are
inputs). We establish both combined and data complexity
bounds for QDSI, when Q is a conjunctive query (CQ), a
union of conjunctive queries (UCQ), or in first-order logic
(FO). We also study a special case when M is a constant,
i.e., when the capacity of our resources is fixed. Moreover,
we study another problem, QSI, to check whether Q is
scale-independent in all instances D of a relational schema.

Most of the results are negative: for FO queries, QSI is un-
decidable, and few sensible CQ queries are scale-independent
in all instances, while the complexity of QDSI also tends to
be rather high. This naturally brings us to the next theme
of our investigation.

Sufficient conditions for scale independence. Not only is the
complexity of QDSI and QSI rather high, it is also impossible
to capture scale-independent queries syntactically. Thus,
we need to find sufficient conditions for scale independence,
with additional access information.

Such additional information comes in the form of access
schemas A that specify what parts of data can be efficiently
retrieved from D by using indices, as practiced in real life,
and in addition give cardinality restrictions on such retrieved
sets of tuples. We then provide a sufficient syntactic condi-
tion for an FO query to be scale-independent under A. The
class of queries we define is compositional: it is given by
a set of rules forming new queries from existing ones, and
we show that each rule is optimal, i.e., it cannot get any
tighter. We then show that the syntactic class of queries
guarantees scale independence under A. For instance, the
query Q1 we have seen above is an example of such a query:
our conditions say that when the person is fixed, and if the
Facebook restriction on the number of friends applies, then
the query can be executed scale-independently.

Furthermore, we introduce embedded access schemas to
incorporate constraints commonly found in practice, such
as functional dependencies. We show that some queries that
are not scale-independent may become so under embedded
A with simple constraints.

Two variants of scale independence. Finally, we extend our
study to incremental scale independence and scale indepen-
dence using views, which have been used in practice [6]. We
investigate the following problems.



(a) ∆QSI is to decide whether for all small updates ∆D
to D, the answer to Q on the updated database can be
incrementally computed from Q(D) by using at most M
additional tuples from base relations in D.

(b) VQSI is to decide whether a query Q can be rewritten
to another query Q′ using a set V of views, such that for
all datasets D, Q(D) can be computed by using Q′, which
accesses materialized views V(D) and at most M tuples in
the data source D.

We provide complexity bounds for these problems, and
sufficient conditions for queries to be incrementally scale-
independent and scale-independent using views.

To the best of our knowledge, this work is the first effort
to give a formal treatment of scale independence, a notion
recently proposed and implemented [4–6]. Our results
provide a comprehensive picture of complexity bounds for
the problem, help us identify a bounded amount of data
from a large dataset for query evaluation, and suggest what
indices to build on our datasets. The lower bounds also
justify the adoption of approximate query answering.

Related work. The notion of scale independence was pro-
posed in [5], to guarantee that a bounded amount of work
(key/value store operations) is required to execute all queries
in an application, regardless of the size of the underlying
data. An extension to SQL was developed in [4] to enforce
scale independence, which allows users to specify bounds
on the amount of data accessed and the size of intermedi-
ate results; when the data required exceeds the bounds, only
top-k items are retrieved to meet the bounds. View selection
and maintenance were studied in [6], such that a bounded
amount of work is needed to answer queries by query rewrit-
ing using views and materialized (precomputed) views.

The goal of this work is to give a precise notion of scale in-
dependence and study its properties. We identify problems
fundamental to scale independence, provide matching com-
plexity bounds, propose access schemas to formulate data
access via indexing and constraints, and give sufficient condi-
tions for scale independence (incrementally, or using views).
The results tell us what is doable and what is not. To the
best of our knowledge, no prior work has studied these.

Related to our notion of access schemas is the notion
of access patterns. Access patterns require that a relation
can only be accessed by providing certain combinations of
attribute values. Query processing under limited access
patterns has been extensively studied, e.g., [7, 9, 22, 24].
In contrast to the prior work, we use access schemas to
combine indexing and the amount of data retrieved, and
embed cardinality constraints in an access schema. Our
goal is to provide a sufficient condition for identifying what
queries are scale-independent with indices and constraints,
rather than to study the complexity or executable plans for
answering queries under access patterns [7, 9, 22,24].

There has been a host of work on incremental query an-
swering (surveyed in [15]) and query rewriting using views
(surveyed in [16, 19]). The prior work has mostly focused
on improving performance by making maximum use of pre-
computed query answers or views. In contrast, incremental
scale independence and scale independence using views aim
to access a minimum amount of data in data sources, to
cope with the sheer volume of big data. There has also been

prior work on bounded incremental computation [28], self-
maintainable views [27], queries independent of updates [21]
and view complements [25], which also access limited source
data or no source data at all. We will clarify the difference
between those previous works and ours in Sections 5 and 6.

Related to problem QDSI is the relatively complete
database problem (RCDP) studied in [12]. Given a query
Q, a database D, master data Dm, a set Σ of containment
constraints on D and Dm, RCDP is to decide whether D
has complete information to answer Q relative to Dm and
Σ, i.e., for all extensions D′ of D, if D′ and Dm satisfy Σ,
then Q(D) = Q(D′). In contrast, QDSI is to decide whether
there exists a DQ ⊆ D such that Q(D) = Q(DQ) and |DQ|
is below a bound M . The two problems are quite different,
from complexity bounds to proofs. For instance, when Q is
in CQ and constraints in Σ are expressed in CQ, RCDP is
NEXPTIME-complete, while QDSI is Σp3-complete.

There has also been recent work on querying big data,
e.g., on the communication complexity of parallel query
evaluation [17, 18], the complexity of query processing in
terms of MapReduce rounds [2, 30], and the study of query
classes that are tractable on big data [13]. In contrast,
this work studies whether it is feasible to compute query
answers in big data by accessing a small subset of the data,
and if so, how to efficiently identify this subset.

Organization. Section 2 presents notations. Section 3 es-
tablishes the complexity bounds for QDSI and QSI, and Sec-
tion 4 deals with conditions for scale independence under ac-
cess schemas. Sections 5 and 6 investigate ∆QSI and VQSI,
respectively. Conclusions are in Section 7.

2. PRELIMINARIES
A relational schema R consists of a collection of relation

names (R1, . . . , Rn), with each Ri having a fixed set of at-
tributes. We assume a countably infinite set U from which
elements populating databases are drawn. That is, an in-
stance D of R associates with each R ∈ R having m at-
tributes an m-ary relation RD over U , i.e., a subset of Um.
When there is no confusion, we omit the superscript D. The
set of all elements of U present in relations in D is called
the active domain of D and is denoted by adom(D).

We shall use logical languages for expressing queries
declaratively. The languages L used here are standard re-
lational languages (see [1] for details). We list them now,
together with their relational algebra equivalents.

• Conjunctive queries (CQ) are built up from relation
atoms Ri(x̄) (for Ri ∈ R), and equality atoms x = y
or x = c (for constant c), by closing them under
conjunction ∧ and existential quantifier ∃ (i.e., the
class SPJ of select-project-join queries);

• Unions of conjunctive queries (UCQ) are queries of
the form Q1 ∪ · · · ∪ Qk, where each Qi is in CQ for
i ∈ [1, k] (equivalently, SPJU queries);

• First-order logic queries (FO) are built from atomic
formulas by using ∧, ∨, negation ¬, and quantifiers ∃
and ∀ (equivalently, the full relational algebra).

If x̄ is the tuple of free variables of Q, we shall also write
Q(x̄). Given a query Q(x̄) with |x̄| = m and a database D,
the answer to Q in D, denoted by Q(D), is the set of tuples{
ā ∈ adom(D)m | D |= Q(ā)

}
.



Often we need to fix values for some free variables. For
a query Q(x̄, ȳ) with |ȳ| = m and a tuple ā of values for x̄,
Q(ā, D) denotes

{
b̄ ∈ adom(D)m | D |= Q(ā, b̄)

}
.

If Q is a sentence (i.e., it has no free variables), we refer
to it as a Boolean query; such a query returns true or false.
To distinguish queries that have free variables, we shall call
them data selecting queries; for such a query Q, the answer
Q(D) is a set of (nonempty) tuples.

Remark. All our complexity results for CQ also hold for
UCQ. Hence, in what follows, we will only mention CQ and
FO when reporting complexity bounds.

3. SCALE-INDEPENDENT QUERIES
The key idea behind scale independence is that we can

find a small subset of a database D so that a query Q can
be answered over that subset, rather than over the entire
D. In this section we define the notion of scale indepen-
dence formally, study its basic properties, and establish the
complexity of problems associated with it.

LetR be a relational schema, D a database of this schema,
Q a query in language L, and M a non-negative integer. Let
|D| denote the size of D, measured as the total number of
tuples in relations of D.

We say that Q is scale-independent in D w.r.t. M if there
exists a subset DQ ⊆ D such that

• |DQ| ≤M and

• Q(DQ) = Q(D).

That is, to answer Q in D, we need only to fetch at most M
tuples from D, regardless of how big D is.

We refer to DQ as a witness for scale independence of Q
in D w.r.t. M . We write SQL(D,M) for the set of all L
queries that are scale-independent in D w.r.t. M .

We say that Q over schema R is scale-independent
w.r.t. M if Q is scale-independent in D w.r.t. M for all
databases D of R, and write SQL,R(M) for the set of all L
queries Q that are scale-independent w.r.t. M .

For instance, for Q1(p, name) and D1 given in Exam-
ple 1.1, the query Q1(p0, name) with a given person p0 is
in both SQL(D1, 10000) and SQL,R(10000), under the con-
straints that limit 5000 friends per person and id is a key of
person.

These two notions lead to two problems of determining
scale independence, i.e., whether there exists a witness at
all, denoted by QDSI and QSI. They are stated as follows.

• Problem QDSI(L):

– INPUT: A relational schema R, an instance D of
R, a query Q ∈ L over R, and M ≥ 0.

– QUESTION: Is Q in SQL(D,M)?

• Problem QSI(L):

– INPUT: A schema R, a query Q ∈ L over R, and
M ≥ 0.

– QUESTION: Is Q in SQL,R(M)?

Problem QDSI tests query-database scale independence.
It is highly relevant in practice since one often wants to
know whether a query is scale-independent for the database
at hand. The need for this is particularly evident for e.g.,
Facebook: it maintains a single dataset D for its social data
(when D is updated, we only need to consider incremental

scale independence). Problem QSI is “stronger”: it tests
query scale independence for all instances of a schema.

For problem QDSI(L) we also have two versions to study:
data complexity, when schema and query are fixed, but
database and M may vary; and combined complexity, when
everything (R, Q,D,M) is a parameter.

We now study the complexity of these problems. All the
lower bounds of this paper also hold when schema R is fixed.
We also study the case when M is fixed too.

Query-database scale independence. We first deal with
the problem QDSI in which both the query and the database
are part of the input. We start with combined complexity.
The first result is for data-selecting queries, and we show
that the problem is necessarily in the polynomial hierarchy
even for simple classes of queries, and it is in PSPACE for FO.

Theorem 3.1: For data selecting queries, the combined
complexity of QDSI(L) is

• Σp3-complete when L is CQ; and

• PSPACE-complete when L is FO. 2

Proof sketch. (1) Upper bounds. We first consider a sim-
pler witness problem. That problem asks, given Q,D,M
and D′ ⊆ D with |D′| ≤ M , whether Q(D) = Q(D′), i.e.,
it checks whether a given D′ witnesses scale independence.
It can be verified that the witness problem is Πp

2-complete
for CQ and PSPACE-complete for FO. Observe that solv-
ing QDSI just adds an existential guess of D′ on top of the
witness problem, thus taking us to the third level of the poly-
nomial hierarchy for CQ, and staying in PSPACE for FO.

(2) Lower bounds. QDSI(CQ) is verified by reduction from
the ∃∗∀∗∃∗3CNF problem, which is known to be Σp3-complete
[29]. The latter problem is to decide, given a sentence ϕ =
∃X∀Y ∃Z ψ(X,Y, Z), whether ϕ is true, where ψ(X,Y, Z) is
an instance of 3SAT, i.e., ψ is C1 ∧ · · · ∧ Cr, and each Ci
is a disjunction of three literals (variables or negations of
variables in X,Y or Z).

To show that QDSI(FO) is PSPACE-hard, we use reduc-
tion from Q3SAT, which is PSPACE-complete (cf. [26]).
Given a sentence ϕ = P1x1 . . . Pmxm ψ(x1, . . . , xm), Q3SAT
is to decide whether ϕ is true, where Pi is either ∃ or ∀, and
ψ is an instance of 3SAT. The reduction uses a Boolean FO
query and a constant M . 2

Boolean queries. For Boolean queries, QDSI becomes much
simpler for CQ. Indeed, if Q(D) is true, then Q(DQ) is true
for some DQ such that |DQ| ≤ ||Q||. For a CQ Q, we measure
||Q|| as the size of the tableau of Q. This follows from the
standard homomorphism semantics of CQ (see [1]). For a
UCQ Q = Q1 ∪ · · · ∪Qk, we define ||Q|| to be max{||Qi|| | i ∈
[1, k]}. In practice, typically ||Q|| �M � |D|.

Since the PSPACE lower bound of Theorem 3.1 was veri-
fied by using a Boolean FO query, in the case of FO there is
no lowering of the complexity. Thus, we have:

Corollary 3.2: For Boolean queries Q, QDSI(L) is

• in constant time (if ||Q|| ≤M) when L is CQ; and

• PSPACE-complete when L is FO.

for the combined complexity. 2

A similar analysis gives a bound for M when Q is a
data-selecting CQ query. Since for each tuple ā in Q(D)



Query languages Data selecting Boolean

combined (Th 3.1) data (Th 3.3) combined (Cor 3.2) data (Th 3.3)
CQ, UCQ Σp3-complete NP-complete O(1)-time O(1)-time

FO PSPACE-complete NP-complete PSPACE-complete NP-complete

Special case: when M is a constant

combined (Prop 3.4) data (Prop 3.4) combined (Th 3.4) data (Th 3.4)
CQ, UCQ Πp

2-complete PTIME O(1)-time O(1)-time
FO PSPACE-complete NP-complete PSPACE-complete PTIME

Table 1: Complexity bounds for QDSI (O(1) cases hold when ||Q|| ≤M)

we need at most ||Q|| tuples in D to witness it, for each
M ≥ min{|D|, |Q(D)| · ||Q||}, we have Q ∈ SQL(D,M).

Data complexity. Fixing query Q makes our lives easier. For
data selecting queries, QDSI(L) is down to NP-complete for
all the languages. This is because the data complexity of all
the languages is in PTIME. For Boolean queries, the problem
is easy for CQ, but remains NP-complete for full FO.

Theorem 3.3: The data complexity of QDSI(L) for data
selecting queries is NP-complete for L ranging from CQ to
FO. For Boolean queries, it is in O(1)-time for CQ (if ||Q|| ≤
M) but NP-complete for FO. 2

Proof sketch. (1) Upper bounds. It suffices to give an NP
algorithm for checking whether Q ∈ SQL(D,M) when Q is
a fixed FO data-selecting query. Observe that the witness
problem (see proof of Theorem 3.1) is in PTIME for FO when
data complexity is concerned. Hence, the additional exis-
tential guess needed to solve QDSI brings us to NP. Boolean
CQ queries inherit the O(1) bound from Corollary 3.2.

(2) Lower bounds. For both fixed data-selecting query Q in
CQ and fixed Boolean Q in FO, we show that QDSI is NP-
hard by reductions from the set covering problem (SCP),
which is known to be NP-complete (cf. [26]). Given a finite
set X, a family F = {C1, . . . , Cn} of subsets of X, and a
positive integer k, SCP is to decide whether there exist k
subsets in F whose union is X. 2

When M is fixed. When we have a fixed set of resources,
the bound M is a constant. Fixing M simplifies the analysis
of QDSI. The combined complexity drops one level in the
polynomial hierarchy for CQ, but it remains intact for FO.
Data complexity becomes tractable, even for data-selecting
FO queries, since only fixed-size subsets need to be checked.

Proposition 3.4: When M is fixed, the combined complex-
ity of QDSI(L) is

• Πp
2-complete for data-selecting queries, and is in O(1)-

time for Boolean queries if ||Q|| ≤M , for CQ;

• PSPACE-complete for both data-selecting queries and
Boolean queries in FO.

The data complexity of QDSI(L) is the same as in Theorem
3.3 except that it becomes PTIME for FO. 2

Proof sketch. (1) Upper bounds. When M is fixed, we give a
Πp

2 algorithm to check whether Q is in SQL(D,M) when Q is
a data-selecting query in CQ, and a PTIME algorithm when
Q is a fixed data-selecting FO query. More precisely, we
have a Σp2 algorithm for the complement problem in which
the guess of D′ and the guess of a witness of Q(D′) 6= Q(D)
are combined. The O(1) and PSPACE bounds are inherited
from Corollary 3.2 and Theorem 3.1, respectively.

(2) Lower bounds. For data-selecting CQ, we show it is Πp
2-

hard by reduction from ∀∗∃∗3CNF [29]. It is to decide, given
a sentence ϕ = ∀X∃Y ψ(X,Y ), whether ϕ is true, where
ψ(X,Y ) is an instance of 3SAT (see the proof of Theorem 3.1
for 3SAT). For Boolean FO queries, the proof of Theorem 3.1
already verified the PSPACE-hardness by using M = 3. 2

Table 1 summarizes the complexity results for QDSI.

Query scale independence, We now look at the problem
QSI(L) that checks scale independence for all databases. For
queries Q in CQ or UCQ, the answer is ‘no’ in the absence
of constraints on databases, unless Q is trivial (e.g., it re-
turns a constant tuple over all databases). This is due to
the monotonicity of queries: we can always add tuples to
the database that generate new tuples in the answer if Q
is non-trivial. For full FO, as expected, the problem is un-
decidable. Indeed, for M = 0, the problem asks whether
Q or its negation is finitely valid (i.e., true in every finite
structure), which is undecidable (cf. [23]).

Proposition 3.5: The problem QSI is undecidable even for
Boolean FO queries and every fixed M . In fact for a schema
R and M ≥ 0, the set SQFO,R(M) is not even recursively
enumerable. 2

Note that Q ∈ SQL(D, |D|) for every language L and
every query Q: all this says is that Q can be answered on D
itself. The question is whether the |D| bound can be lowered,
ideally to a constant. For general data-selecting queries this
may not be doable over all databases, e.g., when the queries
need to look at the entire input such as those that simply
return the input database. But what about Boolean queries?

We say that a Boolean query Q does not use its input fully
if there is a function fQ : N→ N such that fQ(n) < n for all
sufficiently large n and Q ∈ SQL(D, fQ(|D|)) for every D.
Otherwise a query fully uses its input.

Clearly every Boolean CQ does not use its input fully:
it only needs a portion of it of the size ||Q||. But when it
comes to FO, this is not the case. Indeed, one can easily find
Boolean FO queries that fully use their input.

Proposition 3.6: There are FO Boolean queries that fully
use their input. 2

The results above might look negative: testing scale in-
dependence is computationally hard in the presence of data
(which may be of very large size), or undecidable when we
want to check whether it works on all databases (or, worse
yet, the answer is simply negative). Nonetheless, this is not
an atypical situation in databases, and it simply tells us
that we should look for meaningful restrictions on queries to
achieve scale independence. This is what we do next.



4. QUERY ANSWERING WITH ACCESS
SCHEMAS

The results of the previous section indicate that without
additional knowledge about the class of databases on which
queries are posed, it is hard to achieve scale independence
and hard to test it. We now introduce additional restrictions
that will allow us to define an expressive fragment of FO
admitting scale independence.

The motivation for the type of restrictions we want to
use comes from access methods used in practice, and it is
already implicit in Example 1.1. There are three reasons
why Q1 can be answered fast. First, Facebook imposes a
limit on the number of friends. Second, for each person id,
we can retrieve his/her friends (as well as other information)
quickly, due to the presence of an index. And third, the
query used constant person id p0.

Thus, to be able to state that some queries are scale-
independent, we need information about access to data:
both on the speed of access, and on the amount of data that
can be retrieved. We formalize this in terms of a notion
of access schemas. Then we show when the combination of
the syntactic shape of queries, constants used in them, and
access constraints guarantees scale independence.

Access schemas and scale independence. For a rela-
tional schema R = (R1, . . . , Rn), an access schema A over
R is a set of tuples (R,X,N, T ) where

• R is a relation name in R,

• X is a set of attributes of R, and

• N,T ∈ N.

A database D conforms to the access schema A if two con-
ditions hold for each (R,X,N, T ) ∈ A:

• for each tuple of values ā of attributes of X, the set
σX=ā(R) has at most N tuples; and

• σX=ā(R) can be retrieved in time at most T .

That is, one has an index on X that allows efficient retrieval
of tuples from the database, and in addition there is a bound
N on the number of such tuples (in the simplest case, when
X is a key, the bound is 1). Moreover, the N tuples can be
retrieved in T time units by using the index.

In our Facebook example, we would have a tuple
(friend, id1, 5000, T ) for some value T in the access schema,
indicating that if id1 is provided, at most 5000 tuples with
such an id exist in friend, and it takes time T to retrieve
those. In addition, we would have a tuple (person, id, 1, T ′),
saying that id is a key for person with a known time T ′ for
retrieving the tuple for a given id.

Given a relation schema R, an access schema A, and a
query Q(x̄, ȳ), we say that Q is x̄-scale-independent under
A if for each database D that conforms toA and each tuple ā
of values for x̄, the answer Q(ā, D) can be found in time that
depends only on A and Q, but not on D. In analogy to data
complexity, when the query Q is fixed but the access schema
A may vary, we say that Q is efficiently x̄-scale-independent
under A if the time to answer Q(ā, D) is polynomial in A.

Consider again the Facebook example:
Q1(p, name) = ∃id

(
friend(p, id) ∧ person(id, name,NYC)

)
.

Then, under the access schema given above, Q1 is p-scale-
independent: for each given person p0, the answers toQ1 can
be found in time determined by the access schema alone.

Controllability and scale independence. It is unde-
cidable whether a query is x̄-scale-independent under ac-
cess schema A, even if A is empty. Even more, the set of
scale-independent queries is not recursively enumerable, as
we have seen in Proposition 3.5, which rules out the exis-
tence of an effective syntax for it.

However, the lack of effective syntactic characterizations
of classes of queries is common in databases. It is typically
overcome by finding good and practically relevant sufficient
conditions that guarantee desired properties of queries.

This is exactly what we do now: we define a syntactic
class of x̄-controlled queries for a given access schema, where
x̄ is a subset of free variables of a query, and show that each
x̄-controlled query under A is efficiently x̄-scale-independent
under A. That is, an x̄-controlled query becomes scale-
independent under A once we fix values ā for x̄.

We now inductively define the class of x̄-controlled FO
queries under an access schema A. We also say that Q(x̄) is
controlled if it is x̄-controlled, i.e., controlled by providing
values for all its free variables. The rules for x̄-controlled
formulae are as follows:

atoms: if (R,X,N, T ) is in A, then R(ȳ) is x̄-controlled
under A, where x̄ is the subtuple of ȳ corresponding
to attributes in X;

conditions: if Q(x̄) is a Boolean combination of equalities
among variables in x̄, then Q is x̄-controlled;

disjunction: if Qi(ȳ) is x̄i-controlled under A for i = 1, 2,
then Q1(ȳ) ∨Q2(ȳ) is (x̄1 ∪ x̄2)-controlled;

conjunction: if Qi(x̄i, ȳi) is x̄i-controlled under A for
i = 1, 2, then Q1 ∧ Q2 is controlled under A by both
x̄1 ∪ (x̄2 − ȳ1) and x̄2 ∪ (x̄1 − ȳ2);

safe negation: If Q(ȳ) is x̄-controlled under A, and Q′(z̄)
with z̄ ⊆ ȳ is controlled under A, then Q ∧ ¬Q′ is
x̄-controlled under A;

existential quantification: if Q(ȳ) is x̄-controlled under
A and z̄ is a subtuple of ȳ−x̄, then ∃z̄ Q is x̄-controlled
under A;

universal quantification: if Q(x̄, ȳ) is x̄-controlled under
A, and Q′(z̄) with z̄ ⊆ x̄ ∪ ȳ is controlled under A,
then ∀ȳ

(
Q(x̄, ȳ)→ Q′(z̄)

)
is x̄-controlled under A;

expansion: if Q(ȳ) is x̄-controlled under A and x̄ ⊆ x̄′ ⊆ ȳ,
then Q is x̄′-controlled under A.

Remark. We use set-theoretic operations for tuples of free
variables to avoid cumbersome notations, as the meaning of
those is clear from the context: for instance, x̄∪ȳ is the tuple
of all the variables used in x̄ and ȳ, while x̄−ȳ is the subtuple
of x̄ from which variables occurring on ȳ are eliminated.

Example 4.1: For example, under the access schema shown
earlier, the query Q1(p, name) is p-controlled. Indeed, the
access schema tells us that friend(p, id) is p-controlled and
person(id, name,NYC) is id-controlled, and hence their con-
junction is p-controlled. After adding an existential quanti-
fier over id, the whole Q1 is still p-controlled.

As another example, consider query Q3, which revises Q2

of Example 1.1 to find all restaurants in NYC that are rated
A and were visited in a given year by p0’s friends who lived
in NYC. Relation visit(id, rid) is extended by including at-
tributes yy,mm, dd, indicating that person id visited restau-
rant rid on a given date. Then:



Q3(rn, p, yy) = ∃id, rid, pn,mm, dd
(
friend(p, id)

∧ visit(id, rid, yy,mm, dd) ∧ person(id, pn,NYC)
∧ restr(rid, rn,NYC, A)

)
.

Under the same access schema A as before, one can de-
rive that all base relations are only controlled by all their
free variables, except for friend that is deduced by the
atom rule also p-controlled, and person that is id-controlled.
We have just seen that friend(p, id) ∧ person(id, pn,NYC)
is p-controlled. Processing the remaining conjunctions in
this way, one can see that this the subquery of Q3 is
{p, rid, yy,mm, dd, rn}-controlled. After adding the existen-
tial quantification ∃id, rid, pn,mm, dd, the corresponding rule
tells us that Q3 is not scale-independent. Indeed, the exis-
tential quantification “forgets” that one needs to specify val-
ues for rid,mm, dd as specified by the controlling attributes.
We will see below how to enrich the access schema A with
embedded constraints to make Q3 scale-independent. 2

We now state the main result that the syntactic condition
of controllability indeed guarantees the semantic condition
of scale independence.

Theorem 4.2: If an FO query Q is x̄-controlled under an
access schema A, then it is efficiently x̄-scale-independent
under A. 2

Proof sketch. We show by induction on Q(x̄, ȳ) how to
retrieve a set DQ(ā) ⊆ D on which Q(ā, ·) can be evaluated,
i.e., Q(ā, D) = Q(ā, DQ(ā)), for a given set of values ā for
x̄, and provide polynomial bounds for its size and query
evaluation time. The base case is provided by the access
schema. We now sketch the conjunction case; others are
similar. Assume we have Qi(x̄i, ȳi) which are x̄i-controlled
for i = 1, 2; also let x̄′2 stand for the subtuple of x̄2 consist-
ing of variables that occur in ȳ1, and x̄′′2 for the remaining
variables of x̄2, i.e., x̄′′2 = x̄2−ȳ1. Given values ā1 and ā′′2 for
x̄1 and x̄′′2 , proceed as follows. Find DQ1(ā1) by using, e.g.,
indices. Since Q(ā1, D) = Q(ā1, DQ1(ā1)), the number of
tuples b̄ in Q(ā1, D) is bounded too. For each such tuple b̄,
let b̄2 stand for the part of it corresponding to the variables
in x̄2. Then for each tuple (b̄2, ā

′′
2 ) we can find Q2(b̄2, ā

′′
2 , D)

effectively by constructing a subset DQ2(b̄2, ā
′′
2 ) and evalu-

ating the query on it; this shows that the whole conjunction
(join) is scale-independent once ā1 and ā′′2 are known. 2

Intuitively, Theorem 4.2 suggests the following. First,
guided by an access schema A, we can build up indices on
certain attributes of relations in an instance of schema R.
Second, capitalizing on the indices, for all instances D of R,
we can answer FO queriesQ that are x̄-controlled underA by
retrieving a small subset DQ ⊆ D, such that Q(D) = Q(DQ)
and |DQ| ≤M , where M can be derived from the N -values
in A. Furthermore, there exists an effective plan for iden-
tifying DQ, which can be derived from A and an inductive
analysis of the structure of Q. In particular, this confirms
our intuition that for a fixed p0, the query Q1 in our example
can be evaluated in a scale-independent way.

Even though the rules might look rather easy and per-
haps limited in some cases (e.g., the universal quantification
rule only guarantees controllability with all free variables),
it is the combination of rules that lets us derive nontrivial
controllability statements. For instance, the universal quan-
tification rule can be used in conjunction with another query,
and then it provides genuinely new information.

To give an example, assume that we have a schema with
relations R(A,B), S(A,B,C), and T (A,B,C), and suppose
that (R,A,N, T ) is in the access schema for some N and T .
Now we are given a query

SELECT A, B FROM R

WHERE A=1 AND

NOT EXISTS (SELECT * FROM S

WHERE R.A=S.A AND R.B=S.B AND

NOT EXISTS (SELECT * FROM T

WHERE T.A=S.A AND T.B=S.B AND T.C=S.C))

What are the conditions on S and T that will make this
query scale-independent? Using our rules we can quickly
answer this. The query is equivalent to R(x, y) ∧ (x = 1) ∧
∀z
(
S(x, y, z) → T (x, y, z)

)
. Applying the conjunction and

universal quantification rules, we see that it suffices for S to
be (A,B)-controlled, and T to be controlled by any set of
attributes (in particular, (A,B,C)-controlled) for the whole
query to be scale-independent. This suggests building an
index on A,B for S and an arbitrary index for T .

Optimality of the rules. One may wonder whether the
rules for controllability for FO queries are optimal, i.e., can
they be relaxed so that they provide us with a “tighter”
notion of controllability in terms of the number of values
needed to guarantee scale independence? The answer is neg-
ative. Indeed, the rules – for queries of that syntactic shape
– are optimal. In general, each rule is a template that applies
to many queries of the same shape. Each of those templates
has many instances of the form: under an access schema A,
if Q(x̄) is x̄1-controlled and Q′(ȳ) is ȳ1-controlled, then some
query Q′′(z̄), built from Q and Q′, is controlled by tuples
z̄1, . . . , z̄k (for some of them, Q′ is not needed).

We say that such a rule is optimal if there exists an in-
stance of it in which the query Q′′ is not controlled by any
subtuple z̄ of a minimal tuple among the z̄i’s. That is, in
full generality, we cannot achieve smaller controlling tuples.
Then the following can be easily verified.

Proposition 4.3: Each of the rules for defining the classes
of controlled queries is optimal. 2

Complexity of controllability. As controllability, unlike
scale independence, is a purely syntactic condition, one can
expect it to be decidable. In fact we pinpoint the exact com-
plexity of it. The conjunction rule above involves two possi-
bilities, indicating that some guessing is needed while look-
ing for tuples controlling a query. This intuition is confirmed
by NP-completeness of two problems shown below. For the
second one, we say that Q is minimally controlled by x̄ if it
is x̄-controlled but not x̄′-controlled for any subtuple x̄′ of x̄.

• Problem QCntl:

– Input: An access schema A, a number K > 0,
an FO query Q(ȳ).

– Question: Is there x̄ with |x̄| ≤ K so that Q is
x̄-controlled?

• Problem QCntlmin:

– Input: An access schema A, an FO query Q(ȳ),
a variable x.

– Question: Is Q minimally controlled by some x̄
containing x?



Theorem 4.4: The problems QCntl and QCntlmin are NP-
complete. They remain NP-hard for CQ. 2

Proof sketch. We use reductions from problems related to
candidate keys and prime attributes, cf. [1]. 2

Embedded controllability and query answering un-
der constraints. So far we have looked at access schemas,
which tell us that, given values of certain attributes, there is
a bound on the set of tuples having those attribute values.
But we often have cases when such constraints are embedded,
i.e., they do not apply to the whole set of attributes. For
instance, consider a relation visit(id, restaurant, yy, dd,mm)
indicating that a person id visited a restaurant on a given
date. Then we can add to the access schema information
stating that for every year yy, there is a limit on the number
of retrieved months (mm) and days (dd) (namely 366), and
those values can be efficiently found.

Another reason to consider such embedded statements is
that they make it possible to incorporate constraints such
as functional dependencies (FDs) into access schemas: an
FD X → Y says that once X is fixed, we have just one
possibility for the values of Y .

Formally, embedded constraints in an access schema are
tuples (R,X[Y ], N, T ) with X ⊆ Y being sets of attributes
of R, indicating that for a given tuple ā of values of X,
the result of πY (σX=ā(R)) has at most N tuples and can be
found in time T . Note that previous statements (R,X,N, T )
are just a special case when Y = attr(R), the set of all
attributes in R. An FD X → Y with a time guarantee T to
retrieve values of Y for given values of X is just (R,X[X ∪
Y ], 1, T ) in the access schema.

We can then extend the rules of controllability to define
what it means for a query Q(z̄) to be x̄[ȳ]-controlled (under
A) when x̄ ⊆ ȳ ⊆ z̄. Most of the rules just mimic those
for controllability except two that are similar to inference
rules for FDs. Below we give two sample controllability rules
(rules 1,2) and the two inference rules (rules 3,4).

1. if (R,X[Y ], N, T ) is in A, then R(z̄) is x̄[ȳ]-controlled,
where x̄ and ȳ are subtuples of z̄ corresponding to at-
tributes in X and Y ;

2. if Qi(x̄i, z̄i) is x̄i[ȳi]-controlled i = 1, 2, then Q1∧Q2 is
(x̄1 ∪ (x̄2 − ȳ1))[x̄1x̄2ȳ1ȳ2]-controlled (and likewise for
the symmetric case);

3. if Q(z̄) is x̄[ȳ]-controlled and x̄′ ⊆ z̄, then Q is (x̄ ∪
x̄′)[ȳ ∪ x̄′]-controlled;

4. Q(z̄) is x̄[ȳ]-controlled and x̄′[ȳ′]-controlled for x̄′ ⊆ ȳ,
then Q is x̄[ȳ ∪ ȳ′]-controlled.

Then one adapts the proof of Theorem 4.2 to show:

Proposition 4.5: If Q(x̄, ȳ, z̄) is x̄[x̄ ∪ ȳ]-controlled under
A, then ∃z̄ Q(ā, ȳ, z̄) is efficiently scale-independent under
A for each ā. 2

By Proposition 4.5, we can process some queries scale-
independently under constraints, as shown below.

Example 4.6: As we have seen in Example 4.1, query Q3

is not scale-independent, even if p and yy are fixed. In con-
trast, below we show that Q3 becomes scale-independent af-
ter adding two embedded statements to the access schema.
One is (visit, yy[yy, dd,mm], 366, T ), which simply says that

a year has at most 366 days; and the other is an FD
id, yy, dd,mm→ rid, saying that on a given day, each person
id dines out at most once, even in NYC (we assume the FD
to be effective).

Given these two embedded statements, one can apply the
rules to derive that subquery visit is (id, yy)-controlled. To-
gether with the assumption that id forms an index for person
and that restr is city-controlled, this shows that query Q3 is
(p, yy)-controlled. Thus, if we want to find, for instance, all
A-rated NYC restaurants that were visited by a NYC friends
of p0 in 2013, we can pose the query Q3(rn, p0, 2013), which
is now scale-independent. 2

5. INCREMENTAL SCALE INDEPEN-
DENCE

While some queries Q may not be in SQL(D,M) for a
database D, they may be incrementally scale-independent
in D [6]. That is, we can compute Q(D) once as precom-
putation, and then incrementally evaluate Q on demand in
response to changes to D, by accessing at most M tuples
from D. Incremental scale independence allows us to an-
swer online queries efficiently, by making maximum use of
previous computation.

In this section, we first formally specify incremental scale
independence, and then establish its complexity. Finally,
we identify sufficient conditions for a query to be scale-
independent for incremental evaluation.

Incremental scale independence. We consider updates
∆D = (∆D,∇D) to D that consist of a list of tuples ∆D to
be inserted into D and a list ∇D of tuples to be deleted. It
is required that ∇D be contained in D and ∆D be disjoint
from D; in particular, ∆D ∩ ∇D = ∅. We write D ⊕∆D
to denote the database obtained by applying ∆D to D, i.e.,
(D −∇D) ∪∆D (where updates are applied relation-wise).

The setting of incremental query answering is as fol-
lows. We are given a query Q and its answer Q(D) on
a database D. Now, for an update ∆D, we want to
compute Q(D ⊕ ∆D), i.e., we want a pair of queries
∆Q = (∇Q,∆Q) that take ∆D and D as inputs so that

Q(D ⊕∆D) = Q(D)⊕∆Q(∆D,D).

We use the notation Q(D) ⊕ ∆Q(∆D,D) to denote
(Q(D)−∇Q(∆D,D)) ∪ ∆Q(∆D,D).

As shown in [14], for FO queries Q, we can effectively
find ∇Q and ∆Q in FO so that ∇Q(∆D,D) ⊆ Q(D) and
∆Q(∆D,D) is disjoint from Q(D). Typically such queries
are found by propagating changes through relational algebra
expressions [15]. Such queries can often be evaluated much
faster than computing Q(D ⊕∆D) from scratch, if ∆D is
small compared to D, as found in practice [15].

To give an example, recall Q2 and ∆D2 from Exam-
ple 1.1, where ∆D2 inserts tuples into visit, denoted by
∆visit(id2, rid). From Q2 we derive ∆Q2(rn, p) as:

∆Q2(rn, p) = ∃id2, rid
(
friend(p0, id2) ∧∆visit(id2, rid)
∧ restr(rid, rn,NYC, A)

)
.

Here ∆Q2 finds tuples to be inserted into Q2(D2), such that
Q2(D2 ⊕∆D2) = Q2(D2) ∪∆Q2(∆D2, D2).

We say that Q is incrementally scale-independent in D
w.r.t. (M,k) if for all updates ∆D to D with |∆D| ≤ k,



there exists a subset DQ ⊆ D with |DQ| ≤ M such that
Q(D ⊕∆D) = Q(D) ⊕∆Q(∆D,DQ). That is, to incre-
mentally answer Q in D in response to ∆D, we need to
access no more than M tuples from D, independent of the
size of the underlying D. We consider updates ∆D with
a bounded number of tuples since in real life updates are
typically frequent but small, very often consisting of single
tuple insertions or deletions.

We write ∆SQL(D,M, k) for the set of all L queries that
are incrementally scale-independent in D w.r.t. (M,k). For
instance, Q2 above is in ∆SQL(D2,M, k) if M ≥ 3k, when
some constraints state that only updates allowed to D2 are
insertions ∆visit(id2, rid).

We study the incremental scale-independence problem, de-
noted by ∆QSI(L), which is stated as follows.

• PROBLEM: ∆QSI(L).

– INPUT: A schema R, a query Q ∈ L over R, an
instance D of R, and M,k ≥ 0.

– QUESTION: Is Q in ∆SQL(D,M, k)?

Complexity. We next give the complexity of ∆QSI. For full
FO, ∆QSI matches the bound of QDSI for scale-independent
query answering, even in simple settings, for combined com-
plexity, and moves one level up in the polynomial hierarchy
for data complexity.

Theorem 5.1: When L is FO, ∆QSI(L) is

• PSPACE-complete for combined complexity, even for
Boolean queries, and even if M is fixed; and

• Πp
2-complete for data complexity (when both queries

Q and ∆Q are fixed), and coNP-complete if in
addition, M is fixed. 2

Proof sketch. Since guessing is free in PSPACE, and since the
combined complexity of FO is in PSPACE as well, the defini-
tion of incremental scale independence naturally translates
into a PSPACE algorithm. For the PSPACE hardness, we use
reduction from Q3SAT for Boolean FO by using a fixed M .

For the lower bounds for data complexity, we use reduc-
tions from the ∀∗∃∗3CNF problem and the complement of
3SAT, when M is not fixed and fixed, respectively. 2

We next look at the case of CQ. It turns out that we have
rather high bounds.

Theorem 5.2: The complexity of ∆QSI(CQ) is

• Πp
4-complete, or Πp

2-complete if M also is fixed, for
combined complexity, assuming that the maintenance
queries ∆Q are CQ as well; and

• Πp
2-complete, or coNP-complete when M is in addition

fixed, for data complexity. 2

Proof sketch. The upper bounds follow essentially from pars-
ing the definitions of being incrementally scale-independent
and using the tableau representation of a CQ, except the
case for fixed M , which is more involved. For data complex-
ity, the maintenance query is allowed to be in FO, which also
has PTIME data complexity.

The lower bounds are verified by reductions from satisfi-
ability problems: ∀∗∃∗∀∗∃∗3CNF for Πp

4, ∀∗∃∗3CNF for Πp
2,

and the complement of 3SAT for coNP. The coding for the

data complexity with variable M is more involved, to cope
with various ∆D and ∇D. 2

The condition that maintenance queries are in CQ is true
for insertion-only updates; in fact in this case the main-
tenance query can be computed in polynomial time [14].
An example of arbitrary updates admitting CQ maintenance
query is when Q is key-preserving [8], if the projection at-
tributes of Q include a key of each occurrence of base rela-
tions that are involved in Q.

Under access schemas. We now look at incremental
scale independence under access schemas. Given a relational
schema R, an access schema A, and a query Q(x̄, ȳ), we say
that Q is x̄-incrementally scale-independent under A if for
each tuple ā of values for x̄, and each update ∆D, the an-
swer to maintenance queries ∆Q(ā,∆D,D) can be found
in time that depends on Q, A and ∆D only, but not on D.
Note that ∆Q has the same free variables x̄, ȳ as Q, but
takes as its input both D and ∆D. Efficient incremental
scale independence under A is defined along the same lines
as its counterpart given in Section 4.

From results of Section 4, we immediately obtain:

Corollary 5.3: If queries ∆Q(x̄, ȳ) are x̄-controlled under
an access schema A for a query Q in FO, then Q is efficiently
incremental x̄-scale-independent under A. 2

In the literature on view maintenance and incremental
recomputation, queries ∆Q are commonly derived for rela-
tional algebra queries. They are not queries that are writ-
ten by the user, but rather automatically generated by the
DBMS; hence it is better to produce them in their procedural
version, to avoid an extra compilation stage [15]. We now
show how to achieve incremental scale independence for rela-
tional algebra queries. As an intermediate step, we also show
how to achieve scale independence for relational algebra.

The idea is as follows. The analog of a tuple x̄ of vari-
ables in x̄-controlled queries is now a set of attributes X of
an expression E of relational algebra. We then produce re-
sults on scale independence when the X attributes are fixed,
i.e., on scale independence of queries σX=ā(E). For each ex-
pression E we next introduce expressions E∇ and E∆, and,
for an access schema A, inductively generate the set RAA
of pairs (E,X), where E is an expression, or an expression
annotated with ∆ or ∇, and X is a set of its attributes.
These will tell us whether the expression is (incrementally)
scale-independent for fixed values of attributes in X.

Formally, let attr(E) be the set of attributes of the output
of a relational algebra expression E. We assume that all
selection conditions θ in σθ are conjunctions of equalities
and inequalities. Then, for an access schema A, the set
RAA is defined inductively as follows:

Relational algebra rules:

• if (R,X,N, T ) ∈ A, then (R,X) ∈ RAA;

• if (E,X) ∈ RAA and X ⊆ Y , then (πY (E), X) ∈ RAA;

• if (E,X) ∈ RAA and θ is a condition, then (σθ(E), X−
X ′) ∈ RAA, where X ′ is the set of attributes A for
which θ implies that A = a;

• if (E1, X1), (E2, X2) ∈ RAA and attr(E1) = attr(E2),
then (E1 ∪ E2, X1 ∪X2) ∈ RAA;

• if (E1, X1), (E2, attr(E2)) ∈ RAA and attr(E1) =
attr(E2), then (E1 − E2, X1) ∈ RAA;



• if (E1, X1) and (E2, X2) are in RAA, then (E1 1

E2, X1 ∪ (X2 − attr(E1)) ∈ RAA;

• if (E,X) ∈ RAA and X ⊆ Y ⊆ attr(X), then (E, Y ) ∈
RAA.

We now show rules for expressions E∇ and E∆. For this,
we use queries for propagating changes through relational
expressions, and apply relational algebra rules to them. We
use maintenance queries from [14] since, unlike others pro-
posed in the literature, those guarantee that E∇ ⊆ E and
E∆ ∩ E = ∅. To give an example, consider the propagation
expression (E1 − E2)∇ = (E∇1 − E2) ∪ (E∆

2 ∩ E1). If we
know that E∇1 is controlled by a set X of attributes, and E2

is controlled by any set of attributes (and thus by attr(E2)),
then E∇1 − E2 is controlled by X. Likewise, if E∆

2 is con-
trolled by Z and E1 is controlled by anything (and thus by
attr(E1)), then E∇2 ∩E1 is controlled by Z, and (E1−E2)∇

by X ∪ Z. Now we list the rules for E∇ and E∆.

Decrement rules:

• if R ∈ R, then (R∇, ∅) ∈ RAA;

• if (E∇, X), (E,X) and (E∆, X) are in RAA, and X ⊆
Y , then ((πY (E))∇, X) ∈ RAA;

• if (E∇, X) ∈ RAA, then ((σθ(E))∇, X) ∈ RAA;

• if (E∇i , Xi), (Ei, attr(Ei)), and (E∆
i , attr(Ei)) are all

in RAA for i = 1, 2, then ((E1∪E2)∇, X1∪X2) ∈ RAA;

• if (E∇1 , X), (E∆
2 , Z), and (Ei, attr(Ei)) are all in RAA

for i = 1, 2, then ((E1 − E2)∇, X ∪ Z) ∈ RAA;

• if (E∇i , Xi) and (Ei, Yi) are all in RAA for i = 1, 2, then
((E1 1 E2)∇, X1∪X2∪(Y1−attr(E2))∪(Y2−attr(E1)))
is in RAA.

Increment rules:

• if R ∈ R, then (R∆, ∅) ∈ RAA;

• if (E∆, X) and (E,X) are in RAA, and X ⊆ Y , then
((πY (E))∆, X) ∈ RAA;

• if (E∆, X) ∈ RAA, then ((σθ(E))∆, X) ∈ RAA;

• if (E∇i , Xi) and (Ei, attr(Ei)) are all in RAA for i =
1, 2, then ((E1 ∪ E2)∆, X1 ∪X2) ∈ RAA;

• if (E∆
1 , Xi), (E

∇
i , Zi), and (Ei, attr(Ei)) are all in RAA

for i = 1, 2, then ((E1 − E2)∆, X1 ∪ Z2) ∈ RAA;

• if (E∆
1 , Xi), (E

∇
i , attr(Ei)), and (Ei, Yi) are all in RAA

for i = 1, 2, then ((E1 1 E2)∆, X1 ∪ X2 ∪ (Y1 −
attr(E2)) ∪ (Y2 − attr(E1))) ∈ RAA.

These rules tell us when relational algebra expressions are
scale-independent, both in the usual way and with respect to
incremental computation. We can also construct the set DQ
for maintenance queries, by applying the standard pushing
selection optimizations through the expressions.

Theorem 5.4: Assume that E is a relational algebra
expression, and let A be an access schema. Then

• if (E,X) ∈ RAA, then σX=ā(E) is scale-independent
under A; and

• if (E∆, X) and (E∇, X) are in RAA, then σX=ā(E) is
incrementally scale-independent under A. 2

Proof sketch. The first item is by induction on relational
algebra expressions, similar to the proof of Theorem 4.2.
For the second item, we use change propagation expressions

for relational algebra queries given in [14], and analyze
them to find controlling sets of attributes. 2

Leveraging the special shape of maintenance queries, we
have the following result for CQ. Let A(R) be an access
schema obtained from A by adding (R, ∅, 1, 1) stating that
one can obtain the entire relation R in constant time. Note
that it is easier to answer queries scale independently under
A(R) than under A alone.

Proposition 5.5: Let Q(x̄, ȳ) be a CQ, and A an access
schema. (1) If Q is x̄-scale-independent under A(R), then Q
is incrementally x̄-scale-independent under A when updates
are insertions into relation R. (2) If it is also derivable by
RAA rules that Q is controlled by all of its attributes, then Q
is incrementally x̄-scale-independent under A for arbitrary
updates on R. 2

Example 5.6: Recall query Q2 from Example 1.1 (also used
earlier in this section). Query Q2 was not p-controllable,
but when (visit, ∅, 1, 1) is added to the access schema, ∆Q2

becomes p-controllable, and therefore, ∆Q2(rn, p0) can be
found scale independently for a fixed p0. 2

Connections with view maintenance. We conclude
with a few remarks relating our notions here with several
problems from incremental view maintenance.

One is the problem of self-maintainability. A query Q is
self-maintainable if there exists a set V of views such that
given updates ∆D to D, both Q(D⊕∆D) and V(D⊕∆D)
can be computed fromQ(D), V(D) and ∆D, without access-
ing the underlying database D [27]. This notion is stronger
than incremental scale independence, but only in the pres-
ence of views that need to be maintained themselves.

Even stronger than self-maintenance is the notion of
queries independent of updates [21]: i.e., whether for all
databases D and ∆D, we have Q(D) = Q(D ⊕∆D). In
fact, [21] looks at more complex updates generated by other
queries. This implies incremental scale independence even
with M = 0, but is much more restrictive.

Finally, to analyze incremental algorithms, [28] proposes
to use |CHANGED| = |∆D| + |∆S|, the size of the changes
in the input and output. An incremental algorithm is
said to be bounded if its cost can be expressed as a func-
tion of only |CHANGED|, not of |D|. In contrast to ∆QSI,
bounded incremental query answering concerns the size of
∆Q(∆D,D) rather than the number of tuples in D ac-
cessed. Nonetheless, if Q is in ∆SQL(D,M, k), the cost of
computing ∆Q(∆D,D) is a function of |∆D| and M for all
∆D with |∆D| ≤ k.

6. SCALE INDEPENDENCE USING
VIEWS

We may also approach a query Q that is not scale-
independent by using views [6]. The idea is to maintain
a set V(D) of views of a database D, and compute Q(D)
from V(D) and at most M additional tuples from D.

This section studies scale independence using views. We
state the problem, provide its complexity, and give sufficient
conditions for scale independence by using views.

Scale independence using views. Assume a set V of
views defined over a schema R, in a query language L. Con-
sider an L query Q. Let Q′ be a query overR expanded with



relations that hold the views from V. Then Following [20],
we say Q′ is a rewriting of Q using V if Q(D) = Q′(D,V(D))
for every database D of R, i.e., Q(D) can be computed by
Q′ and leveraging the materialized view extents V(D). We
consider Q′ that is in the same language L, and is polynomi-
ally bounded, i.e., its size is bounded by a polynomial in the
size |Q| of query and the size |V| of view definitions, since
queries of exponential size are not much of practical use.

For instance, Example 1.1 gives a rewriting Q′2 of Q2

using views V1 and V2.

A query Q is said to be scale-independent w.r.t. M using
V if there exists a rewriting Q′ of Q using V such that for all
instances D of R, there is a subset DQ ⊆ D with |DQ| ≤M
satisfying Q(D) = Q′(DQ,V(D)). That is, for all databases
D, we can compute Q(D) by using materialized views V(D)
and by accessing at most M additional tuples from in D.

We denote by VSQL(V,M) the set of L queries that are
scale-independent w.r.t. M using V.

We investigate the scale-independence problem using
views, denoted by VQSI(L). It is stated as follows.

• PROBLEM: VQSI(L).

– INPUT: A schema R, a query Q ∈ L, a set of V
of L-definable views over R, and M ≥ 0.

– QUESTION: Is Q in VSQL(V,M)?

In contrast to QDSI and ∆QSI that focus on a given
database D, VQSI is to decide whether a query Q is
scale-independent in all instances D of R by using V, as
in the study of query rewriting using views [16, 19] (hence
we do not distinguish the combined and data complexity of
VQSI). As opposed to QSI, VQSI explores rewriting Q′ of
Q to achieve scale independence by using views, when Q is
not scale-independent itself. Note that QSI is a special case
of VQSI when V is empty.

Complexity bounds. As opposed to QDSI and ∆QSI, the
problem VQSI is undecidable for FO. Moreover, the com-
plexity bounds for VQSI are rather robust: they remain in-
tact for both data selecting and Boolean queries; and fixing
M does not simplify the analysis of VQSI.

Theorem 6.1: The problem VQSI(L) is

• NP-complete when L is CQ; and

• undecidable when L is FO,

for both data selecting and Boolean queries. The complexity
remains the same when M is a constant. 2

Proof sketch. We show that VQSI is NP-hard for CQ by
reduction from the 3-colorability problem, which is NP-
complete (cf. [26]). We verify the undecidability of VQSI
for FO by reduction from the satisfiability of FO, whose un-
decidability can be proved by using FO queries over a single
binary relation schema (cf. [23]). In light of this, we prove
the lower bounds using fixed R. Moreover, the reductions
use Boolean queries and a constant M .

To show that VQSI is in NP for CQ, we need to characterize
what CQ rewritings are scale-independent using views. We
start with the following notations. A CQ rewriting Q′(x̄) of
a CQ Q(x̄) using V is of the form:

Q′(x̄) = ∃w̄
( p∧
i=1

Ri(x̄i) ∧
q∧
j=1

Vj(ȳj) ∧ φ
)
,

where Rj is a relation atom in R, Vj is a view literal in
V, and φ is a conjunction of equality atoms. We write
Q′ = ∃w̄ (Q′b ∧ Q′v), where Q′b =

∧p
i=1 Ri(x̄i) and Q′v =∧q

j=1 Vj(ȳj), referred to as the base and view part of Q′, re-
spectively. We eliminate φ by replacing a variable x with a
constant c if x = c can be derived from φ via the transitivity
of its equality atoms, and enforce x = y in φ by using the
same variable.

Variables in x̄ are called distinguished. We say that a
variable x in x̄ is constrained in Q′ if either x has been
instantiated to a constant c; or it is not“connected”to a base
relation in Q′b via a chain of joins, i.e., there exists no set of
atoms {Si(v̄i) | 1 ≤ i ≤ l} in Q′ so that S1, . . . , Sl−1 ∈ V,
Sl ∈ R, x ∈ v̄1, and v̄i∩ v̄i+1 6= ∅ for all i < l−1. It is called
unconstrained otherwise.

For instance, in the rewriting Q′2(p, rn) from Example 1.1,
the variable rn is unconstrained in Q′2 since it connects to
base relation friend via joins.

We then show that a data selecting CQ Q(x̄) is scale-
independent w.r.t. M using CQ views V if and only if there
exists a rewriting Q′(x̄) = ∃w̄ (Q′b∧Q′v) of Q(x̄) using V such
that (a) all the distinguished variables in x̄ are constrained in
Q′, and (b) ||Q′b|| ≤M . For Boolean CQ, condition (b) alone
suffices. The same characterization remains intact when Q,
V and Q′ are in UCQ.

Based on this, we develop an NP algorithm to check
whether Q is in VSQL(V,M), for UCQ Q and V. 2

Conditions for scale independence using views. Fol-
lowing Section 4, we say that a query Q is x̄-scale-
independent under an access schema A using V if there ex-
ists a rewriting Q′ of Q using V, such that for each database
D that conforms to A and each tuple ā of values for x̄, the
answer Q′(ā, D) can be found in time that depends only on
A, Q and V(D) only, but not on |D|.

Consider a rewriting Q′ of a CQ Q(x̄) using V, where
Q′(x̄) = ∃w̄ (Q′b ∧ Q′v) (see the proof of Theorem 6.1).
We say that Q′(x̄) is ȳ-controlled under A using V if its
base part Q′b is ȳ-controlled under A, following the rules
for the controllability of CQ given in Section 4. Then the
characterization given in the proof of Theorem 6.1 tells us
that under A, Q is ȳ-scale-independent using V if Q′(x̄)
is ȳ-controlled under A using V and ȳ includes all the
unconstrained distinguished variables in x̄.

We also give a sufficient condition for an FO query Q to be
scale independence using FO views. Given an FO rewriting
Q′ of Q, we define the expansion Q′e of Q′ to be the query
that unfolds Q′ by substituting the definition of view V for
each occurrence of V ∈ V in Q′.

From Theorem 4.2 and the proof of Theorem 6.1, one can
readily get the following corollary.

Corollary 6.2: (1) For a queryQ and a set V of views in FO,
if Q has a rewriting Q′ whose expansion Q′e is x̄-controlled
under an access schema A, then Q is x̄-scale-independent
under A using V. (2) For Q and V in CQ, if Q has a ȳ-
controlled rewriting Q′(x̄) under A using V and if ȳ contains
all unconstrained variables of Q′ in x̄, then Q is ȳ-scale-
independent of under A using V. 2

Example 6.3: For instance, consider again the rewriting
Q′2(p, rn) using views V = {V1, V2} given in Example 1.1,



Under an access schema A that limits 5000 friends per per-
son, its base part friend(p, id) is p-controlled using V, and
hence, so is Q′2. As a result, Q2 is p-scale-independent un-
der A using V. In contrast, under the same A, Q2 is not
p-scale-independent in the absence of V. 2

Connections. Finally, we relate scale independence using
views with prior work on the study of views.

A complete rewriting of Q using V is a rewriting of Q
built up with only literals in V and equality predicates [20].
Obviously, if Q has a complete rewriting using V, then Q is
scale-independent using V with M = 0. That is, the former
is a special case of the latter.

Given a set V of views over a schema R, the study of
view complements (e.g., [25]) is to find a (minimal) set Vc
of views such that for all instances D of R, D can be recon-
structed from V(D) and Vc(D). When both V and Vc are
available, all queries Q is scale-independent using V and Vc,
with M = 0, without accessing D. However, it is not very
practical to approach scale independence by using views and
their complements: V(D) and Vc(D) are no smaller than D,
and it is nontrivial to compute a minimal set Vc of view
complements.

7. CONCLUSION
We have given a formal treatment of scale independence,

incremental scale independence and scale independence us-
ing views. We have established complexity bounds of QDSI,
QSI, ∆QSI and VQSI for CQ, UCQ and FO, for Boolean
and data selecting queries, and for combined and data com-
plexity. We have also provided sufficient conditions for FO
queries to be scale-independent under (embedded) access
schemas, specifying indices and constraints. The conditions
also suggest how we can efficiently identify a small subset
DQ of a database D for a query Q such that Q(D) = Q(DQ).

In the future we want to study, when Q is not scale-
independent in D w.r.t. M , what the best performance ratio
is if we approximately compute Q(D) by accessing at most
M tuples from D. We want to strike a balance between
the accuracy of the inexact query answers and the bound
on the amount of data retrieved. Another question concerns
the design of access schemas. In particular, we would like
to see how to optimally design access schemas for a given
query workload. Furthermore, an interesting extension is
to consider query languages that support grouping and ag-
gregation. We believe that sufficient conditions for scale
independence can also be developed to that setting. Finally,
we want to investigate how the techniques from [3] can be
used for incremental scale-independent queries.
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