
Scalable Evaluation of Rule-Based Recommender
Systems: Algorithms and Benchmarks

Len Feremans and Bart Goethals

Department of Computer Science, University of Antwerp, Belgium
firstname.lastname@uantwerpen.be

Abstract. Recommender systems help users to identify the most rel-
evant items from a huge collection of items. Rule-based recommenders
offer efficient, interpretable, accurate, and trustworthy recommendations,
addressing key challenges in recommender design. Using association rules
having a single or multiple conditions, we build transparent white-box
models, especially for long-tail items. Moreover, recent studies challenge
the trade-off between interpretability and accuracy. However, aspects be-
yond accuracy and efficiency—such as popularity bias, coverage, diversity,
and comprehensibility—have largely been overlooked in prior evaluations.
Additionally, well-known higher-order rule-based recommender methods
lack scalability. Finally, many methods have been proposed that vary
in rule form, scoring measures, aggregation and inference strategies. We
introduce RuleRec, a scalable toolkit offering six seminal rule-based rec-
ommenders. We extend Apriori, MSApriori and adaptive-support rule
mining, thereby presenting novel algorithms based on the generalization
of pairwise rule-mining using an inverted index. We find that the proposed
algorithms are an order of magnitude more efficient. Finally, we empiri-
cally evaluate six rule-based recommender algorithms on six benchmark
datasets, comparing their accuracy, efficiency, diversity, popularity bias,
and comprehensibility. To our knowledge, this is the first work to provide
an efficient open-source implementation and comparative evaluation over
multiple rule-based recommenders.

1 Introduction

Recommender systems (RS) are important in the current age where end-users
are overwhelmed with information from news websites, social media, e-commerce,
music and video services and emerging applications such as health care. Challenges
for RS are limited user preference information and implicit feedback, where
there is a high amount of uncertainty attached to interpreting observed user
behaviour [11]. Another challenge is the cold start scenario, where user-item
interactions are unavailable because the user or item is new.

A perceived disadvantage of traditional rule-based models such as decision
trees and association rules is their relatively low accuracy compared to state-of-
the-art deep learning methods. In the seminal paper [22], Rudin argues that it is
a myth that there is a trade-off between accuracy and interpretability. Goethals

2 Len Feremans and Bart Goethals

et al. conclude that the trade-off exists but that for the majority of datasets
the difference is rather small [9]. Ludewig et al. find that a simple rule-based
method (SR) outperforms recent deep learning-based RS in 4 out of 8 sequential
recommendation datasets [16]. More recent approaches leveraging attention
mechanisms and large language models could achieve superior accuracy, but this
comes at the cost of increased training time and reduced trustworthiness. Deep
learning–based RS are only post hoc explainable, where post hoc explanations
are uncertain and not always faithful to the black-box model [20].

Most authors who develop new RS methods focus on accuracy, but the increase
in accuracy is often marginal, whereas computational resource requirements have
increased substantially. More recently, different authors recognize RS quality
requirements beyond accuracy, such as fairness, trustworthiness, and diversity.
The trustworthiness of an RS is enhanced by: (i) providing explanations for
recommendations; (ii) taking the causability of a decision into account; (iii)
ensuring recommendations are robust against noise in the data and adversarial
attacks; (iv) managing popularity bias; (v) increasing diversity; (vi) ensuring
calibration and fair exposure; (vii) and comprehension of the model [2, 28, 25, 9].

In addition, in emerging and high-stakes domains, such as healthcare, ed-
ucation, or the legal domain, precise and interpretable recommendations are
a requirement. Rule-based RS have several interesting properties, namely: (i)
intrinsic interpretability; (ii) the ability to identify accurate patterns and rules lo-
cally; (iii) the capability to learn from both user interactions and content/context
features; (iv) the potential for rule list optimization and ensembles to increase
accuracy; (v) high efficiency; (vi) capture higher-order interactions; (vii) capture
short-term and dynamic user preferences; (viii) and learn online directly from user
feedback. In this paper, we compare different RS, and measure the diversity, popu-
larity bias, and comprehensibility of rule-based RS, which is often not reported in
original work. Finally, we tackle scalability issues that are common in traditional
higher-order rule mining methods. We make the following contributions:

– We analyze the literature and categorize and compare a wide variety of
rule-based recommendation algorithms proposed in the past decades.

– We introduce RuleRec, a new toolkit that contains efficient algorithms of
a wide variety of rule-based recommenders. Technically, we extend Apriori-
based rule mining algorithms to efficiently scale to large datasets.

– We perform an independent evaluation study using six publicly available
benchmark datasets from different domains, including e-commerce, news,
and music. We extend prior work by comparing precision, recall, coverage,
popularity bias, diversity, comprehensibility, and runtime.

2 Background and definitions

First, we introduce some background terminology for recommender systems and
rule mining.

Scalable Evaluation of Rule-Based RS: Algorithms and Benchmarks 3

2.1 Collaborative-filtering based recommender systems.

Recommender systems learn models from historical user interactions. Let U be
the set of users and I the set of items. Each user (or session) p ∈ U has a set of
implicit interactions p = {s1, s2, . . . , sk}, where si ∈ I denotes a positive action
(e.g., a click). Interactions are typically logged online as tuples of user, item, and
optionally time. All interactions can be represented as a sparse user–item matrix
R ∈ R|U |×|I|, since most users interact with only a few items in a large catalog.
Depending on the dataset, interactions may represent product purchases, clicks
on movies or songs, or news article views.

The goal of a recommender system is to suggest the most relevant items
for each user. Content-based methods rely on user and item metadata (e.g.,
recommending other thrillers by John Grisham if the user liked one), while
collaborative filtering leverages user–item interactions (e.g., users who liked “The
Firm” also like X). In this work, we focus on collaborative filtering, although
rule-mining methods can exploit metadata, interaction data, or both.

To compare approaches, we evaluate systems offline. A model M is trained on
historical interactions and, during inference, produces top-n recommendations for
each user. Users are split into training and test sets. For each test user p ∈ Utest,
interactions are partitioned into observed pobs and held-out pheld sets. The model
generates a ranked list p̂ = ŝ1, . . . , ŝn from pobs, which is then compared with
pheld. Evaluation uses recall@k, rank-aware measures such as NDCG@k, and
secondary metrics addressing popularity bias and diversity.

2.2 Apriori

Agrawal et al. introduced Apriori, the first method for mining patterns and
association rules in large databases [3]. Apriori uses breadth-first search to
generate singletons, pairs, triples, etc., and discovers itemsets X that exceed
a minimum support threshold θ, often set low (e.g., covering 1% of instances).
Crucial to the efficiency of Apriori is the anti-monotonicity of support, i.e. for
each set of items X the support, or the number of occurrences in a database,
is smaller for any superset Z of X. Next, Apriori outputs association rules for
each frequent itemset thereby partitioning the itemset into an antecedent and
consequent. Given an itemset X = {A,B}, we generate a rule A → B where:

conf(A → B) = P (B |A) =
support(A ∧B)

support(A)
and support(X) =

∑
p∈U

1EQ(X ⊆ p).

Here, 1EQ(predicate) is an indicator function that returns 1 if the predicate is
true, and 0 otherwise. Apriori also prunes rules with confidence below a minimum
threshold, denoted as γ. In RS, the consequent typically is a single item. If the
rule matches with the user history, the consequent of the rule is recommended to
the user. We review RS that mine itemsets with different support thresholds [15],
or mine the top-k confident rules directly [17, 14]. In Section 4, we discuss how
to scale Apriori to large, sparse datasets.

4 Len Feremans and Bart Goethals

3 Review of existing rule-based RS methods

In this section we review seminal rule-based recommender methods. Existing
work mainly differs in the following aspects:

– Many RS restrict conditions to a single item, yielding “because you like X,
we recommend Y ” rules. Others RS adapt Apriori to enumerate higher-order
conditions, yielding “because you like X1 and X2 and we recommend Y ”.

– Items are ranked using scores such as confidence, cosine similarity, or adjusted
confidence. Rules may be chosen by their maximum score or by aggregating
similarities across rules with the same consequent.

– Recommendation (or reasoning) strategies vary: some incorporate sequential
patterns or history filtering, crucial in domains where time matters (e.g.,
news or music).

– Mining approaches differ, with various constraints and pruning strategies to
limit the combinatorial search space.

An overview of the seminal rule-based recommender systems compared in this
work is shown in Table 1. An example is shown in Fig. 1.

3.1 Recommendations based on pairwise association rules

Ludewig et al. propose Simple Association Rules (AR), which is based on pairwise
association rules [16]. Let U denote the set of all users and p contains a time-
ordered list of items p = (s1, . . . , sk). We compute the confidence for each item
pair si, sj using

conf (si → sj) =
support(si ∧ sj)

supportLEN (si)
where

Inception Titanic The Matrix Avatar

User 1 ✓ ✓

User 2 ✓ ✓ ✓

User 3 ✓ ✓

User 4 ✓ ✓ ✓

User 5 ✓ ✓ ? ?

Fig. 1. Example of the user-item interaction matrix. For User 5 different rule-based
recommender systems yield the following Top-1 recommendation:
a) Pairwise rules: We find Inception → The Matrix (conf = 2

2
) and Titanic → Avatar

(conf = 1
3
). So recommend The Matrix.

b) Higher-order rules: We find {Inception,Titanic} → The Matrix (conf = 1
1
), so

recommend The Matrix.
c) Similarity-based: Both Inception and Titanic have higher cosine similarity with The
Matrix (cos = 2

3
+ 2

3
) than Avatar (cos = 1

2
+ 1√

3
√
2
), so recommend The Matrix.

Scalable Evaluation of Rule-Based RS: Algorithms and Benchmarks 5

supportLEN (si) =
∑
p∈U

1EQ(si ∈ p) · (|p| − 1).

Our definition of AR is equivalent to that of Ludewig et al. under the assumption
that every item si occurs once in each session. The denominator is different from
the traditional confidence definition which Ludewig motivates as a normalisation
against the number of rules. However, we argue this formulation mainly imposes
a severe penalty for longer user sessions. For top-n recommendations we compute:

scoreAR(p, si) = conf (sk → si)

That is, we compute recommendations based on sk, the last clicked item in the
observed user session. We store the top-n rules with the highest confidence for
each antecedent. Since we generate rules with rare items in the antecedent, this
method yields high recall and coverage; however, low confidence and support
values may reduce precision.

3.2 Recommendations based on pairwise sequential rules

The second pairwise method uses sequential rules (SR) and was proposed by
Kamehkhosh et al. [12] and found to be competitive with deep learning methods
in [16]. We consider the probability of a transition from an item A to B where A
occurs before B. In contrast, Markov Chains model the transition from items
occurring consecutively. The authors propose a weighting for sequential rule
confidence, where the weight decays based on the number of items separating
the interaction between A and B in a session. We compute the confidence for
each sequential pair si, sj using:

conf (si → sj) =
supportDUR(si, sj)

support(si)
where

supportDUR(si, sj) =
∑
p∈S

1EQ(⟨si, sj⟩ ≺ p)

duration(si, sj)

We use the notation ⟨si, sj⟩ ≺ p to denote that item si occurs before sj in session
p. The duration of two items si and sj is defined by the number of items between
si and sj + 1. Intuitively, if si is always just before sj , the denominator will be
1. During inference, they rank top-n recommendations for items based on the
pairwise confidence with the last interacted item.

3.3 Item-based collaborative filtering

Deshpande et al. introduced item-based collaborative filtering (IBCF) that makes
predictions based on the k items with the highest similarity, defined using cosine
similarity [5]. The cosine similarity between two item vectors x and y is given by
the following formula:

cos(x,y) =

∑n
i=1 xiyi√∑n

i=1 x
2
i ·

√∑n
i=1 y

2
i

6 Len Feremans and Bart Goethals

where xi and yi are the components of the vectors x and y, and n is the number
of dimensions (in this case, users who have rated both items). Assuming binary
implicit feedback, we rewrite the previous equation as [4]:

cos(si, sj) =
support(si ∧ sj)√

support(si) ·
√

support(sj)
= conf(si → sj)

1
2 · conf(sj → si)

1
2 .

(1)
To generate the top-n recommendations for a given user based on IBCF, we
compute:

scoreIBCF(p, sj) =
∑
si∈p

cos top k(si, sj) where

cos top k(si, sj) =

{
cos(si, sj) if cos(si, sj) ranked in top-k for si

0 otherwise
.

The parameter k is introduced to increase efficiency, since we only need to store
k · |I| rules. If k is sufficiently large (default set to 100), an increase in k will
typically not change the order of the top-n items recommendations assuming
n ≪ k. We note that Deshpande also studied using confidence, scaling the support
of sj , and normalization based on the length of each session. IBCF is closely
related to AR, because predictions are based on the association between item
pairs. A key difference with AR is that for computing the score we aggregate the
similarities for each consequent, and typically use the full user history.

3.4 Higher-order association rules using multiple support thresholds
and window-based recommendations by Mobasher

Mobasher et al. leverages Apriori to discover higher-order itemsets that are
frequent [18]. A potential advantage of higher-order association mining is the
discovery of highly confident rules that have larger antecedents. A problem with
Apriori, is that if we set the minimal support threshold too low, we generate
too many patterns. On the other hand, if we set the threshold too high, we miss
“nuggets”, i.e., rare but strong rules. Hence, Mobasher adopts MSApriori thereby
using multiple minimum support levels [15]. A pattern X is frequent subject to
multiple support levels if:

support(X) ≥ min
i∈X

(MIS(i)) where

MIS(i) =

{
support(i) · β if support(i) ≥ θ

θ otherwise
. (2)

Here θ is the global minimal support threshold and β controls the relative support.
The intuition is that we want to limit ourselves to enumerating many higher-order
patterns consisting of frequent (or popular) items. Additionally, we constrain
the maximal size d of each itemset, usually set to 3 or 4. After mining frequent
itemsets X, we generate all rules X \ {y} → {y} and discard rules below the

Scalable Evaluation of Rule-Based RS: Algorithms and Benchmarks 7

minimal confidence threshold γ. For generating recommendations, the authors
propose an all-kth-order approach inspired by Markov chain models and makes
prediction by matching rules of size d, d − 1, . . . , 2 until a recommendation is
generated. Additionally, they only consider the last d − 1 items in the user’s
history. The rationale behind this process is that higher-order rules, by taking a
larger fraction of the (most recent) user’s history into account, increase precision.
Finally, the authors propose to index rules using a Frequent Itemset Graph before
generating recommendations [18]. However, we find this does not scale to larger
datasets with millions of users and items, and present a more efficient solution in
Section 4.

3.5 Adaptive-support higher-order association rules by Lin

A second method that mines higher-order rules for recommendations was proposed
by Lin [17, 14]. Again, the motivation is to discover “nuggets”, i.e. rare but strong
rules. A crucial difference with the previous method, is that we do not define a
minimal support threshold, do not filter the user history, and do not prioritize
longer rules. Instead, Lin proposes to discover between [kmin, kmax] confident
rules local to each possible consequent item. The algorithm directly finds confident
rules for each consequent item instead of the common two-phase approach where
we first mine frequent itemsets and then extract confident rules [17, 15]. The
authors report that mining more than kmax (e.g. 100) rules for each item does
not improve recommendation accuracy and avoids an unnecessarily large runtime.
For making rule-based recommendations, we compute the top-n eligible rules
with the highest confidence.

3.6 Higher-order rule-based recommendations using adjusted
confidence and default rules by Rudin

More recently, Rudin proposed a rule-based recommender thereby combining
ideas from statistical learning with association rule mining. The main novelty is
that items are ranked on the adjusted confidence measure, which provides an
improved estimate of the true conditional probability [23]. For mining association
rules they propose to use an existing algorithm, such as Apriori or FP-Growth.
For recommendations, all rules are ranked on adjusted confidence for each user,
and as such, there is no threshold on the minimal confidence. Additionally, if fewer
than n matching rules are found we fall back on rules with empty antecedents,
effectively providing popularity-based recommendations. The adjusted confidence
is defined as:

confADJ(X → sj) =

{
support(X∧sj)
support(X)+K if X ̸= ∅
support(sj)

|S|+K otherwise
. (3)

where K is a hyper-parameter. The intuition is that K bounds the support of
both the left and right-hand side of the rule. They find that, if the confidence of
two rules is similar, support should be used to break ties, which is what adjusted

8 Len Feremans and Bart Goethals

Method Rule form Scoring Mining strategy Reasoning step

Simple associa-
tion rules [16]

x→ y Confidence
weighted by ses-
sion length

Enumerate all item
pairs

History filtering and
use rule with maximal
confidence

Sequential rules
[12]

x→ y Confidence
weighted by dura-
tion

Enumerate all sequen-
tial pairs

History filtering and
use rule with maximal
confidence

Item-based CF
[5]

x→ y Cosine similarity Enumerate all similar
pairs

Aggregate the similarity
using all items in the
history

Association rules
with multiple
support thresh-
olds [18]

x1, . . . xd → y Confidence prior-
izing longer rules

Apriori with multiple
minimum support levels

Window-based history
filtering and use rule
with maximal confi-
dence

Adaptive-support
association rules
[14]

x1, . . . xd → y Confidence Apriori local to each
consequent with adap-
tive support levels

Full history and use
rule with maximal confi-
dence

Sequential Event
Prediction [23]

x1, . . . xd → y
{} → y

Adjusted confi-
dence

Apriori Full history and use
rule with maximal confi-
dence or default rule

Table 1. An overview of seminal rule-based recommender systems in RuleRec.

confidence does. Experimentally, they report that accuracy is maximized for
small values of K and the effect is higher than tuning the minimal support and
confidence thresholds.

4 RuleRec: An efficient rule-based recommender library

We propose RuleRec, a lightweight library for pre-processing, rule mining, rule-
based recommendation, and evaluation. A disadvantage of the original methods
for higher-order rule mining is that they do not scale to sparse datasets with
millions of users, items and interactions. We want to ensure higher-order mining
is not dramatically less efficient than pairwise rule mining, when generating rules
that are more precise by having multiple conditions in the antecedent. Hence, we
developed scalable algorithms for rule mining in large, sparse datasets, leveraging
techniques such as projection-based support counting, and reverse indexing.
Additionally, we separate rule mining from inference, allowing for configurable
strategies for selecting, ranking, and explaining recommendations.

4.1 Pairwise methods

To compute the similarity-matrix, or the confidence between all item pairs,
the näıve algorithm has a complexity of O(|I|2). We propose a generic method
for the implementation of AR, SR and IBCF. Where we compute and rank
pairwise rules on confidence or similarity scores, using Eq. 1 for the latter [4].
Crucial for efficiency is that we depend on the number of entries in the user-item
interaction matrix R ∈ R|U |×|I|, typically having less than 1% non-zero entries.
We leverage an inverted index, where items and users are indexed. By iterating

Scalable Evaluation of Rule-Based RS: Algorithms and Benchmarks 9

over the inverted indices, we compute only nonzero co-occurrence counts. This
approach is embarrassingly parallel and highly effective for sparse datasets. This
process is illustrated in the first three steps of Fig. 2. Finally, for generating
recommendations and explanations, we propose a reusable module, RFER, which
is discussed later.

4.2 Efficiently mining higher-order association rules in sparse
datasets

In this section, we propose new algorithms to improve the efficiency of Apriori [3],
MSApriori [15] and adaptive support mining [17, 14]. The key idea of our method
is to compute all co-occurrences using an inverted index similar to pairwise
recommenders, but generalized for higher-order itemsets. That is, we consider
each frequent itemset of size k as a new virtual item, and maintain a list of
all users who interacted with the itemset. The use of projection-based indexing
has two advantages: candidate-free generation and fast support computation for
higher-order itemsets. We remark that candidate-free enumeration is also used in
FP-Growth [10, 26].

Extending Apriori. Similar to Apriori, we search for frequent itemsets using
breadth-first search. That is, at each level we generate patterns of size k, and
prune patterns that are not frequent. The proposed algorithm, Apriori++, is
illustrated in Fig. 2. First, we compute an inverted index for pairs, and compute co-
occurrences. For higher-order itemsets we generalize the process. Formally, given
a pattern Xk = {si, . . . , sj}, we define a projection B(Xk), as the set of users that

s1 s2 … s|I|p1 ✓p2 ✓ ✓…p|U| ✓R|U|x|I|: user-item interaction matrix

IID(u), IID(i): inverted indexes

s1s2…s|I|

p1 pj … pkp2 …
p2 …

s1 s2 … s|I|s1 0 4 0s2 23 0… 10s|I|S|I|x|I|: item-item co-occurrencematrix

B(X): Filter on frequency (minsup, adaptive) and store projections

s1,s3s1,s8…s9,s4

u1 u8 … u5u2 …
u4 u3 … u9

s1 s2 … s|I|s1,s3 3 4s1,s8 6 10… 14s9,s4S|B|x|I|: Pair-item (or..) co-occurrence matrix
X1 X2 Y Scores1 / s3 0.010s1 s3 s2 0.5…s9 s4 s2 0.9P: Higher-order rules with score (confidence, adjusted)

Repeat maxsizetimes

Fig. 2. Proposed algorithm for efficient pairwise and Apriori-based rule mining and
recommendations.

10 Len Feremans and Bart Goethals

interacted with all items in Xk. For any candidate superset Xk+1 = Xk ∪ {sk},
we need to locate all users interacting with Xk and sk. Instead of computing the
support as

support(Xk+1) = | ∩ IID(si)
si∈Xk+1

|.

We compute:

support(Xk+1) = |B(Xk) ∩ IID(si)|.

Hence, amortized, only a single intersection is necessary. Moreover, the size of
the projection significantly decreases as pattern length increases. In addition, we
probe the projection and the inverted index. That is, for any candidate superset
Xk+1 = Xk ∪ {sk}, it holds that:

sk ∈ ∪
ui∈B(Xk)

IID(ui).

The consequence is that any candidate supersetXk+1 occurs at least once in a user
session. We repeat the creation of projections for pattern of size k, computing co-
occurrences for patterns of size k+1, and prune patterns of size k+1 on frequency.
Finally, we collect all varying-length frequent itemsets and compute rules and
their confidence, which is a trivial step. The worst-case complexity is similar to
Apriori, but the use of projections significantly reduces the practical runtime. We
make a list of all frequent patterns of size 1, 2, . . . d level-wise. Assuming d = 4,
this results in at most |I|4 candidates. However, if we prune infrequent patterns
at each level k, using the threshold θ, the number of candidates is much lower.
In Section 5, we compare the effectiveness of the proposed method against prior
work [7].

Extending MSApriori. The rationale behind MSApriori, is we discover “nuggets”,
i.e. infrequent, but strong association rules. Extending MSApriori is trivial, since
crucial steps such as computing projections, and the co-occurrence matrix level-
wise are independent of the differences in any level-wise pruning strategy. Hence,
we adopt the aforementioned algorithm, but prune itemsets of size k using
Equation 2 instead of using a single threshold θ.

Extending Adaptive mining. The miner proposed by Lin is different in design,
since the goal is to find the top-k rules with the highest confidence for each
consequent item. The first key difference, is that the threshold on minimal support
is adaptive, and we run Apriori with varying minimal support threshold, until the
number of rules of the form X → st is in the configurable range [kmin, kmax] [14].
However, in each iteration, we have to enumerate patterns and rules local to
each item st ∈ I. Hence, the described optimisations are applicable, such as the
use of an inverted index, co-occurrence matrices, projections and generalization
to higher-order itemsets. For brevity, we discuss a novel algorithm for adaptive-
support mining in the Supplementary material, where we adapt co-occurrence
and projection-based computation from Apriori++ but constrained to itemsets
of the form X ∪ {st}.

Scalable Evaluation of Rule-Based RS: Algorithms and Benchmarks 11

4.3 RFER: An efficient and general approach for generating
recommendations

Several authors do not discuss any strategies to efficiently calculate rule-based
recommendations [5, 14] or propose complex and inefficient solutions [18]. We
propose a general component to Retrieve, Filter, Explain and Rank rules (RFER).
RFER assumes a large catalog of rules as input, and the history of selected users.
We perform the following steps:

– First, the user history is preprocessed by selecting the full history or the last
item(s)

– Next, eligible rules are retrieved from a potentially large rule catalog using a
two-step process.

– Next, we create recommendations by ranking rules with the highest confidence
measure, size, or aggregating rules have the same consequent.

– Finally, we link each recommendation, with the rule(s) causing the recom-
mendation to enable explanations and analysis of the comprehensibility.

By logically separating rule mining and rule-based reasoning, we enable more
variation than originally proposed. That is, history filtering, default rules, and
various ranking and aggregation strategy for inference in rule-based recommenda-
tions, can be combined independently from any rule mining method. We observe
that even if the number of rules is large, the number of eligible rules for a single
user u is likely very small. Hence, we construct a simple rule index by mapping
antecedents to rules using a hash map. For retrieval, we simply probe the hash
map and filter eligible rules in a second phase. Previous work, suggested using
a Frequent Itemset Graph [18]. However, storing and traversing the complete
graph, i.e. keeping all pairwise and higher-order rules and relations between sub-
and supersets is memory-intensive and computationally inefficient.

4.4 Higher-order methods

We now discuss the implementation of the three higher-order rule-based recom-
mender from Table 1. For MOB, we use MSApriori++ and RFER for making
recommendations. During inference, we perform history filtering using a sliding
window, and prioritize longer rule, by ranking on size, and only secondary on
confidence. For LIN, we use the novel, efficient algorithm of Adaptive mining
for mining rules and RFER for inference, where we rank rules on confidence
and use rule support to break ties. Finally, for RUDIN we use Apriori++ to
mine rules. After mining, we compute the adjusted confidence for each rule
using Equation 3. We generate recommendations using RFER, prioritize rules on
adjusted confidence, and use default, popularity-based recommendations if fewer
than top-n recommendations are generated.

5 Experiments

In this section, we aim to answer the following research questions: RQ1: How
do the rule-based RS compare on accuracy? RQ2: How do the rule-based RS

12 Len Feremans and Bart Goethals

compare on runtime? What is the runtime of Apriori++ compared to Apriori?
RQ3: How do the rule-based RS compare on diversity and popularity bias? RQ4:
How do the rule-based RS compare on comprehensibility?

5.1 Experimental setup

In our experiments, we evaluated rule-based RS on six real-world datasets from
the e-commerce, news, and music domains. All datasets and the RuleRec library
are publicly available1.

Datasets. We evaluated six implicit-feedback datasets from music (30Music,
AOTM), e-commerce (Retailrocket, RCS15), and news (CLEF, EBNeRD). Meta-
data was not used. We applied standard preprocessing: removing re-consumed
items and filtering users/items with fewer than five interactions. On average, the
datasets contain 610k users, 47k items, and 4.8M interactions. The news datasets
have smaller item catalogs upto 5k, while the largest dataset, RCS15, includes
1.2M users, 34k items, and 10M interactions.

Evaluation protocol. We created a random split of disjoint users using 80%
for training and 20% for evaluation following the strong generalization principle.
For evaluation, we hide the last 20% of interactions of test users, and generate
the top-20 recommendations.

Evaluation metrics. We report NDCG, recall, F1, and precision. We also report
user coverage, i.e. the percentage of users with at least one recommendation.
We measure the following secondary measures: intra-list list diversity [28], item
coverage [2], and the average percentage of long-tail item recommendations
(APLT) [1]. For comprehensibility, we report the number of rules. Additionally,
we propose to report crucial statistics related to rule form and popularity bias,
including the percentage of rules with 2 conditions, the percentage of rules with
a popular item as consequent, and the percentage of rules between long-tail
items. Here, popular items are defined as those items cumulatively covering 80%
of all user-item interactions. A summary of well-known evaluation measures is
presented in Table 3.

Parameter selection. We selected parameters after exploring the effect using
grid search. Similar to [18, 14], we also report a precision-recall trade-off, having
maximal recall with lower confidence and support thresholds, and maximal
precision (and F1) using a higher confidence thresholds. In Table 2 we present the
parameter setting used in our experiments, tuned for recall (and diversity), and
for prediction (and F1). We set normalize to True for IBCF, and the adjusted
confidence parameter K to 0.001 for RUDIN resulting in optimal recall for both
methods. For higher-order methods we set d to 3, resulting in rules consisting of
1 or 2 conditions.

1 RuleRec is implemented in Java and Python, open-source and available at https:
//bitbucket.org/len_feremans/rule-based-recommenders/

Scalable Evaluation of Rule-Based RS: Algorithms and Benchmarks 13

5.2 RQ1: How do the rule-based RS compare on accuracy?

First, we compare all methods on NDCG and recall. For brevity, we report
average results in Table 4. Detailed results are available in the supplementary
material. Our first observation is that SR, on average, is the most accurate method,
performing best on 3 out of 6 datasets for recall and 4 out of 6 for NDCG. This
aligns with its known strong performance in sequential recommendation [16].
Second, since AR and SR base predictions on only the last interaction, this
confirms that history filtering is a simple yet effective strategy for improving
ranking. Third, there is no universal best method: IBCF (cosine similarity)
performs best on AOTM, while LIN achieves the highest recall on two datasets.
Among higher-order methods, LIN outperforms RUDIN and especially MOB,
which has the lowest recall. We attribute this to LIN’s pruning strategy, which
ensures at least kmin rules per item, yielding more pairwise rules. Finally, in
terms of precision and F1, AR is the clear winner, while RUDIN performs worst.
MOB achieves a relatively high F1 score despite its lower recall.

5.3 RQ2: How do the rule-based RS compare on runtime?

In Table 4, we also report the average runtime of each method. Our implemen-
tation of pairwise methods, as well as higher-order methods MOB and LIN,

AR SR IBCF MOB LIN RUDIN

Optimal recall
k = 20 k = 20 k = 200 θ = 2,

β = 0.1
kmin = 20,
kmax = 200

θ = 10

γ = 0.0 γ = 0.0 γ = 0.0 γ = 0.001 γ = 0.001 γ = 0.001

Optimal F1
k = 20 k = 20 k = 50 θ = 5,

β = 0.1
kmin = 5,
kmax = 50

θ = 10

γ = 0.25 γ = 0.25 γ = 0.25 γ = 0.25 γ = 0.25 γ = 0.25

Table 2. Parameter settings for optimal recall (and NDCG, diversity and coverage)
and F1 (and precision and comprehensibility) after grid search.

Metric Description

Hitrate, NDCG, MRR [21] Measure the relevance, rank-aware or otherwise, of top-n recommenda-
tions.

Precision, recall, F1, AU-
ROC [21]

Measure the precision, recall, and the precision-recall trade-off when
generating recommendations while varying the confidence threshold.

Item coverage [2] Number of distinct items appearing in any top-k recommendation, also
referred to as aggregate diversity.

Popularity bias [1] Average popularity of recommended items and percentage of long-tail
item recommendations.

Diversity [28] Average dissimilarity of all pairs of items in recommendation lists.

Calibration, fairness [25] Difference in distribution of an attribute between training and recom-
mended items. More recently studied as a fairness constraint.

Model comprehension [9] Number of rules, length of antecedent, rule structure etc. important
towards comprehension.

Table 3. Overview of evaluation metrics

14 Len Feremans and Bart Goethals

completes rule mining and recommendation within 10 minutes. Given that the
largest dataset, RCS15, contains over 1 million users and 10 million interactions,
and that we generate recommendations for 250k users, training and inference
require less than 2 ms per user. For RUDIN, which uses Apriori, we set θ to 10
to reduce runtime, yet it still exceeded one hour on three datasets. In contrast,
MOB and LIN gain efficiency from multiple or adaptive support thresholds.

We also compared Apriori++ with Apriori from the SPMF Library [7]. With
a high support threshold θ = 93 and d = 3, SPMF took over 300 seconds to find
867 itemsets on the 30Music dataset. At θ = 5, it ran out of memory. Apriori++,
in contrast, completed in under 1 second for θ = 93 (300× faster), and within
12 seconds for θ = 5, discovering 1.9 million itemsets. Since a large number
of rules is often required for high recall and coverage, we conclude that classic
implementations of Apriori (and related methods like MSApriori and FPGrowth)
do not scale well on sparse recommender datasets with millions of users and
items.

5.4 RQ3: How do the rule-based RS compare on diversity and
popularity bias?

In Table 5 we report the results for diversity, coverage and popularity bias.
Concerning diversity, IBCF and RUDIN perform best both scoring 0.88 on
average, and MOB performs poorly, which is possibly caused by the window-based
inference strategy. Concerning item coverage and average percentage of long-tail
recommendation, we find that LIN and SR outperform other methods, where
IBCF, MOB, and RUDIN exhibit greater popularity bias, as they recommend
more popular items. For user coverage, most methods, generate recommendations
for all users on most datasets, except MOB. Since MOB decreases diversity,
increases popularity bias, and has low item and user coverage, this method
performs poorly. We conclude that, only AR, SR and LIN perform well on all
secondary evaluation measures.

AR SR IBCF MOB LIN RUDIN

NDCG@20 Average 0.220 0.246 0.167 0.146 0.189 0.157
Wins 1 4 1 0 0 0

Recall@20 Average 0.408 0.427 0.366 0.266 0.391 0.328
Wins 0 3 1 0 2 0

Precision@20 Average 0.059 0.044 0.029 0.040 0.041 0.018
Wins 4 1 1 0 0 0

F1@20 Average 0.188 0.088 0.109 0.163 0.108 0.067
Wins 4 1 0 0 1 0

Runtime Average 20.1s 19.2s 55.5s 35.7s 183.0s 3151.7s
Wins 1 3 0 0 0 2

Table 4. Average results of rule-based RS on NDCG, recall, precision, F1 and runtime
on six datasets.

Scalable Evaluation of Rule-Based RS: Algorithms and Benchmarks 15

5.5 RQ4: How do the rule-based RS compare on comprehensibility?

In Table 6, we report statistics on model comprehension and popularity bias.
Pairwise methods AR and SR yield the fewest rules, typically k · |I|. For IBCF,
k is fixed at 200, producing a much larger rule set, reduced comprehensibility,
and more complex explanations. Higher-order methods generate fewer rules than
IBCF. MOB and RUDIN vary greatly, as their rule counts are highly sensitive to
pruning thresholds; for instance, RUDIN has the largest rule set on three datasets
and the smallest on three others. For news datasets with smaller |I|, all methods
yield fewer rules—except RUDIN. From Table 6, we also observe that LIN
discovers more pairwise rules than MOB and RUDIN. RUDIN mainly produces
rules with popular consequents, whereas MOB and LIN generate more with
long-tail antecedents and consequents. These findings suggest that postprocessing
and rule-set optimization may be promising directions for future work. Although
the total number of rules is high, domain experts can still filter and review those
relevant to specific items. To better capture model complexity, we recommend
Sankey plots [24]. These visualize the flow between user recommendations, eligible
rules, and relevant items, offering insight into model behavior—something which
is not possible with black-box models. Further examples are provided in the
supplementary material.

6 Related work

Wu et al. developed a framework based on FP-Growth and distributed processing
for scalable rule-based recommendations [26]. Their work complements ours but

AR SR IBCF MOB LIN RUDIN

Diversity Average 0.845 0.862 0.881 0.579 0.869 0.883
Wins 0 0 4 0 0 2

Item coverage Average 69.2% 77.9% 52.5% 47.8% 81.1% 33.1%
Wins 0 1 1 0 4 0

APLT Average 14.4% 18.6% 7.9% 13.9% 17.2% 8.1%
Wins 0 4 1 1 0 0

User coverage Average 99.0% 98.6% 99.9% 80.6% 99.9% 100%

Table 5. Average results of rule-based RS on diversity, item coverage, average percentage
long-tail item recommendation, and user coverage on six datasets.

AR SR IBCF MOB LIN RUDIN

Number of rules Average 843.4k 757.6k 3067.9k 1990.4k 2841.7k 1920.3k

Rules of size 3 Average 0% 0% 0% 49% 8% 67%

Rules pop. cons. Average 64% 61% 68% 53% 37% 89%

Long-tail rules Average 31% 32% 27% 39% 39% 7%

Table 6. Average results of rule-based RS on comprehensibility, rule size, and rule
popularity bias on six datasets.

16 Len Feremans and Bart Goethals

differs from our work in two key aspects: they focus on distributed processing with
load-balancing and partitioning for parallel speed-up, and they propose a single
rule-mining algorithm with alternative confidence measures. Several authors
have empirically studied higher-order rule-based recommenders. Deshpande et al.
examined similarity measures, normalization strategies, and parameter effects
such as k [5]. They report IBCF often outperforms Apriori; however, we find Lin’s
adaptive-support method surpasses IBCF. More recent work extends the above
methods: Osadchiy et al. [19] use pairwise association rules with aggregated
confidence and support; Forsati et al. [6] mine higher-order rules ranked by
frequency and dwell time; Yap and Gedikli personalize rule selection based on
similar sessions [27, 8]; and Rudin [23] learns weights for all pairwise associations
to optimize a target objective. Finally, SR has been extended with higher-order
sequential rules weighted by duration for news recommendation [13]. Most studies
still evaluate mainly accuracy on datasets from a single domain.

7 Conclusion

We analyzed the literature to categorize and compare a broad range of rule-
based recommendation algorithms. Our study revealed substantial differences
in rule structure, confidence measures, pruning strategies, mining constraints,
and inference. Notably, existing higher-order rule mining methods often fail to
scale on large, sparse datasets. Moreover, prior research has focused primarily on
accuracy, neglecting critical factors like efficiency, diversity, popularity bias, and
comprehension. To address these gaps, we implemented and evaluated a diverse
set of representative algorithms in RuleRec—an open-source, lightweight, and
scalable library featuring modules for preprocessing, evaluation, visualization, and
various rule-based recommenders. We evaluated all methods on six benchmark
datasets, yielding insights into trade-offs in accuracy, comprehensibility, diversity,
and popularity bias. Pairwise and sequential association rule methods with history
filtering show strong NDCG performance. Higher-order approaches, such as Lin’s
adaptive-support technique, provide clear benefits in recall and item coverage.
Our proposed Apriori-based rule mining algorithms achieve up to 300× speed-up
over a well-known baseline. All recommender systems complete within minutes
on large, sparse datasets. We extend rule mining through level-wise generation,
adaptive or multiple threshold pruning, and projection-based data structures.
Our modular design further decouples rule mining from inference, offering greater
flexibility and efficiency than prior systems. In domains demanding transparency,
fairness, and efficiency — such as healthcare, education, or public services — rule-
based recommenders provide a compelling alternative. A limitation of our study is
the lack of detailed analysis on how hyper-parameters and dataset characteristics
(e.g., sparsity and popularity bias) affect effectiveness. For future work, we
recommend advancing rule mining, exploring multi-objective optimization, and
conducting independent evaluation studies.

Acknowledgements. L.F. is funded on Research Fund Flanders grant 12B0V24N.

Bibliography

[1] Abdollahpouri, H., Burke, R., Mobasher, B.: Managing popularity bias in
recommender systems with personalized re-ranking. In: The Thirty-Second
International FLAIRS Conference (2019)

[2] Adomavicius, G., Kwon, Y.: Improving aggregate recommendation diversity
using ranking-based techniques. IEEE Transactions on Knowledge and Data
Engineering 24(5), 896–911 (2011)

[3] Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In:
Proceedings of the 20th International Conference on Very Large Data Bases
(VLDB). vol. 1215, pp. 487–499. Santiago, Chile (1994)

[4] Aiolli, F.: Efficient top-n recommendation for very large scale binary rated
datasets. In: Proceedings of the 7th ACM Conference on Recommender
Systems. pp. 273–280 (2013)

[5] Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms.
ACM Transactions on Information Systems 22(1), 143–177 (2004)

[6] Forsati, R., Meybodi, M.R., Neiat, A.G.: Web page personalization based on
weighted association rules. In: 2009 International Conference on Electronic
Computer Technology. pp. 130–135 (2009)

[7] Fournier-Viger, P., Lin, J.C.W., Gomariz, A., Gueniche, T., Soltani, A.,
Deng, Z., Lam, H.T.: The spmf open-source data mining library version
2. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. pp. 36–40 (2016)

[8] Gedikli, F., Jannach, D.: Neighborhood-restricted mining and weighted ap-
plication of association rules for recommenders. In: International Conference
on Web Information Systems Engineering. pp. 157–165 (2010)

[9] Goethals, S., Martens, D., Evgeniou, T.: The non-linear nature of the cost
of comprehensibility. Journal of Big Data 9(1), 30 (2022)

[10] Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data Mining and Knowledge
Discovery 8(1), 53–87 (2004)

[11] Jannach, D., Quadrana, M., Cremonesi, P.: Session-based recommender
systems. In: Recommender Systems Handbook, pp. 301–334. Springer (2022)

[12] Kamehkhosh, I., Jannach, D., Ludewig, M.: A comparison of frequent pattern
techniques and a deep learning method for session-based recommendation.
In: RecTemp@RecSys. pp. 50–56 (2017)

[13] Karimi, M., Feremans, L., Cule, B., Goethals, B.: Session-based news recom-
mendation using cohesive patterns. In: 2024 IEEE International Conference
on Big Data (BigData). pp. 440–447 (2024)

[14] Lin, W., Alvarez, S.A., Ruiz, C.: Efficient adaptive-support association rule
mining for recommender systems. Data Mining and Knowledge Discovery 6,
83–105 (2002)

18 Len Feremans and Bart Goethals

[15] Liu, B., Hsu, W., Ma, Y.: Mining association rules with multiple mini-
mum supports. In: Proceedings of the Fifth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. pp. 337–341 (1999)

[16] Ludewig, M., Jannach, D.: Evaluation of session-based recommendation
algorithms. User Modeling and User-Adapted Interaction 28(4), 331–390
(2018)

[17] Ma, B., Liu, B., Hsu, Y.: Integrating classification and association rule
mining. In: Proceedings of the Fourth International Conference on Knowledge
Discovery and Data Mining (1998)

[18] Mobasher, B., Dai, H., Luo, T., Nakagawa, M.: Effective personalization
based on association rule discovery from web usage data. In: Proceedings of
the 3rd International Workshop on Web Information and Data Management.
pp. 9–15 (2001)

[19] Osadchiy, T., Poliakov, I., Olivier, P., Rowland, M., Foster, E.: Recommender
system based on pairwise association rules. Expert Systems with Applications
115, 535–542 (2019)

[20] Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: Explaining
the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. pp.
1135–1144 (2016)

[21] Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems
handbook. In: Recommender systems Handbook, pp. 1–35. Springer (2010)

[22] Rudin, C.: Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence
1(5), 206–215 (2019)

[23] Rudin, C., Letham, B., Salleb-Aouissi, A., Kogan, E., Madigan, D.: Sequential
event prediction with association rules. In: Proceedings of the 24th Annual
Conference on Learning Theory. pp. 615–634 (2011)

[24] Schmidt, M.: The sankey diagram in energy and material flow management:
Part ii: Methodology and current applications. Journal of Industrial Ecology
12(2), 173–185 (2008)

[25] Steck, H.: Calibrated recommendations. In: Proceedings of the 12th ACM
Conference on Recommender Systems. pp. 154–162 (2018)

[26] Wu, Z., Li, C., Cao, J., Ge, Y.: On scalability of association-rule-based recom-
mendation: A unified distributed-computing framework. ACM Transactions
on the Web 14(3), 1–21 (2020)

[27] Yap, G.E., Li, X.L., Yu, P.S.: Effective next-items recommendation via
personalized sequential pattern mining. In: International Conference on
Database Systems for Advanced Applications. pp. 48–64 (2012)

[28] Zhang, M., Hurley, N.: Avoiding monotony: Improving the diversity of
recommendation lists. In: Proceedings of the 2008 ACM Conference on
Recommender Systems. pp. 123–130 (2008)

Supplementary material

A Algorithm for adaptive rule mining

The main algorithm for efficiently mining rule using adaptive support [14, 15],
is shown in Algorithm 1. The main procedure MineRulesAdaptive runs
MineRulesAdaptiveLocal for each target item, with varying support lev-
els until between [kmin, kmax] are discovered. In MineRulesAdaptiveLocal
we adopt Apriori++ by computing a co-occurrence matrix and projections at each
level for growing rules. The main difference with Apriori++, is that level-wise
co-occurrence matrices and projections are local to each consequent item. We
remark, that the recommender of Lin, that uses this algorithm for rule mining,
produces more pairwise, and long-tail rules than RUDIN or MOB. This has a
positive effect on both accuracy, i.e. having the highest recall on two datasets,
and reduces popularity bias, i.e. having the highest coverage, and second highest
APLT.

Algorithm 1: Adaptive support rule mining for sparse datasets

Input :User-item matrix R|U|×|I , number of rules [kmin, kmax], maximum
pattern size d, confidence threshold γ

Output: Set of rules X → y
1 procedure MineRulesAdaptive(R, kmin, kmax, γ)
2 IIDi, IIDu ← compute inverted index;
3 R← {};
4 foreach st ∈ I do
5 θc ← support(st);
6 Rt ←MineRulesAdaptiveLocal(st, θc, . . .);
7 while |Rt| not within [kmin, kmax] do
8 if number of rules > kmax then
9 Increase θc;

10 else if number of rules < kmin then
11 Decrease θc;

12 R← R ∪Rt

13 return R

14 procedure MineRulesAdaptiveLocal(st, θc, . . .)
15 Rt ← {};
16 for l in 1, . . . , d− 1 do
17 Sl ← compute co-occurrences using IID or Pl−1;
18 Xl ← find frequent patterns Xl = (s1, . . . sl, st)ifsupport(Xl) ≥ θc;
19 Rt,l ← find rules r = s1, . . . sl → st if conf(r) ≥ γ;
20 Rt ← Rt ∪Rt,l;
21 Pl ← store projections for itemsets Xl;

22 return Rt

20 Len Feremans and Bart Goethals

B Experimental results on each dataset

In Table 7 we show the results for each dataset concerning accuracy, in Table 8
on runtime, in Table 9 on diversity, and in Table 10 on comprehension.

Dataset AR SR IBCF MOB LIN RUDIN

30music 0.295 0.343 0.205 0.190 0.260 0.131
EB-NeRD 0.265 0.310 0.160 0.178 0.191 0.190
aotm 0.016 0.018 0.030 0.004 0.017 0.009

NDCG@20 clef 0.308 0.380 0.270 0.217 0.288 0.317
rcs15 0.278 0.289 0.186 0.186 0.226 0.237
retailrocket 0.158 0.139 0.150 0.103 0.152 0.061

Average 0.220 0.246 0.167 0.146 0.189 0.157

30music 0.416 0.413 0.370 0.356 0.417 0.191
EB-NeRD 0.562 0.610 0.411 0.345 0.458 0.465
aotm 0.034 0.035 0.062 0.006 0.037 0.019

Recall@20 clef 0.653 0.740 0.647 0.447 0.670 0.723
rcs15 0.500 0.516 0.399 0.289 0.459 0.473
retailrocket 0.283 0.249 0.305 0.152 0.306 0.094

Average 0.408 0.427 0.366 0.266 0.391 0.328

30music 0.093 0.197 0.099 0.034 0.060 0.043
EB-NeRD 0.057 0.016 0.011 0.046 0.034 0.013
aotm 0.002 0.002 0.003 0.000 0.003 0.001

Precision@ clef 0.073 0.024 0.021 0.060 0.056 0.012
20 rcs15 0.083 0.011 0.031 0.069 0.054 0.017

retailrocket 0.048 0.016 0.008 0.029 0.039 0.026

Average 0.059 0.044 0.029 0.040 0.041 0.018

30music 0.291 0.371 0.337 0.300 0.111 0.234
EB-NeRD 0.231 0.032 0.061 0.207 0.132 0.024
aotm 0.015 0.008 0.010 0.002 0.047 0.002

F1@20 clef 0.160 0.049 0.099 0.158 0.099 0.022
rcs15 0.253 0.022 0.122 0.224 0.121 0.032
retailrocket 0.176 0.047 0.028 0.088 0.139 0.088

Average 0.188 0.088 0.109 0.163 0.108 0.067

Table 7. Results of rule-based RS on NDCG, recall, precision and F1 on six datasets.

Scalable Evaluation of Rule-Based RS: Algorithms and Benchmarks 21

Dataset AR SR IBCF MOB LIN RUDIN

30music 20.3s 19.2s 66.9s 108.8s 121.3s 19.7s
EB-NeRD 19.5s 19.0s 53.6s 19.1s 177.3s 7653.8s
aotm 11.2s 10.2s 37.2s 9.4s 71.2s 5.9s

Runtime clef 23.9s 24.6s 56.4s 30.4s 107.5s 6701.7s
rcs15 36.0s 34.8s 97.9s 38.1s 581.1s 4524.9s
retailrocket 9.5s 7.7s 20.6s 8.2s 39.4s 4.4s

Average 20.1s 19.2s 55.5s 35.7s 183.0s 3151.7s

Table 8. Results of rule-based RS on runtime for six datasets.

Dataset AR SR IBCF MOB LIN RUDIN

30music 0.789 0.850 0.862 0.531 0.820 0.851
EB-NeRD 0.829 0.844 0.866 0.652 0.870 0.872
aotm 0.927 0.936 0.940 0.437 0.924 0.931

Diversity clef 0.802 0.820 0.831 0.668 0.827 0.829
rcs15 0.862 0.873 0.888 0.606 0.884 0.883
retailrocket 0.858 0.847 0.900 0.579 0.887 0.883

Average 0.845 0.862 0.881 0.579 0.869 0.887

30music 66.7% 77.4% 44.3% 53.8% 78.2% 11.1%
EB-NeRD 62.7% 70.2% 91.5% 35.8% 78.5% 45.7%
aotm 65.0% 84.5% 22.0% 20.1% 78.0% 1.3%

Item clef 87.3% 90.7% 73.4% 85.5% 96.0% 89.4%
coverage rcs15 75.4% 81.7% 34.6% 66.2% 89.8% 48.9%

retailrocket 58.2% 62.7% 49.3% 25.3% 66.4% 2.5%

Average 69.2% 77.9% 52.5% 47.8% 81.1% 33.1%

30music 16.9% 21.0% 4.7% 18.2% 19.8% 0.0%
EB-NeRD 8.5% 8.9% 20.4% 8.2% 15.9% 15.3%
aotm 13.5% 18.4% 0.7% 8.9% 18.2% 0.0%

APLT clef 16.5% 26.6% 11.0% 22.4% 17.9% 20.2%
rcs15 16.4% 19.8% 4.1% 21.4% 17.9% 13.0%
retailrocket 14.8% 16.9% 6.7% 4.1% 13.4% 0.0%

Average 14.4% 18.6% 7.9% 13.9% 17.2% 8.1%

30music 99.7% 99.5% 100.0% 90.1% 100.0% 100.0%
EB-NeRD 100.0% 100.0% 100.0% 91.0% 100.0% 100.0%
aotm 100.0% 99.8% 100.0% 36.3% 100.0% 100.0%

User clef 100.0% 100.0% 100.0% 96.6% 100.0% 100.0%
coverage rcs15 100.0% 100.0% 100.0% 95.6% 100.0% 100.0%

retailrocket 94.1% 92.5% 99.1% 74.2% 99.1% 100.0%

Average 99.0% 98.6% 99.9% 80.6% 99.9% 100.0%

Table 9. Results of rule-based RS on diversity, coverage and popularity bias for six
datasets.

22 Len Feremans and Bart Goethals

Dataset AR SR IBCF MOB LIN RUDIN

30music 2241.0k 2069.2k 8604.8k 10936.8k 8190.8k 494.1k
EB-NeRD 91.6k 87.8k 379.1k 7.1k 112.4k 2088.4k
aotm 1071.0k 1011.4k 4068.6k 275.5k 4378.0k 4.0k

Number of clef 26.5k 26.2k 127.5k 17.6k 26.0k 2706.2k
rules rcs15 636.1k 597.3k 2744.2k 385.2k 1204.8k 6219.5k

retailrocket 994.1k 753.6k 2482.9k 320.0k 3137.9k 9.7k

average 843.4k 757.6k 3067.9k 1990.4k 2841.7k 1920.3k

30music 0% 0% 0% 88% 9% 78%
EB-NeRD 0% 0% 0% 10% 1% 84%
aotm 0% 0% 0% 65% 0% 36%

Rules of clef 0% 0% 0% 17% 2% 95%
size 3 rcs15 0% 0% 0% 54% 9% 81%

retailrocket 0% 0% 0% 57% 24% 28%

average 0% 0% 0% 49% 8% 67%

30music 74% 72% 85% 67% 50% 100%
EB-NeRD 44% 45% 27% 32% 6% 87%

Rules with aotm 79% 77% 87% 61% 60% 100%
pop. clef 68% 59% 57% 62% 42% 60%
consequent rcs15 43% 39% 74% 15% 7% 89%

retailrocket 73% 73% 80% 84% 54% 100%

average 64% 61% 68% 53% 37% 89%

30music 18% 17% 11% 24% 18% 0%
EB-NeRD 55% 55% 71% 66% 85% 7%
aotm 14% 14% 10% 24% 10% 0%

Long-tail clef 27% 32% 32% 30% 30% 29%
rules rcs15 55% 59% 25% 83% 70% 6%

retailrocket 18% 15% 11% 8% 22% 0%

average 31% 32% 27% 39% 39% 7%

Table 10. Results of rule-based RS on comprehensibility, and statistics related to rule
size and popularity bias on six datasets.

Scalable Evaluation of Rule-Based RS: Algorithms and Benchmarks 23

C Sankey visualization of rule-based recommender
systems

Before creating Sankey visualization we link recommendations with rules as
follows:

– During training in RuleRec, we call fit of the selected algorithm, resulting
in potentially millions of rules mined on Utrain, stored with antecedent,
consequent, support, confidence, and rule id.

– During inference, we call predict. For each user u ∈ Utest with history pobs,
we generate top-n recommendations p̂ = ŝ1, . . . , ŝn, stored with user, item,
and score. Additionally, RFER stores the rule id causing each recommenda-
tions2.

– We join recommendations with rules, producing a table of explainable recom-
mendations; optionally, item metadata (e.g., names) can also be included.

From this explainable table we construct a graph for the Sankey visualization:

– We analyze recommendations by rule size, presence of long-tail items3, and
relevance4, as well as other characteristics of interest to domain experts.

– This information is encoded in a graph with labelled nodes and edges repre-
senting counts.

– In the visualization, recommendations are linked to rule groups of size 1 or
2, which connect to subgroups based on the popularity of the antecedent of
consequent item (L → L, L → P , P → L, P → P). Within each subgroup,
recommendations are further divided into relevant and non-relevant.

In Fig. 3 we show an example of the Sankey visualization of MOB on the
30Music dataset. In total 56k recommendations were generated, and 51k of those
recommendations are from rules with a popular item in the antecedent and
consequent (74% having a single condition and 26% having two conditions).
Finally, the bulk of relevant recommendations (2k) results from these rules.

In Fig. 4 we show an example of the Sankey visualization of LIN on the same
dataset. Compared to the MOB, We find much more pairwise rules (99% having a
single condition), more rules between long-tail items (19.9% versus 1%), and that
there is also a significant increase in the number of relevant recommendations
(5k).

2 For IBCF, this can be a list of rules since aggregation is used.
3 Items with fewest occurrences, collectively covering 20% of interactions.
4 A recommended item is in pheld for the user.

24 Len Feremans and Bart Goethals

Fig. 3. Sankey diagram analyzing the recommendations generated by the Mobasher et
al. method on the 30Music dataset. The flow shows the distribution of recommendations
by rule type and their relevance.

Scalable Evaluation of Rule-Based RS: Algorithms and Benchmarks 25

Fig. 4. Sankey diagram analyzing the recommendations generated by the Lin et al.
method on the 30Music dataset. The flow shows the distribution of recommendations
by rule type and their relevance. We find much more pairwise rules and rules between
long-tail items (L → L) compared to the method by Mobasher et al. on the same
dataset.

