
Faculteit Wetenschappen
Informatica

Mining Patterns
in Relational Databases

Proefschrift voorgelegd tot het behalen van de graad van doctor in de
wetenschappen: informatica aan de Universiteit Antwerpen, te

verdedigen door
Wim Le Page

Promotor: Prof. dr. Bart Goethals Antwerpen, 2009

Mining Patterns in Relational Databases

Wim Le Page
Universiteit Antwerpen, 2009

http://www.universiteitantwerpen.be

Permission to make digital or hard copies of
portions of this work for personal or classroom
use is granted, provided that the copies are not
made or distributed for profit or commercial
advantage and that copies bear this notice.
Copyrights for components of this work owned
by others than the author must be honored.
Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers or
to redistribute to lists, requires prior specific
permission of the author.

Part of this work was carried out in the con-
text of the Interuniversity Attraction Poles Pro-
gramme – Belgian State – Belgian Science Policy,
project MoVES.

Typesetting by LATEX

http://www.universiteitantwerpen.be

Acknowledgements

This dissertation would not have been possible without the support, guidance and
collaboration of many people who I would like to acknowledge. First I would
like to thank Jan Paredaens and Bart Goethals who helped me start this PhD
in the first place. As promotor, Bart has always provided valuable ideas and
feedback to advance my research, but he has also been a colleague without whom
many late night deadlines and conference trips would not have been the same. I
also appreciate the help of the other people who were closely involved with the
research presented in this dissertation. I would like to thank Heikki Mannila for his
comments and suggestions shared during my short but pleasant stay in Helsinki.
Many thanks go out to Dominique Laurent. This dissertation would just not have
been the same without the many conversations, real as well as e-mail, we had. I am
also very grateful to Michael Mampaey, who has not only been a long time friend,
but also an invaluable collaborator on the research performed for this dissertation.

I would also like to thank all of my colleagues at the University of Antwerp
for providing a pleasant and productive atmosphere. Thank you to all the current
and some of the past members of the ADReM team: Adriana, Alvaro, Bart, Boris,
Calin, Jan, Jan, Jeroen, Jilles, Koen, Michael, Nele, Nikolaj, Philippe, Roel and
Toon. The unique atmosphere during our meetings and excursions and the many
interesting discussions about language and culture made working in this team a
very enjoyable experience. Special thanks go out to colleagues Jeroen and Olaf
for spending time with me contemplating and (publicly) sharing PhD experiences.
Many thanks to Joris who helped me in ‘getting things done’ as well as with many
other things. In addition I would like to thank Juan who together with Jeroen,
Joris and Michael made many of the work breaks very playful. I also enjoyed the
company and smalltalk of all the colleagues from other universities I met at the
conferences I attended.

iii

Finally I would like to thank my family and friends for their support. Thanks
to Johan, Michael and Wesley for providing much needed diversion. Special thanks
to my parents Alice and Wilfried and my sister Els for always believing in me and
helping me through the tougher periods. Most of all I would like to thank my wife,
Debby, for her unconditional support, understanding and motivation.

Wilrijk, December 2009

iv

Abstract

The Information Age has provided us with huge data repositories which cannot
longer be analysed manually. The potential high business value of the knowledge
that can be gained, drives the research for automated analysis methods that can
handle large amounts of data. Most of the data of industry, education and gov-
ernment is stored in relational database management systems (RDBMSs). This
motivates the need for data mining algorithms that can work with arbitrary rela-
tional databases, without the need for manual transformation and preprocessing
of the data. In this dissertation we introduce two data mining approaches towards
the goal of mining interesting patterns in arbitrary relational databases.

We first examine frequent query mining. Within this setting we propose a novel
algorithm Conqueror, that is capable of efficiently generating and pruning the
search space of all simple conjunctive queries, a pattern class capable of expressing
many different kinds of interesting patterns, such as, but not limited to, functional
and inclusion dependencies. We present experiments, showing the feasibility of
our approach, as well as the expressiveness of simple conjunctive queries.

Using the knowledge that our algorithm is capable of detecting functional de-
pendencies and foreign keys that were not given initially, we extend our algorithm,
enabling it to use these newly discovered, previously unknown functional depen-
dencies and foreign keys to produce a concise set of interesting patterns, free of re-
dundant information. We implement and test our updated algorithm, Conqueror+,
and show that it efficiently reduces the number of queries generated. Furthermore
we experimentally show that this reduction has the added benefit that Conqueror+

also outperforms Conqueror in timing.
As a second approach we investigate frequent relational itemset mining. We in-

troduce a novel efficient propagation-based depth-first algorithm, called SMuRFIG
that is capable of mining frequent relational itemsets as well as confident relational

v

association rules. We introduce a new support measure and show its usefulness
in expressing interesting patterns. In addition we define the deviation measure to
address the statistical pattern blow-up intrinsic to the relational case, and show
that it works as promised. We theoretically and experimentally show that the
SMuRFIG algorithm is scalable with respect to time and memory. Moreover, we
generalise some popular redundancy measures – closure-based redundancy and
minimal improvement – to the multi-relational setting, and confirm that they can
reduce the output when complete results are not desired.

This dissertation shows that both approaches provide us with practical algo-
rithms towards the ultimate goal of discovering patterns in arbitrary relational
databases.

vi

Contents

Contents vii

List of Algorithms x

List of Figures xii

1 Introduction 1
1.1 Data Mining . 2
1.2 Relational Databases . 3
1.3 Overview . 5

2 Frequent Pattern Mining 7
2.1 Frequent Itemset Mining . 7

2.1.1 Mining Frequent Itemsets 10
2.1.2 Mining Confident Rules . 12
2.1.3 Algorithms . 13
2.1.4 Closed Itemsets and Non-Redundant Rules 18

2.2 Frequent Pattern Mining . 21
2.3 Relational Pattern Mining . 24
2.4 Conclusion . 26

3 Conjunctive Query Mining 27
3.1 Simple Conjunctive Queries . 30

3.1.1 Query Comparison . 31
3.1.2 Cartesian Products . 35
3.1.3 Basic Association Rules . 36

vii

Contents

3.1.4 Problem Statement . 38
3.2 Algorithm: Conqueror . 38

3.2.1 Candidate Generation . 38
3.2.2 Candidate Evaluation . 46
3.2.3 Monotonicity . 48
3.2.4 Association Rule Generation 50

3.3 Conqueror Experimental Results . 50
3.3.1 Movie Database . 51
3.3.2 Quiz Database . 53
3.3.3 Performance . 55

3.4 Dependencies . 55
3.4.1 Functional Dependencies . 57
3.4.2 Conditional Functional Dependencies 59
3.4.3 Approximate Functional Dependencies 62
3.4.4 Inclusion Dependencies . 64
3.4.5 Foreign-keys . 66
3.4.6 Conclusion . 67

3.5 Generalising Query Comparison . 68
3.5.1 Non-Redundant Association Rules 72

3.6 Algorithm: Conqueror+ . 76
3.6.1 Handling Functional Dependencies 77
3.6.2 Discovering Functional Dependencies 84
3.6.3 Discovering and Handling Foreign-Keys 85
3.6.4 Monotonicity and Association Rules 87

3.7 Conqueror+ Experimental Results 89
3.7.1 Impact of Dependency Discovery 89
3.7.2 Impact of Foreign-Keys . 92
3.7.3 Resulting Patterns . 92

3.8 Related Work . 93
3.9 Conclusion . 96
3.10 Further Research . 97

4 Relational Itemset Mining 99
4.1 Definitions . 102

4.1.1 Relational Scheme . 102
4.1.2 Relational Itemsets . 103
4.1.3 Relational Association Rules 105

4.2 Algorithm: SMuRFIG . 106
4.2.1 Naive Relational Itemset Miner 106
4.2.2 SMuRFIG . 107
4.2.3 NULL values . 112

viii

Contents

4.3 Deviation . 113
4.3.1 Rule Deviation . 120

4.4 Redundancy . 120
4.4.1 Closure . 120
4.4.2 Divergence . 122

4.5 Experiments . 123
4.5.1 Patterns . 123
4.5.2 Interestingness . 125
4.5.3 Redundancy . 126
4.5.4 Performance . 127
4.5.5 Scalability . 129
4.5.6 Conclusion . 131

4.6 Related Work . 132
4.7 Conclusion . 136
4.8 Further Research . 137

4.8.1 Relation Attributes . 137
4.8.2 Wildcard Patterns . 138
4.8.3 Simple Cycles . 139
4.8.4 Graph Schemes . 140

5 Conclusions and Further Research 145
5.1 Summary . 145
5.2 Further Research . 147

Nederlandse Samenvatting 149

Bibliography 153

ix

List of Algorithms

2.1 Apriori . 14
2.2 Apriori Rule Generation . 15
2.3 Eclat . 17
2.4 Generate Non-Redundant Rules . 20
2.5 Level-wise Pattern Mining Algorithm 23
3.1 Conqueror . 40
3.2 Restricted Growth . 41
3.3 Projection Loop . 43
3.4 Selection Loop . 45
3.5 Monotonicity . 49
3.6 Rule Generation . 51
3.7 Conqueror+ . 78
3.8 Conqueror+ Projection Loop . 80
3.9 Conqueror+ Selection Loop . 82
3.10 Functional Dependency Discovery 84
3.11 Foreign-Key Discovery . 86
3.12 Foreign-Key Handling . 86
3.13 Conqueror+ Monotonicity . 88
3.14 New computation of candidate projections 98
4.1 Naive Relational Itemset Miner . 107
4.2 SMuRFIG . 108
4.3 Keyclat . 110
4.4 Propagate . 110
4.5 Keyclat-loose . 113
4.6 Naive Loose Relational Itemset Miner 113
4.7 Keyclat Deviation . 119

xi

List of Figures

1.1 Data Mining as part of the Knowledge Discovery Process 2
1.2 Example Entity-Relationship diagram 4
1.3 Example relational database instance for the ER model of Figure 1.2 . 5

2.1 Example transaction database . 8
2.2 Search space subset-lattice . 12
2.3 Example transaction database in vertical layout 16

3.1 Restricted Growth Expansion . 41
3.2 Connected and Disconnected Components 42
3.3 Number of tuples per attribute in the QuizDB and IMDB databases . . 52
3.4 Experiments for Conqueror with increasing minimal support 56
3.5 Projection generation tree for Example 3.27 68
3.6 Projection generation-trees of {A,B,C} 81
3.7 Selection generation-trees of {A,B,C} 83
3.8 Results for increasing support for Conqueror and Conqueror+ 90
3.9 Results for increasing support for Conqueror+ 91
3.10 Conqueror+ Time analysis . 91

4.1 Supermarket Database . 100
4.2 Running Example Relational Scheme 101
4.3 Running Example Relational Instance 104
4.4 Full outer join of the relational instance of Figure 4.3 105
4.5 Number of tuples per attribute in the Student and HEP databases . . . 124
4.6 Results for increasing minimal support 128
4.7 Results of pruning rules . 129

xii

List of Figures

4.8 Scalability experiments using synthetically generated databases 130
4.9 Comparison of Farmer, SMuRFIG and Conqueror on Student DB . . 133
4.10 Relation Attribute Simulation . 137
4.11 Example Inherently Cyclic Scheme . 139
4.12 Example Graph Relational Scheme . 141

xiii

Chapter 1

Introduction

Data generation and collection capabilities have increased rapidly over the
past decades. The increased digitisation and automation of business, edu-

cation, government and individuals as well as the increased collection of consumer
data in various industries and the ever increasing amount of information avail-
able through the Internet are only a few factors contributing to this trend. This
explosive growth of information available to us, also creates the urgent need for
techniques that can analyse this data. Due to the sheer volume of information, a
completely manual process is no longer achievable. Automation trough the use of
intelligent algorithms is therefore a key aspect of data analysis in this ‘Information
Age’. Data mining, also referred to as knowledge discovery from data (KDD), is
‘the automated or convenient extraction of patterns representing knowledge im-
plicitly stored or captured in large databases, data warehouses, the Web, other
massive information repositories, or data streams’ [Han & Kamber, 2006]. Data
mining relates to many disciplines including database technology, machine learn-
ing, statistics, information retrieval, pattern recognition and data visualisation.
In this chapter we will first try to define what data mining is. Then we give an
introduction to relational databases, currently the most widely used database type
to store the wealth of information currently available to us. Finally we will provide
a short overview of the chapters of this dissertation explaining our approach to
mining patterns in relational databases.

1

1. Introduction

1.1 Data Mining
The term data mining refers to the extraction or ‘mining’ of valuable knowledge
from large amounts of data, in analogy to industrial mining where small sets
of valuable nuggets (e.g. gold) are extracted from a great deal of raw material
(e.g. rocks). Data mining is part of the knowledge discovery process depicted in
Figure 1.1. In this process, selection and transformation are forms of preprocessing,
where one selects part of the complete database and possibly transforms it into a
certain form required for the next step. Often data cleaning and data integration
are also part of this initial phase of data preparation. The resulting data is the
input for the data mining phase, which in its turn results in discovered patterns.
The interesting patterns are then presented to the user. As these patterns can
be stored as new knowledge in a knowledge base, they can, in turn, again be
considered as input for another knowledge discovery process.

DB data

selection,
transformation

patterns

data
mining

knowledge

evaluation,
presentation

Figure 1.1: Data Mining as part of the Knowledge Discovery Process

A typical example of a knowledge discovery process is market basket analysis.
Here, the database consists of the purchase-records of a supermarket. From this
database we select the distinct transactions or ‘baskets’ bought by customers and
transform these into sets of products. Then the data mining step performs frequent
itemset mining, where sets of products that are frequently bought together are
discovered. Finally these frequent sets are presented to the analyst, who can
then use this new knowledge for marketing or other purposes. A more in-depth
introduction to frequent itemset mining is provided in Chapter 2.

It is clear that data mining is a crucial part of the knowledge discovery process.
Using data mining, interesting knowledge, recurring patterns or high-level informa-
tion can be extracted from a database and then analysed further. This knowledge
can be used in decision making, optimisation of processes and information manage-
ment. Data mining is therefore considered ‘one of the most important frontiers in
database and information systems and one of the most promising interdisciplinary
developments in the information technology’ [Han & Kamber, 2006].

2

1.2. Relational Databases

The field of data mining can be classified along several axes. One possible
distinction that can be made is that between descriptive and predictive data min-
ing. In descriptive data mining the goal is to characterise the properties of the
data. Examples of descriptive data mining are clustering and association mining.
In predictive data mining the goal is to learn a model that can predict values of
unseen data based on the data provided. Examples of predictive data mining are
classification and regression analysis. In this dissertation we focus on the descrip-
tive data mining task. Although descriptive data mining algorithms can form the
basis for a predictive algorithm, we will not consider this in this dissertation.

Another distinction can be made based on the data that is the input of the
data mining task. We already mentioned itemset mining, but one can also con-
sider for example sequence mining, tree mining, graph mining, and many others.
In this dissertation we focus on relational data mining, where the considered input
is a relational database. To be more precise, we focus on descriptive relational
data mining, since the general relational data mining field also includes predic-
tive data mining such as amongst others relational classification and decision tree
learning [Džeroski, 2005].

The goal of this dissertation is to create efficient data mining algorithms that
can find interesting (descriptive) patterns when the database in the knowledge
discovery process is a relational database.

1.2 Relational Databases
A database management system (DBMS) is a software system that enables the
creation, maintenance, and use of large amounts of data [Abiteboul et al., 1995].
Relational Database Management Systems (RDBMS) are based on the relational
model [Codd, 1970], which has been the dominant paradigm for industrial database
applications during the last decades, and it is at the core of all major commercial
database systems, making RDBMSs one of the most commonly available kinds of
data repositories.

A relational database is a collection of tables called relations, each of which is
assigned a unique name. Each table consists of a set of attributes and usually stores
a large set of tuples. Each tuple in a relational table represents an object identified
by a unique key and described by a set of attribute values. Often one uses a seman-
tic model to represent relational databases, allowing one to describe and design the
database without having to pay attention to the physical database. Such a model
is often referred to as a database scheme. One of the most common models is the
Entity-Relationship (ER) model, which we will use in this dissertation. An Entity-
Relationship model represents the database as entity sets and their relationships.
An entity set is a collection of ‘similar’ entities. Each entity set has a set of proper-

3

1. Introduction

Department

Name Location

WorksIn

Employee
Name

Phone Salary

1..n

1..1

Manages

Manager

Name Phone

1..1

1..n

Figure 1.2: Example Entity-Relationship diagram

ties, called attributes. A subset of these attributes is called the key, and is unique
for each entity in the entity set. Figure 1.2 shows an example Entity-Relationship
diagram, the graphical notation used to represent Entity-Relationship models. In
this diagram Employee is an entity set with attributes Name, Phone and Salary
of which Name is the key. A relationship among entity sets is an ordered list of
entity sets. The most common case is a list of two, i.e., a binary relationship. For
example, in Figure 1.2 we have the relationship Manages which connects the entity
sets Department and Manager. Relationships also have an associated functionality,
detailing how many entities from one entity set can be associated with how many
entities from another entity set. In the example we have that a Department entity
can have 1 to n (one-to-many) Manager entities associated, and that a Manager
entity can only be associated with one Department entity (one-to-one). Note that
these functionalities reflect the restrictions in the real world, and if a manager can
manage more than one department, the model should also reflect this. It is clear,
that an entity relationship model can easily be mapped onto a relational database,
where both entity sets and relationships are represented as relations. An example
relational database instance that follows the model is given in Figure 1.3.

To access or ‘query’ its database a DBMS provides a query language. In the
case of an RDBMS this typically is SQL (Structured Query Language). SQL
was one of the first languages developed for the relational model [Codd, 1970]
and became the most widely used language for relational databases. In fact SQL
is such a core aspect of many RDBMSs, that many of them have SQL in their
name, e.g. MySQL, PostreSQL and SQLite. As a typical SQL query, consider the

4

1.3. Overview

Employee
Name Phone Salary

Eric House 2358 1400
Gregory Forman 4589 2000
Steven Moffat 4589 1800

Department
Name Location

R&D G
IT A

Manager
Name Phone

Jeff Haystack 1201
Susan Miller 1203

WorksIn
Employee Department

Eric House IT
Gregory Forman R&D
Steven Moffat R&D

Manages
Manager Department

Jeff Haystack IT
Susan Miller R&D

Figure 1.3: Example relational database instance for the ER model of Figure 1.2

following query:

SELECT Employee.Name
FROM Employee, WorksIn, Department
WHERE Employee.Name = WorksIn.Employee

AND Department.Name = WorksIn.Department
AND Department.Name = "R&D"
AND Employee.Salary > 1900

which asks for the names of the employees working in the department R&D that
have a salary higher than 1900. In the case of our example instance, this query
will return the result:

Name

Gregory Forman

Since the goal of this dissertation is to create data mining algorithms that
work on relational databases, our algorithms make use of the SQL language. This
has the additional benefit that our algorithms are applicable to any RDBMS that
supports SQL, and as already said, most of them do.

1.3 Overview
The goal of this dissertation is to create efficient data mining algorithms that can
find interesting patterns in relational databases. To achieve this, we organised this
dissertation as follows:

5

1. Introduction

Chapter 2 introduces the problem of frequent pattern mining. Frequency is a
basic constraint in pattern mining. Since data mining typically deals with
huge volumes of data, in order for a pattern to be interesting it must hold for
a large portion of this data. Hence it must occur frequently. We first take
a look at frequent itemset mining, the simplest variant of frequent pattern
mining. It provides an introduction to the basic properties and techniques
that are also needed when mining more complex pattern kinds. We present
the most import algorithms as well as how to avoid finding redundant item-
sets. We then introduce a theoretic basis for the general problem of frequent
pattern mining, and conclude by reviewing the area of relational pattern
mining and situating our approaches in this context.

Chapter 3 introduces conjunctive queries as a pattern kind to be mined in rela-
tional databases. We define association rules over simple conjunctive queries
as a simple, yet expressive pattern type and develop an efficient level-wise
algorithm, Conqueror, to find interesting patterns. We then study some
well-known dependencies that can be expressed by means of rules of simple
conjunctive queries. Based on this knowledge we develop the Conqueror+

algorithm, that discovers and makes use of these dependencies to efficiently
compute non-redundant simple conjunctive queries.

Chapter 4 generalises itemset mining to relational databases. We define rela-
tional itemsets in such a way that the results are interesting and easy to
interpret, contrasting it with existing approaches. We develop an efficient
depth-first propagation-based algorithm to generate relational itemsets with-
out redundancy. Furthermore, we introduce a new interestingness measure
unique to the relational case, and show its benefits in mining relational
databases.

Chapter 5 concludes this dissertation with a summary of the main contributions
and some pointers towards further research.

6

Chapter 2

Frequent Pattern Mining

Frequent patterns are patterns (such as itemsets, subsequences or in gen-
eral substructures) that appear frequently in a data set. Frequency is one

of the basic interestingness measures used in pattern mining. Since data mining
typically deals with huge volumes of data, only patterns that hold for a substantial
amount of the data are considered potentially interesting. In this chapter we will
first give an introduction to the area of frequent itemset mining and discus the two
seminal algorithms. This way we introduce the concepts of frequent pattern mining
in their historic setting before extending them to our intended setting of pattern
mining in relational databases. Towards this goal, we conclude this chapter by
first taking a closer look at the general frequent pattern mining problem and then
at the specific approaches for mining frequent patterns in relational databases.

2.1 Frequent Itemset Mining
Frequent itemset mining was introduced in the context of the analysis of purchase-
records of a supermarket [Agrawal et al., 1993], also referred to as market basket
analysis. In this context we have a so-called transaction database, containing
transactions of customers detailing the set of products they bought. A small ex-
ample of such a database is given in Figure 2.1. The goal is to discover sets of
products or items that are frequently bought together i.e., the frequent itemsets.
For example, in the database of Figure 2.1 we can see that ‘bread’ and ‘butter’ are
frequently bought together. The supermarket management could use such results

7

2. Frequent Pattern Mining

TID itemset
t1 {butter}
t2 {bread,butter}
t3 {bread,chocolate}
t4 {bread,butter,cheese}
t5 {bread,cheese}
t6 {bread,butter,chocolate}
t7 {cheese}
t8 {butter,cheese}
t9 {bread,butter,cheese,ham}
t10 {bread,butter,ham}

Figure 2.1: Example transaction database

to plan marketing or advertising strategies or special offers and sales. They could
also be employed in designing different store layouts, for example by placing prod-
ucts that are frequently sold together near to each-other to encourage even more
joint purchases. Alternatively, if there is a very strong correlation, one could also
choose to put the products at the opposite ends of the store in order to entice cus-
tomers to pick up other products along the route. Since its original introduction,
itemset mining has been applied in many other applications domains and used for
other purposes besides market basket analysis. Much of the terminology, however,
still reflects these historic roots and we will therefore also use this context in our
introductory examples.

Let I = {i1, . . . , in} be the set of possible items. A set I = {i1, . . . , ik} ⊆ I
is called an itemset, and if it contains k items, a k-itemset. Let D be a set
of database transactions T , where each T = (tid, Itid) is a couple where tid is
the unique identifier associated with each transaction and Itid is an itemset. A
transaction T = (tid, Itid) is said to support or contain an itemset I if and only
if I ⊆ Itid. The set of occurrences or cover of an itemset I in D is the set of
transactions in D that support I:

coverD(I) = {tid | (tid, Itid) ∈ D, I ⊆ Itid} (2.1)

The support of an itemset I in D is the number of occurrences of the itemset in
the database D:

supportD(I) = |coverD(I)| (2.2)
In the example database of Figure 2.1 we have that support({bread,butter}) =
|{t2, t4, t6, t9, t10}| = 5. Note that here and in following examples we will leave out

8

2.1. Frequent Itemset Mining

D if it is clear from the context.
The relative support of an itemset I in D, also sometimes referred to as fre-

quency, is the support of I in D divided by the total number of transactions in D.
It corresponds to the probability of I occurring in a transaction T ∈ D:

frequencyD(I) = supportD(I)
|D|

= P (I) (2.3)

In the example database we have frequency({bread,butter}) = 5/10 = 0.5.
An itemset is called frequent if its support is no less than a given absolute mini-

mal support threshold: minsupabs, where 0 ≤ minsupabs ≤ |D|. When working with
relative support, we make use of a minimal relative support threshold: minsuprel,
where 0 ≤ minsuprel ≤ 1. It is clear that minsupabs = dminsuprel×|D|e. Typically
we will just use one or the other and state this at the beginning, omitting the
subscripts.

Definition 2.1. Given a transaction database D over a set of items I and a
minimal support threshold minsup, the set of frequent items over D is defined
as:

F(D,minsup) = {I ⊆ I | supportD(I) ≥ minsup}

When D and minsup are clear from the context we will simply write F .

The problem of frequent itemset mining can then be stated as follows:

Given a transaction database D over a set of items I and a minimal support
threshold minsup find the set of frequent items F(D,minsup).

Frequent itemsets themselves are typically used as the basis of complex pat-
terns. In the case of market basket analysis we are interested in associated items.
In order to express this, the notion of an association rule was introduced.

Definition 2.2. An association rule is an expression of the form A⇒ C where
A and C are itemsets and A ∩ C = {}.

Such a rule expresses the association between transactions containing A and
transactions containing C. A is called the body or antecedent of the rule, and C is
called the head or consequent of the rule.

The confidence or accuracy of an association rule is the conditional proba-
bility of having C contained in a transaction, given that A is contained in that
transaction:

confidenceD(A⇒ C) = P (C|A) = supportD(A ∪ C)
supportD(A) (2.4)

9

2. Frequent Pattern Mining

A rule is called confident if its confidence exceeds a given minimal confidence
threshold minconf , where 0 ≤ minconf ≤ 1. The support of a rule is the support
of the union of antecedent and consequent:

supportD(A⇒ C) = supportD(A ∪ C) (2.5)
In our example database the confidence of the rule {bread} ⇒ {butter} is:

confidence({bread} ⇒ {butter}) = support({bread,butter})
support({bread}) = 5

7 ≈ 0.71

and the relative support, as computed before, is 0.5. The reasoning behind associ-
ation rule mining is that rules with both a high support and a high confidence are
very likely to reflect an interesting association. The example rule has a confidence
of 71% with a support of 50% and could potentially be found to be interesting,
as it implies 71% of the customers who buy bread also buy butter, and that this
pattern is supported by 50% of the data.

Definition 2.3. Given a transaction database D over a set of items I, a minimal
support threshold minsup and a minimal confidence threshold minconf, the set of
frequent and confident association rules over D is defined as:

R(D,minsup,minconf) =
{A⇒ C | A,C ⊆ I, A ∩ C = {},
A ∪ C ∈ F(D,minsup), confidenceD(A⇒ C) ≥ minconf}

When D, minsup and minconf are clear from the context we will simply write R.

In general the problem of association rule mining can be stated as follows:

Given a transaction database D over a set of items I and a minimal support
threshold minsup and a minimal confidence threshold minconf find R(D, minsup,
minconf).

Note that the frequent itemset mining problem is a special case of the associa-
tion rule mining problem since any itemset I is represented by the rule I ⇒ {} with
100% confidence. Additionally, all rules A ⇒ C will hold with at least minsuprel
confidence. The minimal confidence threshold should therefore be higher than the
the minimal relative support threshold.

2.1.1 Mining Frequent Itemsets
The first algorithm developed to mine confident association rules ([Agrawal et al.,
1993]) was divided into two phases. In the first phase all frequent itemsets are gen-
erated. The second phase is made up of the generation of all frequent and confident

10

2.1. Frequent Itemset Mining

association rules. Many of the subsequent association rule mining algorithms also
comply with this two phased strategy.

For a large number of items, it becomes infeasible to generate all itemsets
and determine their support in order to find the frequent ones. That is, for |I|
items there are 2|I| possible itemsets. The naive approach of finding all items
quickly becomes intractable. For example, in the very typical case of a thousand
items, the number of possible itemsets is approximately 10301, which is already
larger than the well know googol number (10100) that in its turn is larger than the
number of atoms in the observable universe (≈ 1079). Of course we do not need
to consider all possible itemsets and can limit ourselves to the itemsets that occur
at least once in the transaction databases. Unfortunately for databases containing
large transactions the number is mostly still too large. When generating itemsets
we would ideally only want to generate the frequent ones. Unfortunately, this
ideal solution is impossible in general. We will therefore have to consider several
candidate itemsets and determine if these are frequent or not. Every considered
candidate entails memory usage and computation time in order to obtain the
support from the database. The goal is therefore to reduce the amount of candidate
itemsets as much as possible in order to obtain an efficient algorithm. One property
exploited by most of the itemset mining algorithms is the anti-monotonicity of
support with respect to the set inclusion relation:

Proposition 2.1. (Support Anti-Monotonicity)
Given a transaction database D over a set of items I, and two itemsets I1, I2 ⊆ I
then if I1 ⊆ I2 it follows that supportD(I2) ≤ supportD(I1).

Proof. This follows trivially from the fact that the coverD(I2) ⊆ coverD(I1).

In our example database we have

support({butter}) = |{t2, t4, t6, t8, t9, t10}| = 6
≤ support({bread,butter}) = |{t2, t4, t6, t9, t10}| = 5

A consequence of this property is that

if support(I) < minsup then for all I ′ ⊃ I : support(I ′) ≤ support(I) < minsup.

This means that when searching for frequent itemsets we do not have to consider as
candidates all supersets of an itemset that is infrequent, since we can derive their
infrequency using the above property. When performing an incremental search for
itemsets we can thus prune part of the search space by applying this property. The
anti-monotonicity property is sometimes also referred to as the Apriori property,
named after the Apriori algorithm [Agrawal & Srikant, 1994], improved version
of the original algorithm of [Agrawal et al., 1993], in which this anti-monotonicity

11

2. Frequent Pattern Mining

property was first exploited. The same technique was also independently proposed
by [Mannila et al., 1994]. A joint paper was published afterwards [Agrawal et al.,
1996]. In the following sections we introduce Apriori together with other important
itemset mining algorithms.

{}

{b} {u} {e} {o} {a}

{b,u} {b,e} {b,o} {b,a} {u,e} {u,o} {u,a} {e,o} {e,a} {o,a}

{b,u,e} {b,u,o} {b,u,a} {b,e,o} {b,e,a} {b,o,a} {u,e,o} {u,e,a} {u,o,a} {e,o,a}

{b,u,e,o} {b,u,e,a} {b,u,o,a} {b,e,o,a} {u,e,o,a}

{b,u,e,o,a}

Figure 2.2: Search space for the example database from Figure 2.1 represented
as a subset-lattice. Frequent itemsets for a minimal support of 1 are
highlighted.

The search space of all itemsets can be represented as a subset-lattice, with
the empty itemset as the top of the lattice, and the set containing all items as he
bottom. A Hasse diagram is typically used to depict such a subset-lattice. For
our example database the subset-lattice is represented in Figure 2.2 (note that we
have abbreviated the product names bread, butter, cheese, chocolate and ham).
In such a Hasse diagram each line represents a direct subset relation, i.e., a line is
drawn between I1 and I2 if and only if I1 ⊂ I2 and |I2| = |I1|+ 1.

2.1.2 Mining Confident Rules
If one would need to consider all possible rules over a set of items I, then one would
need to consider 3|I| rules. Luckily we only need to consider those rules A ⇒ C

12

2.1. Frequent Itemset Mining

such that A ∪ C = I ⊂ F . For every such itemset I one can consider at most 2|I|
rules. It is clear that to efficiently traverse this search space, we need to iteratively
generate and evaluate candidate association rules. The same techniques applicable
in frequent itemset mining are also applicable in this case, and similar to support
of itemsets we can also formulate a monotonicity property for confidence of rules.

Proposition 2.2. Given a transaction database D over a set of items I, and let
A,B,C ⊆ I be three itemsets such that A ∩ C = {}. Then

confidenceD(A \B ⇒ C ∪B) ≤ confidenceD(A⇒ C)

Proof. Since A ∪ C ⊆ A ∪ C ∪B, and A \B ⊆ A, we have

supportD(A ∪ C ∪B)
supportD(A \B) ≤ supportD(A ∪ C)

supportD(A)

This proposition states that confidence is monotone decreasing when moving an
item from antecedent to consequent. This means that when considering association
rules based on an itemset I if a certain A⇒ C such that A∪C = I is not confident,
we do not need to consider any rules of the form A \ B ⇒ C ∪ B. Similar to the
anti-monotonicity of support this property is exploited in the algorithms shown in
the next sections.

2.1.3 Algorithms
We will now detail two influential algorithms in frequent itemset mining; Apri-
ori [Agrawal & Srikant, 1994] and Eclat [Zaki et al., 1997]. Since their original
introduction, many optimisations and novel algorithmic adaptions have been pro-
posed. We will, however, only cover these two original algorithms, since they
introduce the basic algorithmic concepts of the frequent itemset mining setting.
In later chapters we extend these concepts in order to apply them in the more
general setting of mining relational databases.

Apriori

The Apriori algorithm is designed to maximise the use of Property 2.1. The itemset
mining phase of the Apriori algorithm is shown in Algorithm 2.1. The algorithm
uses a generate-and-test approach, and traverses the itemsets strictly increasing in
size. In the initial pass over the database, the support values for all single items
(singleton itemsets) are determined, and frequent single items identified. Then
candidate itemsets are repeatedly generated and their frequency is determined.

13

2. Frequent Pattern Mining

Algorithm 2.1 Apriori
Input: database D, minsup
Output: F set of frequent items
1: C1 := {{i} | i ∈ I}
2: k := 1
3: while Ck 6= {} do
4: //Compute the support values of all candidate itemsets
5: for all transactions (tid, I) ∈ D do
6: for all candidate itemsets X ∈ Ck do
7: if X ⊆ I then
8: support(X)++
9: //Extract all frequent itemsets

10: Fk := {X | support(X) ≥ minsup}
11: //Generate new candidate itemsets
12: for all X, Y ∈ Fk, X[i] = Y [i] for 1 ≤ i ≤ k − 1, and X[k] < Y [k] do
13: I = X ∪ {Y [k]}
14: if ∀J ⊂ I, |J | = k : J ∈ Fk then
15: Ck+1 := Ck+1 ∪ I
16: k++

We now give a more detailed description of this process. First of all we assume,
without loss of generality, that the items in each itemset are ordered. We will
assume a lexicographical order in our examples. In our pseudocode we will use the
notation I[i] to represent the i-th item of the itemset I. Given an itemset I we call
the k-itemset {I[1], . . . , I[k]} the k-prefix of I. The Apriori algorithm uses a breath-
first search (also called level-wise search) through the search space of all itemsets.
It does this by iteratively generating sets of candidate (k+1)-itemsets Ck+1, based
on the frequent k-itemsets Fk. It only generates a candidate itemset if all of its
subsets are known to be frequent (i.e., we make use of Property 2.1). It generates
a (k+ 1)-itemset by combining two k-itemsets that share a common (k− 1)-prefix
(line 12). In our example database of Figure 2.1, if we suppose a minimal support
threshold of 1, the 3-itemset {bread,butter,cheese} would be generated using the
2-itemsets {bread,butter} and {bread,cheese}, that share the common 1-prefix
{bread}. This way the generated itemset has at least two frequent subsets, and this
also ensures all candidate itemsets are only generated once. The algorithm makes
sure all subsets of a k+1 itemset are frequent by checking if all of its k-subsets are
frequent (line 14). In our example this means that when considering the candidate
itemset {bread,butter,cheese} the itemset {butter,cheese} is also checked. Note
that we could avoid checking the generating subsets, but for clarity this is not
represented in the pseudocode. In the case of minimal support 1 {butter,cheese}

14

2.1. Frequent Itemset Mining

Algorithm 2.2 Apriori Rule Generation
Input: database D, minsup, minconf
Output: R set of frequent and confident rules
1: Compute F(D,minsup)
2: R := {}
3: for all I ∈ F do
4: R := R∪ I ⇒ {}
5: C1 := {{i} | i ∈ I}
6: k := 1
7: while Ck 6= {} do
8: //Extract all consequents of confident association rules
9: Hk := {X ∈ Ck | confidence(I \X ⇒ X,D) ≥ minconf}

10: //Generate new candidate consequents
11: for all X, Y ∈ Hk, X[i] = Y [i] for 1 ≤ i ≤ k − 1, and X[k] < Y [k] do
12: I = X ∪ {Y [k]}
13: if ∀J ⊂ I, |I| = k : J ∈ Hk then
14: Ck+1 := Ck+1 ∪ I
15: k++
16: //Cumulate all association rules
17: R := R∪ {I \X ⇒ X | X ∈ H1 ∪ · · · ∪Hk}

is indeed found to be frequent. As a result, the itemset {bread,butter,cheese} is
then added to C3 in order for its support to be evaluated against the database
(line 5). The candidate set C1 is the base case, and here all singleton itemsets
are added to the set of candidate items (line 1). For the set C2 we assume a
common empty prefix, and thus combine every pair of singleton itemsets to form
the 2-itemsets.

Generating all frequent and confident confident rules can be done in much the
same way as the generation of frequent itemsets and is presented in Algorithm 2.2.
First of all, all frequent itemsets are generated using a frequent itemset mining
algorithm (line 1). Then we divide every frequent itemset I into a consequent
C and an antecedent A = I \ C. We first start with the empty head {} thus
generating rules of the type I ⇒ {} (line 4). As stated we know these rules have
100% confidence. Then the algorithm iteratively generates candidate consequents
of size k+1 based on the size k consequent of confident association rules. Similar to
the frequent itemset mining case we generate k+ 1 size consequents by combining
k size consequents of confident association rules that have a common k − 1 prefix
(line 11). Similarly we also check if all k-size subsets of the considered candidate are
consequents of confident association rules (line 13), essentially using Property 2.2
to prune rules that are not confident. The candidate consequents are used to

15

2. Frequent Pattern Mining

TID itemset
bread {t2, t3, t4, t5, t6, t9, t10}
butter {t1, t4, t6, t8, t9, t10}
cheese {t4, t5, t7, t8, t9}
chocolate {t3, t6}
ham {t9, t10}

Figure 2.3: Example transaction database in vertical layout

compute the confidence of candidate rules and consequents resulting in confident
rules stored inHk. The computation of confidence itself can easily be achieved since
we have already retrieved the collection of frequent itemsets on line 1, and thus we
can easily obtain the support of I andX needed to compute confidence(I\X ⇒ X).
In comparison to only mining frequent itemsets, the time required for finding all
association rules given the frequent itemsets is relatively small. Finally all rules
for itemset I are constructed using all Hk (line 17).

Eclat

As stated, the Apriori algorithm follows a breath-first approach. Alternatively
one can also opt for a depth-first approach to frequent itemset mining. While the
breadth-first approach tries to minimize the number of passes over the original
database, a depth-first approach tries to optimise the speed of search. The first
algorithm proposed to generate all frequent itemsets in a depth-first manner is
the Eclat algorithm [Zaki et al., 1997]. This algorithm makes use of the so called
vertical database layout. So far we have seen a transaction database as being
stored by transaction identifiers associated with a set of items. This is referred to
as the horizontal database layout. We can, however, also consider an alternative
vertical database layout, where we store the single items together with the set of
transactions in which they occur. Our example database in vertical database layout
is given in Figure 2.3. The Eclat algorithm uses an intersection base approach to
compute the support of an itemset, essentially intersecting the cover sets of two
itemsets with a common prefix to obtain the cover set of the superset. For example
we can compute the cover of {bread,butter} as follows:

cover({bread,butter}) = cover({bread}) ∩ cover({butter})
= {t2, t3, t4, t5, t6, t9, t10} ∩ {t1, t4, t6, t8, t9, t10}
= {t4, t6, t9, t10}

16

2.1. Frequent Itemset Mining

Algorithm 2.3 Eclat
Input: database D, I ⊂ I, minsup
Output: F [I] set of frequent items having prefix I
1: F [I] := {}
2: for all i ∈ I occurring in D do
3: F [I] := F [I] ∪ {I ∪ {i}}
4: //Create Di

5: Di := {}
6: for all j ∈ I occurring in D such that j > i do
7: C := cover({i}) ∩ cover({j})
8: if |C| ≥ minsup then
9: Di := Di ∪ {(j, C)}

10: //Depth-first recursion
11: Compute F [I ∪ {i}](Di,minsup)
12: F [I] := F [I] ∪ F [I ∪ {i}]

Although this method could also be used in a breath-first approach, it would
require a large amount of memory, since we need to store the covers of each level.
Therefore in this case a depth-first approach is more appropriate. We first note
that we denote the set of all frequent k-itemsets with the same (k − 1)-prefix
represented by the itemset I as F [I]. Eclat will recursively compute F [I] based
on F [I ∪ {i}] for all i ∈ I. Starting Eclat with F [{}] will then yield all frequent
itemsets since F [{}] = F .

Eclat, given as Algorithm 2.3, considers the candidates I∪{i, j} for i, j ∈ I and
j > i, thus ensuring no duplicates are generated (line 2 and 6). It computes the
support by considering the intersection cover({i})∩cover({j}) (line 7) in database
D. For singleton itemsets (empty prefix) the considered database D is the original
D in vertical database layout, and above an example of this case was given. When
considering itemsets with a prefix I, however, the database for which the covers
are computed is Di where i is the last item of the prefix I. The database Di is a
conditional database, consisting of only those transactions that cover the itemset
I. This means that for an item j the cover({j}) in Di is equal to the cover(I∪{j})
in the original database D. By recursively dividing the database in such a way
(line 11), all frequent itemsets can eventually be discovered (line 12). Note that
here the Apriori property is implicitly used since we only consider Di of frequent
itemsets I.

There are some drawbacks to this approach. First of all it does not fully
exploit the anti-monotonicity property, and hence, the number of candidates gen-
erated is higher than the number of candidates generated in Apriori. For exam-
ple, considering a minimal support of 3 and our example database, the candidate

17

2. Frequent Pattern Mining

{bread,chocolate} will be considered by Eclat, although {chocolate} is not fre-
quent. A second drawback is the fact that for dense databases, where many items
occur in many transactions, the total size of the covers can become too large, even
in a depth-first approach. [Zaki & Gouda, 2003] created the dEclat algorithm, an
update of Eclat, to take this problem into account by using diffsets. Essentially
instead of storing the full cover of a k-itemset I, only the difference between the
cover of I and the cover of the (k − 1)-prefix of I is stored. Many other optimi-
sation have been proposed in later works, but we will not go into any more detail
here. Another influential depth-first algorithm, which we will also not discuss in
detail, is the FP-growth algorithm [Han et al., 2000, Han et al., 2004]. It is con-
ceptually very similar to Eclat in the sense that it also uses conditional databases.
However, instead of storing covers of itemsets, it stores the actual transactions of
the database in a prefix trie structure, called the FP-Tree.

2.1.4 Closed Itemsets and Non-Redundant Rules
One problem that remains for all frequent pattern mining algorithms is the huge
number of potentially interesting patterns they generate. In dense datasets one
often has to use a low minimal support threshold in order to find interesting pat-
terns, but this then leads to an explosion of the total output of frequent patterns.
Some of these patterns can be considered redundant if they could have been de-
rived from a smaller subset of the patterns. To tackle this problems, several subsets
of the set of all frequent items have been defined that can act as a condensed or
concise representation of the whole set. One of these subsets is the set of closed
itemsets [Pasquier et al., 1999]. An itemset is called a closed itemset if all its
supersets have a strictly lower support:

Definition 2.4. Given a transaction database D over a set of items I and a
minimal support threshold minsup, the set of closed frequent items over D is
defined as:

C(D,minsup) = {I ∈ F(D,minsup) | ∀I ′ ⊃ I : supportD(I ′) < supportD(I)}

Using only the closed frequent itemsets, we can determine the exact support
value for all frequent itemsets. The support of a non-closed itemset is equal to
the support of its smallest closed superset. For example the itemset {chocolate}
is not closed since the support of its superset {bread,chocolate} is not smaller,
it is in fact the same, namely 2. The {bread,chocolate} is a closed itemset since
the support of its superset {bread,butter,chocolate} is smaller, namely 1. This
smallest closed superset is defined as the closure of an itemset as follows:

closureD(I) =
⋂

tid∈coverD(I)
Itid

18

2.1. Frequent Itemset Mining

Furthermore, we note that the support of an itemset is equal to that of its closure.

Proposition 2.3. Given a transaction database D over a set of items I, for all
I ∈ I it holds that

supportD(I) = supportD(closureD(I))

This proposition essentially states that all frequent itemsets are uniquely de-
termined by the set of frequent closed itemsets. Variants of the basic itemset
mining algorithms to efficiently mine the closed itemsets include the AClose al-
gorithm [Pasquier et al., 1999] based on Apriori, the ChARM algorithm [Zaki &
Hsiao, 2002] based on Eclat, and the Closet algorithm [Pei et al., 2000] based on
FP-Growth.

Next to the reduction of the number of itemsets, only considering closed item-
sets also has benefits when considering association rules. [Zaki, 2000, Zaki, 2004]
introduces a technique to mine non-redundant association rules based on closed
itemsets. The set of association rules produced in this way is generating, in the
sense that all possible association rules can be derived using operations like tran-
sitivity and augmentation. First let us define when a rule is redundant. Given
a rule R1 = A1 ⇒ C1, we say that the rule R1 is more general than a rule
R2 = A2 ⇒ C2, denoted R1 � R2 if we can generate R2 by adding additional
items to either the antecedent A1 or consequent C1 of R1, i.e., A1 ⊆ A2 and
C1 ⊆ C2. A rule R is redundant if there exists a rule R′ such that R′ � R and
confidenceD(R) = confidenceD(R′). In other words the non-redundant rules are
those that are most general. Furthermore, it has been shown that association
rules are transitive: if I1 ⊆ I2 ⊆ I3 then if we know I1 ⇒ I2 has x% confidence
and I2 ⇒ I3 has y% confidence we can deduce that the rule I1 ⇒ I3 has xy%
confidence. Thus rules like I1 ⇒ I3 can also be considered redundant since these
can be deduced.

Since the support of an itemset is equal to that of its closure, a rule A ⇒ C
is a equivalent variant of the rule closureD(A) ⇒ closureD(C). So in order to
generate all rules, it is sufficient to only consider all rules among closed itemsets.
However, in a set of all rules that have the same closure, only the most general
rules are non-redundant. The generation of these non redundant rules is based on
the concept of minimal generators [Bastide et al., 2000].

Definition 2.5. Let I be a closed itemset. We say that an itemset I ′ is a gener-
ator of I if and only if I ′ ⊆ I and support(I ′) = support(I). I ′ is called a proper
generator if I ′ ⊂ I.

We note that a proper generator cannot be closed, since by definition a closed
itemset cannot have a superset with the same support.

19

2. Frequent Pattern Mining

Definition 2.6. Let G(I) denote the set of generators of I, then we say I ′ ∈ G(I)
is a minimal generator if it has no subset in G(I). We use Gmin(I) to denote
the set of all minimal generator of I.

By definition Gmin(I) 6= {}, since if there is no proper generator, an itemset
I is its own minimal generator. For a closed itemset I it holds that its minimal
generators are the minimal itemsets that are subsets of I but not subsets of any of
I’s immediate closed subsets, and they can be found using an Apriori style level-
wise algorithm [Zaki, 2004]. For example, given the example database of Figure 2.1,
the itemset {bread,chocolate} has one immediate closed subset: {bread}, thus the
subset of {bread,chocolate} that is not a subset of {bread}, it the set {chocolate},
thus Gmin({bread,chocolate}) = {{chocolate}}.

Algorithm 2.4 Generate Non-Redundant Rules
Input: Database D, I1, I2 ∈ C(D,minsup), with I1 ⊆ I2
Output: R Set of non-redundant rules A⇒ C equivalent with I1 ⇒ I2
1: G1 := Gmin(I1)
2: G2 := Gmin(I2)
3: R := {}
4: //Rules with 100% confidence
5: for all I ′ ∈ G2 do
6: for all I ′′ ∈ G1 do
7: A := I ′

8: C := I ′′ \ I ′
9: if closureD(C) = I1 and closureD(A ∪ C) = I2 then

10: supportD(A⇒ C) := supportD(I2)
11: confidenceD(A⇒ C) := 1.0
12: R := R∪ (A⇒ C)
13: //Rules with < 100% confidence
14: for all I ′ ∈ G1 do
15: for all I ′′ ∈ G2 do
16: A := I ′

17: C := I ′′ \ I ′
18: if closureD(A ∪ C) = I2 then
19: supportD(A⇒ C) := supportD(I2)
20: confidenceD(A⇒ C) := supportD(I2)

supportD(I1)
21: R := R∪ (A⇒ C)
22: //Find all general rules
23: RG := {Ri | @Rj ∈ R : supportD(Rj) = supportD(Ri), confidenceD(Rj) =

confidenceD(Ri), Rj ≺ Ri}

20

2.2. Frequent Pattern Mining

The algorithm for rule generation based on the notion of minimal generators
is shown as Algorithm 2.4 [Zaki, 2004]. It first computes the minimal generators
for both closed itemsets (line 1 and 2). Then it checks if there are any 100% rules
that hold by considering the minimal generator variants of I2 ⇒ I1, hereby making
sure antecedent and consequent are disjunct (line 8) and that the rule is equivalent
to I2 ⇒ I1 (line 9). Then it checks if there are any < 100% rules that hold by
considering the minimal generator variants of I1 ⇒ I2, also again ensuring the
disjunction and equivalence. Finally, from this final set of rules, any redundant
non most-general rules are eliminated (line 23)

Example 2.1. Considering the example database from Figure 2.1, let the closed
itemsets {bread,chocolate} and {bread,butter,chocolate} be the input to the algo-
rithm. First we compute the minimal generators resulting in G1 = {{chocolate}}
and G1 = {{butter,chocolate}}. For candidate 100% confidence rules we consider
{butter,chocolate} ⇒ {butter}. However,

closureD({butter}) = {butter} 6= I1 = {bread,chocolate} .

Thus we have no 100% rules. For the < 100% confidence rules we consider the
rule {chocolate} ⇒ {butter}. Here it does hold that

closureD({chocolate,butter}) = {bread,butter,chocolate} = I2.

The confidence of {chocolate} ⇒ {butter} is 50%, and the support is 1. Thus
RG = R = {({chocolate}⇒ {butter})}.

2.2 Frequent Pattern Mining
Although databases consisting of transactions of items can be used for various
purposes other than market basket analysis, there is a need for algorithms that
can mine other types of data. Other types of data, require other types of patterns.
[Mannila & Toivonen, 1997] showed that the basic elements of frequent itemset
mining can be generalised to mine any type of patterns. In their framework they
describe the task of finding all potentially interesting sentences (patterns) as fol-
lows: Assume a database D, a language L that can express properties or define
subgroups of the data in database D, and a selection predicate q are given. The
predicate q is used for evaluating whether a sentence ϕ ∈ L defines a potentially
interesting subclass of D. The task is then to find the theory of D with respect to
L and q, i.e., the set Th(L,D, q) = {ϕ ∈ L | q(D, ϕ) is true}

Example 2.2. For frequent itemset mining we have D consisting of sets of items
(the transaction database), the language L expresses all subsets I of elements of

21

2. Frequent Pattern Mining

D (the itemsets) and the selection predicate q(D, I) is true only if supportD(I) ≥
minsup.

Note that in this general framework the selection predicate q is left unspecified.
The predicate q(D, I) could for example mean that ϕ is true or almost true in D,
or ϕ in some way defines an interesting subgroup of D (e.g. the frequent itemsets).
In frequent pattern mining, the case we are considering in this chapter, L will
describe patterns in the data (typically subsets of the data), and q(D, I) will be
a frequency constraint. Note, however, that some additional constraints can be
added on top of that.

Next to this formalisation of the general pattern discovery task, [Mannila &
Toivonen, 1997] also define a general level-wise algorithm for computing the col-
lection Th(L,D, q). It is based on the existence of a specialization relation on the
sentences in L that is monotone with respect to q. A specialisation relation is a
partial order � on the sentences in L.

Definition 2.7. A binary relation � is a partial order over a set L if ∀ϕ, ϕ′, ϕ′′ ∈
L it holds that:

1. ϕ � ϕ (reflexivity)

2. if ϕ � ϕ′ and ϕ′ � ϕ then ϕ = ϕ′ (anti-symmetry)

3. ϕ � ϕ′ and ϕ′ � ϕ′′ then ϕ � ϕ′′ (transitivity)

We say that ϕ is more general than ϕ′ or that ϕ′ is more specific than ϕ if ϕ �
ϕ′. Note that the subset relation on itemsets⊆ and the order defined on association
rules in Section 2.1.4 are both examples of partial orders. A specialisation relation
� is a monotone specialization relation with respect to q of the selection predicate
q is monotone with respect to �.

Definition 2.8. A predicate q is monotone with respect to � if for all D and ϕ
we have that:

if q(D, ϕ)and ϕ′ � ϕ then q(D, ϕ′)

As was shown in Section 2.1, the subset relation ⊆ is monotone with respect
the predicate q(D, I) = (supportD(I) ≥ minsup), since an itemset can only be
frequent if all of its subsets are frequent.

The general level-wise algorithm presented by [Mannila & Toivonen, 1997] is
shown as Algorithm 2.5. It is clear that this algorithm is a generalisation of the
Apriori algorithm from Section 2.1.3, as it shares most of the structure. The al-
gorithm works iteratively, alternating between candidate generation and candidate
evaluation, and is the prototype of a so called generate-and-test approach. In the
generation phase of an iteration k a collection Ck of new candidates sentences is

22

2.2. Frequent Pattern Mining

generated, making use of the information available from more general sentences
(line 7). Then the selection predicate is evaluated on these candidate sentences,
and satisfying candidates are kept in Fk (line 5) . To start off with, the algorithm
constructs C1 to contain all the most general sentences (line 1). The iteration
stops when no more potentially interesting sentences can be found. The algorithm
is designed to minimise the amount of database processing, i.e., the number of
evaluations of q, by exploiting the monotonicity property.

Algorithm 2.5 Level-wise Pattern Mining Algorithm
Input: Database D, language L, as specialisation relation � monotone with re-

spect to a selection predicate q
Output: The set Th(L,D, q)
1: C1 := {ϕ ∈ L | there is no ϕ′ ∈ L such that ϕ′ � ϕ}
2: k := 1
3: while Ck 6= {} do
4: //Evaluation: find which sentences of Ck satisfy q
5: Fk := {ϕ ∈ Ck | q(D, ϕ)}
6: //Generation: compute Ck+1 ⊂ L using

⋃
l≤k Fl

7: Ck+1 := {ϕ ∈ L | ∀ϕ′ : ϕ′ � ϕ and ⋃
l leqk Fl} \

⋃
l≤k Cl

8: k++

As already stated, in the case of frequent pattern mining this general algorithm
could be further specified since we will be assuming we are dealing with frequency
as the selection predicate q. In general, we can conclude that if we are able to
define a specialisation relationship on our pattern type such that it is monotone
with respect to the frequency predicate, we are able to use the level-wise approach
to mine frequent patterns of this type. This fact has resulted in many level-wise
algorithms that mine patterns more complex than itemsets, e.g. sequences [Agrawal
& Srikant, 1995], trees [Zaki, 2002] and graphs [Kuramochi & Karypis, 2001]. Of
course, as with itemsets, other non-level-wise strategies have also been devised for
complex patterns, such as the depth-first gSpan [Yan & Han, 2002] for graphs,
and TreeMiner for trees [Zaki, 2002]. It must be noted that many of these
approaches still work with transaction-like databases, in the sense that instead of
itemsets these transactions now contain sequences, graphs or trees. For example,
in the tree case [Zaki, 2002], every transaction in the database contains a tree, and
the presented algorithm tries to find all frequent subtrees occurring within all such
transactions.

When we consider mining for frequent relational patterns, the input database is
clear: a relational database. However, an arbitrary relational database is very dif-
ferent in structure than a transactional database, even compared to a transaction-
like database containing complex data structures. Therefore, in the case of a

23

2. Frequent Pattern Mining

relational database, the elements of the general frequent pattern mining task like
the pattern language L, the specialisation relation � and even q are not straight-
forwardly defined. In the next section we will take a closer look at the possibilities.

2.3 Relational Pattern Mining
As discussed in Chapter 1, a relational database contains multiple entity sets and
relationships connecting them. Because of this complex structure, one can define
many different kinds of patterns on this data. In the literature several options
have been studied.

Relational itemset mining is a generalization of itemset mining on transactional
databases to itemset mining on relational databases. Before we discuss arbitrary
relational databases consisting of multiple tables, let us first consider the case of
a relational database consisting of only one table. Even in this case, one cannot
simply apply standard itemset mining techniques. As stated in Chapter 1 a rela-
tional table has an associated set of attributes, and the tuples of this table have
different values for all these attributes. Regular itemset mining can be seen as a
specific case of mining in a single relational table, where the attributes considered
are all possible items and each transaction corresponds to a tuple where we have
the value ‘1’ for the attribute if the item is present in the transaction and ‘0’ if it
is not. In other words, we have a binary dataset. Itemset mining is therefore also
often consider to be mining of binary datasets. A general relational table, how-
ever, has attributes that can have more than two different values. One solutions
that allows us to apply itemset mining techniques on a single relational table is
to consider attribute-value pairs as single items [Srikant & Agrawal, 1996]. Using
this approach one can actually transform a single relational table into a transac-
tional database, by converting each tuple into a set of attribute-value items. In
general, attributes can be quantitative or categorical. Only considering categorical
attributes, this transformation is relatively straightforward, since only a limited
number of values is possible. Quantitative attributes, however, are defined over
infinite domains. One way of dealing with this is discretisation [Liu et al., 2002],
which essentially allows us to convert quantitative into categorical attributes, but
other approaches like distribution [Webb, 2000] or optimisation [Brin et al., 2003]
based techniques are also being investigated. Since the focus of this dissertation is
not on these issues, we assume we are always dealing with categorical attributes.

Despite these possibilities for mining in a single relational table, an arbitrary
relational database is not made up of a single table. It contains several tables,
representing entities and their relations. As such, an arbitrary relational database
cannot be trivially converted to a transactional database without loosing infor-
mation. The approach taken in relational itemset mining, is to join all the tables

24

2.3. Relational Pattern Mining

of the database into one big table. This brings us back to the one-table case,
and thus we can apply adapted itemset mining techniques [Crestana-Jensen &
Soparkar, 2000, Ng et al., 2002, Koopman & Siebes, 2008]. Nevertheless, there are
some issues related to this technique regarding support counting. In Chapter 4 we
provide solutions to these problems by introducing a new definition of relational
itemset together with an efficient depth-first algorithm for mining them.

Early on queries have been proposed as a natural pattern type for relational
databases [Dehaspe & Raedt, 1997, Dehaspe & Toivonen, 1999, Dehaspe & Toivo-
nen, 2001]. Since queries are widely used in order to retrieve subsets of data
from the databases, they can also be regarded as descriptions for these subsets of
data. Hence, queries form a natural pattern language L. Furthermore, association
rules over queries are also easily defined by considering queries and more specific
queries (containing more restrictions). To illustrate, consider the well known Inter-
net Movie Database [IMDB, 2008] containing almost all possible information about
movies, actors and everything related to that, and consider the following queries:
first, we consider the query that asks for all actors that have starred in a movie of
the genre ‘drama’; then, we can also consider the more specific query that asks for
all actors that have starred in a movie of the genre ‘drama’, but that also starred
in a (possibly different) movie of the genre ‘comedy’. Now suppose the answer to
the first query consists of 1000 actors, and the answer to the second query consists
of 900 actors. Then this association rule reveals the potentially interesting pattern
that actors starring in ‘drama’ movies typically (with a probability of 90%) also
star in a ‘comedy’ movie. Of course, this pattern could also have been found using
itemset mining techniques. But one would have to first transform the database,
and create a transaction for each actor containing the set of all genres of movies
he or she appeared in. Similarly, a pattern like: 77% of the movies starring Ben
Affleck, also star Matt Damon, could be found by considering the query asking
for all movies starring Ben Affleck, and the query asking for all movies starring
both Ben Affleck and Matt Damon. Again, this could also be found using frequent
itemset mining methods, but this time, the database should have been differently
preprocessed in order to find this pattern. Furthermore, it is even impossible to
preprocess the database only once in such a way that the above two patterns would
be found by frequent set mining as they are essentially counting a different type
of transactions. Indeed, we are counting actors in the first example, and movies
in the second example. Also truly relational patterns can be found which cannot
be found using typical set mining techniques, such as, 80% of all movie directors
that have ever been an actor in some movie, also star in at least one of the movies
they directed themselves. This can be easily expressed by two simple queries of
which one asks for all movie directors that have ever acted, and the second one
asks for all movie directors that have ever acted in one of their own movies. In

25

2. Frequent Pattern Mining

general, we are looking for association rules Q1 ⇒ Q2, such that Q1 asks for a set
of tuples satisfying a certain condition and Q2 asks for those tuples satisfying a
more specific condition.

Of course there does not exist only one type of query, many types of queries
and many query languages exist. Furthermore, the choice of query language L will
also determine the specialisation relation � as well as the selection predicate q. In
Chapter 3 we discuss queries as a pattern language and introduce our own query
based approach for mining relational databases.

Next to relational itemsets and queries, several other types of patterns have
been considered in the field. Typically these pattern types pose certain restrictions
on the relational databases on which they can be applied. For example attribute-
trees, introduced by [De Knijf, 2007] are only applicable to relational databases
with a tree-shaped scheme. The tree-like ‘relational patterns’ by [Tsechansky et al.,
1999], are only applicable to databases in the hierarchical model (which, we must
note, cannot be fully mapped to the relational model [Ullman, 1988], and multi-
dimensional patterns, introduced by [Kamber et al., 1997], are only applicable to
relational databases with a star-scheme.

2.4 Conclusion
In this chapter we have provided an introduction to the field of frequent pattern
mining. We have provided an overview of frequent itemset mining, and its most
influential algorithms: the breadth-first Apriori algorithm and the depth-first Eclat
algorithm. These algorithms provide insight into the origins of the techniques that
we introduce in the next chapters for mining patterns in relational databases.
Furthermore, we also touched on the problem of redundancy in itemsets and rules.
This problem resurfaces when considering patterns in relational databases, and
we show similar techniques can be applied. Furthermore, we have considered
the theoretical general level-wise framework for frequent pattern mining, which
forms the basis of many more specialised pattern mining algorithms, including
the frequent query mining algorithm we introduce in Chapter 3. To conclude, we
gave a brief overview of the pattern types used in the relational pattern mining
field, including relational itemsets which we cover in more detail in Chapter 4 and
queries detailed in Chapter 3.

26

Chapter 3

Conjunctive Query Mining

Queries are a basic concept in any database paradigm. In general they are
used both for retrieving as well as managing data in databases. Database

queries can be written in a variety of languages, sometimes specific to the database
system used. Probably the most widely known and adopted query language is SQL,
the Structured Query Language, designed for use with relational database man-
agement systems (RDBMSs). It is supported in all of the major commercial and
non-commercial RDBMSs. Apart from querying of data, it also includes data up-
dates and database scheme creation and modification, making SQL a complex but
powerful language. In order to define and study the theoretical basis of relational
query languages in general, several abstract languages have been developed. In
the relational algebra, algebraic notations are used to express queries by applying
specialised operators to relations. In the relational calculus, queries are expressed
by writing logical formulas that the tuples in the answer must satisfy. The rela-
tional calculus is a restriction of the query language datalog (essentially without
recursion), which, in turn, is a subset of first-order (predicate) logic. Datalog is
derived from the logic programming language prolog. Although datalog as a query
language is popular in academic database research, it has never succeeded in be-
coming part of commercial database systems, even though it has some advantages
(compared to SQL) such as recursive queries and concise semantics.

As stated in Chapter 2, we are interested in the discovery of frequent patterns
in relational databases. Current algorithms for frequent pattern discovery mainly
focus on transactional databases. Even though complex structures like trees or

27

3. Conjunctive Query Mining

graphs are considered, the algorithms typically still work on sets of transactions.
Let us consider an example from the tree case [Zaki, 2002]. Here every transaction
is a single tree, and the algorithm mines all frequent subtrees occurring in all
such transactions. In order to use these types of algorithms one is required to
transform the orignal data in the relational database into transactions. There is,
however, no single way to do this for every arbitrary database, and even if we choose
one such transformation, a lot of information implicitly encoded in the relational
model would be lost. In that respect we recall the example of the movie database
introduced in Chapter 2, where we showed two different transformations would be
needed to find patterns regarding movies versus patterns regarding actors.

Furthermore, typical frequent pattern mining algorithms use several specialised
data structures and indexing techniques to efficiently find their specific kind of
pattern, be it itemsets, trees, graphs or something else. Since a database query is
typically used to retrieve a subset of the data contained in a relational database,
such a query can also be used to describe this specific subset of the data, and thus
can be considered as a pattern. In this chapter we explore how to use queries
as a language to describe frequent patterns in arbitrary relational databases, and
create an efficient algorithm to find them.

Since our goal is to create algorithms that can operate directly on existing
RDBMSs, using SQL as a pattern language clearly is the best choice. For our
formal query notation, however, we make use of the relational algebra as it, in
our opinion, matches SQL, which we use in practice, most closely. Considering
all SQL or relational algebra queries, however, would yield an immensely large
pattern space. In a generate-and-test strategy (see Chapter 2), trying to generate
all such queries without any further restriction would be infeasible. Although
there are various options to create a smaller pattern space (e.g. allowing the user
to fully specify exactly which kind of queries he is interested in), we choose to
restrict ourselves to a well studied class of relational algebra queries: the select-
project-join queries. These are the relational algebra queries that do not use the
operations union or difference, corresponding to basic select-from-where queries in
SQL of which the where-condition consists exclusively of conjunctions of equality
conditions. Equality conditions are those conditions constructed from attribute
names and constants only using the “=” comparison operator. As an example we
can consider the following select-from-where SQL query:

SELECT stars.actor
FROM stars, genre
WHERE stars.movie = genre.movie

AND genre.genre = "comedy"

The same query in relational algebra, the notation we use throughout this

28

chapter, looks like:

πstars.actorσstars.movie=genre.genre∧genre.genre=‘comedy’(stars× genre)

In first-order logic the select-project-join queries are the queries that can be
constructed only using atomic formulae, the conjunction (∧) and existential quan-
tification (∃). This results in the following formula:

(x1, . . . , xn).∃xn+1, . . . , xm.A1 ∧ . . . ∧ Ap

where x1, . . . , xn are free variables, and xn+1, . . . , xm are the bound variables and
A1∧ . . .∧Ap are atomic formulae. Because of this notation, these queries are more
commonly referred to as the conjunctive queries, and we will also use this name.
The example query can also be written in first-order logic as follows:

(actor) . ∃movie . stars(movie, actor) ∧ genre(movie, ‘comedy’)

As mentioned, we can also write queries as datalog rules, our example query
can be posed as the datalog query

q(actor) :- stars(movie, actor), genre(movie, ‘comedy’)

Although conjunctive queries look simple, a large part of the queries that are
typically issued on relational databases can be written as conjunctive queries.
Furthermore, conjunctive queries have a number of desirable theoretical properties
that the general class of all relational algebra queries do not share.

One important problem, that we also show to be relevant in our data min-
ing context, is the query containment problem, i.e., deciding if two queries are
contained, where containment is defined as follows [Ullman, 1989]:

Definition 3.1. For two queries Q1 and Q2 over a relational scheme D, we say
that Q1 ⊆ Q2 (Q1 is contained in Q2) if for every possible instance I it holds
that the result of Q1 evaluated over the instance I, denoted by Q1(I), is contained
in result of Q2 over the same instance (denoted Q2(I)). Q1 and Q2 are called
equivalent, denoted Q1 ≡ Q2, if and only if Q1 ⊆ Q2 and Q2 ⊆ Q1.

While deciding containment, and therefore also equivalence, is undecidable for
relational algebra and SQL queries, it is decidable but NP-complete for conjunctive
queries [Chandra & Merlin, 1977]. Algorithms to solve the problem can take time
that is exponential in the size of the input, that is, the length of the conjunctive
queries. For the important subclass of the acyclic conjunctive queries, deciding
query containment is possible in polynomial time [Yannakakis, 1981, Chekuri &
Rajaraman, 2000]. Acyclic conjunctive queries are those conjunctive queries that

29

3. Conjunctive Query Mining

can be represented using an acyclic hypergraph. For our frequent pattern mining
purpose, we introduce a new, even stricter subclass of conjunctive queries, called
the simple conjunctive queries, of which we show query containment can be de-
cided in linear time (Section 3.1). Despite the class being very strict, we show
that many interesting and even well known kinds of patterns can be discovered.
Amongst them are database dependencies (Section 3.4), such as functional and
inclusion dependencies. Next to a basic algorithm that efficiently discovers simple
conjunctive queries (Section 3.2 and 3.3), we create a more advanced algorithm
that takes dependencies into account and does not generate any queries redundant
with respect to these dependencies (Section 3.6 and 3.7). Since, as mentioned, we
are also able to detect dependencies, we create this algorithm in such a way that it
is capable of instantly using newly discovered dependencies. Several experiments
clearly show the benefits of discovering and using. Our approach makes the dis-
covery of simple conjunctive queries a feasible and attractive method towards the
exploration of arbitrary relational databases. Part of this chapter is based on work
published earlier in [Goethals et al., 2008].

3.1 Simple Conjunctive Queries
As stated before, the basic strategy used in frequent pattern mining is the generate-
and-test approach. This requires a pattern class that can be generated efficiently.
With this requirement in mind, we define the novel class of simple conjunctive
queries, together with a partial order, which allows us to generate them efficiently,
as well as to define association rules.

Assume we are given a relational database consisting of a relational scheme
D = {R1, . . . , Rn} over a fixed attribute set U , such that for i = 1, . . . , n, Ri is a
relation name associated with a subset of U , called the scheme of Ri and denoted
by sch(Ri). Without loss of generality, we assume that, for all distinct i and j in
{1, . . . , n}, sch(Ri) ∩ sch(Rj) = ∅. In order to make this assumption explicit, for
all i in {1, . . . , n}, every A in sch(Ri) is referred to as Ri.A.

Definition 3.2. A simple conjunctive query Q over D is a relational algebra
expression of the form

πXσF (R1 × · · · ×Rn),

with X a set of attributes from R1, . . . , Rn denoted π(Q) and F = 1(Q) ∧ σ(Q),
where 1(Q) is a conjunction of selection conditions of the form Ri.A = Rj.A

′,
and σ(Q) of conditions of the form Rk.A = c, where i, j and k are in {1, . . . , n},
Ri.A,RjA

′, Rk.A ∈ U , and where c is a constant from the domain of Rk.A. The
conditions σ(Q) define a tuple which we denoted by Qσ.

30

3.1. Simple Conjunctive Queries

The only simplification, although drastic, over general conjunctive queries, is
that every relation from D occurs exactly once in a simple conjunctive query.
Furthermore, for our query evaluation, we always assume duplicates are eliminated.
Knowing this, we could loosen the definition to allow every relation at most once,
but this would unnecessarily complicate matters. After all, under the additional
assumption that all relations are non-empty, both definitions are equivalent, as
illustrated in the following example.

Example 3.1. Let us consider a database schema D consisting of two relation
names R1 and R2 with the following schemas: sch(R1) = {A,B} and sch(R2) =
{C,D,E}. Since sch(R1) ∩ sch(R2) is clearly empty, in this example and in the
forthcoming examples dealing with D, we do not prefix attributes with relation
names. For example, R1.A is denoted by A. Assuming all the relations to be non-
empty, the following queries result in the same set of unique tuples under duplicate
elimination:

Q1 : πA,B(R1)
Q2 : πA,B(R1 ×R2)

Therefore, we only consider the second type as simple conjunctive queries.

3.1.1 Query Comparison
The motivation for defining a query comparison relation is twofold. Firstly, an
order allows for efficient generation of our pattern class, the simple conjunctive
queries, allowing us to adopt a levelwise strategy when creating an algorithm (see
Chapter 2). Secondly, although some interesting facts can be discovered using only
simple conjunctive queries, the results are much more interesting when queries are
compared to each other. For that reason, the comparison of two queries forms the
basis of our definition of association rules. We first expand on the latter, starting
with the following motivating example.

Example 3.2. Assuming the database schema D from Example 3.1, consider the
following two queries:

Q1 : πA,B(R1 ×R2)
Q2 : πA,BσA=B(R1 ×R2)

Now suppose Q1 returns 100 unique tuples, and Q2 returns 90 unique tuples. Com-
paring these queries is potentially interesting as combined they represent the pat-
tern that for 90% of the tuples in Q1, the value of attribute A equals the value of
attribute B.

Generalising we can state that we are interested in those pairs of simple con-
junctive queries Q1 and Q2 stating that a tuple in the result of Q1 is also in

31

3. Conjunctive Query Mining

the result of Q2 with a given probability p. Finding such pairs of queries comes
down to finding pairs of contained simple conjunctive queries and testing if they
meet the probability requirement. Note that following the standard definition of
containment, we do not test containment for queries of which the projections are
different. Queries with different projections describe conditions on different sets of
tuples and hence cannot result in rules relating these conditions. Given the setting
of Example 3.1, we therefore would not test if πA(R1 ×R2) ⊆ πC(R1 ×R2). How-
ever, these kind of patterns can always be expressed by patterns of queries having
the same projection, in this case by the test πA(R1 ×R2) ≡ πAσA=C(R1 ×R2).

Nevertheless, there is one case in which comparing simple conjunctive queries
with a different projection does produce interesting results, namely when one pro-
jection is a subset of the other. As this is not included in the classical definition
of containment, we consider it as a second containment relationship between con-
junctive queries. The following example illustrates this.

Example 3.3. Consider the following two queries.

Q1 : πA,B(R1 ×R2)
Q2 : πA(R1 ×R2)

Now suppose Q1 returns 100 unique tuples, and Q2 returns 90 unique tuples (due
to duplicate elimination). Then, again this pair of queries is potentially interesting
as they represent the pattern that the number of unique values for A equals 90% of
the number of unique tuples in Q1. This implies we can choose 90% of the unique
tuples in Q1 such that these all have a unique A value. Note, however, we do not
know if the remaining 10% have the same value for A, or whether they all have
different values also occurring in the other 90%.

This second type of containment, we call vertical containment. Indeed, when
projecting on a subset of the attributes in the projection of a query, the result is
vertically contained in the result of the original query. As we show later, interest-
ing, and even well known associations can be found using this vertical containment.
When both types of containment are combined, we arrive at our formal contain-
ment definition which we use to discover simple conjunctive queries [Goethals &
Van den Bussche, 2002].

Definition 3.3. Let Q1 and Q2 be two simple conjunctive queries, we say Q1 ⊆∆

Q2 (Q1 is diagonally contained in Q2) if π(Q1) ⊆ π(Q2) and Q1 ⊆ ππ(Q1)Q2.

Using this we now formally define association rules over simple conjunctive
queries:

Definition 3.4. An association rule is of the form Q1 ⇒ Q2, such that Q1 and
Q2 are both simple conjunctive queries and Q2 ⊆∆ Q1.

32

3.1. Simple Conjunctive Queries

As in general frequent pattern mining, we are not interested in all possible
association rules, but only in those that satisfy certain requirements. The first
requirement states that an association rule should be supported by a minimum
number of tuples in the database.

Definition 3.5. The support of a simple conjunctive query Q in an instance I
of D, denoted supportI(Q) or simply support(Q), is the number of unique tuples in
the answer of Q on I. A simple conjunctive query is said to be frequent in I if its
support exceeds a given minimal support threshold. The support of an association
rule Q1 ⇒ Q2 in I is the support of Q2 in I, an association rule is called frequent
in I if Q2 is frequent in I.

Definition 3.6. An association rule Q1 ⇒ Q2 is said to be confident if the
support of Q2 divided by the support of Q1 exceeds a given minimal confidence
threshold.

Apart from being able to discover interesting relationships among simple con-
junctive queries in the form of association rules, our definition of diagonal contain-
ment also has the following interesting properties.

Property 3.1. Given a relational scheme D, the diagonal containment relation
⊆∆ defines a pre-order over the set of simple conjunctive queries.

Proof. It is clear that diagonal containment is reflexive and transitive since both
set inclusion and regular containment are.

Additionally, our support measure is monotone with respect to diagonal con-
tainment.

Property 3.2. Let Q1 and Q2 be two simple conjunctive queries. If Q1 ⊆∆ Q2,
then support(Q1) ≤ support(Q2).

Proof. In the case π(Q1) = π(Q2) this follows directly from the definition of regular
containment. In the case that π(Q1) ⊂ π(Q2), we know that support(Q1) ≤
support(ππ(Q1)Q2). From the definition of support it follows that support(ππ(Q1)Q2)
≤ support(Q2). Transitively the result follows.

The monotonicity property allows us to prune all simple conjunctive queries
contained in an infrequent query. However, in order to use a levelwise Apriori
style algorithm, we want to generate queries according to a lattice, as is the case in
itemset mining (see Chapter 2). The search space would be a lattice if the diagonal
containment relation defined a partial order over the simple conjunctive queries.
Unfortunately, this is not the case as the following counterexample demonstrates.

33

3. Conjunctive Query Mining

Example 3.4. Considering D from Example 3.1, and the following queries:

Q1 = πAσB=C∧B=‘a’(R1 ×R2)
Q2 = πAσB=C∧C=‘a’(R1 ×R2)

It is clear that Q1 ⊆∆ Q2 and also Q2 ⊆∆ Q1, since both queries essentially express
the same condition. They are equivalent, denoted Q1 ≡∆ Q2. However, as you can
clearly see, they are not equal, and hence the antisymmetry requirement of a partial
order is not fulfilled.

In generating queries, however, we do not want to consider such equivalent
queries since this entails redundant work and redundant output. Therefore we
just want to generate one representative of each equivalence class. We call these
representative simple conjunctive quires, the canonical simple conjunctive queries.
If we assume there is a fixed order on the attributes of U , we can define canonical
simple conjunctive queries as those queries of which all constraints follow this
order. For example a projection on A and B can only be written as πABQ, and the
equality of A,B and C can only be written as σA=B∧A=CQ. Furthermore, we also
assume that 1(Q) always precedes σ(Q), and that constant equality conditions
are written using the smallest of the attributes it is equal to. For example if
A = B = ‘a’, the corresponding query is written as σA=B∧A=‘a’Q. Furthermore,
all constant values must be distinct, e.g. σA=‘a’∧B=‘a’Q is not allowed. Finally we
demand π(Q) ∩ sch(Qσ) = {}. Using this canonical form, we assure that every
query can only be represented in one way.

Property 3.3. Given a relational scheme D, the diagonal containment relation
⊆∆ defines a lattice over the set of canonical simple conjunctive queries.

Proof. It is clear that diagonal containment is a partial order over this set, since if
Q1 ⊆∆ Q2 and Q2 ⊆∆ Q1 we know that Q1 ≡∆ Q2. According to the definition of
the canonical queries it then follows thatQ1 = Q2, and thus we fulfill the additional
antisymmetry requirement. This partial order defines a lattice, since the join of
two simple conjunctive queries consists of the union of their projected attributes
and the intersection of their selections, while the meet consists of the intersection
of the projected attributes and the conjunction of their selections. The top simple
conjunctive query has no selections and projects on all possible attributes, while
the bottom simple conjunctive query is simply false.

We now prove deciding diagonal containment for simple conjunctive queries
can be done efficiently.

Lemma 3.1. If Q1 = πX1σF1 and Q2 = πX2σF2 are both canonical simple con-
junctive queries, Q1 ⊆∆ Q2 if and only if X1 ⊆ X2 and the set of conditions F2 is
a subset of F1.

34

3.1. Simple Conjunctive Queries

Proof. It is clear that if F2 is a subset of F1 and X1 ⊆ X2 that Q1 ⊆∆ Q2.
Now we prove the reverse is also true. According to the definition of diagonal
containment Q1 ⊆∆ Q2 holds if and only if X1 ⊆ X2 and Q1 ⊆ Q′2, where we define
Q′2 = ππ(Q1)Q2. This means that the tuples in the result of Q1 must satisfy the
restrictions posed in Q′2. In a canonical query a condition can only be represented
in one way. Thus it follows that all the conditions of set F2 must be present in
F1.

Proposition 3.1. If Q1 = πX1σF1 and Q2 = πX2σF2 are both canonical simple
conjunctive queries of which the projections X1 and X2 as well as the sets of
conditions F1 and F2 are ordered, deciding if Q1 ⊆∆ Q2 takes time linear in the
length of Q1 and Q2.

Proof. According to Lemma 3.1, Q1 is contained in Q2 if and only if X2 ⊆ X1
and the set of conditions F2 is a subset of F1. Since all sets are ordered, verifying
set inclusion takes time linear in the size of the sets. Thus we can conclude that
deciding the containment takes time time linear in the size of the queries.

Note that the assumption that the projections and conditions are ordered is
realistic, since we are only dealing with queries we generate ourselves.

3.1.2 Cartesian Products
Since we want to obtain a concise set of interpretable patterns, it is of no use to
consider simple conjunctive queries that essentially represent a cartesian product,
as the following example illustrates.

Example 3.5. Consider the following simple conjunctive queries.

Q1 : πR1.A,R2.B(R1 ×R2)
Q2 : πR1.AσR2.B=‘c’(R1 ×R2)

As can be seen, Q1 is a simple cartesian product of two attributes from different
relations, and hence, its support is simply the product of the number of unique
values of the two attributes. Now, whenever a simple conjunctive query is not fre-
quent, there most probably exist also several other versions of that query including
a cartesian product with another attribute which contains enough tuples to make
the product exceed the minimum support threshold.

Similarly, almost every frequent query will be duplicated many times due to
cartesian products. This case is illustrated by Q2. Here, the output equals πR1.A

only if there exists a tuple in R2 containing the value ‘c’ for attribute B. Obviously,
almost every frequent query could be combined like that with every possible value
in the database.

35

3. Conjunctive Query Mining

In order not to consider these types of queries we add an additional constraint.
According to the definition, a simple conjunctive query Q has a join, 1(Q), ex-
pressed using a conjunction of selection conditions of the form Ri.A = Rj.A

′.
Such a conjunctive condition induces a partition of U , where every block β of this
partition is a maximal set of attributes such that for all Ri.A and Rj.A

′ in β,
Ri.A = Rj.A

′ is a consequence of 1(Q). We denote this partition by blocks(1(Q))
and we say that Ri and Rj are connected through 1(Q). To simplify notation, given
a simple conjunctive query Q, the corresponding partition of U , blocks(1(Q)) is
simply denoted by blocks(Q).

Example 3.6. Considering the schema D where sch(R1) = {A,B} and sch(R2) =
{C,D,E}, the query Q = πBσA=C∧C=D(R1×R2) induces the partition blocks(Q) =
{{A,C,D}, {B}, {E}}. In this case the relation R1 and R2 are connected through
1(Q).

We only consider those simple conjunctive queries Q = πXσF (R1 × · · · × Rn)
where all relation names occurring in X or in σ(Q) are connected through 1(Q),
since all other conjunctive queries represent cartesian products, as illustrated in
the following example.

Example 3.7. Considering the schema D from Example 3.6, the query Q =
πADσ(A=B)∧(E=e)(R1 × R2) is not a considered simple conjunctive query because
R1 and R2 are not connected through the condition A = B. Computing the answer
to this query requires to explicitly consider the cartesian product R1 ×R2.

On the other hand, Q1 = πADσ(A=C)∧(E=e)(R1 × R2) is a considered simple
conjunctive query such that 1(Q1) = (A = C), π(Q1) = AD, σ(Q) = (E = e) and
Qσ = e. blocks(Q1) contains four blocks, namely: {A,C}, {B}, {D} and {E}.
Notice that, in this case, computing the answer to Q1 does not require to explicitly
consider the cartesian product R1×R2, since R1 and R2 are joined through A = C.

We are able to avoid generating conjunctive queries with disconnected relations
by using the graph theoretic concept of connected components, which we expand
on in Section 3.2.1.

3.1.3 Basic Association Rules
Given the association rules Q1 ⇒ Q2 and Q2 ⇒ Q3, due to the definition of
confidence it holds that confidence(Q1 ⇒ Q3) is equal to confidence(Q1 ⇒ Q2) ×
confidence(Q2 ⇒ Q3). Consequently, we only compute confident rules Q1 ⇒ Q2
such that there exists no Q in such that Q1 ⇒ Q and Q⇒ Q2 are association rules.
These association rules, which we call basic rules, are characterised according to
Proposition 3.2, defined below.

36

3.1. Simple Conjunctive Queries

Proposition 3.2. An association rule Q1 ⇒ Q2 is a basic rule if and only if it
satisfies one of the following:

1. π(Q2) ⊂ π(Q1) and σ(Q1) = σ(Q2) and 1(Q2) = 1(Q1), and there does not
exist a schema X such that π(Q2) ⊂ X ⊂ π(Q1).

2. π(Q1) = π(Q2) and σ(Q1) ⊂ σ(Q2), and 1(Q1) = 1(Q2), and there does
not exist a set of conditions Y of the form Rk.A = c such that σ(Q1) ⊂ Y ⊂
σ(Q2).

3. π(Q2) = π(Q1) and σ(Q1) = σ(Q2) and 1(Q2) ⊂ 1(Q1), and there does not
exists a set of conditions J of the form Ri.A = Rj.A

′ such that 1(Q2) ⊂ J ⊂
1(Q1).

Proof. It can easily be verified that if a rule satisfies one of these cases that it is a
basic rule. Now we prove the other direction. Let us denote X ⊂1 Y if and only
if X ⊂ Y and there does not exist a Z such that X ⊂ Z ⊂ Y .

A rule Q1 ⇒ Q2 holds if and only if Q2 ⊆∆ Q1. We have shown in Lemma 3.1
that then X2 ⊆ X1 and F1 ⊆ F2. Q1 ⇒ Q2 is a basic rule, thus there does not exist
a Q such that Q1 ⇒ Q and Q⇒ Q2. This means that there does not exist a Q with
projection X and conditions F such that (1) X2 ⊆ X ⊆ X1 and (2) F1 ⊆ F ⊆ F2.
For (1) to hold it must be that (1.1) X2 ⊂1 X1 or (1.2) X2 = X1 holds. Similarly
for (2) it must be that (2.1) F1 ⊂1 F2 or (2.2) F1 = F2. If (1.1) holds, then (2.1)
cannot hold since otherwise a Q exists, namely the Q such that X = X1 and
F = F2, thus (1.1) must hold, resulting in case 1. If (1.2) holds, (2.2) cannot hold
since otherwise Q1 = Q2 which we do not consider as an association rule. Thus
(2.1) must hold. F1 ⊂1 F2 can be split up in two cases since Fi = σ(Qi)∧ 1(Q1).
It must hold that 1(Q1) = 1(Q2), and σ(Q1) ⊂1 σ(Q2) or σ(Q1) = σ(Q2) and
1(Q2) ⊂1 1(Q1), which are cases 2 and 3.

Generating all canonical queries, covers the complete set of possible queries
since for each query there is always an equivalent canonical query. However, gen-
erating all rules over all canonical queries is not enough to cover all rules over all
queries.

Example 3.8. Considering the schema D where sch(R1) = {A,B} and sch(R2) =
{C,D,E}, the valid association rule

πB(R1 ×R2)⇒ πBσB=C(R1 ×R2)

cannot be represented using canonical queries. Since this would require the follow-
ing rule

πB(R1 ×R2)⇒ πBCσB=C(R1 ×R2)

37

3. Conjunctive Query Mining

which is not valid since it is clear that πBCσB=C(R1 ×R2) *∆ πB(R1 ×R2) because
of the fact that {B,C} * {B}

Therefore, when generating association rules we do take equivalent queries into
account. This allows us to use Proposition 3.2 to generate all confident basic
association rules, starting from canonical queries. This is discussed in detail in
Section 3.2.3 where rule generation is explicated.

3.1.4 Problem Statement
Having defined the preliminaries, we can now formalise our main problem state-
ment as follows:

Given a database with a scheme D, find all frequent and confident basic asso-
ciation rules over, cartesian product free, simple conjunctive queries with a given
minimum support threshold and a minimum confidence threshold.

3.2 Algorithm: Conqueror
In order to find all confident basic association rules, we propose the algorithm
Conqueror (Conjunctive Query Generator). It is a levelwise, Apriori style al-
gorithm (see Chapter 2). It is divided into two phases. In a first phase, all frequent
simple conjunctive queries are generated. Then, in a second phase, all confident
association rules over these frequent queries are generated. The second phase is
considerably easier, as most computationally intensive work and data access is per-
formed in the first phase. After all, for every generated simple conjunctive query,
we need to compute its support in the database, while association rule generation
merely needs to find couples of previously generated queries and compute their
confidence. Consequently, most of our attention goes to the first phase, starting
with the candidate generation procedure.

3.2.1 Candidate Generation
In the candidate generation phase, we essentially generate all possible instantia-
tions of X and F in πXσF (R1× · · · ×Rn). We make sure we generate every query
only once, and also take care not to generate the undesirable cartesian product
queries.

The Conqueror algorithm is made up of three loops:

Join loop: Generate all instantiations of F , without constants, i.e. 1(Q), in a
breadth-first manner.

38

3.2. Algorithm: Conqueror

Projection loop: For each generated join 1(Q), generate all instantiations of X,
i.e. π(Q), in a breadth-first manner, and test their frequency against the
given instance I.

Selection loop: For each generated projection-join query, add constant assign-
ments to F , i.e. σ(Q), in a breadth-first manner.

In order to make sure candidate queries are generated at most once, we assume
that all attributes are ordered according to a fixed ordering. This ordering is
implicit in lines 1 and 10 in Algorithm 3.1 (in the sense that the k-th element in
the string refers to the k-th attribute according to the ordering), and is explicitly
used in line 10 in Algorithm 3.3 and line 5 in Algorithm 3.4. Note that this also
implies the containment can be checked in linear time as stated in Section 3.1.1

In the remainder of this section we describe each of these loops in detail. In
Section 3.2.2 we describe our implemented techniques to efficiently evaluate each
query on the database.

Join loop

Recall that for a simple conjunctive query Q, the conditions F without constants
consist of a conjunction of equalities between attributes, and thus essentially rep-
resent a join (therefore we denote this set of conditions as 1(Q)). As stated in
Section 3.1.2, 1(Q) induces a partition of the set of all attributes U , denoted
blocks(Q) where attributes are in the same block of the partition if they are equal
according to the set of equality conditions 1(Q). Generating all joins is therefore
reduced to generating all partitions of U . Generating all partitions of a set is a well
studied problem for which efficient solutions exist. We use the so called restricted
growth string for generating all partitions [Weisstein, 2009].

Assuming a fixed order over a set of attributes, a restricted growth string is
an array a[1 . . .m] where m is the total number of attributes, and a[i] is the block
identifier of the block in the partition in which attribute i occurs. Obviously, a
partition can be represented by several such strings, but in order to identify a
unique string for each partition, the so called restricted growth string satisfies the
following growth inequality (for i = 1, 2, . . . , n− 1, and with a[1] = 1):

a[i+ 1] ≤ 1 + max a[1], a[2], . . . , a[i] (3.1)

Example 3.9. Considering the schema D where sch(R1) = {A,B} and sch(R2) =
{C,D,E}, the set U of all attributes occurring in D is {A, B, C, D, E}. Then,
the restricted growth string 12231 represents the condition (A = E) ∧ (B = C),
which corresponds to the partition {{A,E}, {B,C}, {D}}.

39

3. Conjunctive Query Mining

Algorithm 3.1 Conqueror
Input: Database D, threshold minsup, threshold minconf, most specific join msj
Output: R the set of confident association rules
1: 1(Q) := “1” //initial restricted growth string
2: push(Queue, Q)

//Join Loop
3: while not Queue is empty do
4: JQ := pop(Queue)
5: if rgs does not represent a cartesian product then
6: F := F ∪ ProjectionLoop(JQ)
7: children := RestictedGrowth(1(JQ), m)
8: for all rgs in children do
9: if join defined by rgs is not more specific than msj then

10: 1(JQC) := rgs
11: push(Queue, JQC)
12: R := RuleGeneration(F , minconf)
13: return R

Notice that this restriction corresponds to the requirement we have for canon-
ical conjunctive queries. The algorithm to generate all join queries is shown in
Algorithm 3.1. In order to efficiently generate all partitions without generating
duplicates, we initially start with the singleton string “1”, representing the first
attribute belonging to block 1, and all remaining attributes belong to their own
unique block (thus essentially the restricted growth string “123. . .m”, although we
do not explicitly represent it this way).

Then, given such a string representing a specific partition, all more specific
partitions are generated making use of the restricted growth principle. This is
shown in Algorithm 3.2. Essentially we generate the children of a partition, by
adding one of the remaining attributes to an existing block. To make sure no
duplicates are generated, we do not add an attribute to an existing block if any of
the attributes coming after that have already been assigned to an existing block,
i.e., we make sure the growth inequality 3.1 holds. This traversal of the search
space for four attributes is illustrated in Figure 3.1. Since we are using a queue
and only generating the children, essentially, our algorithm performs a breadth-
first traversal over this tree.

Before generating all possible projections for a given join, we first determine
whether the selection represents a cartesian product (line 5, Algorithm 3.1). If so,
we skip generating projections for this join and continue the loop, joining more
attributes until the join no longer represents a cartesian product.

Intuitively, to determine whether a join represents a cartesian product, we

40

3.2. Algorithm: Conqueror

Algorithm 3.2 Restricted Growth
Input: String prefix, Length m
Output: list of restricted growth strings with prefix prefix and length m
1: list ← {}
2: last ← length(prefix)
3: if last < m then
4: for i = last to m− 1 do
5: max ← max({prefix[j] | 0 ≤ j < last})
6: nprefix ← prefix
7: if i > last then
8: for k = last to i− 1 do
9: max ← max + 1
10: nprefix[k]← max
11: for l = 1 to max do
12: nprefix [i] := l
13: add(list, nprefix)
14: return list

1

11

111

1111

1121 1122

121

1211 1212

122

1221 1222

1231 1232 1233

Figure 3.1: Restricted Growth Expansion

41

3. Conjunctive Query Mining

R1 R2 R3
B = C E = F

D = E

(a) a single connected component

R1 R2 R3

D = EA = B

E = F

(b) disconnected components

Figure 3.2: Connected and Disconnected Components

interpret each join as an undirected graph. As stated in Section 3.1.2, relations can
be connected through a join condition 1(Q), essentially if some of their attributes
get joined. Consider the graph of a join 1(Q) to consist of a node for each relation,
and a connection between these nodes if they are connected through 1(Q). Then,
we only allow those joins for which all edges are in the same single connected
component. All other joins represent cartesian products, and consequently, we
prune these in the join loop (line 5, Algorithm 3.1).

Example 3.10. Given the scheme D consisting of sch(R1) = {A,B}, sch(R2) =
{C,D,E} and sch(R3) = {F}, the join

R1.B = R2.C ∧R2.E = R3.F ∧R2.D = R2.E,

represented in Figure 3.2a, results in a single connected component, while the join

R1.A = R1.B ∧R2.E = R3.F ∧R2.D = R2.E,

represented in Figure 3.2b, results is two disconnected components. Hence, inde-
pendent of the projected attributes, any simple conjunctive query using the second
join always represents a cartesian product.

In practice, it does not make any sense to compare attributes of incomparable
types. Moreover, the user might see no use in comparing addresses with names
even though both could be typed as strings. Therefore, we allow the user to
specify the sensible joins in the database by providing the most specific join to be

42

3.2. Algorithm: Conqueror

Algorithm 3.3 Projection Loop
Input: Conjunctive Query Q
Output: FQ set of frequent queries with the join of Q
1: π(Q) := blocks(Q) //all connected blocks of 1(Q)
2: push(Queue, Q)
3: while not Queue is empty do
4: PQ := pop(Queue)
5: if monotonicity(PQ) then //check monotonicity
6: support(PQ) := EvaluateSupport(PQ)
7: if support(PQ) > minsup then
8: FQ := FQ ∪ SelectionLoop(PQ)
9: removed := blocks(PQ) /∈ π(PQ)

10: torem := blocks(PQ) > last of removed //order on blocks is supposed in order
to generate uniquely

11: for all pi ∈ torem do
12: π(PQC) ← π(PQ) with block pi removed
13: push(Queue,PQC)
14: return FQ

considered. That is, a partition of all attributes, such that only the attributes in
the same block are allowed to be compared to each other. When generating a new
partition, it is compared to the most specific join (line 9, , Algorithm 3.1), and
only considered if it is more general or equal. By default, if no most specific join
is specified, every possible join of every attribute pair is considered.

Projection loop

In this loop, for each join, all projections are generated. However, we only con-
sider those projections consisting of those attributes whose relations are part of
the single connected component (as determined by the cartesian product test in
Algoritm 3.1). Indeed, we recall from Section 3.1.2 that projecting on any other
attribute would result in a cartesian product.

Example 3.11. Considering the scheme from Example 3.10, the join R1.B =
R2.C represents one connected component and therefore does not represent a carte-
sian product. However, the query πA,FσB=C(R1×R2×R3) does represent a carte-
sian product, namely that of all A values for which B = C with all F values in
R3.

Therefore, our algorithm (Algorithm 3.3) starts with the set of all allowed
attributes for the given join (namely, those of the relations present in the connected

43

3. Conjunctive Query Mining

component), and then generates subsets in a breadth-first manner with respect to
diagonal containment. But even then, not all subsets are generated, as this might
result in duplicate non-canonical queries.

Example 3.12. Still considering D from Example 3.10, it is clear that the queries

πB,CσB=C(R1 ×R2 ×R3), πBσB=C(R1 ×R2 ×R3) and πCσB=C(R1 ×R2 ×R3)

are all equivalent.

Indeed, when we remove an attribute from the projection while there might still
be other attributes from its block in the join partition, we obtain an equivalent
query. Therefore, we only consider simultaneous removal of all attributes from a
single block of blocks(Q), i.e. we are considering block-sets instead of attribute-
sets. Note that in order to avoid generating cartesian products as stated above,
the function blocks(Q) in the algorithms returns the set of connected blocks of
a restricted growth string, that is, blocks(Q) returns the connected part of the
partition blocks(Q) (line 1, Algorithm 3.3).

For every generated projection, we perform a monotonicity check (line 5). We
expand upon monotonicity in Section 3.2.3. If the query passes, it is evaluated
against the database (line 6). If the query turns out to be infrequent, none of its
sub-projections or selections are considered anymore, as they must be infrequent
too. If the query is frequent we start the selection loop (line 8) and generate its
sub-projections as described above.

Selection loop

The last part we still need to consider in query generation is those selection con-
ditions of the type Rk.A = ‘c’, i.e. constant equalities. For a simple conjunctive
query Q, we denote this subset of F as σ(Q). As was the case in the projection
loop, we must take care not to generate equivalent non-canonical queries.

Example 3.13. Considering D from Example 3.10, it is clear that the queries

πAσB=C∧C=‘a’(R1 ×R2 ×R3) and πAσB=C∧B=‘a’(R1 ×R2 ×R3)

are equivalent with respect to support.

In order to only generate a certain constant equality once, we consider constant
equality as a property of the connected blocks of the partition blocks(Q). In Exam-
ple 3.13 the connected blocks are {{A}, {B,C}, {D}, {E}}, and thus the constant
equality should be generated as {B,C} = ‘a’. Therefore, generating the candi-
dates for constant equalities comes down to generating all subsets of blocks(Q).

44

3.2. Algorithm: Conqueror

Algorithm 3.4 Selection Loop
Input: Conjunctive Query Q
Output: FQ set of frequent queries with the join and projection of Q
1: push(Queue,Q)
2: while not Queue is empty do
3: CQ := pop(Queue)
4: if σ(CQ) = ∅ then
5: toadd := all blocks of blocks(CQ) /∈ π(CQ)
6: else
7: uneq := all blocks of blocks(CQ) /∈ (σ(CQ) ∪ π(CQ))
8: toadd ← blocks in uneq > last of σ(CQ) //order on blocks is supposed
9: for all Bi ∈ toadd do

10: σ(CQC) := σ(CQ) ∪ Bi

11: if exist frequent constant values for σ(CQC) in the database then
12: FQ := FQ ∪ CQC
13: push(Queue,CQC)
14: return FQ

This is done in a level-wise, breadth-first manner as shown in Algoritm 3.4. First,
we assign a constant to all single block in blocks(Q) (line 5). On the next level, we
assign constants to two different blocks, only if these constants already resulted in
frequent queries separately. This is repeated until no more combinations can be
generated (line 8). Again, there is one exception. We do not allow constants to
be assigned to blocks that are in the projection (line 5 and 8). Indeed, also these
would be equivalent to queries in which this block is not in the projection, as the
following example demonstrates:

Example 3.14. Considering D from Example 3.10, it is clear that the queries

πAσB=C∧C=‘a’(R1 ×R2 ×R3) and πACσB=C∧C=‘a’(R1 ×R2 ×R3)

are equivalent with respect to support.

For every generated equality of constants, the resulting query is evaluated
against the database (line 11). If the query turns out to be infrequent, then no
more specific constant assignments are generated, as they must be infrequent too.
The matter of specific constant values is handled in the database. This, together
with query evaluation, is discussed in the next section.

45

3. Conjunctive Query Mining

3.2.2 Candidate Evaluation
In order to get the support of each generated query, Conqueror evaluates them
against the relational database by translating each query into SQL. In general, in
order to get the support of a general conjunctive query

πXσF (R1 × · · · ×Rn)

we can translate it to the following SQL query, and evaluate it against the relational
database:

SELECT COUNT(DISTINCT X)
FROM R1, · · · , Rn

WHERE F

It is clear that the algorithm requires many queries with the same join condition
to be evaluated, i.e. in the projection and selection loop. For efficiency reasons,
we therefore materialise these joins and rewrite the more specific queries to use it.
Thus, the above translation is only performed for queries with the most general
projection and no constant equalities. The result of such a query is then stored
in a temporary table (τ). We can now rewrite more specific queries to use these
temporary tables resulting in a more efficient evaluation as we are now querying
just a specific part of the database and we no longer have to perform a possibly
expensive join operation for each more specific query. All more specific projections
X ′, having the same join condition, are evaluated by the relational algebra query
πX′τ or in SQL:

SELECT COUNT(DISTINCT X ′)
FROM τ

To evaluate the more specific simple conjunctive queries containing constant
equation we developed some additional optimisations. It is hard and inefficient
to retrieve the potentially large number of constant values from the database and
then keep them in main memory. Therefore we also use temporary tables to store
them in the database itself. Creating the SQL queries for these simple conjunctive
queries involves combining the various temporary tables from previous loops using
the monotonicity property, as we now explain. At the first level we generate more
specific queries that contain only one constant equation. These are queries of the
form πX′σ1(Q)∧A=?(R1 × · · · ×Rn). Since these queries are also more specific than
a previously materialised join (of query Q, supposedly in table τ), we can rewrite
them as πX′σA=?τ . To evaluate these in the database queries are written in SQL
as follows:

46

3.2. Algorithm: Conqueror

SELECT A, COUNT(*) AS sup
FROM τ
GROUP BY A
HAVING COUNT(*) >= minsup

The result of such a query is stored in a new temporary table (τA). It holds
all the constant values v for A together with their support, such that the query
πX′σA=vτ satisfies the minimal support requirement. Essentially we are performing
the evaluation of many different simple conjunctive queries (all with different values
for v) at once and immediately pruning the infrequent ones, by using just a single
SQL query.

On the following levels, these temporary tables are combined to generate queries
containing more than one constant equation as illustrated in the examples below.

Example 3.15. Let τA and τB be the temporary tables holding the constant values
for the attributes A and B together with their support (generated in the previous
level). We can now generate the SQL for the query πX′σA=?∧B=?τ as follows:

SELECT A, B, COUNT(*) FROM
(SELECT A,B, X ′ FROM

τ NATURAL JOIN
(SELECT * FROM

(SELECT A FROM τA)
NATURAL JOIN
(SELECT B FROM τB)

)
)

GROUP BY A,B
HAVING COUNT(*) >= minsup

In this case we are using the values already obtained for A and B in generating
the combinations, and using a join with the temporary table τ to evaluate against
the database, immediately using the minimal support value minsup to only get
frequent queries. Essentially we are making use of the monotonicity property,
similar to the generation of itemsets from subsets (Chapter 2). The result of this
query is also stored in a temporary table τA,B, and will be exploited in following
levels as we see next.

In the previous example the join actually was a simple product of the frequent
A and B values, but as one advances more levels (i.e., more blocks are equal to

47

3. Conjunctive Query Mining

constants) it becomes a real join on the common attributes as illustrated in the
example below.

Example 3.16. This is the generated SQL for the query πX′σA=?∧B=?∧C=?τ . It
uses the temporary tables τ , τA,B, τA,c, τB,C.

SELECT A,B,C, COUNT(*) FROM
(SELECT A,B,C,X ′ FROM

τ NATURAL JOIN
(SELECT * FROM

(SELECT A,B FROM τA,B)
NATURAL JOIN
(SELECT A,C FROM τA,C)
NATURAL JOIN
(SELECT B,C FROM τB,C)

)
)

GROUP BY A,B,C
HAVING COUNT(*) >= minsup

This SQL based approach, allows us to efficiently use the features of the
RDBMS to handle the potentially sizable numbers of constant values.

3.2.3 Monotonicity
Candidate evaluation is costly, especially in our case since it involves sending an
SQL query to a relational database and retrieving the result. In order to reduce the
input/output cost we want to avoid evaluating queries as much as possible. Luckily
we know from Section 3.1.1 that diagonal containment satisfies the monotonicity
property with respect to support. In the algorithm pseudocode references are made
to a monotonicity function which is called before the evaluation of the support of
a candidate query in the database. Due to the monotonicity of support we only
check those queries Q′ such that Q ⊂∆ Q′ (where Q ⊂∆ Q′ if Q ⊆∆ Q′ but not
Q ≡∆ Q′) and there does not exist a Q′′ such that Q′ ⊂∆ Q′′ ⊂∆ Q. We denote
this as Q⊂∆1

Q′ and say that Q is directly contained in Q′. The monotonicity
function therefore checks if all Q′ where Q⊂∆1

Q′ are frequent. If not, we prune the
candidate Q. We also showed in Section 3.1.1 that checking diagonal containment
can be done efficiently. Based on this we also generate all directly contained
queries efficiently. Essentially it comes down to generating all queries with one
less restriction than the considered candidate query Q, since Q⊆∆1

Q′ if and only

48

3.2. Algorithm: Conqueror

Algorithm 3.5 Monotonicity
Input: Conjunctive Query Q
1: for all blocks β in blocks(Q) /∈ π(Q) do
2: PP := PP ∪ {Q′} where π(Q′) = π(Q)∪β, 1(Q′) = 1(Q) and σ(Q′) = σ(Q)
3: for all blocks β ∈ σ(Q) do
4: SP := SP ∪ {Q′} where σ(Q′) = π(Q)\β, 1(Q′) = 1(Q) and π(Q′) = π(Q)
5: for all blocks β in blocks(Q) do
6: for all splits of β in β1 and β2 do
7: 1(Q′) = (1(Q) \ β) ∪ {β1, β2}
8: if β ∈ π(Q) then
9: σ(Q′) = σ(Q)

10: JP := JP ∪ {Q′} where π(Q′) = (π(Q) \ β) ∪ β1
11: JP := JP ∪ {Q′} where π(Q′) = (π(Q) \ β) ∪ β2
12: JP := JP ∪ {Q′} where π(Q′) = π(Q)
13: else
14: π(Q′) = π(Q)
15: if β ∈ σ(Q) then
16: JP := JP ∪ {Q′} where σ(Q′) = (σ(Q) \ β) ∪ β1
17: JP := JP ∪ {Q′} where σ(Q′) = (σ(Q) \ β) ∪ β2
18: else
19: JP := JP ∪ {Q′} where σ(Q′) = σ(Q)
20: for all MGQ in (JP ∪ PP ∪ SP) do
21: if MGQ is not a cartesian product then
22: if support(MGQ) < minsup then
23: return false
24: R(Q) := R(Q) ∪ {MGQ} //lhs for potential rule
25: return true

if Q′ ⇒ Q is a basic rule, and thus Proposition 3.2 applies. This process is given
in Algorithm 3.5.

A simple conjunctive query consists of a join, a projection and constant equali-
ties, and each of these parts represents a collection of restrictions. Since we repre-
sent simple conjunctive queries in a canonical way, removing one restriction from
either of these parts generates a query with one restriction less. Doing this for the
projection is straightforward. As the most general projection is known, one can
easily add a block of attributes that is not in the projection. This gives us a query
with one less restriction, and doing this for all blocks not in the projection results
in the generation of all queries with one restriction less pertaining to the projection
(line 1). For the constant equalities the reverse is true, instead of adding blocks
of constant equations we have to remove blocks to become more general, but this

49

3. Conjunctive Query Mining

can easily be done (line 3). The join of a query is represented by the partition into
blocks of attributes. To generate the queries with one less restriction with respect
to the join, we need to remove ‘joins’. This comes down to splitting blocks of the
partition into two parts. In order to generate all of them we have to split every
block in every possible way one at a time (line 6). One difficulty here lies in the
adaptation of the projection and constants to this new situation. A split block
could have been projected. This then results in three possible parents: both new
blocks are projected, only the first block is projected or only the second block is
projected (line 8). Because blocks of the partition can also have constants associ-
ated with them, splitting these blocks also means that this constant equation has
to be split. This results in two more general queries, one for each part of the split
with the constants associated with it (line 15). We must note that some of these
generated parents can represent cartesian products. As we opted to not consider
cartesian products we have no support values for these queries and thus are unable
to check if monotonicity holds in that case. The simple solution we adopt is to
simple ignore these cartesian products (line 21), essentially assuming that they are
frequent. This does imply that the monotonicity check is not complete.

3.2.4 Association Rule Generation
The generation of basic association rules is performed in a straightforward man-
ner. For all queries Q1 the algorithm needs to find all queries Q2 such that
Q2 is directly contained in Q1. Since these are exactly those queries that are
generated in the monotonicity check, we integrate rule generation there (Algo-
rithm 3.5, line 24). Note that these are only potential rules. Only queries that
pass the monotonicity check and that are found frequent after evaluation in the
database can generate confident association rules. The confident association rule
generation is shown in Algorithm 3.6. Here we simply compute the confidence
(support(Q)/support(MGQ)). If found to be confident the rule Q ⇒ ππ(Q)MGQ
can be added to the rule output of the algorithm. Notice that we project MGQ
onto the projection of Q as it is possible that MGQ has a larger projection due
to its canonical form. As we explained in 3.1.1, we want to cover all rules over
all queries, instead of just all rules of the set of canonical queries. The projection
creates an equivalent query and a valid association rule. As stated, the time spent
in this whole process is negligible compared to the query generation.

3.3 Conqueror Experimental Results
We performed several experiments using our prototype on the backend database
of an online quiz website [Bocklandt, 2008] and a snapshot of the Internet Movie

50

3.3. Conqueror Experimental Results

Algorithm 3.6 Rule Generation
Input: set of frequent queries FQ, threshold minconf
Output: set of confident association rules CR
1: for all Q ∈ FQ do
2: for all MGQ ∈ R(Q) do
3: if (support(Q)/support(MGQ)) ≥ minconf then
4: CR := CR ∪ {Q⇒ ππ(Q)MGQ}
5: return CR

Database (IMDB) [IMDB, 2008]. The quiz database (QuizDB) consists of two
relations named score and quizzes, containing respectively 866 755 tuples and 4884
tuples. The IMDB snapshot contains the relations actors (45 342 tuples), movies
(71 912 tuples) and genres (21 tuples) connected with the relations actormovies
and genremovies. A summary of the characteristics of these databases can be
found in Table 3.3a and Table 3.3b respectively.

The experiments were performed on a standard computer with 2GB RAM and
a 2.16 GHz processor. The prototype algorithm was written in Java using JDBC
to communicate with an SQLite 3.4.0 relational database1.

What follows are some examples of interesting patterns discovered by our al-
gorithm. Note that we abbreviate the relation names to improve readability.

3.3.1 Movie Database
The IMDB snapshot consist of three tables actors (a), movies (m) and genres (g),
and two tables that represent the connections between them namely actormovies
(am) and genremovies (gm). First of all let us take a look at some patterns that
are generated as a result of vertical containment.

Example 3.17. The following rule, has 100% confidence and can be interpreted
as a functional dependency:

πmid,name(movies)⇒ πmid(movies).

Interestingly enough the rule

πmid,name(movies)⇒ πname(movies)

has 99.99% confidence, so we can derive that in our database snapshot there are
different movies which have the same name (although not a lot). This type of
association rules could be considered as a certain kind of approximate func-
tional dependency [Kivinen & Mannila, 1995]. Such approximate dependencies

1The source code of Conqueror can be downloaded at http://www.adrem.ua.ac.be.

51

http://www.adrem.ua.ac.be

3. Conjunctive Query Mining

attribute #values
actors.* 45342
actors.aid 45342
actors.name 45342
genres.* 21
genres.gid 21
genres.name 21
movies.* 71912
movies.mid 71912
movies.name 71906
actormovies.* 158441
actormovies.aid 45342
actormovies.mid 54587
genremovies.* 127115
genremovies.gid 21
genremovies.mid 71912

(a) IMDB

attribute #values
scores.* 868755
scores.score 14
scores.player 31934
scores.qid 5144
scores.date 862769
scores.results 248331
scores.month 12
scores.year 6
quizzes.* 4884
quizzes.qid 4884
quizzes.title 4674
quizzes.author 328
quizzes.category 18
quizzes.language 2
quizzes.number 539
quizzes.average 4796

(b) QuizDB

Figure 3.3: Number of tuples per attribute in the QuizDB and IMDB databases

are considered very interesting pattern types in the context of database cleanup,
since we might expect that this dependency should hold. We expand on approxi-
mate dependencies in Section 3.4.

Now let us investigate some examples that illustrate regular containment.

Example 3.18. We can conclude that every movie has a genre because of the
following association rule with 100% confidence

πm.mid(movies)⇒ πm.midσgm.mid=m.mid(movies× genremovies).

It is easy to see that this type of rules describes inclusion dependencies occur-
ring in the database, a dependency type we will also discuss in Section 3.4. On the
contrary, in our database, not every movie has to have an actor associated with it
as the following rule only has 76% confidence

πm.mid(movies)⇒ πm.midσam.mid=m.mid(movies× actormovies).

52

3.3. Conqueror Experimental Results

This last rule may be surprising, but these kind of rules occur due to the fact that
we are working in a partial (snapshot) database. Furthermore, these kinds of rules
could indicate incompleteness of the database wich is also valuable knowledge in
the context of data cleaning.

Example 3.19. We can find ‘frequent’ genres in which actors play. The rule

πam.aid(actormovies)⇒
πam.aidσam.mid=gm.mid∧gm.gid=g.gid∧g.gid=′3′(actormovies× genremovies× genres)

has 40% confidence, so 40% of the actors play in a ‘Documentary’ (genre id 3)
while the same rule for ‘Drama’ has 50% confidence.

But also other types of interesting patterns can be discovered. For instance, the
following rule has 82% confidence.

πam.aid,am.midσam.mid=gm.mid∧gm.gid=g.gid∧g.gid=′16′(am× gm× g)⇒
πam.aid,am.midσam.mid=gm.mid∧gm.gid=g.gid∧g.gid=′16′(am× gm× g).

Intuitively it could indicate that 82% of the actors in genre ‘Music’ (genre id 16)
only play in one movie. But this rule could just as well indicate that one actor
plays in 18% of the movies. Examining constant values for actor id (under a low
confidence threshold) could allow us to find patterns like the latter.

3.3.2 Quiz Database
The quiz database consists of two relations quizzes (q) and scores (s), contain-
ing the data about the quiz (who made it, the category,...) and data about the
participants (name, result,...) respectively.

Similarly to the IMDB snapshot database we are able to find functional depen-
dencies.

Example 3.20. We find that the rule

πq.qid,q.author(quizzes× scores)⇒ πq.qid(quizzes× scores)

has 100% confidence and represents a functional dependency. The rule

πs.player(quizzes× scores)⇒ πs.playerσq.qid=s.qid(quizzes× scores)

however, only has 99% confidence and thus again it represents an approximate
inclusion dependency. It means that at least one player played a quiz that is
not present in the quizzes table. Rules like this could indicate that there might be
errors in the database, and are therefore very valuable in practice.

53

3. Conjunctive Query Mining

We also discovered other types of patterns of which some examples are given
below.

Example 3.21. To our surprise, the following rule has only 86% confidence:

πq.qidσq.author=s.player∧q.qid=s.qid(quizzes× scores)⇒
πq.qidσq.author=s.player∧q.qid=s.qid∧s.score=′9′(quizzes× scores)

This rule expresses that only in 86% of the cases where a maker plays his own quiz
he gets the maximum score of 9.

Example 3.22. We discovered a rule about a particular player, Benny in this
case. We can see that he only has the maximum score in 70% of the quizzes he
made himself.

πq.qidσq.author=s.player∧q.author=′Benny′∧q.qid=s.qid(quizzes× scores)⇒
πq.qidσq.author=s.player∧q.author=′Benny′∧q.qid=s.qid∧s.score=′9′(quizzes× scores).

For this same player we also discover the following rule having 76% confidence:

πq.qidσq.category=′music′(quizzes× scores)⇒
πq.qidσq.category=′music′∧q.author=′Benny′∧q.qid=s.qid(quizzes× scores)

This rule tells us that of all the quizzes in the category music, Benny has played
76% of them.

Next, we discovered the following rule having 49% confidence.

πs.playerσq.qid=s.qid(quizzes× scores)⇒
πs.playerσq.author=′Benny′∧q.qid=s.qid(quizzes× scores)

This rule tells us that 49% of all players have played a quiz made by Benny.
We also found that Benny has some real fans as the following rule has 98%

confidence.

πs.playerσq.qid=s.qid∧q.author=′Benny′(quizzes× scores)⇒
πs.playerσq.qid=s.qid∧q.author=′Benny′∧s.player=′Raf′(quizzes× scores)

It tells us that the player Raf has played 98% of Benny’s quizzes.

54

3.4. Dependencies

3.3.3 Performance
Using our implemented prototype, we conducted some performance measurements
using the IMDB snapshot and Quiz databases. The results can be seen in Fig-
ure 3.4. Looking at Figure 3.4a we can see that for a lower minimal support the
number of patterns generated increases drastically. This is partially due to the fact
that an exponential number of combinations of constant values come in to play
at these lower support thresholds. The IMDB snapshot database has a higher
number of unique constant values compared to the Quiz database which results in
quicker exponential behaviour as can be seen in Figure 3.4a. In Figure 3.4b we can
also see that for QuizDB the time scales with respect to the number of patterns.
For the IMDB dataset in Figure 3.4c this trend is less obvious, since in this case
the computation of the join determines the largest part of the timing. Essentially,
we conclude that these initial experiments show the feasibility of our approach.

3.4 Dependencies
So far we defined the Conqueror algorithm and have shown it discovers interesting
association rules over the simple, but appealing subclass of conjunctive queries,
called simple conjunctive queries. One challenge that remains to be solved is
the huge number of generated patterns, especially for lower support values. Part
of the volume is inherently due to the relational setting. Mining patterns over
multiple relations and several combinations of relations inherently results in more
patterns than mining on a single relation. A substantial part of the large number
of patterns, however, is due to redundancies induced by dependencies embedded in
the data. There is a close relationship between dependencies and redundancies in
databases [Ullman, 1988]. In general, a dependency is a constraint on the database,
stating that only a subset of all possible instances are valid, i.e., only certain
instances reflect a possible state of the real world. This fact implies that there will
be some sort of redundancy in legal instances. Knowing some information of the
values in the instance and the dependency enables us to deduce other information
about the values in the instance. In order not to have these redundancies in a
database, one typically decomposes it, based on the dependencies, such that single
relations no longer contain redundancies. Knowing the set of dependencies on a
database allows us to reduce the number of queries we can generate since many
of them will become equivalent under these dependencies. Unfortunately not all
real-world databases are necessarily neatly decomposed, and as such will contain
redundant information. Moreover, even for some nicely constructed database we
might not know the dependencies that hold on it, and therefore cannot exploit them
when querying. Luckily, as shown by the examples in Section 3.3, our algorithm is

55

3. Conjunctive Query Mining

0 500 1000 1500 2000

0

0.5

1

1.5

2
·104

minimal support

nu
m
be

r
of

qu
er
ie
s

IMDB
QuizDB

(a) number of patterns

0 500 1000 1500 2000
0.5

1

1.5

2

2.5

·105

minimal support

m
ill
ise

co
nd

s

(b) Quiz database: runtime

0 200 400 600

7.73

7.74

7.75

·106

minimal support

m
ill
ise

co
nd

s

(c) IMDB: runtime

Figure 3.4: Experiments for Conqueror with increasing minimal support

capable of detecting previously unknown dependencies. In this section we look at
the different kinds of dependencies more closely, as well as at the kind of redundant
queries they produce, and more importantly, how we can avoid this. Furthermore,
we investigate how we can detect these dependencies and see that we can even use
these newly detected dependencies to instantly reduce redundant query generation.

Next to their role in query redundancy, [Boulicaut, 1998] also describes how
dependencies can be used to aid in the understanding of data semantics of real-life
relational databases, helping experts to analyse what properties actually hold in
the data and support the comparison with desired properties. In this section we
also consider this point of view and examine dependency types that cannot be
used for redundancy removal but are potentially able to provide new semantical

56

3.4. Dependencies

insights.

3.4.1 Functional Dependencies
Functional dependencies are probably the most important (and also most known)
database dependencies. They are defined as follows [Ullman, 1988]:

Definition 3.7. Let R(A1, . . . , An) be a relation scheme, and let X and Y be
subsets of {A1, . . . , An}. We say X → Y , read “X functionally determines Y ” or
“Y functionally depends on X” if whatever relation r is the current instance
for R, it is not possible that r has two tuples that agree in the components for all
attributes in the set X yet disagree in one or more attributes in the set Y .

One example of a well known use of functional dependency is the definition
of a key of a relation. The key of a relation is the minimal attribute set that
functionally determines all attributes of that relation. In our setting functional
dependencies can induce many redundant queries.

Example 3.23. Given the scheme D consisting of sch(R1) = {A,B}, sch(R2) =
{C,D,E} and sch(R3) = {F} if we suppose for example the functional dependency
C → DE2 holds, the following queries are essentially equivalent:

πC(R1 ×R2 ×R3)
πCD(R1 ×R2 ×R3)
πCE(R1 ×R2 ×R3)
πCDE(R1 ×R2 ×R3)

Furthermore, any query that add restrictions with respect to πC(R1 ×R2 ×R3)
(e.g., a join or a constant equality) also appears with these equivalent projections.
Hence this functional dependency causes many equivalent queries

If we know these functional dependencies, we are able to avoid generating such
redundant queries. [Jen et al., 2008] studied the problem of mining all frequent
projection-selection queries from a single relation, and assumed that the relation
to be mined satisfies a set of functional dependencies. These dependencies were
then exploited to remove all redundant queries with respect to these dependencies,
from the search space of all queries. To accomplish this, a pre-ordering was defined
over queries, and showed to be anti-monotonic towards the support measure. This
pre-ordering forms the basis for the definition of equivalence classes that are used
for efficient generation of frequent queries, since two equivalent queries are shown
to have the same support.

2Note, that as is common for functional dependencies, we use concatenation as a notation
for union, thus A1 · · ·An is used to represent the set of attributes {A1, . . . , An}

57

3. Conjunctive Query Mining

Our simple conjunctive queries are more general than the selection-projection
queries considered by Jen et al. as we allow for arbitrary joins between multiple
relations. In order to successfully avoid the generation of duplicates we therefore
generalise the theory to be able to apply the same principles to arbitrary joins of
relational tables. This allows us to mine non-redundant simple conjunctive queries,
given a collection of functional dependencies over the relations of an arbitrary
relational database. In Section 3.5 we generalise our query comparison to take
into account functional dependencies, and in Section 3.6 we update our algorithm
Conqueror to generate non-redundant queries.

Additionally, we also uncovered, that mining simple conjunctive queries using
diagonal containment allows us to detect previously unknown functional depen-
dencies (see Example 3.20 in Section 3.3). This is due to the following strong
relationship between support and functional dependency, described in the follow-
ing proposition.

Proposition 3.3. Let R be a relation over the attribute set sch(R) and let X and
X ′ be subsets of sch(R). R satisfies X → X ′ if and only if support(πXX′R) =
support(πXR).

Proof. If R satisfies X → X ′ then the tuples of R agreeing on X must also agree
on X ′. This means that the number of tuples with unique values for X is the same
as the number of tuples with unique values for XX ′, and hence support(πXX′R) =
support(πXR) follows. If on the other hand we know that support(πXX′R) =
support(πXR), then it cannot be that two tuples that agree on X, do not agree
on X ′. If this was the case then support(πXX′R) > support(πXR). Thus it follows
that X → X ′ holds in R.

Note that we cannot actually state, as required by the definition, that this
dependency holds for all instances, since we are only investigating one. The func-
tional (and other) dependencies we are able to discover are therefore always in-
stance dependent.

We are not only capable of detecting functional dependencies on relations, but
also functional dependencies that hold on arbitrary joins of relations.

Example 3.24. Considering the schema D consisting of sch(R1) = {A,B} and
sch(R2) = {C,D,E}, for Q = πADσA=C(R1 ×R2) and Q′ = πAσA=C(R1 ×R2),
considering an instance I of D for which support(Q) = support(Q′) indicates that
σA=C(R1 ×R2)(I) satisfies the functional dependency A→ D.

Based on Proposition 3.3 we introduce a novel technique to discover previously
unknown functional dependencies during the mining process, and immediately ex-
ploit them in reducing the number of redundant frequent queries in the output.

58

3.4. Dependencies

As stated, we do not only consider functional dependencies over the original rela-
tions of the database, but also over any join of multiple relations. Such functional
dependencies are again used to limit the final collection of queries to only those
that are non-redundant with respect to both the given and discovered collections
of functional dependencies. In Section 3.6 we describe the changes we made to the
basic Conqueror algorithm in order to enable this new functionality.

Our main purpose for the discovery of functional dependencies is their pruning
potential. In contrast, the discovery of functional dependencies as a goal itself has
been extensively studied the past years and several algorithms have been developed
for this specific purpose. They can be roughly classified according to the approach
they take [Yao & Hamilton, 2008]: the candidate generate-and-test approach [Bell
& Brockhausen, 1995, Huhtala et al., 1999, Novelli & Cicchetti, 2001], the minimal
cover approach [Flach & Savnik, 1999, Lopes et al., 2000, Wyss et al., 2001], and the
formal concept analysis approach [Baixeries, 2004, Lopes et al., 2002]. Although
the Conqueror algorithm could also be used to discover functional dependencies
as a goal, our algorithm tackles the more general query mining problem. These
algorithms are specialised, and therefore also much more efficient for the specific
task of discovering functional dependencies.

3.4.2 Conditional Functional Dependencies
Recent studies have shown that dirty data creates huge costs both due to the usage
of faulty knowledge as in man-hours spent cleaning up data manually. It is with
this argument that [Bohannon et al., 2007] introduce the notion of conditional
functional dependencies.

Definition 3.8. A conditional functional dependency ϕ is of the form (R :
X → Y, Tp) here R is the relation where the dependency holds, X and Y are sets of
attributes from R, X → Y is a standard dependency embedded in ϕ, and Tp is a
pattern tableau, where for each attribute A in X or Y and each tuple tp ∈ Tp, t[A]
is either a constant ‘a’ from the domain of A or an unnamed variable ‘_’.

A data tuple t is said to match a pattern tuple tp if for all attributes A of the
tuple t[A] = tp[A] or tp[A] = ‘_’.

A relation R satisfies the conditional functional dependency ϕ if for each pair
of tuples t1, t2 in R and for each tuple tp in the pattern tableau Tp of ϕ it holds that
if t1[X] = t2[X] and both match tp[X], then t1[Y] = t2[Y] and both must match
tp[Y].

Next to proving the effectiveness of conditional functional dependencies in de-
tecting and repairing inconsistencies of data [Fan et al., 2008, Fan et al., 2009]
introduce several methods for the discovery of conditional functional dependen-
cies. The CFDMiner algorithm is based on closed itemset mining techniques and

59

3. Conjunctive Query Mining

only mines constant conditional functional dependencies (no unnamed variable
allowed). CTANE and FastCFD are algorithms developed to mine general condi-
tional functional dependencies, based on the well known regular functional depen-
dency mining algorithms TANE [Huhtala et al., 1999] and FastFD [Wyss et al.,
2001]. [Chiang & Miller, 2008] present another algorithm for conditional func-
tional dependency discovery, and additionally, search for approximate conditional
functional dependencies to find dirty data (We cover approximate dependencies in
Section 3.4.3).

Since simple conjunctive queries are capable of expressing patterns with at-
tribute values, and we already proved we are able to detect functional dependen-
cies by comparing support of queries, finding conditional functional dependencies
is also possible using our approach. Indeed, the detection of conditional functional
dependencies can be done in much the same way as functional dependencies, as
the following proposition shows.

Proposition 3.4. Given a pattern tuple tp, let the selection condition σX=tp[X]
denote the conjunction of A = a for each constant ‘a’ in tp. The conditional
functional dependency (R : X → Y, Tp) holds if and only if for all tp in Tp

support(πXY σX=tp[X](R)) = support(πXσX=tp[X](R))

and

support(πsch(R)σX=tp[X](R)) = support(πsch(R)σX=tp[X]∧Y=tp[Y](R)).

Proof. The conditional functional dependency (R : X → Y, Tp) holds if for each tp
in Tp and for each pair of tuples t1, t2 if t1[X] = t2[X] and both match tp[X], then
t1[Y] = t2[Y]. This holds if and only if the number of unique values forX matching
tp[X] is equal to the number of unique values ofXY where X matches tp[X], or put
in other words if support(πXY σX=tp[X](R)) = support(πXσX=tp[X](R)). Further-
more, it must additionally hold for each such pair, that both t1[Y] and t2[Y] must
match tp[Y]. This holds if and only if the number of tuples where X matches tp[X]
equals the number of tuples where both t1[Y] and t2[Y] must match tp[Y]. This is
the same as support(πsch(R)σX=tp[X](R)) = support(πsch(R)σX=tp[X]∧Y=tp[Y](R)).

In order to include this detection in our algorithm we need to add a con-
ditional functional dependency discovery check. We search for rules of the type
πXσX=tp[X](R)⇒ πXY σX=tp[X](R) with 100% confidence (antecedent and confident
have equal support). These rules represent a special kind of conditional functional
dependency which we refer to as dependency-only conditional functional depen-
dencies. In essence, they represent the conditional functional dependencies where
the Y part of the pattern tuple only contains an unnamed variable (i.e., a wild-
card). Intuitively these are ‘regular’ functional dependencies that hold, but only

60

3.4. Dependencies

for the specified X values. Alongside these we can also discover 100% association
rules of the type πsch(R)σX=tp[X](R) ⇒ πsch(R)σX=tp[X]∧Y=tp[Y](R). We call these
condition-only conditional functional dependencies. Here we are in fact stating a
trivial dependency sch(R)→ sch(R), but we are requiring, via the pattern tuple,
that when X = tp[X], it must hold that Y = tp[Y]. Both these detections can be
easily added to the rule generation procedure or as postprocessing. Using Proposi-
tion 3.4, both types of conditional functional dependencies can then be combined
to form general conditional functional dependencies as presented in Definition 3.8.

Example 3.25. Considering the schema D consisting of sch(R1) = {A,B} and
sch(R2) = {C,D,E}, if we find that

support(πCDσC=‘c’(R1 ×R2)) = support(πCDEσC=‘c’(R1 ×R2))

we have found the conditional functional dependency (R2 : CD → E,(c, _ || _))3.
Furthermore, if we additionally find that

support(πCDEσC=‘c’(R1 ×R2)) = support(πCDEσ(C=‘c’)∧(E=‘e’)(R1 ×R2))

than we can conclude that the conditional functional dependency (R2 : CD → E,(c,
_ || e)) must hold.

The definition of support for a conditional functional dependency [Fan et al.,
2009], is the number of tuples in the relation, that match the pattern. In our
approach this is the same as support(πRσX=tp[X]∧Y=tp[Y](R)).

It has been clearly shown that conditional functional dependencies are useful
in practice, and it is therefore nice that our conjunctive query mining technique is
able to discover them. Despite this nice result, our algorithm has a more general
goal, and for that reason it can never be as efficient as the mentioned specialised
approaches. Moreover, these methods also mine minimal sets of conditional func-
tional dependencies, while this is not true in our case. We must note, however,
that analogous to the discovery of functional dependencies we are also capable of
detecting conditional functional dependencies over arbitrary joins of relations, a
feature not present in these specialised approaches. Furthermore, similarly to [Chi-
ang & Miller, 2008] we can also have a notion of approximate conditional functional
dependencies. We touch on this subject in Section 3.4.3.

Theoretically we could also apply conditional functional dependencies to prune
redundant queries, since for any more specific query the dependency holds. Since,
however, conditional functional dependencies include constant values, and this
part of the algorithm is already executed efficiently using SQL in the database, we
chose not to include any pruning based on conditional functional dependencies in
our current algorithm (Section 3.6).

3We use the notation of [Fan et al., 2009], where left hand side and right hand side attributes
of the functional dependency are separated with ‘ || ’ in the pattern tuple.

61

3. Conjunctive Query Mining

3.4.3 Approximate Functional Dependencies
An approximate functional dependency is a functional dependency that almost
holds. For example, a persons gender is approximately determined by their first
name. Approximate functional dependencies arise in many real world databases
where there is a natural dependency between some attributes, but due to errors
or exceptions in some tuples, the dependency does not hold for the whole relation.
Similar to conditional functional dependencies (which also represent approximate
functional dependencies since they also hold for part of the relation), approximate
functional dependencies have many applications in data cleaning, as they can
potentially expose errors or missing information in the database. Also from a pure
semantical standpoint, approximate functional dependencies can result in valuable
insight. [Huhtala et al., 1999] give the motivating example of a database relation of
chemical compounds. Here a approximate functional dependency relating various
structural attributes to carcinogenicity could provide valuable hints to biochemists
for potential causes of cancer, although evidently an expert analysis still needs to
be performed.

The discovery of approximate functional dependencies has received consider-
able interest, and various techniques for the discovery of approximate functional
dependencies exist [Huhtala et al., 1999, Lopes et al., 2002, Matos & Grasser,
2004, Engle & Robertson, 2008, Sánchez et al., 2008]. Most of them make use of
the g3 measure [Kivinen & Mannila, 1995], defined as follows:

g3(X → Y,R) = |R| −max{|S| | S ⊆ R, S � X → Y }
|R|

Intuitively it represents the minimal fraction of tuples in the instance of a
relation R, that violate the dependency X → Y . We know from Proposition 3.3
that the dependency X → Y holds if support(πXY (R)) = support(πX(R)). If,
however, X → Y does not hold, the difference support(πXY (R))− support(πX(R))
should give some measure of how many tuples violate the dependency. Our support
measure eliminates duplicates, therefore this difference represents the number of
unique values for XY in R for which the dependency does not hold. This number
is always lower than the minimal number of tuples for which the dependency does
not hold. Therefore, using our support measure we can obtain a lower bound to
the g3 measure:

g3(X → Y,R) ≥ support(πXY (R))− support(πX(R))
|R|

This lower bound, which we refer to as gs3, gives the number of unique XY values
that do not satisfy the dependency X → Y relative to all tuples in R. In general
we can conclude that if the value for gs3 is high we know X → Y is no approximate

62

3.4. Dependencies

functional dependency. A low value of gs3, however, does not guarantee that it is.
Finding all dependencies with a value for gs3 below a certain error threshold will
only give us the set of possible approximate functional dependencies.

Depending on the amount of duplication of XY and X values, the gs3 is more
or less close to the g3 value. On that matter we must note that duplication of
tuples satisfying the dependency does not affect gs3 since they cancel each other
out in the difference of support values. Only duplicates in the violating XY values
affect the measure, since they are counted only once in gs3. The relative support
support(πXY (R))/|R| gives a measure for the total amount of duplication of XY
values. The closer it is to 1, the smaller the amount of duplication of XY in
R. Hence, to take into account duplication we divide gs3 by support(πXY (R))/|R|
which results in the following measure:

gc3(X → Y,R) = support(πXY (R))− support(πX(R))
support(πXY (R))

= 1− support(πX(R))
support(πXY (R))

= 1− confidence(πXY (R)→ πX(R))

This measure gives us the fraction of unique values for XY in R that violate
the dependency X → Y . Unfortunately, this measure can now be higher than
g3, making it no longer a lower bound. The g3 measure is not the only measure
used to express approximateness of functional dependencies, and many other mea-
sures, such as InD, have been considered [Giannella & Robertson, 2004, Sánchez
et al., 2008]. The gc3 measure can be seen as a new error measure for approximate
functional dependencies, that is closely related to g3 but invariant with respect
to duplication of tuples. We will refer to dependencies with a gc3 below a certain
maximal error threshold as confident functional dependencies. In fact, formulated
this way, they are no more than a certain kind of conjunctive query association
rules, and detecting them comes down to identifying the association rules Q1 ⇒ Q2
where 1(Q1) = 1(Q2) = ∅, σ(Q1) = σ(Q2) = ∅ and π(Q1) = (π(Q2) ∪ X). Our
algorithm therefore generates such confident functional dependencies, and could
potentially be optimised for this specific case. However, as is the case with (condi-
tional) functional dependencies, many specialised algorithms exists [Huhtala et al.,
1999, Matos & Grasser, 2004, Engle & Robertson, 2008] which are better suited
for the purpose. Although they do not provide support for our gc3 measure, they
could potentially be adapted to do so.

We can also consider approximate conditional functional dependencies. If we
change the constraint of the rules above to allow for σ(Q1) = σ(Q2) 6= ∅, we can
find approximate dependency-only conditional functional dependencies. Similarly

63

3. Conjunctive Query Mining

we can also consider approximate condition-only conditional functional dependen-
cies. Unfortunately, since these dependencies do not hold 100%, they can no longer
be combined to form general approximate conditional functional dependencies,
since we do not know if the dependency-only and the condition-only dependencies
hold for the same set of tuples.

Intuitively, approximate functional dependencies can also entail a lot of redun-
dancies.

Example 3.26. If we suppose C → DE holds with 98% confidence in the setting
of Example 3.23, then the queries

πC(R1 ×R2 ×R3)
πCD(R1 ×R2 ×R3)
πCE(R1 ×R2 ×R3)
πCDE(R1 ×R2 ×R3)

will all have approximately the same support.

However, since we are not capable of deriving these support values from the
approximate confidence, we cannot prune these queries. Therefore, we cannot use
approximate functional dependencies to reduce the amount of queries generated if
we want lossless pruning. Approximate functional dependencies could be used if
only approximate results are required. However, this is not part of our goal, and
we therefore do not consider this setting any further.

3.4.4 Inclusion Dependencies
Next to functional dependencies, there is another often considered type of depen-
dencies, namely the inclusion dependencies. Inclusion dependencies state that the
values for certain set attributes in one relation, must all occur as values for a set of
attributes in another relation. Formally we can define them as follows [Abiteboul
et al., 1995].

Definition 3.9. Given a scheme D, where R and S are relations in D, and X ⊆
sch(R) and Y ⊆ sch(S), then the instance I satisfies the inclusion dependency
R[X] ⊆ S[Y] if πX(R)(I) ⊆ πY (S)(I).

Although it has received fewer attention than the discovery of functional de-
pendencies, some algorithms have been also developed for the discovery of in-
clusion dependencies [Kantola et al., 1992, Marchi et al., 2002, Marchi & Petit,
2003, Marchi et al., 2004, Koeller & Rundensteiner, 2003, Koeller & Rundensteiner,
2006]. In the simplest case these algorithms are based on the levelwise approach,
but for larger patterns, optimisations are proposed. The Conqueror algorithm also

64

3.4. Dependencies

allows for the detection of inclusion dependency by means of query comparison (see
Example 3.18 in Section 3.3). This is stated as follows:

Proposition 3.5. Let R and S be relations respectively defined over sch(R) and
sch(S), such that sch(R) ∩ sch(S) = ∅. If X and Y are subsets of sch(R) and
sch(S), respectively, then the inclusion dependency R[X] ⊆ S[Y] is satisfied if and
only if support(πX(R× S)) = support(πXσX=Y (R× S)).

Proof. If R and S satisy R[X] ⊆ S[Y] then all values for X are included in πY (S),
this implies that the the distinct results for πX(R × S) equal the distinct results
for πXσX=Y (R × S), and hence support(πX(R × S)) = support(πXσX=Y (R × S))
follows trivially.

If support(πX(R × S)) = support(πXσX=Y (R × S)) holds then for each tuple
tR in R it must hold that there exists a tuple in tS in S such that tR[X] = tS[Y],
hence πX(R) ⊆ πY (S) and R[X] ⊆ S[Y] follows.

Next to the intrinsic interestingness of these kinds of patterns, inclusion depen-
dencies can also result in redundant queries. Unfortunately [Casanova et al., 1984]
showed that, although there are simple complete axiomatizations for functional
dependencies alone and for inclusion dependencies alone, there is no complete ax-
iomatization for functional and inclusion dependencies taken together. Addition-
ally, they showed that the inference problem for inclusion dependencies alone is
PSPACE-complete, in contrast with the polynomial time complexity for the func-
tional dependency inference problem. So although inclusion dependencies do imply
additional redundant queries, the equivalence of such queries cannot be computed
efficiently [Johnson & Klug, 1984]. For this reason, we do not generalise query
comparison to include inclusion dependencies, choosing instead only to include
functional dependencies, as detailed in Section 3.5. Luckily, in the specific case of
foreign-keys, inclusion dependencies can be used to avoid some query evaluations.
This optimisation is discussed in Section 3.4.5.

We can also consider the notion of approximate inclusion dependencies. For
this purpose the measure g′3, has been introduced [Marchi et al., 2002]. As the
name implies, it is based on the g3 measure. Intuitively it corresponds to the
proportion of distinct values of X one has to remove from R to obtain a database
d′ such that d′ |= R[X] ⊆ S[Y].

g′3(R[X] ⊆ S[Y],d) =

1− max{|πX(R′)| | R′ ⊆ R, (d− {R}) ∪ {R′} |= R[X] ⊆ S[Y]}
|πX(R)|

Since this measure makes use of distinct values, we can also formulate this
measure using simple conjunctive queries and our support measure as follows:

65

3. Conjunctive Query Mining

g′3(R[X] ⊆ S[Y],d) = support(πX(R× S))− support(πXσX=Y (R× S))
support(πX(R))

= 1− support(πXσX=Y (R× S))
support(πX(R× S))

= 1− confidence(πX(R× S)⇒ πXσX=Y (R× S))

Formulated this way, we can see that similar to approximate functional de-
pendencies, approximate inclusion dependencies are no more than a certain kind
of conjunctive query association rules where the error threshold ε corresponds to
an (1− ε) minimal confidence threshold. Also similar to functional dependencies,
our algorithm could be modified to only generate such rules, but will hardly be as
efficient as the mentioned specialised (approximate) inclusion dependency mining
algorithms. However, our algorithm has the benefit that it puts the discovery of
both (approximate) functional and (approximate) inclusion dependencies together
in a broader context of conjunctive query association rules.

3.4.5 Foreign-keys
In relational databases, a foreign-key is an attribute (or attribute combination)
in one relation R whose values are required to match those of the primary key of
some relation S [Date, 1986]. Typically foreign-keys are defined using referential
integrity constraints provided in the database [Codd, 1970]. However, as stated
before, such information is not necessarily present in a given real-world database.
Luckily, such a foreign-key constraint is essentially made up of two dependencies:
a key dependency and an inclusion dependency. Since Conqueror also discovers
inclusion dependencies in combination with functional dependencies, it is able to
discover foreign-keys.

Proposition 3.6. Let R and S be relations respectively defined over sch(R) and
sch(S), such that sch(R) ∩ sch(S) = ∅. If X and Y are subsets of sch(R) and
sch(S), respectively, then Y is a foreign-key referencing the key X if and only if

support(πsch(R)(R× S)) = support(πX(R× S)) = support(πXσX=Y (R× S))

Proof. Following the definition, Y is a foreign-key referencing X if and only if the
functional dependency X → sch(R) and the inclusion dependency S[Y] ⊆ R[X]
hold. The proposition then follows from Proposition 3.3 and 3.5.

This knowledge of foreign-keys can now be used to avoid unneeded query eval-
uation.

66

3.4. Dependencies

Example 3.27. Considering the schema D consisting of sch(R1) = {A,B} and
sch(R2) = {C,D,E}, assume that the functional dependency A → B holds, and
that we are given the inclusion dependency R1[C] ⊆ R2[A]. If all frequent queries
involving respectively R1 and R2 are known, then consider the following query
πABCDEσA=C(R1 × R2). This is clearly a join performed along the key A of R1
and the foreign-key C in R2. Because of the functional dependency and A = C we
know

support(πABCDEσA=C(R1 ×R2)) = support(πCDEσA=C(R1 ×R2))

Knowing that R1[C] ⊆ R2[A] we can also conclude that

support(πCDEσA=C(R1 ×R2)) = support(πCDE(R1 ×R2))

Therefore, if πCDE(R1 × R2) is frequent, πABCDEσA=C(R1 × R2) is known to be
frequent without having to compute its support. Moreover, we have a similar situ-
ation for some of the projections of Q = πABCDEσA=C(R1×R2). More precisely, it
can be seen that support(πABCDQ) = support(πCD(R1 × R2), support(πABCEQ) =
support(πCE(R1 × R2)) and support(πABCQ) = support(πC(R1 × R2)). Conse-
quently, the supports of πABCDQ, πABCEQ and πABCQ should not be computed,
as well as the supports of some of selections of these queries. This results in a
significant reduction of the number of query evaluations, that is not possible by
only considering A→ B. Notice, however, that for example, support(πBEQ) must
be computed as BE is not involved in the key-foreign-key constraint. In fact, given
the projection generation tree shown in Figure 3.5, only for the bold projection
queries, the support is known.

We discuss how we use this knowledge in avoiding query evaluation in Sec-
tion 3.6, where we describe the modifications to the Conqueror algorithm.

3.4.6 Conclusion
To conclude, dependencies result in the generation of many redundant queries.
We therefore update our algorithm in the next sections in order to make use of
these dependencies and generate non-redundant queries. Furthermore, we showed
that using comparisons of conjunctive queries, we are able to detect previously
unknown functional and key dependencies. In the upcoming sections we explain
how we do this algorithmically as well as how we maximally exploit the newly
discovered dependencies in order to avoid generating or evaluating queries that
are redundant with respect to these dependencies.

Additionally, we showed that we are also capable of discovering conditional and
approximate dependencies and showed how our confidence measure relates to the

67

3. Conjunctive Query Mining

ABCDE

BDE

DE

D

\E

E

\D

\B

BE

B

\E

\D

BD

\E

\AC

ABCE

ABC

\E

\D

ABCD

\E

Figure 3.5: Projection generation tree for Example 3.27

existing measures used for this task in the field. Although our general algorithm is
not as efficient as specialised conditional and approximate functional and inclusion
dependency mining algorithms that have been developed, it does discover all of
them together in a broader context of conjunctive query association rules, using
measures that closely relate to those already used in the field.

3.5 Generalising Query Comparison
We now update our query comparison to take into account functional dependencies.
First let us introduce the following definition of a join query, to simplify further
notation:

Definition 3.10. We call Q a join query if σ(Q) is the empty condition and if
π(Q) is the set of all attributes of all relation names occurring in 1(Q). Given a
simple conjunctive query Q, we denote by J(Q) the join query such that 1(J(Q)) =
1(Q).

Assume that we are given functional dependencies over D. More precisely, each
Ri is associated with a set of functional dependencies over sch(Ri), denoted by
FDi, and the set of all functional dependencies defined in D is denoted by FD, we
now define the pre-ordering � to compare queries, which generalises both diagonal
containment as well as the pre-order of [Jen et al., 2008]:

68

3.5. Generalising Query Comparison

Definition 3.11. Let Q1 = πX1σF1(R1×· · ·×Rn) and Q2 = πX2σF2(R1×· · ·×Rn)
be two simple conjunctive queries. Denoting by Yi the schema of Qσ

i , for i = 1, 2,
Q1 � Q2 holds if

1. 1(Q1) ⊆ 1(Q2)

2. J(Q2)(I) satisfies X1Y2 → X2 and Y2 → Y1, and

3. the tuple Qσ
1Q

σ
2 is in πY1Y2J(Q2)(I).

Example 3.28. Considering the schema D consisting of sch(R1) = {A,B} and
sch(R2) = {C,D,E}, assume that FD1 = ∅ and FD2 = {C → D,E → D}, and
let Q1 = πADσ(A=C)∧(E=e)R and Q2 = πCσ(A=C)∧(D=d)R. We have 1(Q1) = 1(Q2)
and J(Q1) = J(Q2) = πABCDEσ(A=C)R. Then, if I is an instance of D, J(Q1)(I)
satisfies FD. Moreover, due to the equality defining 1(Q1), J(Q1)(I) also satisfies
the two functional dependencies A→ C and C → A. Therefore, J(Q1)(I) satisfies
CE → AD and E → D, and so, if (d, e) ∈ πDEJ(Q1)(I), by Definition 3.11,
Q2 � Q1.

This relation is a pre-ordering as we now prove.

Proposition 3.7. The relation � is a pre-ordering over the simple conjunctive
queries on D

Proof. It is easy to see that � is reflexive, therefore we only show the transitivity
of �. Let Q1 = πX1σF1R and Q2 = πX2σF2R and Q3 = πX3σF3R be such that
Q1 � Q2 � Q3. We now need to prove that Q1 � Q3. First of all, since the
subset relation is transitive, we know that 1(Q1) ⊆ 1(Q3). First we prove that
J(Q3)(I) satisfies X1Y3 → X3 and Y3 → Y1. Since 1(Q2) ⊆ 1(Q3), J(Q3)(I)
satisfies all functional dependencies that hold in J(Q2)(I). Therefore, it is easy
to see that J(Q3)(I) satisfies Y3 → Y1, since we know Y3 → Y2 and Y2 → Y1.
Furthermore, using transitivity we find X1Y3 → X1Y3Y2 since we know Y3 → Y2.
Then we know X1Y2Y3 → X1Y2Y3X2 since we know X1Y2 → X2. Finally we know
X1Y2Y3X2 → X3 since we knowX2Y3 → X3, and thus using decomposition we can
conclude X1Y3 → X3. Second we prove that the tuple Qσ

1Q
σ
3 is in πY1Y3J(Q3)(I).

Since we know Qσ
1Q

σ
2 is in πY1Y2J(Q2)(I) and that 1(Q2) ⊆ 1(Q3) and 1(Q1) ⊆

1(Q3), we also know that Qσ
1Q

σ
2 is in πY1Y2J(Q3)(I). Using the fact that Qσ

2Q
σ
3 is

in πY2Y3J(Q3)(I) we can then conclude that Qσ
1Q

σ
3 is in πY1Y3J(Q3)(I).

We note that, although the above pre-ordering is instance dependent, this has
no impact regarding computational issues, as our algorithm only considers tuples
that occur in the relations from which frequent queries are mined. Also remark
that, in contrast to diagonal containment, this pre-ordering is not a partial order.
Suppose for example that in the context of Example 3.1 A,B is the key of R1,

69

3. Conjunctive Query Mining

then trivially the FDs A → B and B → A hold. Therefore both πA(R1 × R2) �
πB(R1×R2) and πB(R1×R2) � πA(R1×R2) hold, but it is clear that πA(R1×R2) 6=
πB(R1 ×R2).

Similar to diagonal containment and the pre-ordering from [Jen et al., 2008], we
can prove that the pre-ordering satisfies the important basic property that the sup-
port of queries is anti-monotonic with respect to it, that is, for all simple conjunc-
tive queries Q1 and Q2 such that Q1 � Q2, we have support(Q2) ≤ support(Q1).

Lemma 3.2. If X → Y is a functional dependency that holds for Q(I).

1. support(πYQ) ≤ support(πXQ)

2. support(σX=xQ) ≤ support(σY=yQ), where y is the tuple over Y associated
with x through X → Y in Q(I)

Proof.

1. Since X → Y holds for Q there exists a total, onto function from πXQ(I) to
πYQ(I), thus support(πYQ) ≤ support(πXQ)

2. For every tuple t in σX=xQ(I), t.X = x. Thus, t.Y = y, showing that t is in
σY=yQ(I). Therefore we have support(σX=xQ) ≤ support(σY=yQ).

Lemma 3.3. If 11⊆12 then support(πXσF∧12R) ≤ support(πXσF∧11R)

Proof. Since 11 is a set of conditions of the type A = A′, and 11⊆12, we know
that 12 contains at least all the conditions of 12. Therefore every tuple t in the
answer of πXσF∧12R will satisfy all the conditions of πXσF∧11R and therefore
πXσF∧12R(I) ⊆ πXσF∧11R, from which we can conclude that support(πXσF∧12R)
≤ support(πXσF∧11R).

Proposition 3.8. (Support Anti-Montonicity) For all simple conjunctive
queries on D, if Q1 � Q2 then support(Q2) ≤ support(Q1)

Proof. If Qσ
2 is the empty tuple, it follows from Y2 → Y1 that Y1 and Y2 are empty.

Now X1 → X2 holds, then from Lemma 3.2 it follows that support(πX2Q1) ≤
support(Q1) using Lemma 3.3 we know that support(Q2) ≤ support(πX2Q1), tran-
sitively we conclude that support(Q2) ≤ support(Q1).

If Qσ
2 is not the empty tuple, σσ(Q2)∧1(Q2)(I) satisfies X1 → Y2, and as X1Y2 →

X2, σσ(Q2)∧1(Q2)(I) satisfies X1 → X2. Using Lemma 3.2, point 1 we obtain

support(πX2σσ(Q2)∧1(Q2)R) ≤ support(πX1σσ(Q2)∧1(Q2)R).

70

3.5. Generalising Query Comparison

As we know Y2 → Y1 and Qσ
1Q

σ
2 is in πY1Y2J(Q2)(I), using Lemma 3.2 point 2, we

obtain
support(πX1σσ(Q2)∧1(Q2)R) ≤ support(πX1σσ(Q1)∧1(Q2)R).

Thus transitively we obtain
support(πX2σσ(Q2)∧1(Q2)R) ≤ support(πX1σσ(Q1)∧1(Q2)R).

Finally using Lemma 3.3 we can say that
support(πX1σσ(Q1)∧1(Q2)R) ≤ support(πX1σσ(Q1)∧1(Q1)R).

Thus transitively we conclude
support(πX2σσ(Q2)∧1(Q2)R) ≤ support(πX1σσ(Q1)∧1(Q1)R)

or support(Q2) ≤ support(Q1).

Of course, this anti-monotonicity is used in our algorithms to prune infrequent
queries, in much the same way as infrequent queries were pruned using diagonal
containment (see Section 3.1.1). Similarly, the pre-ordering � induces an equiva-
lence relation, denoted by ∼ and defined as follows: given two simple conjunctive
queries Q1 and Q2, Q1 ∼ Q2 holds if Q1 � Q2 and Q2 � Q1.

As a consequence of anti-monotonicity of the support, if Q1 ∼ Q2 holds then
support(Q1) = support(Q2). Therefore, only one computation per equivalence class
modulo ∼ is enough to determine the support of all queries in that class.

Proposition 3.9. Let Q1 = πX1σF1R and Q2 = πX2σF2R be two simple conjunctive
queries, Q1 ∼ Q2 holds if and only if 1(Q1) = 1(Q2) and (X1Y1)+ = (X2Y2)+,
Y +

1 = Y +
2 and Qσ

1Q
σ
2 ∈ πY1Y2J(Q1)(I).

Proof. For Q1 ∼ Q2 to hold, it must be that 1(Q1) ⊆ 1(Q2) and 1(Q2) ⊆
1(Q1), thus 1(Q1) = 1(Q2). Assuming that J(Q1)(I) satisfies the functional
dependencies of a given set FD, since 1(Q1) = 1(Q2), J(Q2)(I) also satisfies this
set. Since it must hold that Y2 → Y1 and Y1 → Y2, Y +

1 = Y +
2 follows. Similarly

since it must hold that X1Y2 → X2 and X2Y1 → X1, together with Y +
1 = Y +

2 , it
follows that (X1Y1)+ = (X2Y2)+.

Using this proposition, we can define the representative of the equivalence
class of a query Q as the query Q+, such that π(Q+) = ((π(Q) ∪ sch(Qσ))+ \
sch(Qσ)+)+, 1(Q+) = 1(Q) and σ(Q+) is the selection condition corresponding
to the super tuple of Qσ, denoted by (Qσ)+, defined over sch(Qσ)+, and that
belongs to πsch(Qσ)+J(Q)(I).

We notice that for such a query Q+ it can never be that π(Q) ⊆ sch(Qσ).
However, it is easy to see that the support of Q is 1, which is meant to be less
than the minimum support threshold. Therefore, the queries Q of interest are such
that

71

3. Conjunctive Query Mining

π(Q) = ((π(Q) ∪ sch(Qσ))+ \ sch(Qσ))+ and
sch(Qσ) = sch(Qσ)+.

In what follows, such queries are said to be closed queries and the closed query
equivalent to a given query Q is denoted by Q+. Moreover, we denote by Q+ the
set of all closed queries.

Example 3.29. Referring back to the queries Q1 and Q2 of Example 3.28, it is
easy to see that they do not satisfy the restrictions above. It can be seen that these
queries are not closed, and thus, they are not considered in our algorithm. But as
J(Q1)(I) satisfies C → D, E → D, A → C and C → A, the closed queries Q+

1
and Q+

2 defined below are processed instead.

Q+
1 = πACDσ(A=C)∧(E=e)R

Q+
2 = πACDσ(A=C)∧(E=e)∧(D=d)R.

Considering only such queries in our updated algorithm (Section 3.6), reduces
the size of the output set of frequent queries. This size is reduced even further,
since dependencies other than those specified in FD are discovered during the pro-
cessing of the algorithms. This point is addressed in more details in Section 3.6.2.
Furthermore, similar to diagonal containment (Proposition 3.3), our new compar-
ison operator forms a partial order over closed queries. This allows us to generate
queries in a similar way as the Conqueror algorithm, as we explain in Section 3.6.

3.5.1 Non-Redundant Association Rules
We originally defined association rules based on diagonal containment, which was
also the basis for query comparison and generation in Conqueror. Now, we have
defined a new query comparison relation taking functional dependencies into ac-
count, and as such we also redefine association rules. Using the pre-ordering �,
we define the strict partial ordering ≺ on Q+ as Q+

1 ≺ Q+
2 if Q+

1 � Q+
2 and not

Q+
1 ∼ Q+

2 .

Definition 3.12. An association rule is of the form Q+
1 ⇒ Q+

2 , such that Q+
1

and Q+
2 are both closed simple conjunctive queries and Q+

1 ≺ Q+
2 .

Since we are generating equivalence classes, similar to diagonal containment,
we only consider association rules based upon closed queries. Such rules are,
unfortunately, not always diagonal rules.

Example 3.30. Supposing the dependency C → E holds, the following closed
queries are contained according to the pre-order

πAB(R1 ×R2) ≺ πABCEσA=C(R1 ×R2)

72

3.5. Generalising Query Comparison

however
πABCEσA=C(R1 ×R2) *∆ πAB(R1 ×R2)

because {A,B,C,E} * {A,B}. However, there are equivalent non-closed queries
in the equivalence classes of the considered queries, such that the diagonal contain-
ment does hold:

πABσA=C(R1 ×R2) ⊆∆ πAB(R1 ×R2).
However, this is not true for all queries, still considering the above setting, it

holds that
πAB(R1 ×R2) ≺ πEσA=C(R1 ×R2)

and obviously
πEσA=C(R1 ×R2) *∆ πAB(R1 ×R2).

Unfortunately there is no equivalent query such that it does hold. However, we
notice that

πAB(R1 ×R2) ≺ πABCEσA=C(R1 ×R2) ≺ πEσA=C(R1 ×R2).

In this case, it is possible to find equivalent queries

πABσA=C(R1 ×R2) ⊆∆ πAB(R1 ×R2)

πEσA=C(R1 ×R2) ⊆∆ πABCEσA=C(R1 ×R2).

We write Q+
1 ≺1 Q+

2 if there does not exist a Q+ such that Q+
1 ≺ Q+ ≺ Q+

2 . So,
similar to diagonal containment, we only consider basic rules, that is Q+

1 ⇒ Q+
2

if Q+
1 ≺1 Q+

2 . We now show that in that case, we are able to find an equivalent
diagonally contained rule.

Proposition 3.10. Q+
1 ≺1 Q+

2 if and only if one of the following holds the follow-
ing holds:

1. 1(Q+
1) = 1(Q+

2) and (Q+
1)σ = (Q+

2)σ and π(Q+
2) ⊂ π(Q+

1), and there does
not exist a schema X such that X+ = X and π(Q+

2) ⊂ X ⊂ π(Q+
1).

2. 1(Q+
1) = 1(Q+

2) and (Q+
1)σ is a strict subtuple of (Q+

2)σ and π(Q+
2) =

((π(Q+
1) ∪ sch(Qσ

2))+ \ sch((Q+
2)σ))+ and @X ⊂ π(Q+

1) : π(Q+
2) = ((X ∪

sch(Qσ
2))+ \ sch((Q+

2)σ))+, and there does not exist a tuple y over Y such
that Y + = Y , and (Q+

1)σ is a strict subtuple of y and y is a strict subtuple
of (Q+

2)σ.

3. 1(Q+
1) ⊂ 1(Q+

2) and (Q+
2)σ = ((Q+

1)σ)+ and π(Q+
2) = (π(Q+

1))+ and @X ⊂
π(Q+

1) : X+ = π(Q+
2), and there does not exist a Q such that 1(Q+

1) ⊂ 1

(Q) ⊂ 1(Q+
2)

73

3. Conjunctive Query Mining

Proof. In all of these cases it is easy to see that if the requirements are met,
Q+

1 ≺1 Q+
2 follows. Now we prove the other direction. We know Q+

1 ≺1 Q+
2 .

Then it must hold that either (1) 1(Q+
1) = 1(Q+

2) or (2) 1(Q+
1) ⊂1 1(Q+

2) since
otherwise a query Q+, such that Q+

1 ≺ Q+ ≺ Q+
2 , would exist.

In the following, we denote π(Q+
i) as Xi and sch((Q+

i)σ) as Yi. For the case (1)
where 1(Q+

1) = 1(Q+
2) it must hold that X1Y2 → X2 and Y2 → Y1 and it cannot

be that there is a Q with the same join, such that Y2 → Y → Y1 and X1Y → X
and XY2 → X2. From this it follows that either Y1 = Y2 or Y1 ⊂1 Y2 since these
are both closed. Since Definition 3.11 states that Qσ

1Q
σ
2 is in πY1Y2J(Q2)(I), it

follows that it must be that either (1.1) (Q+
1)σ = (Q+

2)σ holds or that (1.2) (Q+
1)σ

is a strict subtuple of (Q+
2)σ. We now prove that these only possible cases (1.1),

(1.2) and (2) match the described cases of the proposition:

1. If Q+
1 ≺1 Q+

2 and (Q+
1)σ = (Q+

2)σ and 1(Q+
1) = 1(Q+

2), then it must hold
that X1Y2 → X2. According to the definition X1 = ((X1Y1)+ \ Y1)+, since
from (Q+

1)σ = (Q+
2)σ it follows that Y1 = Y2, and thus that X1 = ((X1Y2)+ \

Y2)+. From Q+
1 ≺1 Q+

2 follows that X1Y2 → X2 and thus X1 = ((X1Y2X2)+\
Y2)+. Since X2 = ((X2Y2)+ \ Y2)+, it is clear that X2 ⊆ X1, i.e., π(Q+

2) ⊆
π(Q+

1).

Furthermore, π(Q+
2) 6= π(Q+

1) since otherwise Q1 = Q2 and then Q+
1 ⊀ Q+

2 ,
thus π(Q+

2) ⊂ π(Q+
1). Also there cannot exist an X such that π(Q+

2) ⊂ X ⊂
π(Q+

1), because then Q1 ≺ πXQ1 ≺ Q2 and then Q+
1 ⊀ Q+

2 .

2. According to the definition of closed query X2 = ((X2Y2)+ \ Y2)+. If Q+
1 ≺1

Q+
2 and (Q+

1)σ is a strict subtuple of (Q+
2)σ and 1(Q+

1) = 1(Q+
2), it must

hold that X1Y2 → X2, it also holds that X1Y2 → X2Y2, thus considering
X ′2 = ((X1Y2)+ \ Y2)+, it must hold that X2 ⊆ X ′2. However, it cannot be
that X2 ⊂ X ′2 since otherwise there would exist a Q where π(Q) = X ′2 and
σ(Q) = σ(Q2) and 1(Q) = 1(Q+

2), where Q1 ≺ Q ≺ Q2. Thus X2 = X ′2.
Moreover, it must hold that @X ⊂ X1 : X2 = ((X ∪ Y2)+ \ Y2)+, otherwise
there would exist a Q = πXQ1, since Q1 ≺ πXQ1 ≺ Q2. Thus it must
hold that π(Q+

2) = ((π(Q+
1) ∪ sch(Qσ

2))+ \ sch((Q+
2)σ))+ and @X ⊂ π(Q+

1) :
π(Q+

2) = ((X ∪ sch(Qσ
2))+ \ sch((Q+

2)σ))+.

Furthermore, it cannot be that there exists a tuple y over Y such that Y + =
Y , and (Q+

1)σ is a strict subtuple of y and y is a strict subtuple of (Q+
2)σ.

Otherwise Q1 ≺ σY=yQ1 ≺ Q2 and Q+
1 ⊀ Q+

2 .

3. If Q+
1 ≺1 Q+

2 it follows that from the definition where it states that Y2 → Y1
must hold in J(Q2), that Y +

1 ⊆ Y2 under the functional dependencies of
J(Q2). If, however, Y +

1 ⊂ Y2 then, since we know 1(Q+
1) ⊂ 1(Q+

2) it follows

74

3.5. Generalising Query Comparison

that Q1 ≺ σσ(Q1)+Q2 ≺ Q2, which is a contradiction. Thus it must hold that
Y2 = Y +

1 or stated otherwise that (Q+
2)σ = ((Q+

1)σ)+.
Similar to the previous case it follows that X2 = ((X1Y2)+ \ Y2)+. Since we
also know that Y2 = Y +

1 , it also follows that X2 = ((X1Y1)+ \ Y1)+. Since
this is closed under 1(Q+

2) it follows that X2 = X+
1 . Moreover it must hold

that @X ⊂ X1 such that X+ = X2, otherwise there would exist Q = πXQ1,
since Q1 ≺ πXQ1 ≺ Q2. Thus it must hold that π(Q+

2) = (π(Q+
1))+ and

@X ⊂ π(Q+
1) : X+ = π(Q+

2).
Furthermore, there cannot exist a Q such that 1(Q+

1) ⊂ 1 (Q) ⊂ 1(Q+
2),

otherwise Q1 ≺ σ1(Q)Q1 ≺ Q2 and Q+
1 ⊀ Q+

2

Proposition 3.11. For all closed queries Q+
1 , Q

+
2 it holds that if Q+

1 ≺1 Q+
2 then

ππ(Q+
1)∩π(Q+

2)Q
+
2 ⊆∆ Q+

1 and ππ(Q+
1)∩π(Q+

2)Q
+
2 ∼ Q+

2

Proof. π(Q+
1)∩π(Q+

2) ⊆ π(Q+
2) trivially holds, so we have to prove Q′2 ⊆ Q+

1 where
Q′2 = ππ(Q+

1)∩π(Q+
2)Q

+
2 . Since Q+

1 and Q+
2 are closed sch((Q+

i)σ) = sch((Q+
i)σ)+

holds, and we know sch((Q+
2)σ)→ sch((Q+

1)σ), thus it must follow that sch((Q+
1)σ)

⊆ sch((Q+
2)σ). Together with the fact that the tuple Qσ

1Q
σ
2 is in πY1Y2J(Q2)(I),

it follows that σ(Q+
1) ⊆ σ(Q+

2). Because we also know 1(Q1) ⊆ 1(Q2), it follows
that F1 ⊆ F2. Thus all tuples in the answer of Q′2 will satisfy the conditions of
Q+

1 , and hence Q′2 ⊆ Q+
1 follows.

We now prove ππ(Q+
1)∩π(Q+

2)Q
+
2 ∼ Q+

2 . Q+
2 � ππ(Q+

1)∩π(Q+
2)Q

+
2 is trivial since

π(Q+
2)sch((Q+

2)σ) → π(Q+
1) ∩ π(Q+

2). We now have to prove that (π(Q+
1) ∩

π(Q+
2)sch((Q+

2)σ) → π(Q+
2). Following Proposition 3.10, if Q+

1 ≺1 Q+
2 we have

three cases. In the first case we have π(Q+
2) ⊂ π(Q+

1), then π(Q+
1)∩π(Q+

2) = π(Q+
2)

so (π(Q+
1)∩π(Q+

2)sch((Q+
2)σ)→ π(Q+

2) follows trivially. In the third case we have
π(Q+

2) = (π(Q+
1))+, thus π(Q+

1) ⊆ π(Q+
2), and π(Q+

1) ∩ π(Q+
2) = π(Q+

1) and thus
using π(Q+

1)sch((Q+
2)σ) → π(Q+

2), again it is proven. In the second case we have
π(Q2) = (π(Q+

1) ∪ sch(Qσ
2))+ \ sch((Q2)σ)+. Thus

(π(Q+
1) ∩ π(Q+

2)) ∪ sch((Q2)σ

= (π(Q+
1) ∩ (π(Q+

1) ∪ sch(Qσ
2))+ \ sch((Q2)σ)+ ∪ sch((Q2)σ

= ((π(Q1) ∪ sch((Q2)σ)+ \ sch((Q2)σ))+ ∪ sch((Q2)σ)

From this we can conclude that π(Q1)∪sch((Q2)σ) ⊆ (π(Q+
1)∩π(Q+

2))∪sch((Q2)σ
and thus (π(Q1) ∩ π(Q2)) ∪ sch((Q2)σ) → π(Q1) ∪ sch((Q2)σ. Since π(Q+

1) ∪
sch((Q2)σ → π(Q+

2), it also holds in this case.

75

3. Conjunctive Query Mining

Proposition 3.12. For all canonical simple conjunctive queries Q1, Q2 it holds
that if Q1 ⊆∆ Q2 then Q2 � Q1

Proof. If Q1 ⊆∆ Q2 then π(Q1) ⊂ π(Q2) thus it holds that π(Q2) → π(Q1)
and thus trivially that π(Q2)sch(Qσ

1) → π(Q1). Since the queries are canonical,
according to Lemma 3.1 it follows that σ(Q1) ⊆ σ(Q2). Then it follows that
sch(Q2)→ sch(Q2) and that Qσ

1Q
σ
2 is in πY1Y2J(Q2)(I). Thus Q2 � Q1.

Proposition 3.13. Let Q+
1 ⇒ Q+

2 be a confident association rule. Then there
exist n confident basic rules of the form Q+

i ⇒ Q+
i+1 (i = 1, . . . , n) such that

Q+
n+1 = Q+

2 .

Proof. If Q+
1 ⇒ Q+

2 is not a basic rule, it is possible to find basic rules as
specified in the proposition. Moreover, confidence(Q+

1 ⇒ Q+
2) is the product

of confidence(Q+
i ⇒ Q+

i+1) for i = 1, . . . , n, and so, confidence(Q+
1 ⇒ Q+

2) ≤
confidence(Q+

i ⇒ Q+
i+1). As we assume Q+

1 ⇒ Q+
2 to be confident, then so are the

basic rules (Q+
i ⇒ Q+

i+1) for i = 1, . . . , n. Thus, the proof is complete.

Proposition 3.14. If Q1 ⇒ Q2 is a basic association rule over canonical simple
conjunctive queries then there exist n basic association rules over closed simple
conjunctive queries of the form Q+

i ⇒ Q+
i+1 (i = 1, . . . , n) such that Q+

n+1 = Q+
2 ,

and Q+
1 and Q+

2 are equivalent to Q1 and Q2 respectively.
If Q+

1 ⇒ Q+
2 is a basic association rule over closed simple conjunctive queries,

then there exists an association rule Q1 ⇒ Q2 over canonical simple conjunctive
queries such that Q+

1 and Q+
2 are equivalent to Q1 and Q2 respectively.

Proof. The proof follows from Propositions 3.11, 3.12 and 3.13.

This essentially proves that our basic rules form a cover over all diagonally
contained rules. We must note, however, that our definition of association rules
implies that functional dependencies cannot be output as association rules, since
functional dependencies are ‘embedded’ in the frequent queries computed in our
approach. Therefore we consider the found functional dependencies and associa-
tion rules together as the complete (association) rule output of the algorithm.

3.6 Algorithm: Conqueror+

In this section, we present an updated algorithm, which we call Conqueror+ (given
as Algorithm 3.7), for mining frequent queries under functional and foreign-key
dependencies. Conqueror+ follows the basic three-loop structure of Conqueror but
with the following additions in each loop:

76

3.6. Algorithm: Conqueror+

• Join loop: Generate all instantiations of F , without constants, i.e. 1(Q), in
a breadth-first manner, using restricted growth to represent partitions. Every
such partition gives rise to a join query JQ and functional dependencies of
its ancestors are inherited.

• Projection loop: For each generated partition, all projections of the corre-
sponding join query JQ, i.e π(Q), are generated in a breadth-first manner,
and their frequency is tested against the given instance I. During this loop,
functional dependencies and foreign-keys are discovered and used to prune
the search space.

• Selection loop: For each frequent projection-join query, constant assign-
ments, i.e. σ(Q), are added to F in a breadth-first manner. Morever, here
again, functional dependencies are used to prune the search space.

3.6.1 Handling Functional Dependencies
First of all a (possibly empty) set of functional dependencies FD can be specified
as input. This set is used for the first queries processed by our algorithm (i.e., the
relations of the database instance) on line 3 of Algorithm 3.7.

Join Loop

A new addition to the join loop is the inheritance of functional dependencies
shown on lines 13-14. In Conqueror+ a given join query JQ is associated with a
set of functional dependencies, denoted by FDJQ, and built up in Algorithm 3.7
as follows.

First, when 1(Q) is the restricted growth string 1, every instantiated relation
Ri(I) in the database is pushed in Queue (lines 2 and 6, Algorithm 3.8), associated
with the set of functional dependencies FDi (see line 3, Algorithm 3.7).

Then, at the next level, the considered restricted growth strings represent join
conditions of the form (Ri.A = Rj.A

′). Let JQ be the corresponding join query.
If Ri = Rj then, JQ(I) satisfies the functional dependencies of FDi, since JQ is
a selection of Ri. Moreover, JQ(I) also satisfies Ri.A→ Ri.A

′ and Ri.A
′ → Ri.A,

due to the selection condition. Thus, FDJQ is set to FDi∪{Ri.A→ Ri.A
′, Ri.A

′ →
Ri.A}. Similarly, if Ri 6= Rj, then JQ is a join of Ri and Rj. Thus, JQ(I) clearly
satisfies the functional dependencies of FDi ∪ FDj, as well as Ri.A→ Rj.A

′ and
Rj.A

′ → Ri.A. In this case, we set FDJQ = FDi∪FDj∪{Ri.A→ Rj.A
′, Rj.A

′ →
Ri.A}. The assignment of FDJQ in these two cases is processed in lines 13-16 of
Algorithm 3.7.

We notice that, at this stage, π(JQ) is either the set sch(Ri) (if Ri = Rj) or
sch(Ri) ∪ sch(Rj) (if Ri 6= Rj), and thus, π(JQ) is closed under FDJQ.

77

3. Conjunctive Query Mining

Algorithm 3.7 Conqueror+

Input: Database D, dependencies FD, minmal supportminsup, most specific join
msj

Output: Frequent Queries FQ
1: 1(Q) := “1” //initial restricted growth string
2: for all Ri in D do
3: FDQ := FDi
4: push(Queue, Ri)

//Join Loop
5: while not Queue is empty do
6: JQ := pop(Queue)
7: if 1(JQ) does not represent a cartesian product then
8: FQ := FQ ∪ ProjectionLoop(JQ)
9: children := RestrictedGrowth(1(JQ), m)

10: for all rgs in children do
11: if join defined by rgs is not more specific than msj then
12: 1(JQC) := rgs
13: for all PJQ such that 1(JQC) = 1(PJQ) ∧ (Ri.A = Rj.A

′) do
14: FDJQC := FDJQC ∪ FDPJQ
15: if 1(PJQ) = “1” then
16: FDJQC := FDJQC ∪ {Ri.A→ Rj.A

′, Rj.A
′ → Ri.A}

17: blocks(JQC) := blocks(JQ) where the blocks containing Ri.A and Rj.A
′

are merged
18: push(Queue, JQC)
19: return FQ

In the general case, when considering the lattice of all join queries, which
is in fact the lattice of all partitions of U , at a given level, the join query JQ
is generated from join queries PJQ in the previous level by setting 1(JQ) to
1(PJQ) ∧ (Ri.A = Rj.A

′), and by augmenting π(PJQ) accordingly. Therefore,
JQ(I) satisfies the dependencies of FDPJQ, and thus, FDJQ is set to be the union
of all FDPJQ where PJQ allows to generate JQ (see lines 13-14 of Algorithm 3.7).
Consequently, assuming that π(PJQ) is closed under FDPJQ clearly entails that
π(JQ) is closed under FDJQ.

Thus, for every join query JQ, π(JQ) is closed under those functional depen-
dencies of FDJQ that belong to FD or that are obtained through the connected
blocks of blocks(JQ). Moreover, as covered next, the discovered functional depen-
dencies in the projection loop of JQ preserve this property, because these new
dependencies are defined with attributes in π(JQ) only. Therefore, for every join
query JQ, π(JQ) is closed under FDJQ.

78

3.6. Algorithm: Conqueror+

Projection Loop

First of all we generalise the definition of blocks to include mutually dependent
attributes. In the setting of Conqueror we defined blocks(Q) to be the partition
induced by the join condition of Q. In the setting of Conqueror+ we additionally
define blocks+(Q) as the partition induced by mutually dependent attributes. An
attribute A is mutually dependent with an attribute A′ if A→ A′ and A′ → A
hold, and we denote this A↔ A′.

Example 3.31. Given the scheme D consisting of sch(R1) = {A,B}, sch(R2) =
{C,D,E} and where the functional dependencies A → B, B → A hold. Now
suppose we are considering the join 1(Q) = R1.B = R2.C. Then blocks(Q) =
{{A}, {B,C}, {D}, {E}} as was shown before. Now since the join 1(Q) = R1.B =
R2.C holds we actually know B → C and C → B must hold for Q, combined with
the given dependencies, this results in blocks+(Q) = {{A,B,C}, {D}, {E}}

Like in Conqueror, in order to generate candidate projection-join queries in the
projection loop, we construct the set torem as the set of blocks to be removed. In
Conqueror+ we are considering blocks of blocks+(PQ), and the removal is achieved
in such a way that no block functionally depending on another can be removed,
as stated on line 26 of Algorithm 3.8. Constructing the candidate projection-join
queries in this way makes sure that, given a join query JQ, only those projection-
join queries PQ such that π(PQ) is closed under FDJQ are considered. This is
so because the first projection-join query considered in the projection loop is the
join query JQ, and we have just shown that for join queries π(JQ) is closed under
FDJQ. Then, assuming that π(PQ) is closed under FDJQ, when generating the
candidate projection-join queries of the next level (lines 19-29, Algorithm 3.8), if
π(PQ) \ β is not closed, then the closure of π(PQ) \ β under FDJQ contains at
least one attribute in β, and so all attributes in β (because, for all A and A′ in
β, A → A′ and A′ → A are in FDJQ). As a consequence of the standard closure
algorithm [Ullman, 1988], FDJQ must contain dependencies Z → β′ such that
Z ⊆ π(PQ) \ β and β′ ∩ β 6= ∅. Since we enforce this condition on line 26, all
frequent projection-join queries PQ mined in our algorithms are such that π(PQ)
is closed under FDJQ. Since the selection loops processed in Algorithm 3.9 do
not change the projection schemas, this also holds for all selection-projection-join
queries. We recall from Section 3.5 that considering queries Q such that π(Q) is
closed under FDJ(Q) (where J(Q) is the join query associated toQ) is an important
feature of our approach that avoids the generation and evaluation of redundant
queries.

However, since our generation is based on a fixed order of U , when defining
the set torem we need to take care that we reconsider blocks β for removal when

79

3. Conjunctive Query Mining

Algorithm 3.8 Conqueror+ Projection Loop
Input: Conjunctive Query Q
1: if 1(Q) = “1” then
2: π(Q) := sch(Ri) //Q is the query Ri
3: else
4: π(Q) := union of blocks+(Q)
5: ForeignKeyDiscovery(Q)
6: push(Queue, Q)
7: FPQ := ∅
8: while not Queue is empty do
9: PQ := pop(Queue)

10: KFK(Q) := ForeignKeyHandling(PQ)
11: if not KFK(PQ) then
12: if monotonicty(PQ) then //monotonicity check
13: support(PQ) := EvaluateSupport(PQ)
14: else
15: support(PQ) := 0
16: if support(PQ) ≥ minsup then
17: FPQ := FPQ ∪ {PQ}
18: FunctionalDependencyDiscovery(PQ,FPQ)
19: removed := blocks in blocks+(PQ) not in π(PQ)
20: dep := blocks β such that there exists Z → β in FDQ
21: deprem := dep ∩ removed
22: if deprem = ∅ then
23: torem := dep ∪ blocks Y in blocks+(PQ) > last of removed
24: else
25: torem := blocks β in blocks+(PQ) > last of deprem
26: torem := blocks β of torem such that there is no Z → β′ in FD(Q)

such that Z ⊆ π(PQ)\β and β′ ∩ β 6= ∅
27: for all βi ∈ torem do
28: π(PQC) := π(PQ) with block βi removed //π(PQC) is closed under FD(Q)
29: push(Queue, PQC)
30: FQ := FQ ∪ FPQ
31: for all PQ ∈ FPQ do
32: if PQ is not marked then
33: FQ := FQ ∪ SelectionLoop(PQ)
34: return FQ

80

3.6. Algorithm: Conqueror+

the dependency Z → β no longer holds in the case that Z * π(PQ) (lines 22-25,
Algorithm 3.8). We illustrate this using the following example.

ABC

BC

C

\B

B

\C

\A

AC

A

\C

\B

AB

\C

(a) Projection tree of {A,B,C}

ABC

pruned

AC

C

\A

A

\C

\B

AB

\C

(b) Projection tree of {A,B,C}
when B → A holds

Figure 3.6: Projection generation-trees of {A,B,C}

Example 3.32. When no dependencies are present, the generation of projections
of attributes {A,B,C} would result in the projection generation tree shown in
Figure 3.6a, where all levels are shown.

If dependency B → A is present, we do not consider A for removal when
generating the second level. However, in order to generate the last level, we do
need to remove A when condidering AC in order to generate C. This results in
the projection generation tree shown in Figure 3.6b.

We must note, that although the current algorithm is capable of dealing with
mutual dependencies consisting of single blocks, mutual dependencies of multiple
attributes still pose a problem.

Example 3.33. Suppose we are considering the scheme of Example 3.31, but now
the dependencies ACE → B, ACE → D, BD → A, BD → C and BD → E hold,
or also ACE ↔ BD. Starting from the most general projection π(Q) = ABCDE
one would not be able to generate any sub-projections since every block is dependent
on some blocks of π(Q). Still CDE (AB removed), ADE (BC removed), ABE
(CD removed) and ABC (DE removed) are valid closed sub-projections of π(Q)
that should be considered.

So we can conclude that in the presence of mutual dependencies over multiple
attributes (blocks), our current algorithm is not complete. In Section 3.10 we
briefly discuss our proposed changes to resolve the issue.

81

3. Conjunctive Query Mining

Algorithm 3.9 Conqueror+ Selection Loop
Input: Conjunctive Query Q
1: push(OrderedQueue,Q)
2: while not OrderedQueue is empty do
3: SQ := pop(OrderedQueue)
4: PB := {β ∈ blocks(Q) | π(Q)+ = ((π(Q) ∪ σ(Q) ∪ β)+ \ (σ(Q) ∪ β)+)+}
5: if σ(SQ) = ∅ then
6: toadd := all blocks of PB
7: else
8: KFK(Q) := ForeignKeyHandling(SQ)
9: if not KFK(SQ) then

10: if monotonicty(SQ) then
11: FQ := FQ ∪ GetFrequentInstances(SQ) //evaluate in database
12: support(SQ) := minsup //real support values in database
13: if support(SQ) ≥ minsup then
14: uneq := all blocks of PB /∈ σ(SQ)
15: toadd := all blocks β in uneq > last of σ(SQ)
16: for all βi ∈ toadd do
17: σ(SQC) := σ(CQ) with βi added
18: σ(SQC) := closure of σ(CQC) under FD(Q) ∩ PB
19: if σ(SQC) /∈ Gen and σ(SQC) 6= π(Q) then
20: push(OrderedQueue, SQC)
21: push(Gen, σ(SQC))
22: return FQ

Selection Loop

In the selection loop itself we also make use of the given (and discovered) func-
tional dependencies. As in Conqueror, we generate new selection candidates by ex-
panding the selection with new blocks. These blocks abide by the new constraints
of closed queries (ensured on line 4 and 19 of Algorithm 3.9). Furthermore, in
Conqueror+, when adding blocks to the selection, in addition the closure is taken,
ensuring no redundant queries are generated (line 18). However, closing of these
sets of blocks requires us to reorder the queue of candidates in order to use the
Apriori-trick. The following example illustrates this point.

Example 3.34. Considering the attributes {A,B,C}, if no dependencies are
present, generation of sets for the selection results in the generation-tree containing
all levels shown in Figure 3.7a.

If the dependency A → B is present, we obtain the generation-tree in Fig-
ure 3.7b. Here, we notice that AB would be considered before B. However, because

82

3.6. Algorithm: Conqueror+

∅

A

AB

ABC

C

B

AC

C

A

B

BC

C

B

C

C

(a) Selection tree of {A,B,C}

∅

AB

ABC

C

A

B

BC

C

B

C

C

(b) Selection tree of
{A,B,C} when A → B
holds

∅

B

BC

C

B

C

C

AB

ABC

C

A

(c) Reordered selection tree
of {A,B,C} when A →
B holds

Figure 3.7: Selection generation-trees of {A,B,C}

of the monotonicity property, we want to consider B before considering AB (be-
cause the selection according to B is less restrictive than that according to AB). We
accomplish this by reordering the candidate queue, so as to ensure B is considered
before AB and BC is considered before ABC, as illustrated in the generation-tree
given in Figure 3.7c.

We note that the closure is computed using the standard algorithm [Ullman,
1988]. This algorithm adds to the set under construction X, the right handsides of
those functional dependencies whose left handside is a subset of X, until no further
changes are possible. Furthermore, in line 19 we make sure that the corresponding
closure has not been processed previously, which can happen since a closed set can
be generated from several non-closed sets. The instantiation of constant values
from I (line 11) is performed analogously to Conqueror, i.e., by performing SQL
queries in the database, as explained in Section 3.2.2.

83

3. Conjunctive Query Mining

Algorithm 3.10 Functional Dependency Discovery
Input: PQ, FPQ
1: for all PPQ ∈ FPQ : ∃β ∈ blocks+(Q) such that π(PPQ) ∪ β = π(PQ) do
2: if support(PQ) = support(PPQ) then
3: FD(Q) := FD(Q) ∪ {π(PQ)→ π(PPQ) \ π(PQ)}
4: mark PQ

3.6.2 Discovering Functional Dependencies
Based on Proposition 3.3, functional dependencies, other than those in FD, are
discovered in the projection loop (see line 18 of Algorithm 3.8) by calling Algo-
rithm 3.10. At a given level of the lattice built up in this algorithm, a projection-
join query PQ is generated from the projection-join queries PPQ of the previ-
ous level by removing one block β from π(PPQ). Then, by Proposition 3.3, if
support(PQ) = support(PPQ) (which is checked on line 2 of Algorithm 3.10), the
instance JQ(I) of the associated join query satisfies π(PQ) → β. In this case,
π(PQ)→ β is added to FDJQ and PQ is marked, since π(JQ) is no longer closed
under the new functional dependency (these two actions are performed on lines 3
and 4 respectively). These marked queries are then no longer considered for the
evaluation of different constant values in the selection loop (line 32, Algorithm 3.9).

We note that such functional dependencies are discovered only if the queries
PQ and PPQ having the same support are frequent (because, otherwise, PPQ
has been pruned and its support cannot be retrieved). In other words, functional
dependencies involving infrequent projections are not found. However, regarding
frequent queries, every new functional dependency implies additional pruning in
the selection loop, and in order to take full advantage, unlike the original Conqueror
algorithm, the generation of selections is now performed after all projections are
generated (line 31, Algorithm 3.9).

On the other hand, as projection-join queries are generated in a breadth-first
manner, the ‘best’ functional dependencies (i.e., those with minimal left-hand side)
are discovered last, during the projection loop. Proceeding depth-first would allow
us to discover the ‘best’ functional dependencies as early as possible, but at the
cost of less monotonicity based pruning (see line 12, Algorithm 3.8). Moreover, by
doing so, we can mark as many queries as possible in order not to process them in
the selection loop. The following example illustrates this point.

Example 3.35. In the context of sch(R1) = {A,B} and sch(R2) = {C,D,E},
let us consider the projection loop where the join query that is considered is JQ =
πABCDEσ(A=C)(R1 ×R2). In this case, blocks(JQ) = {{A,C}, {B}, {D}, {E}}.

Assuming that all projections are frequent and that JQ(I) satisfies A → D,
the following dependencies are found: ACBE → D, ACE → D, ACB → D

84

3.6. Algorithm: Conqueror+

and AC → D. Consequently, the queries πACBE(JQ), πACE(JQ), πACB(JQ)
and πAC(JQ) are marked, because their supports are respectively equal to those of
πACBED(JQ) = JQ, πACDE(JQ), πACBD(JQ) and πACD(JQ). These queries are
not processed by the selection loop.

We note that the functional dependency A→ D is actually not found, because
FDJQ contains A → C and C → A, which enforces A and C to appear together
in the projections (this is a consequence of the fact A and C are in same block of
blocks+(Q)). Of course, A → D is a consequence of AC → D and A → C that
now belong to FDJQ.

3.6.3 Discovering and Handling Foreign-Keys
Based on Proposition 3.6 we are able to discover inclusion dependencies. The first
part of the discovery consists of finding the candidate keys of the relations. Since
we already find functional dependencies, discovering a candidate key comes down
to finding the attribute set on which all the other attributes depend. Of course it
is possible that more than one attribute set qualifies as a candidate key.

The second part of the discovery is identifying the possible key-foreign-key
joins. These are the join queries where we join a certain relation, Rk, with other
relations (which we collectively refer to as Rfk) only on the key K of Rk. After
identifying these types of joins, we need to verify if an inclusion dependency holds
between the key of Rk and the attributes of another relation involved in the join,
i.e. the possible foreign-key FK. As stated in Proposition 3.5, we can discover
inclusion dependencies by means of query comparison. In order to do this, we must
compare the support of the projection of the join query on the key-foreign-key
attributes (K,FK), with the support of the projection of Rfk on the foreign-key
(FK). We illustrate this in the following example:

Example 3.36. Given the context of Example 3.35, and that we are considering
the join query J(Q) = πABCDEσA=C(R1×R2). Assume that we found that A→ B,
and therefore have stored key(R1) = A. Since we have a join of a key (A) with
an attribute of another relation (C) this is a possible key-foreign-key join. To
verify if we have an inclusion dependency, following Proposition 3.5, we need to
evaluate support(πABCσA=C(R1 ×R2)) (note that B is included because of the key
dependency) and compare it to the previously evaluated and stored support(πC(R2)).
If the support values are equal we can conclude this is indeed a key-foreign-key join.

This discovery is performed on line 5 of Algorithm 3.8, by means of Algo-
rithm 3.11. Note that we only perform this discovery for join queries, since these
are the first queries generated involving a new join. Algorithm 3.11 checks all
individual joins (line 2) to see if the key of a relation is involved (line 5). If so, it
constructs the query without this specific join (line 6), and compares the support

85

3. Conjunctive Query Mining

Algorithm 3.11 Foreign-Key Discovery
Input: Conjunctive Join Query JQ //JQ has the maximal projection for 1(JQ)
1: FK(JQ) := false
2: for all blocks β ∈ blocks(JQ) where size(β) > 1 do
3: for all R in D do
4: pkey := sch(R) ∩ β
5: if pkey = key(R) and ∀β′ 6= β : sch(R) ∩ β′ = ∅ then
6: Q′ := JQ but where 1(Q′) = (1(JQ)\{β})∪{(β\{key(R)})}∪{key(R)}
7: if support(πβJQ) = support(πβ\key(R)Q

′) then
8: FK(JQ) := true
9: KR(JQ) := R

10: FKJ (JQ) := 1(JQ) \ {β}) ∪ {(β \ {key(R)})} ∪ {key(R)}

Algorithm 3.12 Foreign-Key Handling
Input: Conjunctive Query Q
Output: true only if redundant
1: JQ := join query associated with 1(Q)
2: if FK(JQ) then
3: if (sch(KR(JQ))\key(KR(JQ))) ∩ σ(Q) = ∅ then
4: if sch(KR(JQ)) ⊆ π(Q) or π(Q) ∩ sch(KR(JQ))) = ∅ then
5: Q′ := Q but where 1(Q′) = FKJ (JQ) and π(Q′) = π(Q)\ sch(KR(JQ))
6: if Q′ ∈ FQ then
7: support(Q) := support(Q′)
8: link Q to instances Q′
9: else

10: support(Q) := 0 //infrequent
11: return true
12: return false

values (line 7). If equal, Proposition 3.5 lets us conclude this specific join is a
key-foreign-key join.

Having discovered such a key-foreign-key join, we can then immediately apply
this knowledge to avoid unneeded query evaluations. The support of any projection
on a subset of the attributes of Rfk (the foreign-key relation, or in general a join
of relations) is equal to the support of the projection Rfk on the same attributes.
Similarly, the support of any projection including the key of Rk is also known since
it is the same as that of the projection of Rfk on the same attributes but with all
Rk attributes removed. These conditions are checked on line 4 of Algorithm 3.12,
which is called on line 10 of Algorithm 3.8 and line 8 of Algorithm 3.9. Additionally,
for selections of these projections that do not contain any attributes from the

86

3.6. Algorithm: Conqueror+

Rk relation (line 3), we also already know their support value. As explained in
Section 3.4.5 we do not prune these queries, but we do not compute their support,
instead retrieving it from the query that is equivalent with respect to the key-
foreign-key join and that has been computed earlier (line 7).

3.6.4 Monotonicity and Association Rules
In Conqueror, queries involved in basic rules of the form Q+

1 ⇒ Q+
2 are those

considered in the monotonicity check. In Conqueror+ monotonicity and the basic
rule generation are based on Proposition 3.10. We must note, however, that in the
case of Conqueror+ we cannot perform all monotonicity checks due to the nature
of the generation procedure and the pre-ordering.

Example 3.37. In the context of sch(R1) = {A,B} and sch(R2) = {C,D,E},
considering CD → E holds, then according to point 2 of Proposition 3.10

πACσ(A=C)∧(B=b)R ≺1 πACEσ(A=C)∧(B=b)∧(D=d)R

holds. However, it is clear that our current generation procedure will not have
generated πACσ(A=C)∧(B=b)R when evaluating πACEσ(A=C)∧(B=b)∧(D=d)R, as it has
a more specific projection. As such, we cannot check its support, and we are also
unable to compute the confidence of the basic rule

πACσ(A=C)∧(B=b)R⇒ πACEσ(A=C)∧(B=b)∧(D=d)R

As an alternative, for the purpose of checking monotonicity, we can check the
support of πACEσ(A=C)∧(B=b)R, because this query has already been generated and
it also holds that πACEσ(A=C)∧(B=b)R ≺ πACEσ(A=C)∧(B=b)∧(D=d)R.

This limitation entails that we cannot fully exploit the monotonicity prop-
erty in that case. We will, however, still consider these queries as input for the
basic rule generation procedure, as at that stage all support values are known.
Algorithm 3.13 details the new monotonicity procedure in Conqueror+, taking de-
pendencies and this limitation into account. As we can see on line 21 we check
if the query is already generated, and otherwise consider the more general query.
Note that in that case we do add the not yet generated query as a potential left
hand side (line 20). The most notable change with respect to Conqueror is the
consideration of all X ⊆ π(Q) instead of just π(Q) on lines 6 and 14 and the con-
sideration of all S ⊆ σ(Q) on line 12. These considerations together with the check
for minimality on line 19, ensure that the conditions of Proposition 3.10 hold. The
basic rule generation algorithm is identical to that of Conqueror, and based on the
potential left hand side queries generated during monotonicity checking.

87

3. Conjunctive Query Mining

Algorithm 3.13 Conqueror+ Monotonicity
Input: Conjunctive Query Q
1: for all blocks β in blocks+(Q) /∈ (π(Q) ∪ σ(Q)) do
2: π(Q′) = ((π(Q) ∪ β ∪ σ(Q))+ \ σ(Q))+; 1(Q′) = 1(Q); σ(Q′) = σ(Q)
3: PP := PP ∪ Q′
4: for all blocks β ∈ σ(Q) do
5: σ(Q′) = σ(Q) \ β; 1(Q′) = 1(Q)
6: for all X ⊆ π(Q) : X = X+ and π(Q) = ((X ∪ σ(Q))+ \ σ(Q))+ do
7: π(Q′) = X
8: SP := SP ∪ {Q′}
9: for all blocks β in blocks(Q) do

10: for all all splits of β in β1 and β2 do
11: 1(Q′) = (1(Q) \ β) ∪ {β1, β2}
12: for all S ⊆ σ(Q) : β * S and S = S+ under FD(Q′) and S+ = σ(Q)

under FD(Q) do
13: σ(Q′) = S
14: for all X ⊆ π(Q) : X = X+ under FD(Q′) and

π(Q) = ((X ∪ σ(Q))+ \ σ(Q))+ under FD(Q) do
15: π(Q′) = X
16: JP := JP ∪ {Q′}
17: for all MGQ ∈ (JP ∪ PP ∪ SP) do
18: if MGQ is not a cartesian product then
19: if @Q′ ∈ (JP ∪ PP ∪ SP) : MGQ � Q′ then
20: R(Q) := R(Q) ∪ MGQ //LHS for potential rule
21: if MGQ not generated then
22: MGQ := MGQ with π(MGQ) = π(Q)
23: if support(MGQ) < minsup then
24: return false
25: return true

88

3.7. Conqueror+ Experimental Results

3.7 Conqueror+ Experimental Results
We performed experiments using our new algorithm, Conqueror+ and compared it
to our previous version Conqueror. Again we look at QuizDB and IMDB as listed
in Table 3.3.

The Conqueror+ algorithm was written in Java using JDBC to communicate
with an SQLite 3.4.0 relational database4. Experiments were run on a standard
computer with 2GB RAM and a 2.16 GHz processor.

3.7.1 Impact of Dependency Discovery
As can be seen in Figure 3.8b, for the QuizDB, Conqueror+ with discovery greatly
outperforms Conqueror in runtime. The runtime for Conqueror+ remains almost
linear for a large portion of the support values, while for Conqueror without dis-
covery it is increasing rapidly. This trend is mostly due to the large reduction in
number of queries generated which is clearly shown in Figure 3.8a. For the IMDB
we also have a reduction of redundant patterns as can be seen Figure 3.8c. The
impact is, however, smaller, due to the small amount of attributes in the database.
This reduces the impact that any use of functional dependencies can have on the
results. It also results in the marginal improvement of runtime in IMDB (Fig-
ure 3.8d), since the largest component there is the computation of the join, which
dependency based pruning has not much impact on.

Next to this, we also performed an experiment to evaluate the effectiveness
of dependency discovery. We performed an experiment on the QuizDB where
we provided the key dependencies of the QUIZZES and SCORES relations, and
disabled the discovery of new dependencies. As can be seen in Figure 3.8e the
improvement with respect to Conqueror is marginal. To compare we performed a
second experiment on QuizDB, this time without specifying any dependencies and
enabling dependency detection. It is clear from Figure 3.8e that discovery on its
own does result in a significant reduction of the number of patterns generated.

We also performed some time analysis to determine the cost and impact of
functional dependency discovery. The results for an experiment using QuizDB
are shown in Figures 3.10a and 3.10b. It is clear that the time needed for the
discovery of functional dependencies (shown as ‘fdisc’ in Figure 3.10a) is negligible
in comparison to the time gained in the selection loop (shown as ‘sel’). Adding
discovery also requires extra time in the join loop (shown as ‘join’), but again,
the gain in the selection loop outweighs this. If we look at the partitioning of
time in Figure 3.10b, we clearly see that most time is spent in output and input.
Since functional dependency discovery in Conqueror+ greatly reduces output and

4The source code of Conqueror+ can be downloaded at http://www.adrem.ua.ac.be.

89

http://www.adrem.ua.ac.be

3. Conjunctive Query Mining

0 500 1000 1500 2000
102

103

104

minimal support

nu
m
be

r
of

qu
er
ie
s

Conqueror
Conqueror+

(a) QuizDB: number of patterns

0 500 1000 1500 2000

0.5

1

1.5

2

2.5

·105

minimal support

m
ill
ise

co
nd

s

Conqueror
Conqueror+

(b) QuizDB: runtime

0 50 100 150 200 250 300

102

103

104

minimal support

nu
m
be

r
of

qu
er
ie
s

Conqueror
Conqueror+

(c) IMDB: number of patterns

0 200 400 600

7.73

7.74

7.75

·106

minimal support

m
ill
ise

co
nd

s

Conqueror
Conqueror+

(d) IMDB: runtime

0 500 1000 1500 2000

0

2000

4000

6000

8000

10000

minimal support

nu
m
be

r
of

qu
er
ie
s

Conqueror
Conqueror+ only discovery
Conqueror+ only provided

(e) QuizDB: Impact of discovering versus
providing functional dependencies

Figure 3.8: Results for increasing support for Conqueror and Conqueror+

90

3.7. Conqueror+ Experimental Results

5 10 15 20 25 30
0

1

2

3

4

5

·106

minimal support

m
ill
ise

co
nd

s

Not using Foreign-Keys
Using Foreign-Keys

(a) QuizDB: Conqueror+ runtime

0 500 1000 1500 2000

1.3

1.4

1.5

1.6

·105

minimal support
m
ill
ise

co
nd

s

Not using Foreign-Keys
Using Foreign-Keys

(b) IMDB: Conqueror+ runtime

Figure 3.9: Results for increasing support for Conqueror+

input by only considering queries Q+, we get a large reduction in runtime as was
observed in the experiments of Figure 3.8.

join proj fdisc sel total
101

102

103

104

105

106

m
ill
ise

co
nd

s

Discovery No Discovery

(a) Conqueror+ Time Analysis of a QuizDB
experiment

QUIZ DB, discovrey ON, output OFF Output ON

In MEM

generateQueries Total 157,667413 159,8952 354,3541

Algorithms 57,494288 97,92191 39,81962

Input Database Communication 100,173125 61,97329 95,75927

Output Databases Communication 218,7752

64%

36%

QuizDB without DB output

Algorithms Input Database Communication

Shop database, discovery on, minsup 3Shop database, discovery on, minsup 3Shop database, discovery on, minsup 3 with DB output

Algorithm: Join Loop 86,47168 14,311724

Projection Loop 72,15996 58,278623

Selection Loop 13,88133 13,881332

16%

67%

17%

Algorithm Loops

Join Loop Projection Loop Selection Loop

39%

61%

In memory QuizDB without DB output

Algorithms Input Database Communication

62%

27%

11%

QuizDB

Algorithms
Input Database Communication
Output Databases Communication

8%

42%
50%

Algorithm Loops

Join Loop Projection Loop Selection Loop

(b) Conqueror+ Input/Output Time
Analysis of a QuizDB experiment

Figure 3.10: Conqueror+ Time analysis

To conclude we can state that discovering and subsequently using functional
dependencies in conjunctive query mining provides the user with concise output

91

3. Conjunctive Query Mining

and potentially significantly increases the performance.

3.7.2 Impact of Foreign-Keys
Unfortunately, the impact of Foreign-Keys is not so significant, as can be seen in
Figure 3.9a. Only for a very low support threshold does the discovery and use
of foreign-keys result in an increased performance. For higher support thresholds
no significant difference can be observed. Investigating the results we see that the
amount of queries whose evaluation is avoided is relatively small compared to the
total amount of generated queries. This is firstly due to the fact that only one
key-foreign-key join is present, and secondly due to the fact that there is only the
small amount of attributes in the foreign-key-relation (scores) as well as functional
dependencies between them. For the low support values the elimination of many
constant-value queries does result in a positive runtime influence.

When looking at the results of an experiment on the IMDB database where
we do not consider the costly join of actormovies and genremovies, shown in Fig-
ure 3.9b, a positive impact can be observed for all minimal support values. In
the IMDB database multiple key-foreign-key joins are discovered. Although this
results in the observed a overall improvement, the impact is also not very large in
this case due to the small amount of attributes present in every relation.

Overall we can conclude that the structure and content of the database will
determine the scale of impact of foreign-key usage. More experiments are required
to investigate this issue further and are therefore part of future work.

3.7.3 Resulting Patterns
To illustrate the power of the patterns as well as the impact of functional depen-
dencies, we list some results from the experiments on the QuizDB dataset.

As expected, making use of functional dependency discovery, we find the de-
pendencies

quizzes.quizid → quizzes.author,
quizzes.quizid → quizzes.title,

quizzes.quizid → quizzes.category,
quizzes.quizid → quizzes.language

As stated earlier, these functional dependencies are found next to various less
optimal dependencies, which were discovered earlier.

The following rule was discovered with a confidence of 85%.

πauthor,category,languagequizzes⇒ πauthor,categoryquizzes

92

3.8. Related Work

It states that knowing the author and category is enough to determine the language
85% of the time. This is an example of a confident functional dependency, as seen
in Section 3.4.3. We are also able to find conditional functional dependencies (see
Section 3.4.2) as 100% association rules:

πauthor,title,category,languageσcategory=‘misc′quizzes⇒
πauthor,title,categoryσcategory=‘misc′quizzes

This rule states that for the tuples where attribute category equals ‘misc’, the
dependency author,title,category → language holds.

With almost 100% (99.98%) the following rule holds

πqid,title,yearscores⇒ πqid,title,yearσyear=‘2006′scores

This tells us that the vast majority of quizzes were played in the year 2006.
With 91% confidence, the following rule states that most of the quizzes in

the category ‘history’ have the language ‘Dutch’. Also notice the fact that, us-
ing the dependency quizzes.quizid→ quizzes.author, quizzes.title, quizzes.category,
quizzes.language, all these attributes are present, and no redundant versions of this
rule appear.

πqid,author,title,cat,langσcat=‘history′quizzes⇒
πqid,author,title,cat,langσcat=‘history′,lang=‘Dutch′quizzes

The following rule is on the join of the quizzes and scores table. It states that 64%
of the quizzes in category ‘misc’ that are played, are made by ‘Damon’. Again,
take note of the projection that is maximal under the found dependencies.

πq.author,q.title,q.qid,q.cat,q.lang,s.year,s.name,scores.qid σq.qid=s.qid,q.cat=‘misc′quizzes× scores⇒
πq.author,q.title,q.qid,q.cat,q.lang,s.year,s.name,scores.qid

σq.qid=s.qid,q.cat=‘misc′,q.author=‘Damon′quizzes× scores

3.8 Related Work
Mining frequently occurring patterns in arbitrary relational databases has been
the topic of several research efforts. [Dehaspe & Toivonen, 2001] developed the
Warmr algorithm, that discovers association rules over datalog queries in an
Inductive Logic Programming (ILP) setting. As stated in the introduction of this
chapter, datalog queries correspond to conjunctive queries. Furthermore, we also
stated that it is not feasible to consider all such (datalog) queries. To tackle
this problem they introduce a declarative language bias. Such biases have been

93

3. Conjunctive Query Mining

extensively studied in the field of inductive logic programming, where they require
tight specification of patterns in order to consider huge, often infinite search spaces.
The formalism introduced for Warmr is called Wrmode and is based on the
Rmode format originally developed for the Tilde ILP system. This formalism
requires two major constraints. The most important one is the key constraint. This
constraint requires that a single key atomic formula is specified. This formula will
then be obligatory in all queries. This key atomic formula essentially determines
what is counted, i.e. the number of substitutions for the key variables with which
the datalog query is true. Essentially this key describes what our transactions are
going to be. The second constraint is the required Atoms list. This list contains
all atomic formulas that are allowed in the queries that will be generated. In
the most general case, this list consists of the relation names in the database
schema D. If one also wants to allow certain constants within the atomic formulas,
then these atomic formulas must be specified for every such constant. In the
most general case, the complete database instance must also be added to the
Atoms list. Next to these basic requirements, additional constraints can be added
using the Wrmode formalism, specifying exactly how the allowed queries can
be formed (e.g. which bindings are allowed or the number of occurrences of an
atom). These constraints dismiss a lot of potentially interesting patterns. We
could find more, but this would require running the algorithm for every possible
key atomic formula with the least restrictive language bias. In such a strategy,
a lot of possible optimisations are left out. Furthermore, the query comparison
used in Warmr is θ-subsumption [Plotkin, 1970], which is the inductive logic
equivalent of conjunctive query containment [Ullman, 1989]. As we know from the
introduction, checking containment and equivalence under this containment is an
NP-complete problem, and this has an impact on the efficiency of the Warmr
system. The candidate generation of Warmr starts off with the key query, the
query only containing the key atomic formule. This is the most general pattern.
Given a set of frequent queries Fi at a certain level i, Warmr generates a superset
of all candidate patterns, by adding a single atomic formula, from the Atoms list,
to every query in Fi, following the Wrmode declarations. In a standard levelwise
approach, for each such pattern, we check if all of its generalisations are frequent.
In Warmr this is no longer possible, since some of these generalisations might
not be allowed according to the specified language bias. Instead, Warmr scans
all infrequent queries (such a list is kept) for a query that is more general than
the considered potential candidate. This does, however, not imply that all queries
that are more general than the considered query are indeed frequent.

Example 3.38. Taking an example from [Goethals & Van den Bussche, 2002],
consider the following two datalog queries that are single extensions of the key

94

3.8. Related Work

query (in this case visits(x1, x2)), and hence they are generated at the same level:

Q1(x1, x2) :- visits(x1, x2), likes(x1, ‘Duvel’)
Q2(x1, x2) :- visits(x1, x2), likes(x3, ‘Duvel’)

It is, however, clear that Q2 is more general than Q1. Both queries remain in the
set of candidate queries, and even more, it is necessary that both queries remain,
in order to guarantee that all queries are generated.

This example shows that the candidate generation of Warmr does not com-
ply with the general levelwise framework given in Chapter 2. Furthermore, for
each candidate query all other candidates and frequent queries are scanned for
queries equivalent under θ-subsumption, which as stated before, is NP-complete.
Moreover, the candidate evaluation of Warmr is performed within an inductive
logic programming environment, evaluation of queries is therefore not that effi-
cient. Warmr uses several optimizations to increase this performance, but this
can hardly be compared to the optimised query processing in existing relational
databases systems. The rule generation of Warmr just consists of finding all
couples of queries (B,C) such that C θ-subsumes (contains) B. This is done in
the straightforward brute-force way by checking all queries. However, we mention
again that checking such containment cannot be done very efficiently.

[Nijssen & Kok, 2003a] introduce the Farmer algorithm, to tackle some of the
efficiency issues present in Warmr. The pattern type considered is the same as
Warmr and a mode mechanism similar to Wrmode, thus sharing the restrictions
discussed above, is used. However, instead of using the inefficient logic program-
ming based θ-subsumption, Object Identity subsumption (OI-subsumpsion) is used.
In comparison to full θ-subsumption, using OI-subsumpsion makes the computa-
tion of equivalency slightly easier. It is, however, still a difficult problem, since it
can be reduced to the graph isomorphism problem [Nijssen & Kok, 2003a]. The
complexity of graph isomorphism is currently unknown. No polynomial algorithm
exisits, nor does a proof of NP-completeness. Furthermore, Similar to Warmr,
equivalent queries are removed by means of exhaustive search, and monotonic-
ity is checked in a similar way, by means of storing all infrequent queries. We
additionally note that Farmer does not include any rule generation.

[Goethals & Van den Bussche, 2002] studied a strict generalization of Warmr.
They introduced the notion of diagonal containment as an extension to regular
containment such that it could be better exploited in a levelwise algorithm. This
allowed queries with essentially different key queries to be considered in the same
search space. Unfortunately, this search space of all conjunctive queries is infi-
nite and there exist no most general or even a most specific pattern, with respect
to query containment and the defined frequency measure based on the number
of tuples in the output of a query. [Goethals & Van den Bussche, 2002] apriori

95

3. Conjunctive Query Mining

limited the search space to conjunctive queries with at most a fixed number of
atomic formulas in the body. This way the set of most general queries is defined.
Their candidate generation is based on applying operations on frequent queries
(extension, join, selection, projection). Using these, they guarantee to generate
all candidate queries, but several equivalent or redundant queries are also gener-
ated. Thus, equivalence testing must be applied in order to remove such queries.
Unfortunately, deciding whether two conjunctive queries are equivalent under di-
agonal containment is still an NP-complete problem. In contrast to our approach
[Goethals & Van den Bussche, 2002] only consider regular containment when gen-
erating association rules.

The efficiency issues of deciding containment and equivalence for conjunctive
queries resulted in research focussed on smaller subclasses. A first special subclass
of tree-shaped conjunctive queries, defined over a single binary relation represent-
ing a graph, was studied, showing that these tree queries are powerful patterns,
useful for mining graph-structured data [Goethals et al., 2005, Hoekx & Van den
Bussche, 2006]. [Jen et al., 2008] considered projection-selection queries over a sin-
gle relation. They introduced a new notion of query equivalence, generalizing the
standard one, based on comparisons of cardinalities, instead of being based on set
inclusion and additionally taking functional dependencies into account. This work
was a generalisation of previous work [Jen et al., 2006], considering the particular
case of a database in which relations are organised according to a star schema. In
this setting, frequent projection-selection queries are mined from the associated
weak instance. However, in that setting, equivalence classes were defined based on
projection only, and thus, only projection queries could be mined through one run
of the proposed levelwise algorithm.

Other related approaches dealing with mining frequent queries also consider
a fixed set of “objects” to be counted during the mining phase, but similar to
Warmr only consider such objects to come from one relation for any given mining
task [Kamber et al., 1997, Diop et al., 2002]. For instance, [Diop et al., 2002],
characterise objects by a query, called the reference. Note that these approaches
are also restricted to conjunctive queries, as in our case.

3.9 Conclusion
Conjunctive query mining research is motivated by the fact that many relational
databases cannot always be simply transformed into transaction-like datasets in
order to apply typical frequent pattern mining algorithms. As illustrated, possi-
ble transformations immediately strongly bias the type of patterns that can still
be found, and hence, a lot of potentially interesting information gets lost. We
have presented a new and appealing type of association rules, by pairing simple

96

3.10. Further Research

conjunctive queries. Next to many different kinds of interesting patterns, we have
shown these rules can express functional dependencies, inclusion dependencies, but
also their variants, such as the very recently studied conditional functional depen-
dencies, which turn out to be very useful for data cleaning purposes. Moreover,
association rules having a lower confidence than 100% are discovered, revealing so
called approximate dependencies, which also have shown their merit in date clean-
ing. We presented a novel algorithm, Conqueror, capable of efficiently generating
and pruning the search space of all simple conjunctive queries, and we presented
promising experiments, showing the feasibility of our approach, but also its use-
fulness towards the ultimate goal of discovering patterns in arbitrary relational
databases.

Then, we extended this basic approach to mine arbitrary relational databases,
over which functional dependencies are assumed. Using functional dependencies,
we are able to prune the search space by removing the redundancies they cause.
Furthermore, since we are capable of detecting functional dependencies that were
not given initially, we expanded our algorithm to also use these previously un-
known functional dependencies to prune even more. Moreover, since not only the
functional dependencies that hold on the database relations are discovered, but
also functional dependencies that hold on joins of relations, these too are sub-
sequently used to prune yet more queries. Besides functional dependencies, we
also made our algorithm detect and use foreign-keys, since they can give rise to
redundant query evaluations. We implemented and tested our updated algorithm,
Conqueror+, and we showed that it greatly outperforms the Conqueror algorithm
by efficiently reducing the number of queries that are generated and evaluated,
by means of detection and use of functional dependencies and foreign-keys. As
such, the algorithms presented in this chapter provided an effective method for
the discovery of a concise set of interesting and interpretable patterns in arbitrary
relational databases.

3.10 Further Research
One of the open problems of the current Conqueror+ algorithm is its inability to
deal with mutually dependent attribute groups, as detailed in Example 3.33 in
Section 3.6. In order to resolve this issue in the projection loop, when generating
sub-projections, we need to consider the removal of more than one block at a
time. The Algorithm 3.14 is meant to replace lines 21 to 29 in the projection loop
given in Algorithm 3.8. This algorithm construct the set torem, consisting of sets
of blocks that can be removed resulting in closed sub-projections. Since we are
looking for the largest closed subsets of π(PQ), we generate torem to contain the
smallest subsets. This is achieved using levelwise generation on lines 11 to 15. On

97

3. Conjunctive Query Mining

line 16 to 23 we essentially compute the (possibly singleton) sets of blocks that are
mutually dependent with some other set of blocks. This knowledge is then used on
line 1 to construct the new candidate blocks to be removed without reconsidering
any blocks that have been removed before. Since sets of blocks can now be removed
simultaneously, we need to keep track of the last removed set of blocks in order
not to generate any duplicate candidates, this is achieved on line 23 and used on
line 1.

Algorithm 3.14 New computation of candidate projections
1: candtorem := {β ∈ π(Q) | β > min(lastremoved(π(PQ)) ∧ β > (multiblock(β)
∩ removed)}

2: if removed ∩ dep = ∅ then
3: candtorem := candtorem ∪ dep
4: torem := ∅
5: while candtorem 6= ∅ and π(PQ) 6∈ candtorem do
6: for all X ∈ candtorem do
7: if π(PQ) \X is closed under FD(Q) then
8: torem := torem ∪ {X}
9: candtorem := candtorem \ {X}

10: newcandtorem := ∅
11: for all X ∈ candtorem do
12: k := size(X)
13: for all Y ∈ candtorem : X[i] = Y [i] for 1 ≤ i < k ∧X[k] < Y [k] do
14: newcandtorem := newcandtorem ∪ {{X ∪ Y [k]}}
15: candtorem := newcandtorem
16: for all X ∈ torem where size(X) > 1 do
17: for all Y ∈ torem where size(Y) = size(X) do
18: if size(X ∩ Y) = (size(X)−1) then
19: multiblock(X \ (X ∩ Y)) := multiblock(X \ (X ∩ Y)) ∪ {Y \ (X ∩ Y)}
20: for all βi ∈ torem do
21: π(PQC) := π(PQ) with block βi removed
22: push(Queue, PQC)
23: lastremoved(π(PQC)) := βi

This change to the projection generation algorithm should resolve the issues
posed. The investigation of these changes, together with experimental evaluation,
are subject of further research.

Next to this, as mentioned in Section 3.7.2, more experiments are required to
further investigate the impact of using foreign-keys to reduce query evaluations.

98

Chapter 4

Relational Itemset Mining

Itemset mining algorithms are probably the best known algorithms in frequent
pattern mining. We introduced the problem and the basic techniques in Chap-

ter 2. Many efficient solutions have been developed for this relatively simple class
of patterns. These solutions can be applied to relational databases containing a
single relation. Since a typical relation contains attributes that can have different
values, this case defines an item as an attribute-value pair.

While the task of mining frequent itemsets in a single relation is well studied,
for mining frequent itemsets in arbitrary relational databases, which typically have
more than one relation, only a few solutions exist [Crestana-Jensen & Soparkar,
2000, Ng et al., 2002, Koopman & Siebes, 2008]. These methods consider a rela-
tional itemset to be a set of items, where each item is an attribute-value pair, and
these items belong to one or more relations in the database. In order for two such
items from different relations to be in the same itemset, they must be connected.
Two items (attribute-value pairs) are considered connected if there exists a join of
the two relations in the database that connects them. In general we can state that
an itemset is valid if a tuple, containing the itemset, exists in the (full outer) join
of all relations in the database. In this chapter we also adopt this definition.

A primary requirement to mine any kind of frequent patterns, is a good defini-
tion of a unit in which the frequency is expressed; that is, what is being counted.
In standard itemset mining there is a single table of transactions and the unit to
be counted is clearly defined as the number of transactions containing the itemset
(See Section 2.1 of Chapter 2). For instance, a frequent itemset {butter,cheese}

99

4. Relational Itemset Mining

Product

PID
Price

Name

Buys

Customer
CID

Name Surname

0..n

0..n

Supplies

Supplier

SID Name

1..n

1..n

Figure 4.1: Supermarket Database

represents the fact that in a large fraction of the transactions butter and cheese oc-
cur together. When considering itemsets over multiple relations, elegantly defining
such a unit is less obvious in general. In the existing relational itemset mining ap-
proaches [Crestana-Jensen & Soparkar, 2000, Ng et al., 2002, Koopman & Siebes,
2008], the frequency of an itemset over multiple relations is expressed in the num-
ber of occurrences (tuples) in the result of a join of the relations in the database.
However, this definition of frequency of an itemset is hard to interpret as it heav-
ily depends on how well the items are connected to other items (not necessarily
in that itemset). For example, consider the relational database with the scheme
represented in the Entity-Relationship model in Figure 4.1. Then consider the
singleton itemset {Product.Name=butter}. In the join of Customer, Product and
Supplier, this itemset could occur frequently because it is connected to a lot of
customers, but even if this is not the case, it could still be frequent simply because
it is connected to a lot of suppliers. The main issue here is that when using the
number of occurrences in the join as a frequency measure, it is hard to determine
the true cause of the frequency.

Instead of counting frequency as the number of occurrences in the join, we opt
for a novel, more semantic approach. In the supermarket example, we want to
find products that are bought by a lot of (different) customers, but we might also
be interested in products that have a lot of (different) suppliers. Essentially, we
want to count the number of connected customers and the number of connected
suppliers. In order to have such semantics, we must not count all occurrences of

100

Professor
PID

Name Surname

Teaches Course

CID Credits

Project
1..n 0..n

Takes

Student

SID
Name

Surname

0..n

0..n

StudiesStudy

YID Name

1..1 0..n

Figure 4.2: Running Example Relational Scheme

an itemset in the join, but instead separately count the occurrences with unique
customers and the occurrences with unique suppliers. This new frequency count-
ing technique allows for interpretable frequent itemsets, since we will now have
separate customer-frequent and supplier-frequent itemsets.

As our practical goal is to mine relational itemsets in arbitrary relational
databases, we assumed key-dependencies are specified with the relational scheme
of the input database. This way we can count unique key values, as a way of
counting connected entities. Consider the example Entity-Relationship scheme in
Figure 4.2, which we will use as a running example throughout the chapter. For
this scheme, the keys to be used would be in the set {Professor.PID, Course.CID,
Student.SID, Study.YID}. It goes without saying that itemsets frequent in Pro-
fessor.PID have a different semantics than itemsets frequent in Course.CID. It is
clear that our new frequency counting approach significantly differs from other
relational itemset mining approaches that simply count the occurrences in the join
of all relations. As we show in this chapter, our new approach allows for an effi-
cient propagation based depth-first algorithm that generates interesting frequent
relational itemsets that are sensible and easily interpretable. As stated before,
we want to provide a pattern mining algorithm that can directly interact with
standard relational databases. We therefore use SQL in our implementation to
fetch the necessary data from the database. As a result, our prototype is gener-

101

4. Relational Itemset Mining

ally and easily applicable for arbitrary relational databases, without requiring any
transformation on the data.

We formally define relational itemsets, rules and our novel frequency counting
approach in Section 4.1. Two variants of a depth-first algorithm for mining frequent
relational itemsets are proposed in Section 4.2. Section 4.3 investigates a new
measure based on deviation. We then investigate several types of association rule
redundancy, in order to reduce the size of the output in Section 4.4. In Section 4.5
we consider the results of experiments comparing the variations of the algorithm
and investigate the patterns found. Finally, we consider related work in Section 4.6
and conclude in Section 4.7. Part of this chapter is based on work published
in [Goethals et al., 2009, Goethals et al., 2010].

4.1 Definitions
Before formally defining relational itemsets, we first consider the relational scheme
as it forms the basis of our definition of patterns.

4.1.1 Relational Scheme
Every relational database has a relational scheme (see Chapter 1). For clarity, we
focus on simple relational schemes. More specifically, using the Entity-Relationship
model, we consider acyclic relational schemes using only binary relations to con-
nect entities, i.e., schemes that can be represented as unrooted trees (See Fig-
ure 4.2 as an example). Let sort be a function that maps a relation name to its
attributes [Abiteboul et al., 1995]. We now define such schemes as follows:

Definition 4.1. Let E be a set of entities and R a set of binary relations. A
simple relational scheme is a tuple (E ,R) such that

1. ∀E ∈ E : ∃!key(E) ⊆ sort(E), the key attributes of E

2. ∀R ∈ R : ∃!Ei, Ej ∈ E , Ei 6= Ej such that sort(R) = key(Ei)∪key(Ej)

3. ∀Ei, Ej ∈ E , Ei 6= Ej : ∃!E1, . . . , En ∈ E such that

a) E1 = Ei and En = Ej

b) ∀k, l : if k 6= l then Ek 6= El

c) ∀k,∃!R ∈ R : sort(R) = key(Ek) ∪ key(Ek+1)

Informally, this states that every entity needs to have a unique key defined,
and that for every two entities there exists a unique path of binary relations and
entities connecting them. Many practical relational databases satisfy such simple

102

4.1. Definitions

relational schemes. Moreover, databases with star schemes and snowflake schemes
can be formulated in this way.

4.1.2 Relational Itemsets
We are now ready to formally define the type of pattern we want to mine.

Definition 4.2. Given a simple relational scheme (E ,R), {(A1 = v1), . . . , (An =
vn)}K is a relational itemset in key K where K ∈ ⋃E∈E{key(E)}, each (Ai = vi)
is an attribute-value pair (or item) such that Ai ∈

⋃
E∈Esort(E) and vi ∈ Dom(Ai)

and @(Aj, vj) : j 6= i with Aj = Ai. We denote the set of all items by I.

Note, that we will sometimes use I to denote a set of items without any key
specified, next to IK which denotes an itemset in key K.

Example 4.1. Given the relational scheme in Figure 4.2, where we abbreviate
the relation names to P, C, Stnt and Stdy, we can consider the relational itemset
{(P.Name = Jan), (C.Credits = 10)}C.ID. Suppose this relational itemset is frequent,
then it expresses that a large fraction of the courses has 10 credits and that a
professor that teaches them is named Jan. Since we have C.ID as the counted key
we know we are expressing patterns about courses. Because we assume a simple
relational scheme, the professor can only be connected to the courses in one way
(via the relation Teaches) and hence, we know this pattern expresses that Jan is
teaching them.

Next, we define the frequency measure support for relational itemsets. In order
to do this we need to consider the unique path of entities and relations connecting
the entities of the itemset.

Proposition 4.1. Given a simple relational scheme (E ,R), and a relational item-
set IK = {(A1 = v1), . . . , (An = vn)}K, let EIK = {E ∈ E | key(E) = K or ∃i :
Ai ∈ sort(E)}. There exists a unique path PIK connecting all E ∈ EIK .

Proof. (outline) We can consider the simple relational scheme (E ,R) to be a tree
where E are the nodes, and R are the edges. Then we can consider the subtree
formed by the nodes in ⋃

Ei,Ej∈EIK
path(Ei, Ej) and the edges in R connecting

them, where path(Ei, Ej) is the unique path of entities as defined in Definition 4.1.
If we take EK : key(EK) = K to be the root of this tree, we can then consider the
preorder traversal of this subtree as the unique path PIK .

Definition 4.3. Given a simple relational scheme (E ,R) the absolute support
of a relational itemset IK = {(A1 = v1), . . . , (An = vn)}K is the number of dis-
tinct values of the key K in the answer of the query (expressed here in relational

103

4. Relational Itemset Mining

Professor
PID Name Surname

A Jan P
B Jan H
C Jan VDB
D Piet V
E Erik B
F Flor C
G Gerrit DC
H Patrick S
I Susan S

Course
CID Credits Project

1 10 Y
2 10 N
3 20 N
4 10 N
5 5 N
6 10 N
7 30 Y
8 30 Y
9 10 N
10 10 N
11 10 N

Student
SID Name Surname

1 Wim LP
2 Jeroen A
3 Michael A
4 Joris VG
5 Calin G
6 Adriana P

Study
YID Name

I Computer Science
II Mathematics

Studies
SID YID

1 I
2 I
3 I
4 II
5 II
6 II

Teaches
PID CID

A 1
A 2
B 2
B 3
C 4
D 5
D 6
E 7
F 8
G 9
G 10
G 11
I 11

Takes
SID CID

1 1
1 2
2 1
3 1
4 3
5 2
6 11

Figure 4.3: Running Example Relational Instance

algebra [Abiteboul et al., 1995]):

πKσA1=v1,...,An=vnE1 1key(E1)R1,2 1key(E2)E2 1 · · ·1En

where Ei 1key(Ei) Ri,i+1 represents the equi-join on Ei.key(Ei) = Ri,j.key(Ei) and
all Ei ∈ EIK are joined using the unique path PIK . The relative support of
an itemset is the absolute support of the itemset divided by the number of distinct
values for K in the entity of which K is key. We call a relational itemset frequent if
its (absolute/relative) support exceeds a given minimal (absolute/relative) support
threshold.

Example 4.2. Given the instance of the scheme of Figure 4.2 depicted in Fig-
ure 4.3, the absolute support of the itemset {(C.Credits = 10)}P.PID is 6, as the

104

4.1. Definitions

tid P.PID P.Name P.Surn C.CID C.Project C.Credits S.SID S.Name S.Surn Y.YID Y.Name

1 A Jan P 1 Y 10 1 Wim LP I Comp. Sc.
2 A Jan P 1 Y 10 2 Jeroen A I Comp. Sc.
3 A Jan P 1 Y 10 3 Michael A I Comp. Sc.
4 A Jan P 2 N 10 1 Wim LP I Comp. Sc.
5 A Jan P 2 N 10 5 Calin G II Math.
6 B Jan H 2 N 10 1 Wim LP I Comp. Sc.
7 B Jan H 2 N 10 5 Calin G II Math.
8 B Jan H 3 N 20 4 Joris VG II Math.
9 C Jan VDB 4 N 10 NULL NULL NULL NULL NULL
10 D Piet V 5 N 5 NULL NULL NULL NULL NULL
11 D Piet V 6 N 10 NULL NULL NULL NULL NULL
12 E Erik B 7 Y 30 NULL NULL NULL NULL NULL
13 F Flor C 8 Y 30 NULL NULL NULL NULL NULL
14 G Gerrit DC 9 N 10 NULL NULL NULL NULL NULL
15 G Gerrit DC 10 N 10 NULL NULL NULL NULL NULL
16 G Gerrit DC 11 N 10 6 Adriana P II Math.
17 H Patrick S NULL NULL NULL NULL NULL NULL NULL NULL
18 I Susan S 11 N 10 6 Adriana P II Math.

Figure 4.4: Full outer join of the relational instance of Figure 4.3

distinct answer to the query

πP.PIDσC.Credits=10P 1PID Teaches 1CID C

is {A,B,C,D,G,I}. This means that six professors teach a course with 10 credits.
The relative support is 6/9, as there are 9 professors in the Professor relation.

4.1.3 Relational Association Rules
Association rules are defined in much the same way as in standard itemset mining
(see Chapter 2). The only restriction added in the setting of relational itemsets,
is that the antecedent and the consequent need to be expressed in the same key.

Definition 4.4. Let IK be the set of all relational itemsets in key K. A⇒K C is
a relational association rule in key K if A,A ∪ C ∈ IK.

Definition 4.5. The support of A ⇒K C is the support of (A ∪ C)K. The
confidence of A⇒K C is the support of (A ∪C)K divided by the support of AK.

Example 4.3. Given the instance depicted in Figure 4.3, a possible relational
association rule could be {(P.Name = Jan)} ⇒C.CID {(C.Credits = 10)} The confi-
dence is 3/4 = 0.75 since there are 3 courses (1,2,4) taught by a ‘Jan’ that have
10 credits, compared to the 4 courses (1,2,3,4) taught by a ‘Jan’ in total. The
relative support is 3/11 = 0.27 since there are 11 courses in total.

105

4. Relational Itemset Mining

4.2 Algorithm: SMuRFIG
In this section we describe several algorithms for mining relational itemsets. We
first consider an approach for a naive algorithm, based on the computation of
the full outer join. Then we present our algorithm SMuRFIG (Simple Multi-
Relational Frequent Itemset Generator). All algorithms employ KeyID lists, sim-
ilar to the transaction identifier (tid) lists used in the well-known Eclat algorithm
(see Chapter 2). The KeyID list of an itemset IK is defined as the set of distinct
values in the answer of the support query specified in Definition 4.3.

4.2.1 Naive Relational Itemset Miner
First, we consider the naive approach. The input of the Naive algorithm (see Al-
gorithm 4.1) is an instance of a simple relational scheme as defined in Section 4.1
and a relative minimum support threshold minsup. The support query from Defi-
nition 4.3 is straightforwardly decomposed into three parts, i.e. a join, a selection,
and a projection. First, a join table is constructed using entities and relations, and
then the correct support(s) are found using this table. However, this join is differ-
ent for each itemset, and we would have to perform all such possible joins, which
is infeasible. Instead, we create a single large join table containing all entities and
relations. To achieve this, we cannot use an equi-join. Indeed, if a tuple is not
connected to any tuples in other tables, it would not appear in the full equi-join
of all entity tables, which means we would lose some information. To avoid this,
we combine the entities and relations using a full outer join, which combines all
non-connected tuples with NULL-values. This full outer join results in table J on
line 1.

Example 4.4. The result of a full outer join of the entities and relations of Fig-
ure 4.3 is given in Figure 4.4. Here, there are NULL values present for the student
attributes on the rows for courses 4 to 10, since no students are taking them.

The minimum support threshold is relative to each entity separately, hence we
cannot simply use it relative to the join table J . Instead, we must use an absolute
minimum support threshold abssup (line 2) as a lower bound, since the absolute
support of an itemset in J is at least as high as the absolute support of the itemset
in any entity table E, so any itemset frequent in some E with respect to minsup
will also be frequent in J with respect to abssup. A standard frequent set miner,
Eclat, is executed on table J , using the new threshold (line 3). This stage of
the algorithm effectively performs the select clause (σ) of the support query. We
assume here that the tid lists of an itemset (the list of tuples of J where the itemset
occurs) are part of the output of Eclat. Then, the tid lists of all generated itemsets
are translated to their appropriate KeyID lists on line 6. Translating a tid list T

106

4.2. Algorithm: SMuRFIG

Algorithm 4.1 Naive Relational Itemset Miner
Input: An instance of a simple relational scheme (E ,R); relative support thresh-

old minsup
Output: Set F of all itemsets I where ∃E ∈ E : Ikey(E) is frequent
1: J := E1 1 R1,2 1 E2 1 · · · 1 En
2: abssup := minE∈E(minsup× |E|)
3: It := Eclat(J , abssup)
4: for all It ∈ It do
5: for all E ∈ E do
6: KeyIDs(Ikey(E)) := translate(It,key(E))
7: if support(Ikey(E)) ≥ minsup ×|E| then
8: F := F ∪ Ikey(E)
9: return F

to a KeyID list is comes down to performing the projection πK(J 1 T) to each
key K. This can be done efficiently by using a lookup table that can be created
during the construction of J . Finally, the relative minimum support threshold is
imposed for each itemset, and the frequent itemsets are reported.

Example 4.5. The itemset {(C.Credits = 10)} corresponds to the transaction ids
{1,2,3,4,5,6,7,9,11,14,15,16,18} of the full outer join shown in Figure 4.4. If we
translate these to unique P.PIDs by looking up the P.PID values for these tuple ids
in the join table, we get {A,B,C,D,G,I}, and hence the absolute support of itemset
{(C.Credits = 10)}P.PID is 6, corresponding to the results in Example 4.2.

The advantage of this naive approach is that it can be implemented as a wrap-
per around an existing itemset mining algorithm. However, there are several draw-
backs to this naive method. First of all, the computation of the full outer join is
costly with respect to both computation time and memory consumption. While
still possible for small databases, it quickly becomes infeasible for larger ones.
Secondly, it generates a lot of candidates. We can only prune itemsets that are
infrequent in J with respect to abssup. However, many candidate itemsets that
are frequent in J , will turn out to be infrequent in all entity tables E with respect
to the minsup threshold.

4.2.2 SMuRFIG
The SMuRFIG algorithm (see Algorithm 4.2) does not suffer from these drawbacks,
i.e. it is fast and efficient in both time and memory. It uses the concept of KeyID
list propagation. First, the KeyID lists of singleton itemsets are extracted from the
data in their respective entities (line 5), and then these KeyID lists are propagated

107

4. Relational Itemset Mining

to all other entities (line 7, see Algorithm 4.4). The propagation function recur-
sively translates a KeyID list from one entity Ei to its adjacent entities Ej, until
all entities are reached. The translation of a KeyID list from Ei to Ej using Ri,j

is equivalent to the result of the relational query πkey(Ej)(KeyIDsEi 1 Ri,j). It is
not difficult to verify that in this way we now have the KeyID lists of all items for
all entities E, and hence their supports. Next, the (frequent) singleton itemsets
are combined into larger sets by the Keyclat function (Algorithm 4.3).

The input of SMuRFIG is the same as the naive algorithm. SMuRFIG also first
calculates the minimal absolute support, but this time it is to be used as a general
threshold to prune singleton itemsets in each entity table separately. Furthermore,
as an optimisation, each entity table is subject to a left outer join (C on line 4) in
SQL. A left outer join is similar to a full outer join, but will only always keep all
attributes from the left relation and adds the attributes from the right relation.
Unlike the full outer join, a left outer join can be efficiently computed. Projecting
this outer join back on the attributes of the leftmost entity, assuming no duplicates
are eliminated, has the effect of “blowing-up” the occurrences of the attributes of
this entity. The attributes now occur in the same quantity as they would in the full
outer join and this allows us to apply the computed absolute minimum support
threshold when computing the singleton itemsets. If we would not blow-up the
entity tables, some attribute values could be underrepresented, and we would not
be able to prune at all in the singleton mining phase. That is to say, a certain
attribute could be infrequent in the key of its own entity (because it only appears
in a small number of tuples), but this same attribute can, however, be frequent in
a key of a different entity than the one the attribute belongs to. This is the case

Algorithm 4.2 SMuRFIG
Input: An instance of a simple relational scheme (E ,R); relative support thresh-

old minsup
Output: Set F of all itemsets I where ∃E ∈ E : Ikey(E) is frequent
1: abssup := minE∈E(minsup× |E|)
2: for all E ∈ E do
3: K := key(E)
4: E ′ := πsort(E)E C R1 C · · · C R|R|
5: IE := singletons(E ′, abssup)
6: for all IK ∈ IE do
7: Propagate(KeyIDs(IK))
8: if ∃K ′ : support(IK′) ≥ minsup× |E| then
9: I := I ∪ {I}

10: F := Keyclat(I, minsup)
11: return F

108

4.2. Algorithm: SMuRFIG

when this small number of tuples in the entity are connected to a lot of tuples in
another entity.

Example 4.6. Considering the instance of Figure 4.3. Here the itemset {(P.Name
= Gerrit)} only occurs once in the Professor table. Thus, counting professors,
this attribute is infrequent for an absolute minimal support of 2. But if we look
at the full outer join of Figure 4.4 we see {(P.Name=Gerrit)} appears 3 times,
because ‘Gerrit’ is connected to 3 courses (9,10,11). Counting courses, {(P.Name
= Gerrit)} should be frequent for the absolute minimal support of 2. After per-
forming a left outer join on the entity Professor, the item {(P.Name=Gerrit)} will
appear 3 times, and will therefore now be frequent with the same absolute minimal
support in this new blown-up entity.

Because of the left outer join, we can now safely prune infrequent items (using
the computed absolute minimal support threshold) within each blown-up entity,
since we know that, due to the blow-up, infrequent items are infrequent in any
key. The actual mining of the singletons is performed by the subroutine singletons
(line 5). It just scans the table, extracts the frequent singleton items, and prunes
the infrequent ones. The support count used for this pruning is based on the
row-ids (or transaction-ids) of the (blown-up) entity table. This is therefore not
the same as the KeyID based support used in the rest of the algorithm. After
this initial pruning in the singleton mining phase we compute the support of a
singleton attribute in the key of its entity, basically by eliminating duplicates.
Thus for each entity E we now have all singleton itemsets expressed in key(E),
where each singleton contains one attribute of E (line 5).

We then propagate these KeyID lists to all other keys (line 7). From this point
on we only use KeyID based support, and, using the singleton itemsets as input,
all frequent itemsets are mined in the subroutine Keyclat (Algorithm 4.3), which
uses the provided relative minimal support threshold.

The Keyclat routine is the core of SMuRFIG. It traverses the search space
depth-first, and uses the concept of KeyID propagation to correctly and efficiently
compute KeyID lists of an itemset. In each recursion, two k-itemsets with a
common prefix P (initially empty) are combined to form a new candidate set of
size k + 1. Let I ′ and I ′′ be two such itemsets, and let I = I ′ ∪ I ′′. To compute
the support of I, we first determine that the entity tables of the suffix items of
I ′ and I ′′ are E1 and E2 (line 4). We then intersect the KeyID lists of I ′ and
I ′′ in E1 and E2, to obtain the support of I in E1 and E2. Then, these KeyID
lists are propagated to all other entities (line 8). For all other entities E we now
intersect these propagated KeyID lists with the KeyID lists of I ′ and I ′′, to obtain
the KeyID list of I in E (line 12). In some cases, however, it is not necessary to
make the intersection on line 12. If an entity E does not lie between E1 and E2 in
the database’s scheme graph (which is the case if the unique path from E to E1

109

4. Relational Itemset Mining

Algorithm 4.3 Keyclat
Input: Set of k-itemsets LP with a common prefix P ; support threshold minsup
Output: Set F of all itemsets I where ∃E ∈ E : Ikey(E) is frequent and with

common prefix P
1: for I ′ in LP do
2: for I ′′ in LP with I ′′ > I ′ do
3: I := I ′ ∪ I ′′
4: E1, E2 := entity of suffix items I ′ \ P, I ′′ \ P respectively
5: for i ∈ {1, 2} do
6: Ki := key(Ei)
7: KeyIDs(IKi) := KeyIDs(I ′Ki) ∩KeyIDs(I ′′Ki)
8: pKeyIDsi(I) := Propagate(KeyIDs(IKi))
9: for E ∈ E \ {E1, E2} do

10: K := key(E)
11: if E lies between E1 and E2 then
12: KeyIDs(IK) := pKeyIDs1(IK) ∩ pKeyIDs2(IK)

∩ KeyIDs(I ′K) ∩KeyIDs(I ′′K)
13: else
14: Ei is the closest to E
15: KeyIDs(IK) := pKeyIDsi(IK)

∩ KeyIDs(I ′K) ∩KeyIDs(I ′′K)
16: support(IK) := |KeyIDs(IK)|
17: if support(IK) ≥ minsup× |E| then
18: FI′ := FI′ ∪ IK
19: F := F ∪ FI′ ∪Keyclat(FI′ ,minsup)
20: return F

Algorithm 4.4 Propagate
Input: KeyID list of an itemset I in some key(Ei)
Output: KeyID lists of I in all key(E) for E ∈ E
1: for all neighbours Ej of Ei not yet visited do
2: Translate KeyIDs in key(Ei) to key(Ej) using Ri,j

3: Propagate(KeyIDs in key(Ej))

contains E2 or vice versa), it is sufficient to take the propagated KeyID list of the
entity E1 or E2 closest to E in the scheme’s graph (line 15).

Example 4.7. Suppose that we have the two itemsets P = {(P.Name = Jan)} and
S = {(S.Surname = A)}. These are singletons, so we have computed the KeyID
lists for all keys. Furthermore, their common prefix is the empty set. We determine

110

4.2. Algorithm: SMuRFIG

the entity table of P to be Professor and of S to be Student. Let PS denote P ∪S,
then we compute

KeyIDs(PSP.PID) = KeyIDs(PP.PID) ∩KeyIDs(SP.PID)
= {A, B, C} ∩ {A} = {A}

KeyIDs(PSS.SID) = KeyIDs(PS.SID) ∩KeyIDs(SS.SID)
= {1, 2, 3, 4, 5} ∩ {2, 3} = {2, 3}

Then these KeyID lists are propagated to all entities. For example, propagating the
P.PIDs {A} to C.CID results in pKeyIDs1(PSC.CID) = {1, 2}. Propagating S.SIDs
{2, 3} results in pKeyIDs2(PSC.CID) = {1}. To obtain the other KeyID lists we
perform intersections. Take e.g. for C.CID:

KeyIDs(PSC.CID) = pKeyIDs1(PSC.CID)
∩ pKeyIDs2(PSC.CID)
∩ KeyIDs(PC.CID) ∩KeyIDs(SC.CID)

= {1, 2} ∩ {1} ∩ {1, 2} ∩ {1} = {1}

Thus, the support of {(P.Name=Jan), (S.Surname=A)}C.CID = |{1}| = 1. It is clear
that this result corresponds to what can be seen in the full outer join in Figure 4.4.

The time complexity of SMuRFIG is as follows. For a single itemset, at most
three intersections are required for each entity E, taking O(∑E∈E |E|), where
|E| is the number of tuples in E. The propagation function, which is executed
at most twice, uses each relation R exactly once, amounting to O(∑R∈R |R|).
In order to decide whether an entity lies between two other entities, we must
compute the paths between all pairs of entities in the database scheme’s graph.
Fortunately, this must be done only once and takes O(|E|2) time, since we are
considering simple schemes. To sum up, the time complexity of SMuRFIG is
O (|E|2 + |F| · size(DB)), where |F| is the total number of frequent itemsets and
size(DB) = ∑

E∈E |E|+
∑
R∈R |R| is the size of the database.

SMuRFIG only requires a small amount of patterns to be stored in memory
simultaneously. At the time of the generation of an itemset of length k, we have
k2+k

2 previous itemsets in memory due to the depth-first traversal. For each of
these itemsets we must store KeyID lists for all keys. The maximal total size of
these lists for one itemset is ∑E∈E |E|. Next to this, we also keep all relations
R in memory, which are needed in the propagation function. To sum up, if l
is the size of the largest frequent itemset, then SMuRFIG’s worst case memory
consumption is O (l2 ·∑E∈E |E|+

∑
R∈R |R|). Note, however, that in practice the

size of a KeyID list can be much smaller than the corresponding entity |E|.
To reduce the algorithmic complexity somewhat, we can also consider a simpler

version of the Keyclat algorithm. We can opt to determine the KeyID list of an

111

4. Relational Itemset Mining

itemset by only taking the intersection of the KeyID-lists of the frequent subsets.
This choice, however, changes the semantics of support of a relational itemset.
For example, if the support of the itemset {(C.Credits = 10), (C.Project = Y)}P.PID
is computed by the intersection of the PID-lists of {(C.Credits = 10)}P.PID and
{(C.Project = Y)}P.PID then it is to be interpreted as the number of professors
that give a course with 10 credits and also a (possibly different) course that has a
project. While in the normal, stricter semantics this should be the same course.
We call this second semantics the loose semantics.

Definition 4.6. Given a simple relational scheme (E ,R) the absolute loose
support of a relational itemset {(A1 = v1), . . . , (An = vn)}K is the number of
distinct values of the key K in the answer of the relational algebra query:⋂

i=1...n πKσAi=viE1 1key(E1)R1,2 1key(E2)E2 1 · · ·1En

Note that the loose support of an itemset is always greater than or equal to
its strict support. Loose relative support and frequency are defined similarly to
Definition 4.3. The algorithm Keyclat-loose (see Algorithm 4.5) computes the
KeyID intersections of I for every entity key. It basically comes down to the
the Eclat algorithm, running in parallel for every possible key. There is only
one initial propagation, taking O (∑E∈E |IE| ·

∑
R∈R |R|), otherwise the algorithm

performs an intersection for every key. Hence, computing the support of an
itemset with the loose semantics is in O(∑E∈E |E|). The whole algorithm is in
O (∑E∈E |IE| ·

∑
R∈R |R|+ |F ′| ·

∑
E∈E |E|) which is less than in the strict seman-

tics, although the number of loosely frequent itemsets |F ′| can be much higher than
the number of frequent itemsets |F|. We investigate this impact in Section 4.5.

Since we have defined the loose semantics we can also consider a loose naive
algorithm, given as Algorithm 4.6. Similar to the naive algorithm, the algorithm
computes the full outer join. After that it will run a specialised version of Eclat
for each key(E) (line 4). This Eclat version (EclatK) will count the KeyIDs for
the given K = key(E) instead of the row-ids of J , but is otherwise identical to
Eclat as presented in Chapter 2. After that, the itemsets in key(E) are added to
the output. This algorithm has the same drawbacks as the naive algorithm, while
these do not occur with SMuRFIG under loose semantics.

4.2.3 NULL values
In real world datasets it is often the case that certain attributes of an entity only
apply in certain cases. Some subset of the tuples will have values, while the other
tuples typically have a NULL value. In the naive approach, the full outer join
actually will generates NULL values. In that case we ignore NULL as a valid value
for an attribute in an itemset. We will do the same for NULL values that are already

112

4.3. Deviation

Algorithm 4.5 Keyclat-loose
Input: Set of k-itemsets LP with a common prefix P ; support threshold minsup
Output: Set F of all I ∈ I where ∃E ∈ E : Ikey(E) is loosely frequent and common

prefix P
1: for I ′ in LP do
2: for I ′′ in LP with I ′′ > I ′ do
3: I := I ′ ∪ I ′′
4: for E ∈ E do
5: K := key(E)
6: KeyIDs(IK) := KeyIDs(I ′K) ∩KeyIDsK(I ′′K)
7: support(IK) := |KeyIDs(IK)|
8: if support(IK) ≥ minsup× |E| then
9: FI′ := FI′ ∪ IK

10: F := F ∪ FI′ ∪Keyclat-loose(FI′ ,minsup)
11: return F

Algorithm 4.6 Naive Loose Relational Itemset Miner
Input: An instance of a simple relational scheme (E ,R); relative thresholdminsup
Output: Set F of all I ∈ I where ∃E ∈ E : Ikey(E) is loosely frequent
1: J := E1 1 R1,2 1 E2 1 · · · 1 En
2: for all E ∈ E do
3: K := key(E)
4: IK := EclatK(J , minsup×|E|)
5: F := F ∪ IK
6: return F

present in the data. This also allows us to do regular itemset mining by creating
an entity that has all possible items as attributes and the TID as key. Tuples will
have a predefined value for each attributes that occurs (e.g. 1), and NULL if the
attribute does not.

4.3 Deviation
The relational case we are considering also brings additional challenges. For in-
stance, let us consider the itemset {(C.project = Y)}S.SID having a support of 67%,
telling us that 67% of the students take a course with a project. When assuming a
support threshold of 50%, this would be a frequent itemset. It is, however, not nec-
essarily an interesting itemset. Suppose we also find that {(C.project = Y)} holds
for 30% of the courses. Depending on the connectedness of students and courses

113

4. Relational Itemset Mining

a support of 67% could even be the expected value. For example, if students typ-
ically take 1 course then the expected % (if one assumes no bias) would be 30%.
However, if students take 2 courses, it rises to 51.2%, with 3 courses 66.1% and
so on. So in the case of an average of 3 courses per student, the 67% is expected,
and thus we could consider this pattern to be uninteresting. Hence, in order to
determine if {(C.project = Y)}S.SID is interesting, we use the connections and the
support in C.CID to compute the expected support of {(C.project = Y)}S.SID. Then,
we will only consider the itemset to be interesting if the real support deviates
substantially from the expected support.

To formalise this notion, we start off by only considering relational itemsets I
consisting of items from a single entity E with key K. We refer to these kinds of
itemsets as intra-entity itemsets. We now only want to find those frequent itemsets
IK′ where the support in K ′ deviates enough from the expected support in K ′.
We now formally define expected support in our context (based on the general
definition for expected value) as follows:

Definition 4.7. Let I ⊆ I be an intra-entity itemset containing items from a single
relation E with key K, and let K ′ be the key of some other entity E ′. Furthermore,
let S and S ′ be two random variables for the support of IK and IK′, respectively.
Then the expected absolute support of IK′, given that support(IK) = s, equals

E[S ′|S = s] =
k′∑
i=1

1−
di−1∏
j=0

(
1− s

k − j

)
where k = |E|, k′ = |E ′|, and di is the degree of the i-th tuple in E ′, i.e. the
number of tuples in E that tuple i is connected to. Note that when k− di < s then∏di−1
j=0 (1− s

k−j) = 0.

The formula above is derived as follows. The relative support s/k is equal to
the probability P (I) of a tuple in E. The probability that a connection of a tuple
of E ′ goes to a tuple of E where I does not hold is (1 − s/k). The probability
that a second connection of a tuple of E ′ goes to a tuple of E where I does not
hold, given that there already was a first connection that did not hold is (1− s

k−1).
Since for tuple i of E ′ there are di connections to tuples of E, the probability that
none of them are to a tuple where I holds is ∏di−1

j=0 (1 − s
k−j), and therefore the

probability that one of them does connect is 1−∏di−1
j=0 (1− s

k−j). We then take the
sum over all tuples i of E ′ and obtain the stated formula.

Using this definition of expected support, we formally introduce deviation.

Definition 4.8. Given an itemset I ⊆ I, let EK be the entity of key K. We define
the deviation of IK as

|support(IK)− E[support(IK)]|
|EK |

.

114

4.3. Deviation

Our goal is to find frequent relational itemsets with a defined minimal deviation,
in order to eliminate uninteresting relational itemsets. Results of experiments
performed in this setting are reported in Section 4.5.

Note that we restricted ourselves to a special case of itemsets only containing
items with attributes from the same entity (intra-entity itemsets). In order to
generalise deviation and expected support to itemsets containing attributes from
multiple entities, which we refer to as inter-entity itemsets, it is necessary to
generalise the definition of support of itemsets to allow sets of keys.

Definition 4.9. Given a simple relational scheme (E ,R), and a set of keys K ⊆⋃
E∈E{{key(E)}}, the support of a relational itemset IK = {(A1 = v1), . . . , (An =

vn)}K is the number of distinct values of K in the answer of the query:

πKσA1=v1,...,An=vnE1 1key(E1) R1,2 1key(E2) E2 1 · · · 1 En

where Ei 1key(Ei) Ri,i+1 represents the equi-join on Ei.key(Ei) = Ri,j.key(Ei) and
all Ei ∈ EIK are joined using the unique path PIK.

The relative support of an itemset is the absolute support of the itemset
divided by the number of distinct values for K in the answer of the query:

πKR1,2 1key(E2) R2,3 1 · · · 1 Rn

Using this definition we can define expected support for inter-entity itemsets:

Proposition 4.2. Let I ⊆ I be an itemset consisting of items with attributes
belonging to the set of entities EI = {E1, . . . , En}, and let E be an entity with
key K. Furthermore, let keys(I) denote ⋃Ei∈EI key(Ei), then let S and S ′ be two
random variables for the support of IK and IK respectively, where K = keys(I).
Then the expected absolute support of IK, given that the absolute support of IK = s
(s ∈ [0, k1]) and given the connections in the join table connecting the entities, is
given as:

E[S ′|S = s] =
k′∑
i=1

1−
di−1∏
j=0

(
1− s

k − j

)
where k = number of possible values for K in R1,2 1key(E2) R2,3 1 · · · 1 Rn, and
k′ is the number of tuples in E and di is the degree of the ith tuple in E, i.e. the
number of tuples in E1 1key(E1) R1,2 1key(E2) E2 1 · · · 1 En this tuple is connected
to.

This is essentially the same formula as Proposition 4.7, only now using the
support in a set of keys. Thus, the computation of expected support remains
roughly the same. Nevertheless, in order to execute this computation for an itemset
I, we need to obtain the support of I in the set of keys belonging to the entities of

115

4. Relational Itemset Mining

the attributes it contains (keys(I)). One option is to adapt our algorithm such that
it considers the support of an itemset in every possible set of keys. This option
creates too much overhead, since we do not need all these supports for all itemsets.
To be able to compute expected support of an itemset I we only additionally need
the support in keys(I). Therefore we consider a second option, where we adapt
our propagation procedure such that it also additionally computes the support in
keys(I) for every inter-entity itemset I.

So far, we assumed that KeyID lists did not contain any duplicates. Yet, when
translating from one KeyID list to another, duplicates arise naturally.

Example 4.8. Considering the instance from Figure 4.3, suppose we are trans-
lating the Course.CID list (1,2,3) to Professor.PID. Since both course 1 and 2 are
connected to professor A, and both course 2 and 3 are connected to professor B,
translating this without eliminating duplicates would result in the Professor.PID list
(A,A,B,B).

If we assume that KeyID lists contain duplicates, we can use these KeyID lists
to compute the support in keys(I) of an inter-entity itemset I in order to compute
its expected support.

Example 4.9. Consider the itemset {(P.Name=Jan), (S.Surname=A)}. The sup-
port in the set of keys (P.PID,S.SID) can be computed based on the KeyID list
((A,2),(A,3)) and thus equals 2, as can be verified in the full outer join of Fig-
ure 4.4. When not eliminating duplicates the Professor.PID list of this itemset
would be (A,A), and the Student.SID list would be (2,3). It is clear that these
KeyID lists are the decomposition of the KeyID list in (P.PID,S.SID). Thus we can
compute the support in (P.PID,S.SID) as the number of elements in the KeyID of
P.PID or S.SID, taking duplicates into account. On the other hand, the support in
e.g. P.PID would be the number of unique elements in the P.PID list.

Considering duplicates in KeyID lists, then

support(Ikeys(I)) = |KeyIDK(I)| where K ∈ keys(I) (4.1)

Let uniq(L) be a function that eliminates duplicates in a list L, then for all
E ∈ E

support(Ikey(E)) = |uniq(KeyIDE(I))| (4.2)

In order to use this new computation in our algorithm, we need to adapt it such
that it generates KeyID lists with duplicates. However, really storing duplicates
in the KeyID lists would result in bad memory and computation requirements.
In the worst case, a KeyID list would become as large as the number of tuples
in the full outer join of all relations, which we denote by size(1DB). Instead

116

4.3. Deviation

of really working with duplicated elements, we will consider KeyID lists where
each element has an associated number of occurrences. The list (A,A,B,B) from
Example 4.8, would be stored as (A,B) with the associated occurrences list (2,2).
This storage structure ensures that the memory requirement for the largest KeyID
list is only |Emax| · log(size(1DB)), where Emax is the entity containing the largest
number of tuples.

To adapt the SMuRFIG algorithm, we first change the translate function such
that it does not eliminate duplicates when translating KeyIDs, and instead stores
the needed number of occurrences for each key.

Example 4.10. Considering the course list Course.CID list (1,2,3) with occur-
rences (1,2,2). The translation to Professor.PID will occur in SMuRFIG, but the
occurences of the translation of course 2 and 3 is multiplied by 2. This results in
the Professor.PID list (A,B) with occurrences (2,5).

Because we need to take these occurrences into account, the Propagate function
needs to be adapted to use previously computed connections, otherwise unwanted
duplicates can arise.

Example 4.11. Consider the itemset {(P.Name=Jan), (S.Surname=LP)}. In the
set of keys (P.PID,S.SID) the KeyID list is ((A,1),(B,1)). If one computed the sup-
port pairwise, while not eliminating duplicates the Professor.PID list of this itemset
would be (A,A,B), and the Student.SID list would be (1,1,1). These KeyID lists
are decomposition of the KeyID list ((A,1),(A,1),(B,1)) which clearly contains an
unwanted duplicate.

This entails that we perform the pairwise propagation once for every key-
pair, i.e., we compute which tuples in entity Ei are connected to which tuples
in entity Ej. These connections can essentially be computed using the original
Propagate algorithm run using the full KeyID list of an entity as input. This
initial computation has a complexity of O(∑E∈E |E| ·

∑
R∈R |R|). Later we use

these computed connections to perform the KeyID list propagations for distinct
itemsets.

Most changes are required in the Keyclat algorithm, where we intersect KeyID
lists. In the updated algorithm, given as Algorithm 4.7, most of the intersections
remain unchanged and ignore the occurrence numbers. This is the case for the
intersection on line 7 and on line 20. The intersection, originally on line 12 in
Algorithm 4.3, is now changed into a small join, shown on lines 12 to 15. This
ensures that each element k in pKeyIDsE(I ′)1∩pKeyIDsE(I ′)2 appears o1(k)×o2(k)
times where oi(k) is the number of occurrences of k in pKeyIDsE(I ′)i. On line 18
we use the occurrences of the pKeyIDsE(I ′)i containing the most duplicates, i.e.,
where ∑k∈pKeyIDsE(I′)i oi(k) is the largest. The original intersection is changed

117

4. Relational Itemset Mining

such that the number of occurrences are preserved in the propagated KeyID lists
(lines 19 to 22). Finally in order to determine the support values only the KeyID
list is used and the occurrences are ignored (cfr. Equation 4.2).

This modified algorithm ensures that we can compute support as before by
only looking at the KeyID lists

support(Ikey(E)) = |KeyIDE(I)| (4.3)

and that we can, additionally, by looking at the occurrence lists, know the number
of duplicates in the KeyID lists. Let oK(k) denote the number of occurrences of
k in KeyIDsK(I). Then the support of an itemset I in the keys of the itemset’s
entities (keys(I)) can be computed as follows:

support(Ikeys(I)) =
∑

k∈KeyIDsK(I)
oK(k) where K ∈ keys(I) (4.4)

This provides the component s1 to be able to compute the expected support of
an itemset. We can compute the component k1 by considering the KeyID list of
all tuples of E1 and then propagating to En. The support of the resulting KeyID
list considering occurrences represents k1. Propagating this KeyID list to E we
can derive the di by counting the amount of duplicates of each tuple i of E in this
result.

Given all these components, we are now able to compute the expected support
of any itemset, and to perform a minimal deviation check as shown on line 30.

The storage of occurrence lists changes the complexity of our algorithm. KeyID
lists can now become larger in size than the number of tuples in the entities.
As stated the size of largest occurrence list is |Emax| · log(size(1DB)). For each
entity E separately this is |E| · log(size(1DB)). Storing the direct links requires
O(|Emax| ·

∑
R∈R |R|), where |Emax| is the size of the largest entity. This results in

the following memory requirements for SMuRFIG with occurrence lists:

O
(

(n
2

2 + n

2) · (
∑
E∈E
|E|) · log(size(1DB)) + |Emax| ·

∑
R∈R
|R|
)

The multiplications of occurrences take O(log(size(1DB))2) which result in
O(log(size(1DB))2) ·∑E∈E |E|) time complexity for the intersections. The prop-
agation of KeyID lists now taking the occurrences into account takes O(|Emax| ·
log(size(1DB)) ·

∑
R∈R |R|). Together with the O(∑E∈E |E| ·

∑
R∈R |R|) required to

compute the direct links, this results in the worst-case algorithmic complexity of

118

4.3. Deviation

Algorithm 4.7 Keyclat Deviation
Input: Set of k-itemsets LP with a common prefix P ; support threshold minsup;

deviation threshold mindev
Output: Set FD of all itemsets I ∈ I where ∃E ∈ E : Ikey(E) is frequent and

deviating and has prefix P
1: for I ′ in L do
2: for I ′′ in L with I ′′ > I ′ do
3: I := I ′ ∪ I ′′
4: E1, E2 := entity of suffix items I ′ \ P, I ′′ \ P respectively
5: for i ∈ {1, 2} do
6: Ki := key(Ei)
7: pKeyIDs(I)i := Propagate(KeyIDs(I ′Ki) ∩KeyIDs(I ′′Ki))
8: for E ∈ E do
9: K := key(E)

10: if E lies between E1 and E2 then
11: pKeyIDs(IK) := (pKeyIDs(IK)1 ∩ pKeyIDs(IK)2)
12: for all k ∈ pKeyIDs(IK) do
13: o1 := number of occurrences of k in pKeyIDs(IK)1.
14: o2 := number of occurrences of k in pKeyIDs(IK)2.
15: number of occurrences of k in pKeyIDs(IK) := o1 × o2
16: else
17: pKeyIDs(IK)i is the largest
18: pKeyIDs(IK) := pKeyIDs(IK)i
19: for all k ∈ pKeyIDs(IK) do
20: if k ∈ (KeyIDs(I ′K) ∩KeyIDs(I ′′K)) then
21: KeyIDs(IK) := KeyIDs(IK) ∪ {k}
22: number of occurrences of k in KeyIDs(IK) :=

number of occurrences of k in pKeyIDs(IK)
23: support(IK) := |KeyIDs(IK)|
24: if support(IK) ≥ minsup× |E| then
25: FI′ := FI′ ∪ IK
26: F := F ∪ FI′ ∪KeyclatDeviation(FI′ ,minsup,mindev)
27: for all I ∈ F do
28: for E ∈ E do
29: K := key(E)
30: if |support(IK)− ExpectedSupport(I)| ≥ (mindev× |E|) then
31: FD := FD ∪ IK
32: return FD

119

4. Relational Itemset Mining

SMuRFIG with occurrence lists is

O
(
|E|2

+ |F| ·
(

log(size(1DB))2 ·
∑
E∈E
|E|+ |Emax| · log(size(1DB)) ·

∑
R∈R
|R|
)

+
∑
E∈E
|E| ·

∑
R∈R
|R|
)

4.3.1 Rule Deviation
For use in their Warmr algorithm, [Dehaspe & Toivonen, 2001] consider deviation
on rules. Consider the rule A ⇒K C, where K = key(E). The expected value
of support(AC) can be considered to be calculated as the support of A times the
probability of C holding. The probability of C holding is expressed as fraction of
E for which C holds, or support(C)/|E|. Supposing S1, S2, S3 random variables
for respectively the support values of AC,A,C, the formula becomes

E[S1|S2 = support(A), S3 = support(C)] = support(A)support(C)
|E|

Then we can define the deviation as:

support(AC)− E[support(AC)] = support(AC)− support(A)support(C)
|E|

We note that this formula is a variant of the leverage measure [Piatetsky-Shapiro,
1991]. As we define a generalisation of leverage, called minimal divergence, in
Section 4.4.2 we will not be considering rule deviation, instead only considering a
minimal divergence threshold.

4.4 Redundancy
Examining the initial results of our algorithm, we uncovered several types of re-
dundancies. In our multi-relational setting, the type of redundancies we already
encounter in the standard itemset and association rule mining setting are also
present and worse due to the relational multiplication factor (the different keys
and the different relations).

4.4.1 Closure
We extend the notion of closed itemsets (see Chapter 2) to our multi-relational
setting and apply it to prune itemsets and generate association rules. We say that

120

4.4. Redundancy

an itemset I is closed if for all supersets I ′ of I there exists a key K such that
support(I ′K) < support(IK).

Definition 4.10. Given a simple relational scheme (E ,R), a relational itemset
{(A1 = v1), . . . , (An = vn)} is closed if for all (Am = vm) there exists a key
K ∈ ⋃E∈E{key(E)} such that

support({(A1 = v1), . . . , (An = vn), (Am = vm)}K)
< support({(A1 = v1), . . . , (An = vn)}K).

The closure of an itemset is defined as its smallest closed superset. It is
noteworthy that while a non-closed itemset produces an association rule with con-
fidence 100%, the opposite is not necessarily true. For instance, given the itemsets
A,C and a key K, it is perfectly possible that the rule A⇒K C has a confidence
of 100%, without C being in the closure of A.

Example 4.12. In the context of the instance from Figure 4.3, {(P.Name =
Jan)} ⇒P.PID {(C.Credits = 10)} is a 100% rule, since the professors with name
Jan (A, B and C) are the same as the professors with name Jan that also give
a course with 10 credits. However, {(C.Credits = 10)} is not in the closure of
{(P.Name = Jan)} since the rule {(P.Name = Jan)} ⇒C.CID {(C.Credits = 10)}
only has 75% confidence, since there are 4 courses (1,2,3,4) taught by a ‘Jan’, but
only 3 courses (1,2,4) taught by a ‘Jan’ that have 10 credits.

Essentially C is only in the closure of A if for all keys K, A ⇒K C is a 100%
association rule. In the case that only for a specific key K, A ⇒K C is 100%,
then for an itemset C ′, the confidence of A ⇒K CC ′ is not necessarily equal to
the confidence of A⇒K C ′.

Example 4.13. {(P.Name = Jan)} ⇒P.PID {(S.Surname = VG)} is a 33% rule,
while {(P.Name = Jan)} ⇒P.PID {(C.Credits = 10), (S.Surname = VG)} does not
hold.

From Definition 4.10 it follows that, if C is in the closure of A, then it does hold
that the confidence (and support) of A ⇒ CC ′ is the same as that of A ⇒ C ′,
and hence the former association rule is redundant. In our algorithm, we will
employ the same closure-based redundancy techniques as proposed by Zaki (see
Chapter 2), keeping in mind, however, that not all 100% rules entail a redundancy.
Specifically, a rule A ⇒ C is redundant if A is not a generator, or if C contains
an item from the closure of A (unless |C| = 1). Additional to closure redundancy,
we do not generate rules of the form key(R)⇒ A where A ⊆ sort(R), since these
rules are self evident. We also include the option to completely exclude keys from
the itemsets/rules. This allows for more focus on the relations between attributes,
but the results are of course incomplete.

121

4. Relational Itemset Mining

4.4.2 Divergence
Next to these lossless redundancy removal techniques, we also introduce an ex-
tra, but lossy, pruning technique. The technique is a generalisation of minimal
improvement [Bayardo Jr et al., 2000]. In minimal improvement, all rules must
have a confidence that is at least a minimal improvement threshold value greater
than any of its proper subrules. A proper subrule of a rule A ⇒ C is defined as
any rule B ⇒ C where B ⊂ A. The aim of this measure is to eliminate rules
(A ⇒ C) that have additional constraints than a simpler rule (B ⇒ C), but do
not differ much in confidence. Minimal improvement, as the name implies, only
allows for rules to improve in confidence. While this makes sense in a market-
basket analysis setting, a ‘negative improvement’ can also be interesting. Suppose
the rule {(Stdy.YID=I)} ⇒S.SID {(C.Credits=10)} has a confidence of 40%, telling
us that 40% of the students of study I take a course with 10 credits. Suppose
now we also have the rule {} ⇒S.SID {(C.Credits=10)} which has 90% confidence.
This would imply that the students of the study I significantly diverge from the
general population of all students, which could be an interesting fact that could
be subject for further study. But it is a negative divergence, and therefore the
rule {(Stdy.YID=I)} ⇒S.SID {(C.Credits=10)} would not be generated when con-
sidering minimal improvement, since this rule does not improve upon the simpler
rule {}⇒S.SID {(C.Credits=10)}. To also allow significant negative divergences we
define minimal divergence as follows: all rules A ⇒ C must have a confidence c
such that for all proper subrules with confidence c′ it holds that |c− c′| is greater
than a given minimal divergence threshold. This pruning measure has the effect
of eliminating rules that have additional constraints but a similar confidence to a
simpler rule, which we prefer. For instance, instead of several rules {(Stdy.YID =
I)} ⇒S.SID {(C.Credits = 10)}, {(Stdy.YID = II)} ⇒S.SID {(C.Credits = 10)},
{(Stdy.YID = III)} ⇒S.SID {(C.Credits = 10)},. . . that all have very similar confi-
dence we now only have one rule {} ⇒S.SID {(C.Credits = 10)} with the weighted
average as the confidence.

We note, that divergence can be seen as a generalisation of the leverage mea-
sure [Piatetsky-Shapiro, 1991]. For a rule A ⇒K B, where we consider E to be
the entity of the key K in which the rule is expressed, leverage is defined as:

leverage(A⇒K B) = support(AB)
|E|

− support(A)
|E|

support(B)
|E|

If we divide this by support(A)
|E| we obtain

support(AB)
support(A) −

support(B)
|E|

= conf(A⇒ B)− conf({} ⇒ B)

122

4.5. Experiments

The generalisation of divergence thus lies in the fact that we not only compare
A ⇒ B with {} ⇒ B but with any A′ ⇒ B where A′ ⊂ A. More comparisons
entail that a rule can have sufficient leverage, but can still be redundant when
considering minimal divergence. Furthermore, minimal divergence is also related
to the rule deviation discussed in Section 4.3.1. In fact, given a minimal divergence
threshold of mindiv, the absolute value of this rule deviation is always greater
than mindiv/support(A). As stated before, we therefore only consider the minimal
divergence threshold.

To analyse the impact of a minimal divergence threshold, we performed exper-
iments using varying levels of this threshold and discuss the results in Section 4.5.

4.5 Experiments
In this section we consider the results of several experiments performed on real
world databases using the loose and strict algorithm both implemented in C++1,
and run on a standard computer with 2GB RAM and a 2.16 GHz processor.

First, we consider a snapshot of the student database from the Mathematics and
Computer Science department of the University of Antwerp. The scheme roughly
corresponds to the one given in Figure 4.2. There are 174 courses, 154 students
and 40 professors, 195 links between professors and courses and 2949 links between
students and courses. The second database comes from the KDDcup 20032, and is
comprised of a large collection of High Energy Physics (HEP) papers. It consists of
HEP papers linked to authors and journals, and also to other papers (citations).
It contains of 2543 papers, 23621 authors and 76 journals, and there are 5012
connections between authors and papers, plus 458 connections from papers to
journals. The characteristics of both databases are summarised in Figure 4.5.

4.5.1 Patterns
Several interesting patterns were discovered in the Student database (using the
strict semantics), and we now discuss a few of them. The algorithm returned
the pattern {(C.Room = G010)}S.SID with a support of 81% representing the fact
that 81% of the students take a course given in room G010. It also discovered
{(C.Room = G010), (P.ID = DOE)}S.SID with 76% support. Together they form the
association rule: {(C.Room = G010)} ⇒S.SID {(P.ID = DOE)} with 94% confidence
from which we conclude that in 94% of the cases, students that take a course
in G010 also take a course from professor ‘DOE’ in G010. We found {(S.Study =
1-MINF-DB)}P.PID with a support of 63%, stating that 63% of the professors teach

1The source code for SMuRFIG can be downloaded at http://www.adrem.ua.ac.be/
2http://kdl.cs.umass.edu/data/

123

http://www.adrem.ua.ac.be/
http://kdl.cs.umass.edu/data/

4. Relational Itemset Mining

attribute #values
student.* 154
student.id 154
student.name 154
student.study 6
student.contracttype 2
course.* 174
course.id 174
course.name 164
course.room 26
professor.* 40
professor.id 40
takes.* 2949
takes.studentid 154
takes.courseid 146
teaches.* 75
teaches.courseid 68
teaches.professorid 40

(a) Student DB

attribute #values
paper.* 2543
paper.title 2542
paper.class 227
paper.published 2
paper.authors 7
paper.cited 89
paper.citing 70
paper.earliest_year 14
author.* 23621
author.id 23621
author.firstname 5085
author.lastname 7512
journal.* 76
journal.id 76
journal.name 76
journal.country 23
journal.languages 12
wrote.* 5012
wrote.authorid 2105
wrote.paperid 2543
injournal.* 458
injournal.paperid 458
injournal.journalid 36

(b) HEP DB

Figure 4.5: Number of tuples per attribute in the Student and HEP databases

124

4.5. Experiments

a course that is taken by students of 1-MINF-DB. We also come across this pattern
with a different key {(S.Study = 1-MINF-DB)}S.SID with a support of 7%, telling us
that only 7% of the students belong to 1-MINF-DB. So this is a clear example of
the merit of the key based frequency. Another example is the itemset {(S.Study =
BINF)} which has 68% PID support, 75% SID support and 39% CID support. Hence,
68% of all professors teach a course taken by students from BINF, 75% of the
students are in BINF and 39% of the courses are taken by students from BINF.

Some patterns found in the HEP database include the following association
rules: {(paper.earliest_year=2002)} ⇒paper.id {(paper.published=false)} and also
{(paper.earliest_year = 2003) ⇒paper.id (paper.published=false)} with respectively
60% and 93% confidence. Since the dataset is from the 2003 KDD cup, this tells us
that most recently submitted papers (paper.earliest_year > 2002) are not published
yet. A rule like {(paper.authors=2)} ⇒paper.id {(paper.published=true)} with 67%
confidence versus the rule {(paper.authors=4)} ⇒paper.id {(paper.published=true)}
with 80% confidence show us that the acceptance probability of papers with 4
authors is higher. The rule {(paper.cited=0)}⇒paper.id {(paper.published=false)}
with 60% confidence, tells us that if the paper is not cited by another paper
in the database, in 60% of the cases it is not published. Furthermore, the rule
{(paper.cited=2)} ⇒paper.id {(paper.published=true)} with confidence 65% says
that if a paper is cited by two other papers, then in 65% of the cases it is
published. Further rules show us this number steadily increases and a paper
cited 8 times is published in 85% of the cases. Similarly, we found rules ex-
pressing that the number of papers cited in a paper also increases its publication
probability. We also found the rule {(paper.class=Quantum Algebra)} ⇒author.id
{(paper.published=true)} with 75% confidence, expressing that 75% of the au-
thors who write a paper in Quantum Algebra get it published.

These examples clearly demonstrate that relational itemsets and rules with
key-based frequency allow us to find easy to interpret interesting patterns.

4.5.2 Interestingness
In order to relate our frequency measure to that of typical relational itemset mining
techniques, we ran some experiments where we performed the full outer join of the
relations and entities and then used an Eclat implementation adapted for categori-
cal itemsets to mine frequent itemsets with frequency being expressed in number of
rows [Calders et al., 2007]. The results for both databases are shown in Figure 4.6
labelled ‘join’. Because of the large size of the full outer join table, the support
values that result in frequent itemsets are very low, and an exponential behaviour
for the lowest support thresholds can be observed. Both behaviours are due to the
large number of unique tuples in the result of the full outer join. We observed that
the join computation time has the largest impact factor and that it is independent

125

4. Relational Itemset Mining

of the minimal support. The number of relations and tuples in the relations de-
termine the time as well as the space requirements. Computing the full outer join
was possible for the databases examined, but for very large databases, explicitly
computing this join would become impractical. Furthermore, as mentioned in the
introduction, using this frequency measure, the patterns that are found, are very
hard to interpret. For example we found the pattern {(author.firstname = A.)}
with support 0.04 in the HEP database. Apart from the very low support, we also
can not interpret the semantics of this pattern. Is it frequent because of a lot of
authors have this first name, or because authors with this first name write a lot of
papers? This problem is not present in our KeyID based approach.

To evaluate the effectiveness of deviation as an additional interestingness mea-
sure, we performed experiments on the Student and HEP databases using varying
support and varying deviation thresholds. As is apparent in Figure 4.6e, increasing
the minimal deviation effectively reduces the number of itemsets for the Student
DB. This reduction works as promised, for instance the previously mentioned fre-
quent itemset {(C.Room = G010)}S.SID with support 81% has a deviation of 22%,
and thus could be considered interesting. The itemset {(C.Room = G006)}S.SID has
53% support, but it only has a deviation of 2%, thus is considered less interesting.
As can be seen in Figure 4.6f, the impact for the HEP database seems less signifi-
cant. However, this is due to the specifics of the database. A large number of the
patterns found in the HEP database are ‘regular’ itemsets, i.e., itemsets consisting
of items from a single entity counted in the key of that entity. On these type of
itemsets the deviation measure has no impact. Deviation can only impact the
smaller amount of itemsets that are the result of the relational aspects. For these
itemsets deviation does its job and reduces the amount of less interesting itemsets.
For example the itemset {(papers.published = true), (papers.authors = 2)}journal.id
has a confidence of 32% and a deviation of 11%, thus we consider it to be in-
teresting. In contrast, the itemset {(papers.published = true), (papers.authors =
1)}journal.id with confidence 25% has a deviation of 7%, and is considered to be less
interesting.

4.5.3 Redundancy
We also ran experiments on the databases to evaluate closure and minimal diver-
gence. The results are shown in Figure 4.7. We observe that lossless closure-based
redundancy pruning reduces the output by an order of magnitude, and thus works
as promised. Using (only) minimal divergence we significantly reduce the rule out-
put of our algorithm by several orders of magnitude. When examining the results
we observed that the divergence based pruning indeed eliminates undesired re-
sults. For example we found the rule {} ⇒S.SID {(S.contracttype=diploma)} with
a confidence of 99%. Using this fact and a minimal divergence threshold of 10%

126

4.5. Experiments

we now prune many rules like {(P.ID=DOE)} ⇒S.SID {(S.contracttype=diploma)}
but with different P.PID’s, rules like {(C.Room=US103)} ⇒S.SID {(S.contracttype
= diploma)} with different rooms and so on.

4.5.4 Performance
We experimentally compared the Naive and SMuRFIG algorithms on the Student
and HEP datasets, gradually varying the minimum support threshold. In our
experiments we also ran the standard Eclat algorithm on the full join table, an
approach which has been taken in previous work. The number of patterns and the
runtimes are reported below.

In Figures 4.6a and 4.6b we see that the Eclat algorithm applied directly to the
join table finds far fewer patterns than SMuRFIG (and Naive which mines the same
patterns) on both the Student and HEP databases. Since the (relative) minimum
support threshold is set against the size of the full outer join of the database and
not the size of an individual table, an itemset must be very connected to have a
high support in this join. Clearly, many interesting patterns that are not highly
connected will be discarded this way. Apart from this, the support of an itemset
in this join table is of course less interpretable.

The runtimes reported in Figures 4.6c and 4.6d clearly indicate that the Naive
algorithm takes a lot more time than SMuRFIG, often up to an order of magnitude
or more. Although SMuRFIG performs more operations per itemset than Naive
does, the Naive algorithm operates on an extremely large database compared to
SMuRFIG, which pays off in terms of runtime. Note that for the HEP database,
SMuRFIG is even faster that the Eclat algorithm on the join table, even though
the latter finds far fewer patterns.

SMuRFIG was run using both strict and loose semantics. The difference in
number of generated patterns for the Student database is presented in Figure 4.6a.
As expected, the loose semantics clearly generates more patterns. For low values
of minimal support, the number of patterns is even an order of magnitude larger.
The loose semantics connects many more itemsets with one another than the strict
semantics, resulting in even more connections for lower minimal support values. If
we look at the difference in timing in Figure 4.6c, where we also include the timing
of the naive algorithm, we observe that our algorithm in the strict semantics is
always faster than the naive semantics. For higher values of support we also
observe the loose semantics to be faster. However, for low levels of support we
can see a dramatic increase in execution time for the loose semantics, surpassing
that of the strict semantics. This is due to the large number of patterns the loose
semantics requires to handle in the case of low support values.

For the HEP database, we notice that the increase in the number of patterns for
decreasing support pictured in Figure 4.6b is stronger as compared to the Student

127

4. Relational Itemset Mining

0 0.2 0.4 0.6 0.8
100

102

104

106

minimal support

nu
m
be

r
of

pa
tt
er
ns

strict
loose
join

(a) Student DB: Number of patterns

0 0.2 0.4 0.6
100

102

104

106

108

minimal support

nu
m
be

r
of

pa
tt
er
ns

strict
loose
join

(b) HEP DB: Number of patterns

0 0.2 0.4 0.6 0.8

10−1

100

101

102

minimal support

tim
e
(s
)

strict
loose
join
naive

(c) Student DB: Runtime

0 0.1 0.2 0.3 0.4

101

102

103

minimal support

tim
e
(s
)

strict
loose
join
naive

(d) HEP DB: Runtime

0.1 0.2 0.3 0.4 0.5 0.6 0.7

103

104

minimal support

nu
m
be

r
of

pa
tt
er
ns

no deviation
0.1 deviation
0.2 deviation
0.3 deviation

(e) Student DB: Deviation pruning

0.02 0.04 0.06 0.08 0.1 0.12 0.14

102

103

104

minimal support

nu
m
be

r
of

pa
tt
er
ns

no deviation
0.01 deviation
0.05 deviation
0.1 deviation

(f) HEP DB: Deviation pruning

Figure 4.6: Results for increasing minimal support

128

4.5. Experiments

0.04 0.3 0.6

101

102

103

104

105

106

minimal support

nu
m
be

r
of

ru
le
s

no pruning
closure based
minimal divergence 0.1
minimal divergence 0.3

(a) Student DB: Pruning rules having a
minimal confidence of 0.5

0.02 0.1 0.2
100

101

102

103

104

105

minimal support

nu
m
be

r
of

ru
le
s

no pruning
closure based
minimal divergence 0.1
minimal divergence 0.3

(b) HEP DB: Pruning rules having a mini-
mal confidence of 0.4

Figure 4.7: Results of pruning rules

database. In fact the increase is so drastic that we could not run the experiment
using loose semantics for a minimum support of 1%. If we look at the time in
Figure 4.6d, we see that for the higher support values both the strict and loose
semantics are well under those of the naive algorithm. For low minimal support
thresholds again the timing for the loose semantics increases drastically and in
this case is off the chart as the experiment was terminated. In general, we can
conclude a similar behaviour as for the Student database, but the pattern explosion
and timing is worse due to a larger number of attributes and higher connectivity.

4.5.5 Scalability
To test the scalability of our algorithm we ran SMuRFIG on a collection of
synthetically generated databases, with a varying number of entities, tuples, and
attributes per entity. These databases were generated as follows3. For a given
number of entities, a schema is created such that it has a tree shape. Each entity
table has a number of attributes that is randomly chosen from a given interval,
and each of these attributes has a random number of possible values, drawn from
a given interval. The number of tuples per entity is also uniformly picked from
a given interval. The entity tables are generated using a Markov chain, i.e. each
attribute is a copy of the previous attribute with some given probability, otherwise

3 The Python code used to generate the synthetic relational databases can be downloaded
at http://www.adrem.ua.ac.be.

129

http://www.adrem.ua.ac.be

4. Relational Itemset Mining

5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2
·10−2

number of entities

tim
e
pe

r
fre

qu
en
t
pa

tt
er
n
(s
)

(a) Entity Scalability

5 10 15 20

0.2

0.4

0.6

0.8

1

·10−5

number of entities

tim
e
pe

r
pa

tt
er
n
(s
)

(b) Entity Scalability

0 0.2 0.4 0.6 0.8 1
·105

1.5

2

2.5

3

3.5
·10−6

number of tuples per entity

tim
e
pe

r
pa

tt
er
n
(s
)

(c) Tuple Scalability

20 40 60 800.5

1

1.5

2

2.5

3 ·10−6

number of attributes per entity

tim
e
pe

r
pa

tt
er
n
(s
)

(d) Attribute Scalability

Figure 4.8: Scalability experiments using synthetically generated relational
databases

130

4.5. Experiments

its value is chosen uniformly at random. The binary relation tables which connect
the entities can be seen as bipartite graphs, which are instantiated with a random
density drawn from a given interval. These graphs are generated such that the
degree distributions of the columns obey a power law4. The exponents of these
power laws can be computed directly from the density.

For our experiments we chose the number of attributes per table to lie between
5 and 10, the number of values per attribute between 10 and 20, the number of
tuples per entity between 103 and 104, and the relation density between 0.01% and
0.02%. The minimum support threshold for SMuRFIG was set to 1%.

In Figure 4.8a we see that the time spent per frequent itemset increases linearly
with the number of entities in the database. However, in Figure 4.8b we see that the
time per pattern (i.e. the average time spent for all candidate patterns) decreases
as the number of entities grows, while the complexity analysis in Section 4.2 says
that it should increase, since more intersections and propagations are performed.
This apparent contradiction can be explained by the fact that in our analysis we
consider the largest size of a KeyID list for some entity E to be |E|, while in reality
they are often much smaller. In our experiments the average size of the KeyID lists
decreases so fast, that intersecting or propagating them actually takes less time.
If we were to implement SMuRFIG with, say, bitvectors of constant size, then
we would see an increase in the time per pattern. Figure 4.8c shows that as we
increase the number of tuples per entity, the time required by SMuRFIG increases
linearly, which was predicted. Finally, in Figure 4.8d we see that the number of
attributes has no effect on the time per pattern. The number of attributes only
increases the number patterns, not the time it takes to compute the support of a
pattern.

4.5.6 Conclusion

Overall we can conclude for both datasets that for high support thresholds the
loose semantics has its merits in execution time without a large overhead in ad-
ditional patterns and that the strict semantics clearly is the best option overall.
Furthermore, our redundancy measures effectively reduce the number of patterns.
We find that minimal divergence pruning is a sensible option to reduce the output
if complete results are not desired. Moreover, using deviation as an additional
interestingness measure we successfully eliminate uninteresting patterns, creating
a concise set of interesting patterns.

4 We conjecture that many realistic databases obey a power law to some extent, i.e. many
tuples have a few connections and a few tuples have many connections.

131

4. Relational Itemset Mining

4.6 Related Work
Our work is related to more general frequent query mining approaches such as
Warmr [Dehaspe & Toivonen, 1999] and Conqueror (see Chapter 3). The pattern
types considered there are much more general and complex. Furthermore, different
support measures are used. As such a direct and fair comparison cannot easily be
made. We will, however, try to discuss the relationships between these approaches.

We compare our algorithm to Farmer [Nijssen & Kok, 2003a], which is a vari-
ant of the Warmr algorithm that can take into account primary key constraints.
For a more detailed discussion of Warmr and Farmer, we refer the reader to
Section 3.8 of Chapter 3. In order to be able to compare, we need to restrict the
Farmer algorithm to our more specific pattern class, and then run the algorithm
several times, each time using a different key, to obtain the same results as SMuR-
FIG. Doing this adds quite some overhead. On the one hand for the algorithm as
it needs to read the data multiple times, on the other hand for a user in prepro-
cessing and postprocessing. To make Farmer generate roughly the same kinds
of patterns, we first need to specify how queries need to be constructed for every
possible key we want to consider. In the case of our student database, this results
in three different input files, one for Student, one for Course and one for Professor.
Additionally, for each of these cases different absolute support values needed to be
specified, since SMuRFIG uses support relative to each key.

Farmer makes use of object identity, which allows to consider key-constraints.
However, it also results in an inequality constraint on all variables. This normally
entails that one cannot consider properties of objects, since for such variables an
inequality constraint is undesirable. However, Farmer also supports weak object
identity [Nijssen & Kok, 2003b], allowing to explicitly specify which attributes
should satisfy the inequality constraint. This allows us to consider our desired
attribute sets, where attributes not present will be ‘wildcards’ attributes. Unfor-
tunately, this approach in combination with the primary key constraints does not
allow us to consider values for keys of an entity. As a workaround we duplicate
the key attribute in the dataset presented to Farmer. It is clear that it is not
a trivial task to let Farmer generate our pattern class. Although the complex
specifications of Farmer allow for great flexibility and the addition of constraints,
the amount of input for our algorithm is relatively small while still resulting in
patterns that are easy to interpret and expressive. Furthermore, Farmer will
also generate more patterns than SMuRFIG, essentially patterns containing only
wildcards, e.g. the amount of professors connected to a course. There is no way
to disable these patterns, since they are required in the generation process.

In Figure 4.9a we can see that Farmer and SMuRFIG roughly generate the
same number of patterns, although the difference becomes larger for smaller sup-
port values. In Figure 4.9b, we can see that SMuRFIG performs better than

132

4.6. Related Work

0.2 0.4 0.6 0.8

0

1

2

3

·104

minimal support

nu
m
be

r
of

pa
tt
er
ns

Farmer
SMuRFIG
Conqueror

(a) Number of patterns

0.2 0.4 0.6 0.8
10−3

10−2

10−1

100

101

102

minimal support

tim
e
(s
)

Farmer
SMuRFIG
Conqueror

(b) Runtime

0.2 0.4 0.6 0.8
10−5

10−4

10−3

10−2

10−1

100

minimal support

tim
e/
pa

tt
er
n
(s
)

Farmer
SMuRFIG
Conqueror

(c) Time per pattern

Figure 4.9: Comparison of Farmer, SMuRFIG and Conqueror on Student DB

Farmer. It is, however, not a big difference for this small dataset. We could
argue that Farmer generates more patterns, but if we look at the time spent
per pattern in Figure 4.9c we can still see that SMuRFIG is better, although it
must be noted that the difference becomes smaller for smaller minimal support
values. We must additionally mention that we did not include input processing in
the timing figure, since Farmer performs this task three times and on flat files
(in general the number of keys times), whereas SMuRFIG performs this task once
and directly on a relational database. Including this in the timing would result in
even more incomparable timing values.

Another Warmr approach based algorithm is the Radar algorithm [Clare
et al., 2004]. This algorithm focusses on reducing the memory requirement com-

133

4. Relational Itemset Mining

pared to the existing approaches. It makes use of an inverted index structure on a
flattened version of the database. While it achieves its goal and therefore requires
significantly less memory than Warmr and Farmer, it performs poorly on timing
for smaller datasets. The SMuRFIG implementation stores the complete database
in main memory similar to Farmer. This is mainly for efficiency reasons. How-
ever, it is no requirement, and actually only the relations are needed in memory
to perform the KeyID transformations. Unlike Farmer we do not keep the found
patterns in main memory. Farmer (like Warmr) even keeps some infrequent pat-
terns in order to eliminate equivalent queries. In Section 4.2.2 we already showed
that the memory complexity of SMuRFIG is O((n2

2 + n
2) · (∑E∈E |E|)+∑R∈R |R|)).

This ensures that SMuRFIG, like Radar, also does not have the same main-
memory scalability constraints of Farmer and Warmr.

The frequent query mining algorithms that consider multiple keys [Goethals
& Van den Bussche, 2002, Goethals et al., 2008] typically consider every possible
set of attributes as a key. We compare SMuRFIG to Conqueror [Goethals et al.,
2008] the algoritm presented in Chapter 3. As input to the Conqueror algorithm
we need to specify a certain set of attributes of which the subsets can be used for
support counting. This has as a result that the algorithm, when provided with
the set of keys, any of the subsets of this keyset is considered. For instance in the
case of the student database, we can provide {S.SID,C.CID,P.PID}. Conqueror will
then also consider for instance {S.SID,C.CID} and {S.SID,P.PID}, while this is not
the case in SMuRFIG, where only {S.SID},{C.CID} and {P.PID} are considered
separately. This adds a lot of overhead compared to SMuRFIG, certainly when
the set of keys is large. This behaviour of Conqueror cannot be disabled, and
therefore the comparison is again not completely fair. In Figure 4.9a we can see
that for higher minimal support values Conqueror and SMuRFIG roughly generate
the same amount of patterns. When looking at the timing in Figure 4.9b, we see
that SMuRFIG clearly outperforms Conqueror. However, it must be noted, that
Conqueror performs a query in the database for each considered pattern (with
some optimisations), a large percentage of time is thus spent in input/output
processing, which cannot be trivially excluded as with SMuRFIG or Farmer.
This is another reason why we cannot really consider this a fair comparison. This
is clear in Figure 4.9c where we can see the time spent per pattern is considerably
higher than the other algorithms.

Other more general approaches include tree mining and graph mining [Hoekx
& Van den Bussche, 2006, De Knijf, 2007], which can be considered as data-
structure-specific special cases of the general query mining approach. Frequently,
adapted query mining techniques are therefore used for this purpose. Another
specific case of the general query mining approach, is that of multidimensional
association rules [Kamber et al., 1997]. In essence multidimensional association

134

4.6. Related Work

rules consist of queries mined only in the key of the central table, the fact table, of
a star-scheme (the typical scheme used for data warehouses). If one only considers
the so called interdimensional association rules, that do not allow repetition of the
predicates (i.e. dimension tables), this case of multidimensional association rules
roughly corresponds to our definition of rules over relational itemsets, if we would
only consider the key of the fact table, and limit ourselves to star-schemes.

As stated, these query mining approaches are more general, and we are not
aware of many approaches considering the more specific case of (categorical) item-
sets in a multi-relational setting. There is the compression based R-KRIMP [Koop-
man & Siebes, 2008] algorithm and the algorithm of [Crestana-Jensen & Soparkar,
2000]. Both algorithms use the number of occurrences of the itemset in the join
of all tables as the frequency measure. This is done without fully computing, or
at least without storing, the join of all tables. Itemsets are basically computed
using standard techniques; [Crestana-Jensen & Soparkar, 2000] is based on Apri-
ori [Agrawal et al., 1993] and R-KRIMP is based on KRIMP [Siebes et al., 2006],
both with the addition of some case specific optimisations. These algorithms re-
turn the same results as Apriori (∼KRIMP) run on the join of all tables. This is
not the case for our approach since multiple keys are used as frequency counting
measure. Furthermore, compared to the two-phased approach of Crestana-Jensen
et al. the computation of intra-entity and extra-entity itemsets is merged in our
algorithm, and performed in a depth-first manner. [Ng et al., 2002] focus on star
schemes, in which case the join table is in essence already materialised as the
fact table. The approach closely mirrors the two-phased approach of Crestana-
Jensen et al. but adds some additional optimisations specific for star schemes, and
obviously relates to the mentioned multidimensional association rule mining.

We repeat that none of these relational itemset approaches take into consider-
ation the semantic consequences of the blow-up that occurs in the joining of all
tables. If for example we have a professor with name Susan that teaches a course
that almost all students take, in the join of all tables a lot of tuples include the at-
tribute (P.Name,Susan). Thus {(P.Name,Susan)} represents a frequent relational
itemset. Does this mean that a large percentage of professors is named Susan?
On the contrary, only one is. All of the mentioned relational itemset mining ap-
proaches return the itemset as frequent with respect to the join of all tables, which
is not that useful. In our approach only {(P.Name, Susan)}S.SID is a frequent item-
set, immediately giving the information of what aspect of this itemset determines
its frequency.

Cristofor and Simovici [Cristofor & Simovici, 2001] do define a support measure
similar to ours called entity support. For those itemsets consisting of attributes
from one entity, next to the join support, they also consider the support in the
number of unique tuples of that entity. In other words, they do consider KeyID

135

4. Relational Itemset Mining

based support, but only for inter-entity itemsets and only in the key of that entity.
They are therefore unable to express a pattern like {(P.Name = Susan)}S.SID.
Furthermore, their proposed Apriori based algorithm, which is defined only for
star-schemes, explicitly computes joins, which as we already stated does not scale
well for larger databases.

The importance of considering multiple keys is also reported by [Koopman &
Siebes, 2009]. They developed the RDB-Krimp algorithm that selects a subset of
possible patterns that best describes (compresses) the database. They show that
using patterns over multiple keys allows for a better description of the database,
even in the case of a database with a clear centralised (one-target) structure. Algo-
rithms, like ours, which efficiently generate patterns in multiple keys are therefore
complementary to this approach.

4.7 Conclusion

In this chapter we generalised itemset mining to a (multi-)relational setting by
defining frequent relational itemsets using a novel support measure based on the
keys of the relational scheme. We implemented an efficient propagation-based
depth-first algorithm for mining these frequent relational itemsets and confident
relational association rules. Our experiments showed that the SMuRFIG algo-
rithm performs well on real datasets and is capable of finding interesting patterns.
Although the naive approach we also proposed is feasible for small datasets, it has
no real advantages. We considered two different support semantics, the loose and
the strict semantics. The experiments showed that for high support thresholds
SMuRFIG with loose semantics has its merits in execution time without a large
overhead in additional patterns, but that SMuRFIG using strict semantics is the
best option overall. In addition, we defined the deviation measure to address the
statistical pattern blow-up that is specific to the relational context, and we exper-
imentally showed that it works as promised. Furthermore, we generalised some
popular redundancy measures - closure-based redundancy and minimal improve-
ment - to our multi-relational setting, and confirmed that they can reduce the
output if complete results are not desired.

Our initial pattern and scheme definition already allows us to mine a large
collection of databases (or parts of databases) and results in interesting patterns
found, as can be seen in the Section 4.5. Preliminary experiments already show
that some small extensions to our definitions, allow us to find complex patterns
while only suffering a relatively small loss of efficiency. These extensions are subject
of Section 4.8.

136

4.8. Further Research

E R

Attribute

F0..n 0..n

(a) Relation with attributes

E ER Re

Attribute

RF F0..n 1..1 1..1 0..n

(b) Simulated Relation Attributes

Figure 4.10: Relation Attribute Simulation

4.8 Further Research
In this chapter, we restricted ourselves to simple schemes for clarity and efficiency.
The simple scheme setting already allows us to mine a large collection of databases
(or parts of databases) and results in interesting patterns found, as can be seen in
previous sections. Some small extensions to our definitions, however, allow us to
find complex patterns while only suffering a relatively small loss of efficiency. In
this section we show how some of these extension can be simulated in SMuRFIG
or which changes to the algorithm would be required.

4.8.1 Relation Attributes
SMuRFIG only considers attributes as parts of entities. But in general it is also
possible that relations have attributes. As an example we can consider a typical
labeled tree structure. This can be modeled in a relational database by storing
nodes as entities and the edges as relations. The labels would then be stored as
relation attributes.

Relation attributes can be simulated in our current technique by changing the
database scheme by introducing entities for each relation. Consider for example
an entity E connected to an entity F using relation R which has an attribute,
shown in Figure 4.10a. This scheme could be transformed in entities E,Re, F and
relations ER and RF respectively connecting entity E and Re, and Re and F
shown in Figure 4.10b. Every connection in R is now split up into a connection of
E to a unique tuple in Re contained in ER and a connection of the unique tuple

137

4. Relational Itemset Mining

in Re to F in RF . The attributes of the tuples in relation R are now attributes
of unique tuples in the entity Re and can therefore be mined using our technique.
This also gives an added type of pattern, namely patterns counted in the key of
Re, which would represent frequency in the number of connections between E and
R. Support for relation attributes is therefore possible in SMuRFIG, without any
additional changes.

Of course this simulation entails some overhead. It is, however, possible to
adapt the SMuRFIG algorithm to be able to mine relation attributes directly.
First of all, next to the entities, we need to mine singleton itemsets in the relations.
As key for these itemsets we take the pair of keys of the entities the relation
connects. These singleton items row-id frequencies also need to be translated
to every possible key of other entities and relations. So in essence the loop in
SMuRFIG should just consider all R next to all E. Similarly in Keyclat, relations
should be treated in the same way as entities with a defined key, and propagation
from these new keys should be added in Propagate. This way relation attributes
would be able to be found efficiently. Note, that we do not consider including
itemsets frequent in relation-keys (essentially frequent in a set of two entity keys)
in our output, since we only want to consider entitiy keys for our final support
measure.

4.8.2 Wildcard Patterns
The current pattern definition for SMuRFIG is limited to connected (attribute,
value) pairs. In this setting, for example, we cannot express the pattern “all
professors named Jan that teach a course”. This obstacle can be resolved without
extensively expanding the pattern syntax, namely by introducing virtual attributes.
We could assume that every entity has a virtual attribute with the same value for
each tuple (e.g ‘true’).

Example 4.14. Given the scheme of Figure 4.2, next to the itemset {(P.Name =
Jan)}P.PID we can now also consider the itemset {(P.Name = Jan), (C.Course =
true)}P.PID which expresses “all professors named Jan that teach a course”. Here,
(C.Course = true) is the virtual attribute, representing any course. More than that,
association rules like {(C.Course = true)} ⇒P.PID {(S.Study = 1MINF-CN)} are
possible. This rule, which we found in preliminary experiments, had a confidence
of 63%, meaning that this percentage of the professors teaching a course, teach a
course followed by students of the study 1MINF-CN. Unfortunately next to the item-
sets like {(C.Credits = 10)}P.PID, we now also find {(C.Credits = 10), (C.Course =
true)}P.PID. In fact (C.Course = true) is in the closure of any itemset containing
a Course attribute.

138

4.8. Further Research

Program

PID

Subsystem

Language Comment

Calls

0..n

0..n

Figure 4.11: Example Inherently Cyclic Scheme

In order to generate these kinds of patterns we can really add an attribute
to every entity containing the same value for every tuple. For example we can
add a ‘Course’ attribute to the Course entity with value ‘true’ for every tuple in
the relation. This allows the current SMuRFIG algorithm to generate these kinds
of patterns. However, since we know these are no ordinary attributes it would
be more efficient to include the generation inside the algorithm. The singleton
virtual attributes can easily be added in the singletons procedure since we know
their support is |E|. As for the combinations in Keyclat, we can disallow any
combination of two itemsets where one contains a virtual attribute and the other
contains an attribute of the same relation the virtual attribute belongs to. These
itemsets would be redundant with respect to the non-closed variant. Note, that
when combining these virtual attributes with the previously introduced relation
attributes, we can also consider virtual relation attributes.

4.8.3 Simple Cycles
Some simple relational data is already inherently cyclic. Consider for instance a
Software Engineering dataset of which the scheme is given in Figure 4.11. We have
one entity, Program, which stores information about programs like their subsystem,
language, comments etc. Next to this entity we have one relation, Calls, which
directionally connect programs that call each-other. Our current approach is not
able to handle this setting for the simple reason that we only consider every entity
(and relation) once. To express a pattern about one program calling another
one would at least require two instances of the Program entity. A simple way to
simulate this behaviour in our current approach is to create a copy of the program
entity, which we could call ProgramCalled for instance. This way we can express
patterns about one Program calling another, counted in the calling program as well
as the called program. An unfortunate side effect is that patterns only considering
attributes of the Program entity counted in its key will be found twice; once for
Program and once for ProgramCalled. To mitigate this problem, we could allow to
specify virtual copies of entities. For virtual copies we would not generate intra-

139

4. Relational Itemset Mining

entity itemsets, ensuring these patterns are only be generated once. Furthermore,
we do need to consider the virtual copy’s key and attributes in combination with
other entities. We must note, that if one wants to consider longer cycles, for
example, programs called by programs called by programs, one needs to create
multiple virtual copies, and when the entity is connected to other entities, these
too must be copied. It is clear that this solution is far from optimal, and further
study is required. It can, however, provide a workable approach in simple cases.

Furthermore, we must note that these simple cycles differ from general cyclic
patterns. We consider simple cycles as being induced by an inherently cyclic
scheme. One could also consider cycles in non-cyclic schemes. For example we
could consider patterns concerning students and other students in the same study.
This kind of pattern, if expressed as a query, would require two occurrences of the
Student entity and two occurrences of the Studies relation.

Example 4.15. For example, the pattern {(S1.Surname = A), (S2.Surname =
LP)}Y.YID counts the amount of studies in which there is a student with surname A
as well as one with surname LP. In order to evaluate frequency one would need to
write a query like

πY.YIDσS1.SID=St1.SID,S2.SID=St2.SID,Y.YID=St1.YID=Sty2.YIDS1 × S2 × St1 × St2 × Y

where it is clear that two copies of the Student entity (S) and Studies relation (St)
are required.

Although a technique similar to the virtual copies could be used to accomplish
this, it is clear that the limits here are not clearly defined, and further investigation
of this issue is needed.

4.8.4 Graph Schemes
The current SMuRFIG approach is based on simple relational schemes. When we
drop point 4.1 of the definition of a simple relational scheme (Definition 4.1), then
two different entities are allowed to be connected in multiple ways, i.e., we ex-
tend tree-schemes to more general graph-schemes. One could for instance imagine
that we expand the scheme of Figure 4.2 with an additional relation Thesis which
connects Professors and Students, as shown in Figure 4.12. In this way, students
can either be connected with a professor via Thesis or via a Course (actually Takes
and Teaches). Under this generalisation, we would need to reconsider our support
definition as it is based on the existence of a unique path. We can consider two
options:

1. All attributes are connected in all possible ways

140

4.8. Further Research

Professor
PID

Name Surname

Teaches Course

CID Credits

Project
1..n 0..n

Takes

Student

SID
Name

Surname

0..n

0..n

StudiesStudy

YID Name

1..1 0..n

Thesis

1..n

1..1

Figure 4.12: Example Graph Relational Scheme

2. All attributes are connected in any of the possible ways

Depending on the choice, we have a different semantics for our patterns. Option 1
is very strict. For instance, in the example of the added Thesis relation this would
imply we could only express patterns about students and their thesis supervising
professor, since a pattern with another professor is not valid. Option 2 is very
loose, if we have a pattern about students and professors we know that they are
connected in a way, which might not be very useful for someone trying to interpret
the patterns. There is, however, a third option:

3. All attributes are connected in the specified way

This specified way, could then be the way specified in the itemset itself. Similar
to the virtual attributes introduced to support wildcard patterns, we can consider
virtual relation attributes to consider different paths. The semantics of support
for such itemsets can be clearly defined as the answer of the query using the path
of the specified relations.

Example 4.16. The support of the pattern

{(S.Surnname = VG), (Takes = Y), (Teaches = Y)}P.PID

141

4. Relational Itemset Mining

would be computed using the query

πP.PIDσS.Surname=‘VG′S 1SID Takes 1CID Teaches 1PID P

while that of pattern {(S.Surname = VG), (Thesis = Y)}P.PID would be computed
using

πP.PIDσS.Surname=‘VG′S 1SID Thesis 1PID P

If one also allows relational itemsets without any virtual relation attributes
occurring, one has the full range of patterns: those that are connected in any
way (no virtual relation attributes), those connected in a specified way (some
virtual relation attributes present) and those connected in all possible ways (all
possible virtual relation attributes present). Only the first one needs an additional
definition of support, but it is clear that this support can be computed by using
the union of all the queries of all possible paths for the relational itemset. For
instance, the support of the itemset {(S.Surname = VG)}P.PID would be computed
using the union of the two queries given in Example 4.16. However, since these
patterns with no relation-attributes are essentially an aggregation of more specific
patterns described using virtual relation-attributes, these patterns can always be
considered using postprocessing.

In order to generate relational itemsets with specified virtual relation attributes,
the translate subroutine needs to be modified, similar to the modification for the
addition of virtual attributes, to add the different virtual relation attributes. In
the graph scheme case, however, a singleton itemset can be translated to one key
in more than one way, thus resulting in multiple itemsets.

Example 4.17. The singleton relational itemset {(S.Surname = VG)} can be trans-
lated to P.PID in three ways:

• {(S.Surname = VG), (Takes = Y)(Teaches = Y)}P.PID

• {(S.Surname = VG), (Thesis = Y)}P.PID

• {(S.Surname = VG), (Takes = Y)(Teaches = Y)(Thesis = Y)}P.PID

The KeyID list of the last one can be computed by intersecting the KeyID lists first
two.

Unfortunately, the computation of other inter-entity itemsets now becomes
more difficult because one needs to take into account all the different paths. The
changes necessary in the Keyclat algorithm when the scheme represents a graph,
are located in the propagate function. Since now there may be several possible
paths between any two entities, propagation from one entity to another can be
done in several ways. It is clear that this makes computations more complex, but

142

4.8. Further Research

specific knowledge of the topology of the scheme could be used to optimise the
algorithm. Since an optimal solution is not straightforward, this generalisation
remains further work.

143

Chapter 5

Conclusions and Further
Research

This dissertation introduced new algorithms for mining interesting patterns
in relational databases. We investigated the theoretical as well as the prac-

tical aspects of these algorithms. In this chapter we summarise our main contri-
butions, and provide some directions for further research.

5.1 Summary
The Information Age has provided us with huge data repositories which cannot
longer be analysed manually. The potential high business value of the knowledge
that can be gained, however, drives the research for automated analysis methods
that can handle large amounts of data. Most of the data of industry, education
and government is stored in relational database management systems (RDBMSs).
This motivates the need for data mining algorithms that can work with arbitrary
relational databases, without the need for manual transformation and preprocess-
ing of the data. To provide in this need, this dissertation introduced efficient data
mining algorithms that can find interesting patterns in relational databases.

We first explained the general problem of frequent pattern mining. Frequency
is a basic constraint in pattern mining. Since data mining typically deals with
huge volumes of data, in order for a pattern to be interesting it must hold for

145

5. Conclusions and Further Research

a large portion of this data. Hence it must occur frequently. We first looked at
frequent itemset mining, the simplest variant of frequent pattern mining. It pro-
vided an introduction to the basic properties and techniques that are also needed
when considering mining more complex pattern kinds. We looked at the most im-
portant algorithms, Apriori and Eclat, as well as how to avoid redundancy using
closure. Furthermore, we considered how techniques of frequent itemset mining
can be generalised to frequent pattern mining. We provided a short overview of
the pattern kinds that have been studied in the field of relational database mining,
and introduced the two which this dissertation examines more thoroughly: queries
and relational itemsets.

We introduced queries as a pattern kind to be mined in relational databases.
We proposed a new and appealing type of association rules, by pairing simple
conjunctive queries. We presented our novel algorithm Conqueror, that is capable
of efficiently generating and pruning the search space of all simple conjunctive
queries, and we presented promising experiments, showing the feasibility of our
approach, but also its usefulness towards the ultimate goal of discovering patterns
in arbitrary relational databases. Next to many different kinds of interesting pat-
terns, we have shown that these rules allow us to discover functional dependencies,
inclusion dependencies, but also variants thereof, such as conditional and approx-
imate dependencies. We related confidence as a measure to the existing measures
developed for approximate functional and inclusion dependencies and showed that
Conqueror mines both pattern types at the same time.

After this, we extended our basic approach in order to efficiently mine rela-
tional databases over which functional dependencies are assumed. By using these
provided functional dependencies, we are able to prune the search space by re-
moving the redundancies they cause. Since we already showed that our algorithm
was capable of detecting functional dependencies that were not given initially, we
then extended our algorithm even further, such that it also uses newly discov-
ered, previously unknown functional dependencies to prune even more redundant
patterns. Moreover, since not only the functional dependencies that hold on the
database relations are discovered, but also functional dependencies that hold on
joins of relations, these too are subsequently used to prune yet more queries. Be-
sides functional dependencies, we also adapted our algorithm to detect and use
foreign keys, since they give rise to redundant evaluations. We implemented and
tested our updated algorithm, Conqueror+, and showed that it efficiently reduces
the number of queries that are generated and evaluated, by detecting and using
functional dependencies and foreign keys even when none are provided, and that
it potentially greatly outperforms the previous algorithm in time. As such, the
Conqueror+ algorithm provides us with a method to efficiently discover a concise
set of interesting patterns over arbitrary relational databases.

146

5.2. Further Research

Next to queries, we also investigated another simple, but powerful class of
patterns: relational itemsets. Relational itemset mining is a generalisation of
itemset mining to the (multi-)relational setting. We defined frequent relational
itemsets using a novel support measure based on the keys of the relational scheme.
We implemented a novel propagation-based efficient depth-first algorithm, called
SMuRFIG (Simple Multi-Relational Frequent Itemset Generator), to mine these
frequent relational itemsets and confident relational association rules. In addition
we defined the deviation measure to address the statistical pattern blow-up intrin-
sic to the relational case, and showed that it works as promised. Furthermore, we
concluded that our generalisation of closure to the relational itemset case works
well, as well as the novel notion of minimal divergence pruning, which is shown to
be a sensible option to reduce the output if complete results are not required.

5.2 Further Research
The field of mining arbitrary relational databases still provides many challenges.
Although our approaches provide algorithms that are capable of efficiently discov-
ering interesting patterns, there are several ways in which they could be improved.

The greatest bottleneck for the Conqueror and Conqueror+ algorithms is the
database communication. Although using SQL provides an algorithm that is ap-
plicable to any available RDBMSs, for efficiency reasons it is clear that integrating
the algorithm into a specific RDBMS would be a path to consider. Such inte-
gration would allow Conqueror to access the data structures directly and have its
‘queries’ performed as optimally as possible.

Next to these efficiency improvements, there are also many interesting research
opportunities in extending the pattern language. Although we showed that simple
conjunctive queries are capable of expressing many types of interesting patterns,
especially when considering association rules, there is room for improvement. The
restriction that every relation is only allowed once in the join prohibits the expres-
sion of patterns of the type “70% of the students that follow class A also follow
class B”. Dropping this restriction, however, opens up the floor to new problems
regarding cyclicality of graphs and query equality checking. As we already men-
tioned, the problem of checking equality for general conjunctive queries and the
problem of checking graph isomorphism are both hard. Further study is there-
fore vital in order to find interesting subclasses for which scalable and efficient
algorithms can be developed.

The nature of relational data, i.e. many entities connected to many other enti-
ties, inherently result in even more problems in generating a concise set of patterns
than in the classical case, where only one entity is considered. In the Conqueror+

algorithm we detected and applied functional dependencies to be able to present

147

5. Conclusions and Further Research

the pattern set more concisely. We also touched on the fact that approximate
functional dependencies result in many ‘redundancies’ as well. However, we con-
cluded that these could not be eliminated if complete results are required. The
investigation of approximate results and the potential application of approximate
functional dependencies in doing so, is an interesting topic that merits further re-
search. Furthermore, we generalised our query comparison to only take functional
dependencies into account. As stated, combining this with inclusion dependencies
is not feasible in the general case, and we therefore only used foreign-keys knowl-
edge to avoid query evaluation. Further research is required to identify specific
restricted cases where it is possible to define query equivalence in such a way that
it exploits both, as done in the case of key-foreign-key joins in star-schemes [Jen
et al., 2009].

In the setting of relational itemset mining we already covered the potential for
further research in Section 4.8. We showed that extending the pattern definition
to allow wildcards and for relations to have attributes, can easily be accomplished.
Dropping restrictions on the scheme to allow cycles and in general graphs shaped
schemes is, however, non trivial and requires a radically different mining strategy.
Such an elimination of restrictions corresponds to the extension of the pattern
class in the setting of conjunctive queries mentioned above. In order to achieve
such goals, techniques used in graph mining should be investigated, although most
focus in that domain has been directed towards mining structural properties. One
approach one could consider, is to first apply graph mining methods to extract
interesting structures and then perform (relational) itemset mining techniques on
the results in order to find attribute-value related patterns.

It is clear that the field offers many possibilities for further research and that
many more insights can be gained by applying data mining to all kinds of relational
databases used in the world today.

148

Nederlandse Samenvatting

Datageneratie- en opslagtechnologieën hebben de afgelopen decennia een
sterke groei gekend. Deze explosieve groei van beschikbare informatie

maakt dat we dringend nood hebben aan technieken om deze grote hoeveelhe-
den data te analyseren. Het grote volume maakt manuele analyse onhaalbaar,
waardoor analyse met behulp van intelligente algoritmes een onmisbaar instru-
ment is in moderne data analyse. Data mining, of ook wel knowledge discovery
from data (KDD), is ‘de automatische extractie van patronen die interessante ken-
nis representeren impliciet opgeslagen in grote databases, het web of andere grote
databronnen’. Het relationele data model is de laatste decennia het dominante
paradigma voor industriële database applicaties. Het is de basis van de grootste
commerciële database systemen, waardoor Relational Database Management Sys-
temen (RDBMSen), de meest voorkomende soort data repository zijn. De popu-
lairste taal om RDBMSen te ondervragen is de Structured Query Language (SQL).
Het doel van deze thesis is het ontwerp van efficiënte data mining algoritmes die
interessante patronen kunnen ontdekken in relationele databases.

In grote hoeveelheden data is een patroon meestal pas interessant als het geldt
voor een voldoende groot deel van de data. Dit is de basis van frequent pattern
mining. De meest eenvoudige en historisch eerst beschouwde vorm van frequent
pattern mining is frequent itemset mining. De eigenschappen en technieken die
werden geintroduceerd in frequent itemset mining vormen ook de basis voor ge-
lijkaardige eigenschappen en technieken die nodig zijn voor het beschouwen van
complexere patroontypes. We bekeken dan ook de belangrijkste frequent pattern
mining algoritmes, Apriori en Eclat en hoe overbodige patronen kunnen vermeden
worden door het toepassen van closure. Vervolgens beschouwden we hoe we deze
technieken uit frequent itemset mining kunnen veralgemenen naar het minen van
frequente patronen in het algemeen. We besloten met een kort overzicht van de

149

5. Conclusions and Further Research

verschillende soorten patroontypes die in het onderzoeksgebied van het minen van
relationele databases aan bod komen. Hierbij introduceerden we ook de twee types
die we in deze thesis grondiger bestudeerden: queries en relationele itemsets.

We introduceerden queries als een patroontype om te minen in relationele da-
tabases. We stelden een nieuw en aantrekkelijk type association rules voor door
koppels van twee simpele conjunctieve queries als regels te beschouwen. We pre-
senteerden ons nieuwe algoritme Conqueror (Conjunctive Query Generator) dat
in staat is om efficiënt en zonder duplicaten de zoekruimte van alle simpele con-
junctieve queries te genereren. Verder presenteerden we experimentele resultaten
die de haalbaarheid van onze aanpak aantoonden maar ook de bruikbaarheid van
de gegenereerde patronen. Dit toont aan dat het minen van simpele conjunctieve
queries een nuttige aanpak is om interessante patronen te kunnen ontdekken in
arbitraire relationele databases.

Naast verschillende andere soorten interesante patronen, toonden we aan dat
koppels simpele conjunctieve queries ons toelaten om functionele afhankelijkheden
en inclusie afhankelijkheden te vinden, maar ook varianten zoals conditionele en
benaderende afhankelijkheden. We beschreven hoe confidence als maat relateert
met de bestaande maten die ontwikkeld werden voor benaderende functionele en
inclusie afhankelijkheden en toonden aan dat Conqueror deze beide patroontypes
simultaan kan minen.

Hierna breidden we onze basisaanpak uit om efficiënt relationele databases te
minen waarin we veronderstellen dat functionele afhankelijkheden aanwezig zijn.
Door gebruik te maken van deze functionele afhankelijkheden zijn we in staat om
de zoekruimte te verkleinen door overbodigheden te verwijderen die door deze
afhankelijkheden worden veroorzaakt. Omdat we reeds aantoonden dat het Con-
queror algoritme in staat is om voorheen onbekende functionele afhankelijkheden
te ontdekken, breidden we ons algoritme nog verder uit zodanig dat het ook nieuw
ontdekte functionele afhankelijkheden gebruikt om overbodige queries niet te ge-
nereren. Omdat we bovendien ook functionele afhankelijkheden kunnen ontdekken
die op joins van relaties gelden, pasten we ons algoritme aan om ook deze te ge-
bruiken om nog meer overbodige generaties te vermijden. Hiernaast voegden we
ook de mogelijkheid om foreign keys te detecteren en te gebruiken aan ons algo-
ritme toe, want ook deze geven aanleiding tot overbodige query evaluaties. Al
deze aanpassingen resulteerden in een aangepast algoritme Conqueror+, waarvan
we aantoonden dat het efficiënt het aantal overbodige queries reduceert door de
detectie en het gebruik van functionele afhankelijkheden en foreign keys. Door
deze optimalisaties is het Conqueror+ algoritme dan ook beduidend sneller dan
het vorige Conqueror algoritme. Conqueror+ is dus een efficiënte methode om
een beknopte set van interessante patronen te ontdekken in arbitraire relationele
databases.

150

5.2. Further Research

Naast queries bestudeerden we een tweede simpele maar tegelijk ook krach-
tige klasse van relationele patronen: de relationele itemsets. Relationele itemset
mining is een veralgemening van itemset mining naar de relationele setting. We
definieerden frequente relationele itemsets gebruik makend van een nieuwe sup-
port maat gebaseerd op de keys van het relationele schema. We implemteerden
het nieuwe efficiënt propagatie gebaseerd depth-first algoritme SMuRFIG (Simple
Multi-Relational Frequent Itemset Generator) om deze frequente relationele item-
sets en bijhordende confidente relationele associatie regels te minen. Hier bovenop
definieerden we de deviation maat om de statische blow-up van patronen die voor-
komt in het relationele geval tegen te gaan. We toonden experimenteel aan dat
deze maat zijn werk doet. Verder concludeerden we dat onze veralgemening van
closure naar de relationele setting goed werkt, net als dat de nieuwe notie van
mininmal divergence – die kan gezien worden als een veralgemening van mininal
improvement – een goede optie is om de resultaat set te verkleinen als complete
resultaten niet vereist zijn.

151

Bibliography

[Abiteboul et al., 1995] Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations
of Databases. Addison-Wesley.

[Agrawal et al., 1993] Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining
association rules between sets of items in large databases. In P. Buneman & S.
Jajodia (Eds.), Proceedings of the 1993 ACM SIGMOD International Conference
on Management of Data, volume 22:2 of SIGMOD Record (pp. 207–216).: ACM
Press.

[Agrawal et al., 1996] Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., &
Verkamo, A. I. (1996). Fast discovery of association rules. In Advances in
Knowledge Discovery and Data Mining (pp. 307–328). AAAI/MIT Press.

[Agrawal & Srikant, 1994] Agrawal, R. & Srikant, R. (1994). Fast algorithms for
mining association rules. In J. B. Bocca, M. Jarke, & C. Zaniolo (Eds.), Proceed-
ings of 20th International Conference on Very Large Data Bases (VLDB’94),
September 12-15, 1994, Santiago de Chile, Chile (pp. 487–499).: Morgan Kauf-
mann.

[Agrawal & Srikant, 1995] Agrawal, R. & Srikant, R. (1995). Mining sequential
patterns. In P. S. Yu & A. L. P. Chen (Eds.), Proceedings of the 11th Interna-
tional Conference on Data Engineering, March 6-10, 1995, Taipei, Taiwan (pp.
3–14).: IEEE Computer Society.

[Baixeries, 2004] Baixeries, J. (2004). A formal concept analysis framework to
mine functional dependencies. In Proceeding of the Workshop on Mathematical
Methods for Learning, Villa Geno, Italy.

153

Bibliography

[Bastide et al., 2000] Bastide, Y., Pasquier, N., Taouil, R., Stumme, G., & Lakhal,
L. (2000). Mining minimal non-redundant association rules using frequent
closed itemsets. In J. W. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K. Lau,
C. Palamidessi, L. M. Pereira, Y. Sagiv, & P. J. Stuckey (Eds.), Computa-
tional Logic, volume 1861 of Lecture Notes in Computer Science (pp. 972–986).:
Springer.

[Bayardo Jr et al., 2000] Bayardo Jr, R., Agrawal, R., & Gunopulos, D. (2000).
Constraint-based rule mining in large, dense databases. Data Mining and Knowl-
edge Discovery, 4(2), 217–240.

[Bell & Brockhausen, 1995] Bell, S. & Brockhausen, P. (1995). Discovery of data
dependencies in relational databases. In Y. Kodratoff, G. Nakhaeizadeh, &
C. Taylor (Eds.), Statistics, Machine Learning and Knowledge Discovery in
Databases.

[Bocklandt, 2008] Bocklandt, R. (2008). http://www.persecondewijzer.net.

[Bohannon et al., 2007] Bohannon, P., Fan, W., Geerts, F., Jia, X., & Kementsi-
etsidis, A. (2007). Conditional functional dependencies for data cleaning. In
Proceedings of the 23rd International Conference on Data Engineering (ICDE
2007), April 15-20, 2007, The Marmara Hotel, Istanbul, Turkey (pp. 746–755).

[Boulicaut, 1998] Boulicaut, J.-F. (1998). A KDD framework for database audit.
In Proceedings of the 8th Workshop on Information Technologies and Systems
Helsinki, Finland.

[Brin et al., 2003] Brin, S., Rastogi, R., & Shim, K. (2003). Mining optimized
gain rules for numeric attributes. IEEE Transactions on Knowledge and Data
Engineering, 15(2), 324–338.

[Calders et al., 2007] Calders, T., Goethals, B., & Mampaey, M. (2007). Mining
itemsets in the presence of missing values. In Y. Cho, R. L. Wainwright, H.
Haddad, S. Y. Shin, & Y. W. Koo (Eds.), Proceedings of the ACM Symposium
on Applied Computing (SAC) (pp. 404–408).: ACM.

[Casanova et al., 1984] Casanova, M. A., Fagin, R., & Papadimitriou, C. H.
(1984). Inclusion dependencies and their interaction with functional depen-
dencies. Journal of Computer and System Sciences, 28(1), 29–59.

[Chandra & Merlin, 1977] Chandra, A. K. & Merlin, P. M. (1977). Optimal imple-
mentation of conjunctive queries in relational data bases. In Proceedings of the
9th annual ACM symposium on Theory of computing (STOC ’77) (pp. 77–90).
New York, NY, USA: ACM.

154

Bibliography

[Chekuri & Rajaraman, 2000] Chekuri, C. & Rajaraman, A. (2000). Conjunctive
query containment revisited. Theoretical Computer Science, 239(2), 211–229.

[Chiang & Miller, 2008] Chiang, F. & Miller, R. J. (2008). Discovering data qual-
ity rules. Proceedings of the VLDB Endowment, 1(1), 1166–1177.

[Clare et al., 2004] Clare, A., Williams, H., & Lester, N. (2004). Scalable multi-
relational association mining. In Proceedings of the 4th IEEE International
Conference on Data Mining (ICDM 2004) (pp. 355–358).

[Codd, 1970] Codd, E. F. (1970). A relational model of data for large shared data
banks. Communications of the ACM, 13(6), 377–387.

[Crestana-Jensen & Soparkar, 2000] Crestana-Jensen, V. & Soparkar, N. (2000).
Frequent itemset counting across multiple tables. In Proceedings of the 4th
Pacific-Asia Conference (PAKDD), Kyoto, Japan, April 18-20, 2000 (pp. 49–
61).

[Cristofor & Simovici, 2001] Cristofor, L. & Simovici, D. (2001). Mining Associa-
tion Rules in Entity-Relationship Modeled Databases. Technical Report 2001-1,
University of Massachusetts Boston.

[Date, 1986] Date, C. J. (1986). Relational database: selected writings. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc.

[De Knijf, 2007] De Knijf, J. (2007). Fat-miner: mining frequent attribute trees. In
Proceedings of the 2007 ACM Symposium on Applied Computing (SAC), Seoul,
Korea, March 11-15, 2007 (pp. 417–422).

[Dehaspe & Raedt, 1997] Dehaspe, L. & Raedt, L. D. (1997). Mining association
rules in multiple relations. In Proceedings of the 7th International Workshop on
Inductive Logic Programming (ILP ’97) (pp. 125–132). London, UK: Springer-
Verlag.

[Dehaspe & Toivonen, 1999] Dehaspe, L. & Toivonen, H. (1999). Discovery of
frequent DATALOG patterns. Data Mining and Knowledge Discovery, 3(1),
7–36.

[Dehaspe & Toivonen, 2001] Dehaspe, L. & Toivonen, H. (2001). Discovery of
relational association rules. In Relational Data Mining (pp. 189–208). New York,
NY, USA: Springer-Verlag New York, Inc.

[Diop et al., 2002] Diop, C., Giacometti, A., Laurent, D., & Spyratos, N. (2002).
Composition of mining contexts for efficient extraction of association rules. In

155

Bibliography

Proceedings of the 8th International Conference on Extending Database Technol-
ogy (EDBT’02), Prague, Czech Republic, March 25-27, volume 2287 of LNCS
(pp. 106–123).: Springer Verlag.

[Džeroski, 2005] Džeroski, S. (2005). Relational data mining. Data Mining and
Knowledge Discovery Handbook, (pp. 869–898).

[Engle & Robertson, 2008] Engle, J. T. & Robertson, E. L. (2008). HLS: Tunable
mining of approximate functional dependencies. In W. A. Gray, K. G. Jef-
fery, & J. Shao (Eds.), Proceedings of the 25th British National Conference on
Databases (BNCOD 25), Cardiff, UK, July 7-10, volume 5071 of Lecture Notes
in Computer Science (pp. 28–39).: Springer.

[Fan et al., 2008] Fan, W., Geerts, F., Jia, X., & Kementsietsidis, A. (2008). Con-
ditional functional dependencies for capturing data inconsistencies. ACM Trans-
actions on Database Systems (TODS), 33(2).

[Fan et al., 2009] Fan, W., Geerts, F., Lakshmanan, L. V. S., & Xiong, M. (2009).
Discovering conditional functional dependencies. In Proceedings of the 25th
International Conference on Data Engineering (ICDE 2009), March 29 2009 -
April 2 2009, Shanghai, China (pp. 1231–1234).: IEEE.

[Flach & Savnik, 1999] Flach, P. A. & Savnik, I. (1999). Database dependency
discovery: A machine learning approach. AI Communications, 12(3), 139–160.

[Giannella & Robertson, 2004] Giannella, C. & Robertson, E. L. (2004). On ap-
proximation measures for functional dependencies. Information Systems, 29(6),
483–507.

[Goethals et al., 2005] Goethals, B., Hoekx, E., & Van den Bussche, J. (2005).
Mining tree queries in a graph. In Proceedings of the 11th ACM SIGKDD
international conference on Knowledge discovery in data mining (KDD ’05) (pp.
61–69). New York, NY, USA: ACM.

[Goethals et al., 2009] Goethals, B., Le Page, W., & Mampaey, M. (2009). Mining
Interesting Sets and Rules in Relational Databases. Technical Report 2009-02,
University of Antwerp.

[Goethals et al., 2008] Goethals, B., Le Page, W., & Mannila, H. (2008). Mining
association rules of simple conjunctive queries. In Proceedings of the SIAM
International Conference on Data Mining (SDM), April 24-26, 2008, Atlanta,
Georgia, USA (pp. 96–107).

156

Bibliography

[Goethals et al., 2010] Goethals, B., Page, W. L., & Mampaey, M. (2010). Mining
interesting sets and rules in relational databases. In Proceedings of the 25th
ACM Symposium on Applied Computing.

[Goethals & Van den Bussche, 2002] Goethals, B. & Van den Bussche, J. (2002).
Relational association rules: Getting WARMeR. In Proceedings of the Pattern
Detection and Discovery: ESF Exploratory Workshop, London, UK, September
16-19, 2002: Springer.

[Han & Kamber, 2006] Han, J. & Kamber, M. (2006). Data mining: concepts and
techniques. Morgan Kaufmann.

[Han et al., 2000] Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns
without candidate generation. In Proceedings of the 2000 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD ’00) (pp. 1–12). New
York, NY, USA: ACM.

[Han et al., 2004] Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent
patterns without candidate generation: A frequent-pattern tree approach. Data
Mining and Knowledge Discovery, 8(1), 53–87.

[Hoekx & Van den Bussche, 2006] Hoekx, E. & Van den Bussche, J. (2006). Min-
ing for tree-query associations in a graph. In Proceedings of the 6th Interna-
tional Conference on Data Mining (ICDM) (pp. 254–264). Washington, DC,
USA: IEEE Computer Society.

[Huhtala et al., 1999] Huhtala, Y., Karkkainen, J., Porkka, P., & Toivonen, H.
(1999). Tane: An Efficient Algorithm for Discovering Functional and Approxi-
mate Dependencies. The Computer Journal, 42(2), 100–111.

[IMDB, 2008] IMDB (2008). http://imdb.com.

[Jen et al., 2008] Jen, T.-Y., Laurent, D., & Spyratos, N. (2008). Mining all fre-
quent projection-selection queries from a relational table. In A. Kemper, P.
Valduriez, N. Mouaddib, J. Teubner, M. Bouzeghoub, V. Markl, L. Amsaleg,
& I. Manolescu (Eds.), Proceedings of the 11th International Conference on
Extending Database Technology (EDBT 2008), Nantes, France, March 25-29,
volume 261 of ACM International Conference Proceeding Series (pp. 368–379).:
ACM.

[Jen et al., 2009] Jen, T.-Y., Laurent, D., & Spyratos, N. (2009). Mining frequent
conjunctive queries in star schemas. In Proceedings of the 2009 International
Database Engineering; Applications Symposium (IDEAS ’09) (pp. 97–108). New
York, NY, USA: ACM.

157

Bibliography

[Jen et al., 2006] Jen, T.-Y., Laurent, D., Spyratos, N., & Sy, O. (2006). Towards
mining frequent queries in star schemes. In Proceedings of the 4th Interna-
tional Workshop (KDID 2005), Porto, Portugal, October 3, 2005 (pp. 104–123).:
Springer.

[Johnson & Klug, 1984] Johnson, D. S. & Klug, A. C. (1984). Testing containment
of conjunctive queries under functional and inclusion dependencies. Journal of
Computer and System Sciences (JCSS), 28(1), 167–189.

[Kamber et al., 1997] Kamber, M., Han, J., & Chiang, J. (1997). Metarule-guided
mining of multi-dimensional association rules using data cubes. In Proceedings
of the Third International Conference on Knowledge Discovery and Data Mining
(KDD-97), Newport Beach, California, USA, August 14-17, 1997 (pp. 207–210).

[Kantola et al., 1992] Kantola, M., Mannila, H., Räihä, K. J., & Siirtola.,
H. (1992). Discovering functional and inclusion dependencies in relational
databases. International Journal of Intelligent Systems, 7, 591–607.

[Kivinen & Mannila, 1995] Kivinen, J. & Mannila, H. (1995). Approximate infer-
ence of functional dependencies from relations. Theoretical Computer Science,
149(1), 129–149.

[Koeller & Rundensteiner, 2006] Koeller, A. & Rundensteiner, E. (2006). Heuristic
strategies for the discovery of inclusion dependencies and other patterns. Journal
on Data Semantics V, (pp. 185–210).

[Koeller & Rundensteiner, 2003] Koeller, A. & Rundensteiner, E. A. (2003). Dis-
covery of high-dimensional inclusion dependencies. In Proceedings of the 19th
International Conference on Data Engineering, March 5-8, 2003, Bangalore,
India (pp. 683–685). Los Alamitos, CA, USA: IEEE Computer Society.

[Koopman & Siebes, 2008] Koopman, A. & Siebes, A. (2008). Discovering rela-
tional item sets efficiently. In Proceedings of the SIAM International Conference
on Data Mining (SDM), April 24-26, 2008, Atlanta, Georgia, USA (pp. 108–
119).

[Koopman & Siebes, 2009] Koopman, A. & Siebes, A. (2009). Characteristic rela-
tional patterns. In J. F. E. IV, F. Fogelman-Soulié, P. Flach, & M. Zaki (Eds.),
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Paris, France, June 28 - July 1, 2009 (pp. 437–
446).: ACM.

[Kuramochi & Karypis, 2001] Kuramochi, M. & Karypis, G. (2001). Frequent
subgraph discovery. In N. Cercone, T. Lin, & X. Wu (Eds.), Proceedings of

158

Bibliography

the 2001 IEEE International Conference on Data Mining (ICDM 2001) (pp.
313–320).: IEEE Computer Society Press.

[Liu et al., 2002] Liu, H., Hussain, F., Tan, C. L., & Dash, M. (2002). Discretiza-
tion: An enabling technique. Data Mining and Knowledge Discovery, 6(4),
393–423.

[Lopes et al., 2000] Lopes, S., Petit, J.-M., & Lakhal, L. (2000). Efficient discovery
of functional dependencies and armstrong relations. In C. Zaniolo, P. C. Lock-
emann, M. H. Scholl, & T. Grust (Eds.), Proceedings of the 7th International
Conference on Extending Database Technology, Konstanz, Germany, March 27-
31, 2000, volume 1777 of Lecture Notes in Computer Science (pp. 350–364).:
Springer.

[Lopes et al., 2002] Lopes, S., Petit, J.-M., & Lakhal, L. (2002). Functional and
approximate dependency mining: database and FCA points of view. Journal of
Experimental and Theoretical Artificial Intelligence, 14(2-3), 93–114.

[Mannila & Toivonen, 1997] Mannila, H. & Toivonen, H. (1997). Levelwise search
and borders of theories in knowledge discovery. Data Mining and Knowledge
Discovery, 1(3), 241–258.

[Mannila et al., 1994] Mannila, H., Toivonen, H., & Verkamo, A. I. (1994). Effi-
cient algorithms for discovering association rules. In Proceedings of the AAAI
Workshop on Knowledge Discovery in Databases (pp. 181–192).: AAAI Press.

[Marchi et al., 2004] Marchi, F. D., Flouvat, F., & Petit, J.-M. (2004). Adap-
tive strategies for mining the positive border of interesting patterns: Applica-
tion to inclusion dependencies in databases. In J.-F. Boulicaut, L. D. Raedt,
& H. Mannila (Eds.), Proceedings of Constraint-Based Mining and Inductive
Databases, European Workshop on Inductive Databases and Constraint Based
Mining, Hinterzarten, Germany, March 11-13, 2004, volume 3848 of Lecture
Notes in Computer Science (pp. 81–101).: Springer.

[Marchi et al., 2002] Marchi, F. D., Lopes, S., & Petit, J.-M. (2002). Efficient
algorithms for mining inclusion dependencies. In C. S. Jensen, K. G. Jeffery,
J. Pokorný, S. Saltenis, E. Bertino, K. Böhm, & M. Jarke (Eds.), Proceedings
of the 8th International Conference on Extending Database Technology (EDBT
2002), Prague, Czech Republic, March 25-27, volume 2287 of Lecture Notes in
Computer Science (pp. 464–476).: Springer.

[Marchi & Petit, 2003] Marchi, F. D. & Petit, J.-M. (2003). Zigzag: a new algo-
rithm for mining large inclusion dependencies in database. In Proceedings of the

159

Bibliography

3rd IEEE International Conference on Data Mining (ICDM 2003), 19-22 De-
cember 2003, Melbourne, Florida, USA (pp. 27–34).: IEEE Computer Society.

[Matos & Grasser, 2004] Matos, V. & Grasser, B. (2004). SQL-based discovery of
exact and approximate functional dependencies. ACM SIGCSE Bulletin, 36(4),
58–63.

[Ng et al., 2002] Ng, E., Fu, A., & Wang, K. (2002). Mining association rules
from stars. In Proceedings of the 2002 IEEE International Conference on Data
Mining (ICDM), volume 20 (pp. 30–39).

[Nijssen & Kok, 2003a] Nijssen, S. & Kok, J. N. (2003a). Efficient frequent query
discovery in FARMER. In N. Lavrac, D. Gamberger, H. Blockeel, & L.
Todorovski (Eds.), Proceedings of the 7th European Conference on Principles
and Practice of Knowledge Discovery in Databases, Cavtat-Dubrovnik, Croatia,
September 22-26, 2003, volume 2838 of Lecture Notes in Computer Science (pp.
350–362).: Springer.

[Nijssen & Kok, 2003b] Nijssen, S. & Kok, J. N. (2003b). Proper refinement of dat-
alog clauses using primary keys. In Proccedings of the 2003 Belgium-Netherlands
Conference on Artificial Intelligence (BNAIC 2003).

[Novelli & Cicchetti, 2001] Novelli, N. & Cicchetti, R. (2001). FUN: An efficient
algorithm for mining functional and embedded dependencies. In Proceedings of
the 8th International Conference on Database Theory (ICDT ’01) (pp. 189–203).
London, UK: Springer-Verlag.

[Pasquier et al., 1999] Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L. (1999).
Discovering frequent closed itemsets for association rules. In C. Beeri & P.
Buneman (Eds.), Proceedings of the 7th International Conference on Database
Theory (ICDT ’99), Jerusalem, Israel, January 10-12, 1999, volume 1540 of
Lecture Notes in Computer Science (pp. 398–416).: Springer.

[Pei et al., 2000] Pei, J., Han, J., & Mao, R. (2000). CLOSET: An efficient algo-
rithm for mining frequent closed itemsets. In Proceedings of the ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge Discovery (pp.
21–30).

[Piatetsky-Shapiro, 1991] Piatetsky-Shapiro, G. (1991). Discovery, analysis, and
presentation of strong rules. In Knowledge Discovery in Databases (pp. 229–248).
AAAI/MIT Press.

[Plotkin, 1970] Plotkin, G. (1970). A note on inductive generalization. In Machine
Intelligence, volume 5 (pp. 153–163). Edinburgh University Press.

160

Bibliography

[Sánchez et al., 2008] Sánchez, D., Serrano, J.-M., Blanco, I., Martín-Bautista,
M. J., & Miranda, M. A. V. (2008). Using association rules to mine for strong
approximate dependencies. Data Mining and Knowledge Discovery, 16(3), 313–
348.

[Siebes et al., 2006] Siebes, A., Vreeken, J., & van Leeuwen, M. (2006). Item sets
that compress. In J. Ghosh, D. Lambert, D. B. Skillicorn, & J. Srivastava (Eds.),
Proceedings of the SIAM International Conference on Data Mining 2006 (SDM)
(pp. 393—404).: SIAM.

[Srikant & Agrawal, 1996] Srikant, R. & Agrawal, R. (1996). Mining quantitative
association rules in large relational tables. In Proceedings of the 1996 ACM
SIGMOD international conference on Management of data (pp. 1–12).: ACM
New York, NY, USA.

[Tsechansky et al., 1999] Tsechansky, M. S., Pliskin, N., Rabinowitz, G., & Po-
rath, A. (1999). Mining relational patterns from multiple relational tables.
Decision Support Systems, 27(1-2), 177–195.

[Ullman, 1988] Ullman, J. (1988). Principles of database and knowledge-base sys-
tems, volume 1, volume 1 of Principles of Computer Science. Computer Science
Press.

[Ullman, 1989] Ullman, J. (1989). Principles of database and knowledge-base sys-
tems, volume 2, volume 14 of Principles of Computer Science. Computer Science
Press.

[Webb, 2000] Webb, Geoffrey, I. (2000). Efficient search for association rules. In
Proceedings of the 6th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD ’00) (pp. 99–107). New York, NY, USA: ACM.

[Weisstein, 2009] Weisstein, E. W. (2009). Restricted growth string. From Math-
World – A Wolfram Web Resource.

[Wyss et al., 2001] Wyss, C. M., Giannella, C., & Robertson, E. L. (2001).
FastFDs: A heuristic-driven, depth-first algorithm for mining functional de-
pendencies from relation instances - extended abstract. In Y. Kambayashi, W.
Winiwarter, & M. Arikawa (Eds.), Proceedings of the 3rd International Con-
ference Data Warehousing and Knowledge Discovery (DaWaK 2001), Munich,
Germany, September 5-7, 2001, volume 2114 of Lecture Notes in Computer Sci-
ence (pp. 101–110).: Springer.

[Yan & Han, 2002] Yan, X. & Han, J. (2002). gspan: Graph-based substructure
pattern mining. In Proceedings of the 2002 IEEE International Conference on
Data Mining (ICDM’02) (pp. 721).

161

Bibliography

[Yannakakis, 1981] Yannakakis, M. (1981). Algorithms for acyclic database
schemes. In Proceedings of the seventh international conference on Very Large
Data Bases (VLDB ’1981) (pp. 82–94).: VLDB Endowment.

[Yao & Hamilton, 2008] Yao, H. & Hamilton, H. J. (2008). Mining functional
dependencies from data. Data Mining and Knowledge Discovery, 16(2), 197–
219.

[Zaki, 2000] Zaki, M. J. (2000). Generating non-redundant association rules. In
Proceedings of the 6th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD ’00) (pp. 34–43). New York, NY, USA: ACM.

[Zaki, 2002] Zaki, M. J. (2002). Efficiently mining frequent trees in a forest. In
Proceedings of the 8th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD ’02) (pp. 71–80). New York, NY, USA: ACM.

[Zaki, 2004] Zaki, M. J. (2004). Mining non-redundant association rules. Data
Mining and Knowledge Discovery, 9(3), 223–248.

[Zaki & Gouda, 2003] Zaki, M. J. & Gouda, K. (2003). Fast vertical mining using
diffsets. In Proceedings of the 9th ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD ’03) (pp. 326–335). New York, NY,
USA: ACM.

[Zaki & Hsiao, 2002] Zaki, M. J. & Hsiao, C.-J. (2002). CHARM: An efficient
algorithm for closed itemset mining. In R. L. Grossman, J. Han, V. Kumar,
H. Mannila, & R. Motwani (Eds.), Proceedings of the 2nd SIAM International
Conference on Data Mining, Arlington, VA, USA, April 11-13, 2002: SIAM.

[Zaki et al., 1997] Zaki, M. J., Parthasarathy, S., Ogihara, M., & Li, W. (1997).
New algorithms for fast discovery of association rules. In Proceedings of the 3rd
Internationl Conference on Knowledge Discovery and Data Mining (KDD) (pp.
283–286).

162

	Contents
	List of Algorithms
	List of Figures
	Introduction
	Data Mining
	Relational Databases
	Overview

	Frequent Pattern Mining
	Frequent Itemset Mining
	Mining Frequent Itemsets
	Mining Confident Rules
	Algorithms
	Closed Itemsets and Non-Redundant Rules

	Frequent Pattern Mining
	Relational Pattern Mining
	Conclusion

	Conjunctive Query Mining
	Simple Conjunctive Queries
	Query Comparison
	Cartesian Products
	Basic Association Rules
	Problem Statement

	Algorithm: Conqueror
	Candidate Generation
	Candidate Evaluation
	Monotonicity
	Association Rule Generation

	Conqueror Experimental Results
	Movie Database
	Quiz Database
	Performance

	Dependencies
	Functional Dependencies
	Conditional Functional Dependencies
	Approximate Functional Dependencies
	Inclusion Dependencies
	Foreign-keys
	Conclusion

	Generalising Query Comparison
	Non-Redundant Association Rules

	Algorithm: Conqueror+
	Handling Functional Dependencies
	Discovering Functional Dependencies
	Discovering and Handling Foreign-Keys
	Monotonicity and Association Rules

	Conqueror+ Experimental Results
	Impact of Dependency Discovery
	Impact of Foreign-Keys
	Resulting Patterns

	Related Work
	Conclusion
	Further Research

	Relational Itemset Mining
	Definitions
	Relational Scheme
	Relational Itemsets
	Relational Association Rules

	Algorithm: SMuRFIG
	Naive Relational Itemset Miner
	SMuRFIG
	NULL values

	Deviation
	Rule Deviation

	Redundancy
	Closure
	Divergence

	Experiments
	Patterns
	Interestingness
	Redundancy
	Performance
	Scalability
	Conclusion

	Related Work
	Conclusion
	Further Research
	Relation Attributes
	Wildcard Patterns
	Simple Cycles
	Graph Schemes

	Conclusions and Further Research
	Summary
	Further Research

	Nederlandse Samenvatting
	Bibliography

