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ABSTRACT
We study the mining of interesting patterns in the presence
of numerical attributes. Instead of the usual discretization
methods, we propose the use of rank based measures to score
the similarity of sets of numerical attributes. New support
measures for numerical data are introduced, based on exten-
sions of Kendall’s tau, and Spearman’s Footrule and rho. We
show how these support measures are related. Furthermore,
we introduce a novel type of pattern combining numerical
and categorical attributes. We give efficient algorithms to
find all frequent patterns for the proposed support measures,
and evaluate their performance on real-life datasets.

Categories and Subject Descriptors: H.2.4 [Database
Management]:Systems I.2.6[Artificial Intelligence]:Learning
Knowledge Acquisition

General Terms: Algorithms, Experimentation, Theory.

Keywords: Data mining, Numerical, Rank Correlation.

1. INTRODUCTION
The motivation for the research reported upon in this pa-

per is an application where we want to mine frequently oc-
curring patterns in a meteorological dataset containing mea-
surements from various weather stations in Belgium over the
past few years. Each record contains a set of measurements
(such as temperature or pressure) taken in a given station at
a given time point, together with extra information about
the stations (such as location or altitude).

The classical association rule framework [1], however, is
not adequate to deal with numerical data directly. Most
previous approaches to association rule mining for numer-
ical attributes were based on discretization, see for exam-
ple [16]. Discretization, however, has serious disadvantages.
First of all it always incurs an information loss, since val-
ues falling in the same bucket become indistinguishable and
small differences in attribute value become unnoticeable. On
the other hand, very small changes in values close to a dis-
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cretization border may cause unjustifiably large changes in
the set of active rules. Second, if there are too many dis-
cretization intervals, discovered rules are replicated in each
interval making the overall trends hard to spot. It is also
possible that rules will fail to meet the minimum support
criterion when they are split among many narrow intervals.
In [16] a method for merging narrow intervals into wider
ones was combined with a special scheme to prune spuri-
ous rules. The method, however, cannot entirely solve the
problems related to discretization, since it is impossible to
decide with certainty which rules were true associations and
which were just artifacts of discretization. Also, informa-
tion loss and instability at interval borders is inherent to
discretization and cannot be eliminated entirely.

To tackle the problem of mining the meteorological dataset
without relying on discretization methods, we propose a
new technique based on well established statistical studies
of rank correlation measures [12, 13]. More specifically, we
propose to compare attributes by the rank their values im-
pose on the records in the database. For example, for a
given set of attributes, this can be done by counting the
number of pairs of records such that all attributes rank the
first tuple higher than the second tuple. When this num-
ber is high, it gives a clear indication that the attributes in
the set behave similarly, and hence, reveals an interesting
pattern. As it turns out, this number is related to the well
known Kendall’s τ [12] rank correlation measure, which will
be thoroughly explained in the next section.

Some examples of the types of rules we are able to discover
are the following: given two records t1 and t2,

If the altitude of the sun in t1 is higher than in
t2, then temperature is likely to be higher as well.

If t1 comes from a weather station in Antwerp,
and t2 from Brussels, and wind speed in t1 is
higher than in t2, then it is likely that cloudiness
is higher as well.

The main contributions of our paper are as follows:

1. We propose three new support measures for sets of
numerical attributes; suppτ , suppρ, and suppF , which
are based on well-known statistical rank correlation
measures, i.e., respectively Kendall’s τ , Spearman’s ρ
and Spearman’s Footrule F [12, 13].

2. We show how to combine the mining of sets of numer-
ical attributes with ordinal and categorical attributes
and how to extend it to association rules.



3. We propose and discuss algorithms to mine sets of nu-
merical attributes with these support measures, based
on spatial indexing techniques.

4. We present an empirical evaluation of our proposed
solutions on real-life datasets to show the feasibility
and effectiveness.

2. RANK-BASED SUPPORT MEASURES
For now, we assume that all values of numerical attributes

are distinct, which is a reasonable assumption for real-valued
attributes. Situations with tied values are taken care of in
Section 3.

Let D be a database. Elements of D are called transac-
tions, or records. Let H be the header of D, i.e., the set of
its attributes.

An attribute is called numerical if its domain is the set
of real numbers. A categorical attribute has a finite un-
ordered domain, and an ordinal attribute has a finite or-
dered domain. An example of an ordinal attribute’s domain
is {low, medium, high, veryhigh}.

The rank of a value t.A of a numerical attribute A, is
the index of t in D when D is ordered ascending w.r.t. A.
That is, the smallest value t.A of A gets rank 1, etc. We
denote the rank of t.A in A by rt.A; i.e., rt denotes the
tuple t where all values have been replaced by their rank. In
Table 1, an example weather database has been given. The
number between brackets in the entry for t.A is (rt.A).

Rank methods use the ranks of attribute values, not the
values themselves. They assess and test correlations between
attributes with ordered domains.

2.1 Rank Correlation Measures
Three well-known rank correlation measures are Kendall’s

τ , Spearman’s ρ, and Spearman’s Footrule F [12, 13]. Let A
and B be two numerical attributes.

The measures can now be defined as follows:

ρ(A, B) = 1 −
6
�

t∈D(rt.A − rt.B)2

|D|3 − |D|

F (A, B) = 1 −
4
�

t∈D |rt.A − rt.B|

|D|2

τ(A, B) =
4|{(s, t) ∈ D2 | s.A < t.A ∧ s.B < t.B}|

|D|(|D| − 1)
− 1

The observation behind ρ and F is that when two attributes
are highly positively correlated, the ranks of their values will
be close within most tuples. Hence, the sums

�
t∈D(r(t.A)−

r(t.B))2 and
�

t∈D |r(t.A) − r(t.B)| will be small if A and

W T P H
t1 3.15 (4) 20.1 (4) 1 030.3 (5) 0.75 (4)
t2 2.12 (2) 20.5 (5) 1 025.7 (4) 0.65 (3)
t3 5.19 (5) 13.7 (3) 1 015.6 (3) 0.80 (5)
t4 1.05 (1) 12.8 (2) 1 012.3 (2) 0.25 (1)
t5 2.13 (3) 5.3 (1) 1 005.7 (1) 0.30 (2)

Table 1: Example weather data; W stands for Wind
speed, T for Temperature, P for Pressure, and H for
Humidity. The numbers between brackets indicate
the rank of the value within the attribute.

B are correlated. On the other hand, if A and B are uncor-
related, the expected absolute difference between the ranks
of A and B is (|D| − 1)/2, thus resulting in very high val-
ues for these sums. The formulas are chosen in such a way
that they are 1 for total positive correlation (e.g., A = B),
and −1 for total negative correlation (e.g., A and B are in
reverse order). See [12] for details.

For τ(A, B), it suffices to notice that

|{(s, t) ∈ D2 | s.A < t.A ∧ s.B < t.B}|

|D|(|D| − 1)

is actually the probability that for a randomly chosen pair
of tuples (s, t), s.A < t.A and s.B < t.B. Again, the for-
mula is such that it is 1 for total positive correlation, and
−1 for total negative correlation. Notice that this connec-
tion of τ with this probability, makes its interpretation very
natural. The other two measures do not possess such clear
interpretations.

2.2 Support For Numerical Attributes
The support measures we propose are the following:

suppρ(I) = 1 −

�
t∈D

(max
A∈I

rt.A − min
A∈I

rt.A)2

|D|(|D| − 1)2

suppF (I) = 1 −

�
t∈D

(max
A∈I

rt.A − min
A∈I

rt.A)

|D|(|D| − 1)

suppτ (I) =
|{(s, t) ∈ D2 | ∀A ∈ I : s.A < t.A}|�

|D|
2 �

(1)

Similarly as for the correlation measures ρ and F , the in-
tuition behind the measures suppρ and suppF is that at-
tributes can be said to be similar if they result in similar
ranks for the tuples. Hence, when the attributes are similar,
(maxA∈I t.A − minA∈I t.A) tends to be small. Both suppρ

and suppF are based on aggregating this difference over all
tuples. For suppτ (I), we take all pairs of tuples (s, t), and
count the number of pairs such that s comes before t for all
attributes of I. This number is then divided by the maximal
possible number of such pairs. Notice incidentally that this
maximum is

�
|D|
2 � , and not |D|(|D| − 1), because it is not

possible that s comes before t, and t before s at the same
time.

Property 1. For all sets of numerical attributes I ⊆
J , and for suppm any of the measures suppρ, suppF , and
suppτ , the following holds:

0 ≤ suppm(J) ≤ suppm(I) ≤ 1 .

Example 1. Consider the example weather data given in
Table 1. This relation has 4 numerical attributes: W , T , P ,
and H. In order to compute the suppρ and suppF , we first
need to compute the ranks. This can easily be done by sorting
the table once for every numerical attribute. In Table 1, the
ranks have been given in brackets. In this example,

suppρ({T, P, H}) = 1 −
12 + 22 + 22 + 12 + 12

5 · 16
=

69

80

suppF ({T, P, H}) = 1 −
1 + 2 + 2 + 1 + 1

5 · 4
=

13

20



In order to compute the support suppτ ({T, P, H}), we need
to count the number of pairs of tuples such that the first tuple
is smaller than the second tuple in T , P , and H. E.g., the
pair (t5, t1) is such a pair, and (t2, t3) is not. As there are
6 pairs of tuples that are in order (3 with t4 and 3 with t5
as first element), suppτ ({T, P, H}) is 6/10.

Extensions of the rank correlation measures. No-
tice that Property 1 states that the measures are scaled in
such a way that they fall into the interval [0, 1]. For suppρI
and suppF , however, 0 can only be obtained in the special
case that |I| ≥ |D|. We can, though, re-scale by making the
multiplicative constants depending on |I|. As a by-product,
we provide the following extensions of ρ and F to multi-
ple attributes, where the range is [−1, 1], and these bounds
are attainable, independently of k = |I|. The construction
is based on the observation that in worst case, with k at-
tributes, there are at most k tuples with the maximal dif-
ference |D|− 1, k with difference |D|− 3, etc. Subsequently,
the sum over the tuples in the formulas is divided by the
support in this worst case.

ρ′(I) = 1 −

2
�
t∈D

(max
A∈I

rt.A − min
A∈I

rt.A)2

3k2 − 6k + 4

3k2
|D|3 −

1

3
|D|

F ′(I) = 1 −

2
�
t∈D

(max
A∈I

rt.A − min
A∈I

rt.A)

k − 1

k
|D|2

(2)

Note that for k = 2, these measures indeed correspond to the
rank correlation measures ρ and F . There are, however, a
couple of reasons why we prefer to use our support measures
given in (1). First and most important, ρ′ and F ′ do not
have the monotonicity property. Second, for our purposes,
the formulas ρ′ and F ′ are needlessly complicated, while
they are linearly related to our support measures anyway.

Discussion. It is worth remarking that suppτ inherits
the nice statistical interpretation of τ . Indeed, suppτ (I)
is twice the probability that in a randomly selected pair
of tuples (s, t), s is smaller than t in all attributes of I.
This connection makes that suppτ , in contrast to suppρ and
suppF , is easy to interpret, and that we can extend it easily
to other interestingness measures, such as e.g., confidence of
association rules between sets of numerical attributes. This
extension is discussed later on in this section. On the neg-
ative side, however, it should be noted that suppτ is much
harder to compute than the other two support measures, as
τ is defined over pairs of tuples while the other two over
the ranks of single tuples. The many desirable properties of
suppτ , however, are our main motivation for dealing with
the challenging computational difficulties of suppτ , instead
of just taking one that is easier to compute.

2.3 Properties of the Measures.
The following theorem gives the average suppτ in the case

of statistically independent attributes. This expected sup-
port under independence can be used as a reference point to
assess the support of a set of numerical attributes.

Theorem 1. Let A1, A2, . . . , Ak be k statistically inde-
pendent numerical attributes. The expected value of the sup-
port suppτ (A1A2 . . . Ak) is 1

2k−1
.

Proof. Let us first prove a helpful fact. Let X be a nu-
merical random variable and let x1 and x2 be its two in-
stantiations. It is easy to see that Pr{x1 < x2} = 1

2
. In-

deed, let F (x) be the cumulative probability distribution
function of X and let f(x) be its probability density func-
tion. Then Let us pick any pair of distinct records (s, t)
from D. Since all attributes are independent, it follows that
Pr{s[A] < t[A] forall A ∈ I} = 1

2k
. Hence, the expected

number of pairs that are in order is |D|(|D|−1)

2k
. Therefore,

the expected suppτ (I) = 1
2k−1

(Q.E.D.)
For the rank correlation measures ρ, τ , and F , there ex-

ist many inequalities relating them to each other. For an
overview, see, e.g., [12, 13, 6]. We extended some of these
bounds to our support measures. Especially the relations
where suppρ and suppF that can be used to upper bound
suppτ are of particular interest to us, because, in contrast to
suppτ itself, such an upper bound is easy to compute, and
might allow for pruning if it is below the support threshold.

Theorem 2. For any set of numerical attributes I of any
database,

suppτ (I) ≤ suppF (I)

1 − |D|(1 − suppF (I))2 ≤ suppρ(I) ≤ 1 − 1−suppF (I)

|D|−1

Proof. The first inequality is based on the following obser-
vation. Suppose that for a tuple t, A is the attribute in I
with the lowest rank rt.A, and B the one with the highest
rt.B. Then we know that in the database, there are exactly
rt.A−1 tuples smaller in A than t, and rt.B−1 tuples smaller
than t in B. Hence, there are at least (rt.B−1)−(rt.A−1) =
maxA∈I rt.A−minB∈I rt.B tuples that are smaller in B, but
not smaller in A than t. For these tuples s, neither (t, s),
nor (s, t) will contribute to the support. If we sum this num-
ber over all tuples, we get a lower bound on the number of
pairs (s, t) such that neither (s, t), nor (t, s) contributes to
the support. Since every incomparable couple of tuples s, t
is taken into account twice by this measure, we need to di-
vide it by 2 to get a lower bound on the pairs of tuples not
contributing to the support. Hence, an upper bound on the
number of pairs (s, t) such that s.A < t.A for all A ∈ I is:�

n

2 � −

�
t∈D maxA∈I rt.A − minB∈I rt.B

2
.

To get an upper bound on suppτ (I), we still have to divide
by

�
n
2 � , resulting in suppF (I).

The other inequalities are based on the observation that�
t∈D

(max
A∈I

rt.A − min
A∈I

rt.A) ≤
�
t∈D

(max
A∈I

rt.A − min
A∈I

rt.A)2

≤

� �
t∈D

(max
A∈I

rt.A − min
A∈I

rt.A) � 2

(Q.E.D.)

Example 2. Consider again the example relation given
in Table 1. For the set {T, P, H}, we illustrate the bound
suppτ ≤ suppF . Consider, e.g., the tuple t3. In this tuple,
the rank of T is 3, and of H is 5. Therefore, there must be
at least 2 tuples that are smaller than H, and not smaller
than T .



2.4 Categorical attributes
Our definitions of support are also applicable to ordinal

attributes, since their domains are ordered. For ordinal at-
tributes, however, we cannot assume that tied pairs do not
occur, so in order to maintain the relationship to Kendall’s τ
tied pairs would also need to be counted, see [13] for details.
In Section 3, we discuss what to do in case of ties.

Let us now look at how to integrate categorical attributes.
Without loss of generality we will look only at binary at-
tributes, also called items. When a given item is set to 1 we
say that it is present in the transaction.

Categorical attributes will be used to define the context
in which the support of numerical or ordinal attributes is
computed. Let B be the set of binary attributes and O the
set of numerical and ordinal attributes of the dataset D.

Definition 1. Let I 6= ∅, I ⊆ O, J1, J2 ⊆ B. The sup-
port of I in context (J1, J2) is defined as

suppτ (I|(J1, J2)) = |{(t1, t2) : t1, t2 ∈ D, and J1 ⊆ t1,

J2 ⊆ t2, and ∀A ∈ I : t1.A < t2.A}|/

�
|D|

2 � ,

where J1 ⊆ t1, J2 ⊆ t2 denotes the fact that all items from
J1 are present in transaction t1 and all items from J2 are
present in t2.

Notice that this definition of support for numerical and
categorical attributes captures exactly the patterns we wanted
to find in the first place.

Example 3. Suppose that we have attributes for the lo-
cation where the weather data was gathered. Then, e.g., the
rule “In measurements of Antwerp and Brussels, the temper-
ature and wind speed in Antwerp are higher than in Brussels
in 70% of the cases” could be expressed as:

suppτ ({T, W}|(Antwerp, Brussels)) = 70%

Note that this rule does not require that the measurements
that are compared are of the same point in time. Rather it
expresses that wind speeds and temperatures in Antwerp are
in general higher than in Brussels.

2.5 Association rules
Because of the interpretation of suppτ (I|(J1, J2)) as the

conditional probability that two pairs that satisfy respec-
tively J1 and J2 are concordant on all attributes of I, it is
straightforward to define the confidence of association rules
in this context. Notice that for the other support measures,
it is not at all straightforward how to score an association
rule.

Definition 2. Let I1, I2 be sets of numerical attributes,
and let J1 and J2 be sets of binary attributes. Then, the
confidence of the association rule I1 → I2|(J1, J2) is defined
as

conf(I1 → I2|(J1, J2)) =
supp(I1 ∪ I2|(J1, J2))

supp(I1|(J1, J2))

The interpretation of an association rule I1 → I2|(J1, J2)
with confidence c, is simply that for all pairs of tuples (t1, t2),
with t1 satisfying J1, and t2 satisfying J2, if t1 is smaller than
t2 on I1, then there is a chance of c that t1 is also smaller
than t2 on I2.

Example 4. The following rule expresses that in Antwerp,
if the wind speed in one measurement is greater than in an-
other measurement, then there is a probability of 65% that
the cloudiness will be greater as well.

conf({W} → {C}|(Antwerp, Antwerp)) = 65%.

3. RANKS WITH TIES
In the beginning of the paper, we assumed that we are

working with numerical data, in which no identical values
occur. In reality, however, this assumption is not always
true. Often, the data contain measurements of finite pre-
cision, e.g., temperatures up to .1 degree. In those cases,
many numerical values will be duplicated, and the ranks
implied by the attributes are no longer total, because ties
will occur. Also for ordinal data, many ties will occur.
Consider, e.g., an attribute Cloudiness that can take val-
ues {low ,medium, high}. For this attribute, at least 1/3th
of the pairs will be tied. In this section we describe how
we can extend our support measures to work with rankings
with ties.

For our support measure suppτ , we can just keep our
original definition; that is, if two tuples have a tie on an
attribute of I, they won’t contribute to suppτ (I). For the
other measures, we need to decide what rank we want to
assign to a value that is repeated; i.e., suppose a value t.A
is repeated m times in attribute A, and there are p tuples
with an A-value smaller than t.A. Then, in any order con-
sistent with the ranking with ties, t.A will have a rank in
the range p + 1, . . . , p + m. There are now several choices
for the rank of t.A; we could take the average of the ranks
art.A = (p + 1 + m)/2, the minimal rank r.A = p + 1, or
the maximal rank r.A = p + m. The choice we make will
have a large influence on the supports measured by suppρ

and suppF . In our experimental evaluations, we have cho-
sen for assigning the average rank to tied values, because,
intuitively, this is the most natural choice, as it keeps, e.g.,

the property that the sum of all ranks is
� |D|

i=1 i. For the
minimal and maximal rank, this sum respectively decreases
and increases, hence introducing a bias. Thus, to summa-
rize, for rankings with ties, the definition of suppτ does not
change, and suppρ(I) and suppF (I) become:

suppρ(I) = 1 −

�
t∈D

(max
A∈I

art.A − min
A∈I

art.A)2

|D|(|D| − 1)2

suppF (I) = 1 −

�
t∈D

(max
A∈I

art.A − min
A∈I

art.A)

|D|(|D| − 1)

Notice that these measures reduce to the original definitions
of suppρ and suppF when there are no ties.

With these definitions, we can still upper bound suppτ (I)
with suppF . Indeed; similarly as in the proof of the bound
without ties, let A and B be two attributes of a set I. Con-
sider a tuple t in the relation D, then, on the one hand,
there are at least dart.Ae tuples s such that s.A ≤ t.A. On
the other hand, there are at most bart.Bc tuples s such that
s.B < t.B. Therefore, there are at least dart.Ae − bart.Bc
tuples s, such that s.A ≤ t.A and not s.B ≥ t.B, and that
thus cannot contribute to suppτ . The rest of the proof of
the bound is now the same as for the case without ties.



For the sake of providing an upper bound to suppτ , the
result can still be improved:

Theorem 3. Let I be a set of numerical attributes. Let,
for any tuple t of the database,

maxdiff(t) := max
A∈I

rt.A − min
A∈I

rt.A .

Then,

suppτ (I) ≤ 1 −

�
t∈D maxdiffI(t)

|D|(|D| − 1)

Proof. Consider a tuple t, with maxdiff(t) = rt.A − rt.B.
There are exactly rt.A tuples s such that s.A ≤ t.A, and
there are exactly rt.B tuples s such that s.B < t.B. There-
fore, there are at least rt.A− rt.B tuples s, such that s.A ≤
t.A and not s.B ≥ t.B, and thus cannot contribute to suppτ .
The remainder of the proof is the same as for Theorem 2.
(Q.E.D.)

4. ALGORITHMS
As only ranks are compared instead of the actual values in

the database, we first transform the database by replacing
every attribute value by its rank w.r.t. this attribute, which
can be done in O(|H||D| log(|D|)) time.

We now present several techniques to efficiently generate
all sets of attributes satisfying the minimum support thresh-
old, where support is defined as suppρ, suppF , or suppτ . Es-
sentially, the problem comes down to frequent itemset min-
ing, with the important difference that we can no longer use
most of the support counting optimizations used by many
algorithms. Indeed, we do not have to count the number
of transactions in which an itemset is present, but instead,
we have to compare the ranks of all items of an itemset in
each transaction. Therefore, we can never shrink the data-
base by removing attributes or transactions, as is done in
e.g. FP-growth or Eclat [9].

In the case of suppρ, or suppF , the solution is straightfor-
ward as it can be solved by the standard level-wise search in
which candidate itemsets are generated only when all of its
subsets are known to be frequent. Counting the supports re-
quires only a single scan through the data in every iteration,
as is done in Apriori [1].

In the case that suppτ is used as support measure, the
mining task becomes inherently more difficult since the num-
ber of pairs of transactions is quadratic in the size of the
database. In the next sections, we describe several methods
which we investigated to tackle this problem.

4.1 Explicit creation of pairs of transactions
A brute force solution to the presented mining problem,

is to explicitly combine all pairs of transactions from the
original database D, and create a Boolean database D′, such
that

D′ = {tij | tij = {A | ti.A < tj .A, with ti, tj ∈ D}}

The problem is then reduced to standard frequent itemset
mining on the new database D′.

The main disadvantage of this approach is that the size
of the new database D′ (and the time needed to create it) is
quadratic in the size of the original database, so it is only ap-
plicable to small problems. If, however, the approach can be
applied, it is most of the time very efficient in combination

with depth-first frequent itemset mining algorithms such as
Eclat, because all pairs that do not support an itemset will
be removed from its branch, and hence, will not be consid-
ered anymore in the support computation of its supersets in
that branch. Such fine level of pruning will not be possible
in the other approaches presented hereafter.

4.2 Spatial indices
When the database is too large and the latter brute force

method is not applicable, we need an efficient mechanism
to count suppτ for all candidate itemsets. For a given at-
tribute set I, this comes down to the following nested for
loop.

for all ti ∈ D do
for all tj ∈ D do

if ti.A < tj .A for all A ∈ I then
count++

end if
end for

end for

Obviously, this double loop is also infeasible as it performs
a quadratic operation for each candidate set. A better ap-
proach is to replace the inner for-loop with a more directed
search for all transactions that have smaller values on all
attributes in I. This is possible by using so called spatial in-
dices. These are data structures especially designed to allow
for searching in multidimensional data and to allow searches
in several dimensions simultaneously.

For the itemsets search space traversal, we use a depth-
first traversal (such as in e.g. FP-growth and Eclat) as this
allows us to remove transactions from consideration in the
current branch when they are no longer part of the support
of the current itemset. Note, however, that since we consider
pairs of transactions, we can only remove a transaction if it
does no longer occur in any supporting pair of the current
itemset. Of course, we will not duplicate the database for
each branch, but only store the list of transaction identifiers
of the transactions that are still under consideration. As a
first optimization, we will actually store two separate lists
of transaction identifiers, one for the outer for loop, and a
second one on which the spatial index is created. This also
allows us to prune some transactions earlier. Indeed, when
a transaction in the outer loop list is no longer involved in
any pair, then it can be removed from that list, although it
might still be present and necessary in the index, and vice
versa.

Another optimization, as we recall from Theorem 2, is the
usage of the upper bound presented by suppF . As suppF

can be computed a lot more efficiently compared to suppτ ,
we will first compute it for every candidate itemset. In case
it gives a value under the minimum support threshold, we
can already prune the itemset from the search space without
computing the more expensive suppτ .

Typically, depth-first frequent itemset mining algorithms
do not exploit the monotonicity of support optimally. That
is, when a candidate itemset is generated, they do not check
whether all of its subsets are known to be frequent, and
hence, they generate more candidate itemsets than in a
breadth-first approach (see e.g. [9] for more information).
Nevertheless, using simple heuristics and fast support count-
ing techniques, it turns out not to have a great effect for most
cases [4]. In our setting, however, the support computation
becomes a lot harder and it is important to reduce the num-



ber of candidate itemsets to be counted as much as possible.
Fortunately, by generating all candidate itemsets in a re-
verse depth-first manner, it is guaranteed that all subsets of
a given candidate itemset are generated before the candidate
itself [5]. For example, the subsets of {a, b, c, d} would be
generated in the following order: {d}, {c}, {c, d}, {b}, {b, d},
{b, c}, {b, c, d}, {a}, {a, d}, {a, c}, {a, c, d}, {a, b}, {a, b, d},
{a, b, c}, {a, b, c, d}. Thus, when all candidate itemsets are
generated in this manner, it is still possible to check for each
candidate whether all of its subsets are frequent, and if not,
we can already remove the candidate as it must also be in-
frequent, due to the monotonicity of suppτ (see Property 1).
To index all transactions for the inner loop, we considered
two well known spatial indices, called kd-tree and range tree
respectively [3]. Next, we discuss how they work, their ad-
vantages and disadvantages. Notice that any other spatial
data structures could be used as well. We report, however,
only on kd-trees and range trees because they were designed
primarily for main memory, in contrast to, e.g., R-trees [?],
which are more appropriate when secondary storage is being
used.

4.2.1 Kd-tree
A kd-tree [3] is similar to a binary search tree, except that,

at every level of the tree, the ordering is based on a different
attribute. In our case, the root of the tree orders on the first
attribute of the itemset, its children on the second attribute
and so forth.

The advantages of a kd-tree are its simplicity and low
memory consumption. As a matter of fact, instead of im-
plementing a tree structure, we simply implemented a bi-
nary search on the database itself with appropriately sorted
records. First, the whole dataset is partitioned around the
median of the first attribute, then each of the halves is parti-
tioned around the median of the second attribute within that
half, and so on for each attribute. Then, when all attributes
have been used, but some parts still contain multiple tuples,
then the ordering starts over with the first attribute.

4.2.2 Range-tree
A 1-dimensional range tree is simply a binary search tree.

For multiple dimensions, a binary tree is created for the first
dimension. Then, every node in the tree stores all transac-
tions that fall into this node in a range tree, which is recur-
sively constructed for the remaining dimensions. We refer
the interested reader to [3] for more detailed information.

The range tree has the important advantage that it is
very easy to create the tree for an itemset of size k, given
the range tree of its prefix of size k − 1. Indeed, when a
new candidate itemset of size k is created in the depth-first
traversal, we already created the range tree for its k − 1
prefix, and we only need to add the a binary tree for the
new dimension to all nodes that have multiple transactions
in the nodes of the range trees for dimension k − 1.

4.2.3 Comparison
Obviously, both kd-tree and range-tree have their advan-

tages and disadvantages. For the full technical details on
the comparison, we refer to [3]. On the one hand, kd-trees
use far less memory than range-trees. On the other hand,
however, finding the number of tuples that are greater than
a given tuple on all attributes of the itemset under con-
sideration is far more efficient in a range-tree than in a kd-

tree. More concretely, a kd-tree for an itemset of size k, uses
O(nk) space, where n is the number of tuples. For the range-
tree, the size is as large as O(n logk(n)). For the counting
of the number of tuples larger than a given tuple t, the kd-
tree uses time proportional to O(n1−1/k), thus resulting in

a cost of O(n2−1/k) for the counting operation. For large k,
this cost becomes quadratic. For the range trees, however,
the cost for one tuple is O(log(n)k), resulting in a total cost
of O(n log(n)k) for the counting operation. Clearly, there
will be a trade-off between memory and time in the choice
between the kd-tree and the range-tree. This trade-off will
also become clear in the experiments.

5. EXPERIMENTAL EVALUATION

5.1 An illustrative example
Let us first look at the letter dataset from the UCI Ma-

chine Learning Repository [10]. The dataset consists of se-
lected features of 20000 handwritten letter images. All val-
ues (except for the class) are integer in the range from 0 to
15. The table below briefly describes those of the attributes
which are used later

letter character represented by handwritten letter
box-x x position of center of bounding box (left)
box-x x position of center of bounding box (left)
box-y y position of center of bounding box (bottom)
box-w width of the bounding box
box-h height of the bounding box
onpix number of ‘on’ pixels
y-bar mean y of ‘on’ pixels in box
y2bar mean y variance
x2ybr mean of x ∗ x ∗ y
xy2br mean of x ∗ y ∗ y
x-ege mean edge count left to right
xegvy correlation of x-ege with y

See [8], where the dataset was introduced, for details.
Table 2 shows the 5 most frequent itemsets in the letter

dataset according to the three support measures proposed.
The values for suppF and suppρ have been scaled using
Equations (2) to obtain more understandable values of sup-
port, even though they were mined with the definitions in (1)
because of the monotonicity property.

The patterns that come out on top are quite intuitive. For
example {box-y,box-h} means that for tall letters the center
of their bounding box is higher up. This patterns has suppτ

of 0.734, meaning that if we pick two pairs of records at ran-
dom, 73% of them agree on box-y and box-h. An analogous
pattern can be seen for box’s width and x position. Another
intuitive patterns is {box-w,onpix}, wider letters obviously
require more pixels. The pattern {box-x,box-y} is an inter-
esting pattern which we cannot explain, it says that x and y
coordinates of the center of the bounding box are positively
correlated. The pattern {box-y,box-w} means that wide
letters tend to have the center higher up. We believe that
this is due to letters with lower ‘tails’ such as ‘j’,‘p’,‘q’,‘y’ are
narrow, while wide letters such as ‘m’ and ‘w’ do not have
such ‘tails’. suppF and suppρ produced a three item pattern
{box-x,box-w,onpix}. This pattern made it to the top of
the list after support scaling (Equations 2), and is a result
of non-monotonicity of those measures. It seems that it is a
consequence of patterns {box-x,box-w} and {box-w,onpix}
and does not contain any extra information.



suppτ suppF suppρ

{box-y,box-h} 0.734 {box-y,box-h} 0.786 {box-x,box-w} 0.939
{box-x,box-w} 0.706 {box-x,box-w} 0.785 {box-y,box-h} 0.914
{box-w,onpix} 0.667 {box-w,onpix} 0.728 {box-w,onpix} 0.904
{box-x,box-y} 0.663 {box-x,box-y} 0.697 {box-x,box-y} 0.879
{box-y,box-w} 0.631 {box-x,box-w,onpix} 0.693 {box-x,box-w,onpix} 0.877

Table 2: Five most frequent itemsets for each support measure in the letter dataset.

itemset (numerical) letters support
{xy2br} P/U 629 957 (96.5%)
{x2ybr} A/U 627 340 (97.8%)
{y2bar} A/D 626 245 (98.6%)
{x-ege} T/M 626 216 (99.3%)
{x2ybr} D/Y 625 314 (98.8%)

{y-bar, x2ybr} A/T 613 349 (97.7%)
{y-bar, y2bar} A/T 610 605 (97.2%)
{y2bar, x2ybr} A/U 608 084 (94.7%)
{y2bar, x2ybr} A/T 607 727 (96.8%)
{x2ybr, xegvy} A/Y 607 549 (98.0%)

{y-bar, y2bar, x2ybr} A/T 604 593 (96.3%)
{y-bar, x2ybr, xegvy} A/Y 593 157 (95.6%)
{y-bar, x2ybr, xegvy} A/T 583 680 (92.9%)
{y-bar, y2bar, xegvy} A/T 581 609 (92.6%)
{y2bar, x2ybr, xegvy} A/T 581 338 (92.6%)

Table 3: Most frequent (suppτ) patterns in letter

data including the categorical ‘letter’ attribute

Table 3 shows the most frequent 1, 2 and 3 attribute pat-
terns in the letter data when the categorical ‘letter’ at-
tribute is considered. The ‘letters’ column shows which pair
of letters is involved, and the ‘support’ column shows the
actual value of support as well, as this value divided by the
total number of pairs of records with for the given pair of
records. For example, the first row denotes that for 96.5%
of pairs of a letter P and a letter U, the mean of x ∗ y ∗ y of
the on-pixels is smaller for the P than for the U.

The top patterns involve arithmetic expressions of x and
y coordinates of points which are not easily interpretable.
It can be seen that the creators of the database have chosen
the set of features quite well. Pattern {T/M,x-ege}, is quite
interesting. It shows the average number of edges encoun-
tered, when traversing the letter image left-to-right. For ‘T’
this number is almost always small, while for ‘M’ there are
often 4 edges to cross, so this number is high. The pattern
tells us that in 99.3% of cases this number is parameter is
indeed higher for letters ‘M’ than for letters ‘T’.

5.2 Rules found in the weather data
In Table 4, some rules that were found in the meteorolog-

ical dataset by the proposed method are presented. The in-
put data was 5 years of hourly measured weather data taken
from one weather station located at Brussels airport. In the
table, the rule is reported, its confidence, its support, and
also the support of the consequent of the rule. The meaning
of the attributes is respectively the altitude of the sun (so-
lar alt), the amount of precipitation (precip), the amount of
cloudiness (cloud), and the wind speed (w speed).

Rule X → Y Supp(XY) Conf Supp(Y)
solar alt→temp 33% 66% 50%

precip→cloud 21% 64% 43%
cloud→precip 21% 48% 32%

w speed→precip 19% 44% 32%
cloud, w speed→precip 13% 57% 32%

Table 4: Association Rules found in the weather
data of one station in Brussels

The first rule simply claims that in 66% of the cases, the
temperature is higher if the altitude of the sun is higher.
The second rule indicates that if it is raining harder, then
there is probability of 64% that the cloudiness is bigger as
well. Intuitively, one would expect these confidences would
be higher. This is not the case, however, as measurements
of different days are compared (e.g., a measurement in win-
ter vs a measurement in summer). Thus, for example, if the
first measurement is in winter, and the second is in summer,
the temperature of the former is likely to be lower than the
latter, no matter what the solar altitudes in both measure-
ments are.

The last three rules indicate that higher cloudiness or
higher wind speed positively influence the amount of rain,
and apparently, with both higher cloudiness and wind speed
this effect becomes even stronger. Indeed; for two randomly
selected tuples, the probability of having a higher precipita-
tion is only 32%. When, however, we know that the cloudi-
ness in the first tuple is higher, or the wind speed in the
first tuple is higher, or both, the probability of the first tu-
ple having a higher precipitation increases to respectively
48%, 44%, and 57%.

5.3 Performance evaluation of suppτ

We evaluated the performance of the algorithms on a real-
life meteorological dataset and on a number of benchmark
datasets. All algorithms were implemented in the C pro-
gramming language and tested on a 2.2GHz Opteron system
with 2GB of RAM.

The meteorological data describes readings from several
weather stations in Belgium at hourly intervals. The at-
tributes include temperature, pressure, humidity, etc. There
are about 5 million records in the database, and 57 at-
tributes. There are many missing values, but about 20 at-
tributes are present in most records.

We concentrate on performance of algorithms for suppτ as
it is much more computationally intensive than suppF and
suppρ. Some results for suppF and suppρ are shown later in
the section.

To evaluate performance of the algorithm for various data-
base sizes we drew random samples of increasing sizes from



20% 10% 5% 1%
179 – 191 770 – 861 2 664 – 2 955 31 010 – 34 812

Table 5: Number of frequent itemsets for different
values of minimum support for the meteorological
data.

dataset no. of records no. of attributes
letters 20 000 16

elevators 16 599 19
2dplanes 40 768 11
puma8NH 8 192 9
bank32nh 8 192 33

Table 6: Characteristics of datasets used for exper-
iments

the meteorological data and ran the algorithm on each sam-
ple for various minimum support thresholds.

Figure 1 shows the results for three suppτ computation
methods. It can be seen that range tree and kd-tree based
algorithms scale to tens or hundreds of thousands of records
depending on minimum support. In general we would not
wait if the program ran for more than 3 hours. This was
often the case with range trees, especially due to heavy swap
memory usage. kd-trees incur almost no memory overhead
so they always fit in main memory. The algorithm based on
explicit pairs ran out of memory for 1, 000 records already.

Note that the number of records of the original table
does not give full justice to the problem size, as for ex-
ample for 500 000 records in the original database, there
124 999 750 000 unordered pairs of records to look at! This
shows high usefulness of spatial indices applied.

It can be seen that range trees are the most efficient
method, except for small minimum supports. It breaks
down when itemsets become too long, due to large memory
consumption. For 1% minimum support kd-trees achieve
much better performance, since they incur almost no mem-
ory overhead. The third method: mining all explicitly pre-
computed pairs of records, cannot handle data of 10 000
records at all. This happens since 49 995 000 new records
which are generated do not fit in memory. However, due to
the types of pruning possible only in this method, it gives
very good results for low minimum supports.

Overall we would recommend the use of range trees, unless
minimum support is too low and extensive usage of swap
memory becomes an issue. For low minimum supports and
large datasets kd-trees are a better alternative. For low
minimum supports and small datasets, the algorithm based
on the explicit pairs becomes viable. A development of a
hybrid approach, which would switch from one method to
another at various stages of the mining process is a topic of
future research.

We found the number of frequent itemsets to remain ap-
proximately constant with the increase in sample size as long
as the support was constant percentage-wise. We summarize
the results in Table 5 where for every value of minimum sup-
port, the range in which the numbers of frequent itemsets
were contained for all considered sample sizes.

We now evaluate performance of the algorithm on various
benchmark datasets. Table 6 summarizes their characteris-

minsupp[%] time #freq

suppF

50 2.736 945
40 10.350 4 229
30 1m54.026 21 573
20 6m41.215 63 387
10* 6m56.100 65 536
8* 6m54.100 65 536

suppρ

5 · 10−6 0.865 1
4 · 10−6 0.862 1
3 · 10−6 0.864 1
2 · 10−6 0.863 1
1 · 10−6 0.955 17

0.8 · 10−6 1.457 215
0.6 · 10−6 10.465 4 332
0.4 · 10−6 5m35.282 49 165
0.2 · 10−6* 6m55.548 65 536
0.1 · 10−6* 6m56.231 65 536

*) all itemsets frequent

Table 7: Performance results for suppF and suppρ for
the letter data.

tics. The results are shown in Figure 2. Doubly logarithmic
scales are used in both charts. We used several of Weka’s
regression benchmarks as well as the letter database de-
scribed earlier (with the class attribute ignored). All at-
tributes were continuous. The results are given for suppτ

and range tree based algorithm. It can be seen that the al-
gorithm performs quite well even on large datasets. There
are however some performance problems for datasets with
large number of attributes.

5.4 Performance of suppF and suppρ

Table 7 shows performance results for suppF and suppρ

for the letters data. We used the monotone version of the
measures (Definition 1).

It can be seen that mining patterns using those measures
is much more efficient than for suppτ . Notice that both mea-
sures are quite sensitive to minimum support level chosen.
This is especially true for suppρ, which moves relatively fast
from the extreme point of 1 frequent itemset (the empty set
is always frequent) to all itemsets being frequent. Also note
that for suppρ the values of minimum support required are
very low, in the range of tenths of millionth of percent! It
shows that the theoretical maximum value is rarely achieved.

6. RELATED WORK
There has been previous work by Han et. al [14] on min-

ing itemsets which span more than one transaction. Their
work however used discretization of numerical dimensions,
and, they placed restrictions on which pairs of transactions
were considered. More specifically only pairs of transactions
which are close to each other in one or more numerical di-
mensions were considered. The semantics of their rules is
thus different. While we find that approach useful, it does
not solve all the problems we encountered. Algorithms used
in [14] cannot be applied to our definition of support.

Another approach to mine numerical data, which does
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Figure 1: Performance of the suppτ mining algorithms for various database sizes and minimum supports for
the meteorological data.

not use discretization can be found in [2, 15]. However the
case considered in those works involves discrete attributes
in the antecedent and a single numerical attribute in the
consequent.

In [17] an interesting definition of support for continuous
data is presented which does not require discretization. It
is defined as the sum over all transactions of the squared
minimum over all itemset’s attributes in each transaction.
Although a relationship between the support definition and
the cosine similarity of pairs of attributes as well as a re-
lationship with the notion of h-confidence is given, the in-
terpretation of the definition is not clear. Also, the seman-
tics of the definition given in [17] is clearly different from
our approach. Also ranks and relations to statistical rank
methods is unique to our paper. Note that after converting
to ranks, F and ρ are expressible in the framework pre-
sented in [17] as σrange, L1 and σrange, L2 respectively. The
original paper however does not discuss conversion to ranks
and relation Spearman’s ρ and Footrule. Also Dzeroski and
Todorovski [7] propose an interesting approach to mining
numerical data that does not rely on discretization. But, to
the best of our knowledge, no previous work exists that uses
quantities related to Kendall’s τ as measures of support.

7. CONCLUSIONS
In this paper we presented three new support definitions

for continuous attributes based on rank methods used in sta-
tistics. Those methods do not require discretization of nu-
merical data. Relationships between the measures have been
analyzed theoretically. Algorithms have been presented for
mining frequent itemsets based on those definitions. Tests
were performed on benchmark datasets as well as on a real-
world meteorological data. The efficiency of the algorithm
has been verified even on large databases.

An important direction for future work is improving even
further the performance of the algorithms involving suppτ .
The first idea is to use a hybrid strategy which switches
between various mining algorithms depending on the size
of the dataset and the available memory. For example, an
algorithm might decide to switch away from kd-tree or range
tree and generate explicit pairs of records at a lower lever
of the recursion tree, when many records have already been
pruned and there are only few attributes involved.

Another optimization is possible for ordinal attributes
with small domains, where support could be obtained from
their contingency tables. For example, suppose we have two
attributes x, y with domains {0, 1, 2}. Let nij denote the
number of records with x = i and y = i. Support of xy can
now be computed as n00n11 + n00n21 + n00n12 + n00n22 +
n01n12 + n01n22 + n10n21 + n10n22 + n11n22, which can be
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Figure 2: Computation time (a) and number of frequent itemsets (b) for various datasets and levels of
minimum support (suppτ and range tree implementation used)

done with just a simple scan of the data. It is not clear how
much performance improvement this approach would yield
for larger itemsets with larger domains.

An ultimate approach, as far as performance goes would
be sampling. Since based on relatively small samples, statis-
tical inferences can be made even about infinite populations,
it would remove the database size limitation completely.
Sampling itself is relatively easy to implement; we would
pick two records at random, and check which attributes
of the first record are less than attributes of the second,
thus obtaining a single sample from the database currently
built in the explicit pairs algorithm. A more difficult task
is guaranteeing accuracy of the solution obtained. Methods
presented in [11] can be used.

Currently we only consider support definitions where all
items in one record have to be strictly less than all items in
the other record. It would be interesting to consider cases
where we require certain items in the first record to be less
and others to be greater than (or equal) corresponding items
in the other record. This way we could mine patterns where
a decrease in value of one attribute causes an increase in the
value of another.
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