
Looking At The World Thru Colored Glasses

Floris Geerts1, Anastasios Kementsietsidis2, and Heiko Müller3

1 ADReM Research Group, University of Antwerp, Antwerpen, Belgium,
floris.geerts@ua.ac.be

2 IBM Research - Thomas J. Watson Research Ctr, Hawthorne, NY, USA
akement@us.ibm.com

3 Intelligent Sensing and Systems Laboratory, CSIRO, Hobart, Australia
heiko.mueller@csiro.au

Abstract. There are two central issues in the curation of (scientific)
databases: annotation management and archiving. Both issues have been
addressed by the Edinburgh database group and led to the MONDRIAN
annotation management system and the XArch archiving system, re-
spectively. In this paper, we present an application of MONDRIAN to
represent and query the history of evolving databases. We show how the
annotation model and query language underlying MONDRIAN not only
allows to answer queries about how individual data values change over
time, but also allows to capture and query structural changes that occur
in a database over time, beyond the querying functionalities that XArch
currently offers.

1 Introduction

In recent years, one has seen a vast increase in the number of curated databases.
This is particularly true for databases that originate from scientific research
and from governmental agencies. Common examples include IUPHARDB, the
official database of the IUPHAR Committee on Receptor Nomenclature and
Drug Classification [2], and the CIA World Factbook, a comprehensive resource
of demographic data [1], among others.

Annotations play an important role in database curation. Indeed, the cu-
ration process usually involves manual collection, verification, and aggregation
of existing data sources by a dedicated group of curators. Annotations can, for
example, represent opinions of curators about the quality of data or suggested
changes, record information about the provenance of data, as well as indicate
temporal information with regards to the validity of data. In general, annotations
can be regarded as additions to the core data for which there is no dedicated
place within the database schema. The importance of annotations has been rec-
ognized by several research efforts in which the problems of maintaining and
querying annotated databases have been addressed [7, 3, 13, 14, 20, 9, 16].

Equally important in the curation process is the ability to store, manipulate
and query different versions of the data. Indeed, it is common that curated data
evolves and gets updated at a regular pace and proper archiving of the data is

2

required [4]. Furthermore, users want to query the history of the data, rather than
simply querying a single old version of the data. A prime example of this is the
CIA World Factbook [1] where queries like “How did the population of China
change over the past 15 years?” are common4. To deal with these challenges,
different approaches and systems for archiving and querying data have been
developed in recent years [6, 19, 8, 18, 21].

In this paper we marry two ideas, both developed when the authors were do-
ing time in the database group in Edinburgh. The first idea concerns the model-
ing of annotated databases by means of colors, to represent the annotations, and
blocks, to represent the data items to which the colors are associated. The re-
sulting annotation management system, MONDRIAN, was reported in [13, 12].
The second idea concerns the archiving of data by means of keys and XML. More
specifically, in the XArch system [19], different versions of an evolving database
are merged into a single well-defined hierarchical data format. Furthermore, tem-
poral information is stored as annotations of elements in the archive. The goal
of this paper is to show that by modeling time-stamped XML as so-called color
relations in the MONDRIAN system, and by using the corresponding color alge-
bra as query language, we obtain a flexible mechanism to store, manipulate and
query annotated historical data. Using the CIA World Factbook as an example,
we show that this approach enables to answer queries over archives that XArch
currently cannot answer.

The remainder of this paper is structured as follows: We review the MON-
DRIAN annotation management system in Section 2. In Section 3, we describe
the archiving system XArch. Finally, in Section 4 we combine both systems to
represent and query annotated evolving databases.

2 The MONDRIAN annotation system

Most existing approaches for annotation management deal with annotations of
individual values or records [7, 3, 13, 14, 20, 9, 16]. In many cases, however, it is
of importance to be able to annotate sets of values. In data integration, for
example, one wants to use annotations to provide evidence for the correctness
of associations between values. Likewise, it is often important to group and
annotate values that have a semantic or temporal relationship. We illustrate
how the MONDRIAN annotation system models such complex annotations by
means of the following example:

Example 1. Consider the relations in Fig. 1(a)-(c) taken from the CIA World
Factbook of 2011. The relations list for each country (a) the highest-valued im-
ported products; (b) the most important import trading partners; and (c) the
highest-valued exported products. Figure 1(d) shows an integrated relation in
which countries are associated with their trading partners and corresponding im-
ported products. Annotations in this relation represent evidence for associations,

4 This query is one of Peter Buneman’s favorite queries. Others include the shoe and
hat size of individuals, which are outside the scope of this paper.

3

country imports

Brazil Chemical prod.
Brazil Electronics
Chile Chemicals
Chile Electrical equip.
Chile Vehicles

country partner

Brazil S. Korea
Brazil US
Chile Germany
Chile S. Korea
Chile US

country exports

Germany Chemicals
Germany Motor vehicles
Korea, South Motor vehicles
Korea, South Semiconductors
United States Organic chemicals

(a) Imported products (b) Import trading partners (c) Exported products

country partner product

Brazil South Korea Electronics
Brazil US Chemicals
Chile Germany Motor vehicles
Chile Germany Chemicals
Chile South Korea Electronics
Chile South Korea Motor vehicles

Verified by Eric
Verified by Mary

$1.5 billion

S. Korea = Korea, South = South Korea

Until June 2011

(d) Integrated relation of imported products

Fig. 1. Three relations (a), (b) and (c) on imports and exports taken from the CIA
World Factbook (2011) and their integrated relation (d).

assumptions that were made during the integration process, as well as temporal
information. Annotations are shown in the form of color blocks. Here, a block is
a set of values for which an annotation exists. Colors are used to represent anno-
tations for this block. In the figure, we also show the semantics of each color. For
example, the -colored block in the fifth tuple is valid “Until June 2011”. In
the first and the last two tuples one block indicates that the association between
Brazil (and Chile resp.) and South Korea is based on the assumption that the
names S. Korea, Korea, South, and South Korea all represent the same country.
As another example, the block in the third tuple indicates that the association
has been verified by curator Eric. Note that not all annotations are shown (e.g.,
US and United States are regarded the same as well). ut

Complex annotations like those shown in the previous example pose inter-
esting challenges in terms of how they can be implemented on top of existing
database management systems (DBMS). In MONDRIAN, a simple albeit effi-
cient relational representation of color databases (i.e., databases that contain
color blocks) was proposed. In a nutshell, the relation schemas are first extended
with so-called block attributes, one for each attribute in the original schema;
and second, a single color attribute (col) is attached to each relation. If A is an
attribute in the original schema, we denote by Ab its corresponding block at-
tribute. Intuitively, if a tuple t has a block covering attribute A, then Ab will be
set to 1. Otherwise, the Ab-attribute of the tuple t is set to 0. Similarly, if t has
a block of a certain color, then this color is simply recorded in its col -attribute.
More specifically, let R be a relation consisting attributes A1, . . . ,An. For any re-

4

country partner product countryb partnerb productb col

Brazil South Korea Electronics 1 1 0
Brazil US Chemicals 0 1 1
Chile Germany Motor vehicles 1 1 1
Chile Germany Motor vehicles 1 1 0
Chile Germany Chemicals 1 1 0
Chile South Korea Electronics 0 1 1
Chile South Korea Electronics 1 1 0
Chile South Korea Motor vehicles 1 1 0

Fig. 2. Relational encoding of the color relation shown in Fig. 1(d).

lation scheme R, we define the relation scheme R̄=R∪{Ab1, . . . ,Abn}∪{col}. Note
that R̄ is the schema of the relational representation of the color databases. More
generally, to every color block database schema S we can associate the relational
database schema S̄ which has precisely the same relation variables, but when
relation variable x has relation scheme R in S, then x has relation scheme R̄ in
S̄.

Example 2. Consider the color relation shown in Fig. 1(d). The corresponding
relational representation is shown in Fig. 2. In this figure, the colors represent
the annotations as given in Fig. 1(d). ut

The advantage of the relational encoding used by MONDRIAN is that it
requires a minimal restructuring of the existing schema. Indeed, although the
representation shown in Fig. 2 requires the addition of new attributes (for blocks
and colors), one can equivalently work with a representation in which separate
tables for blocks and colors are present. These are then linked by means of tuple,
block and color identifiers as is common practice in DBMSs. In addition, annota-
tions of the database imposes minimum overhead in terms of space [13]. Several
indexing methods, such as bitmaps [17] and multi-dimensional indexes [10], are
in place to better support the presence of color blocks in databases.

In addition to supporting complex annotations, MONDRIAN provides a
query interface in which color blocks are treated as first-class citizens. More
specifically, a color algebra was introduced in [13] that allows the user to focus
on the annotated data, without knowing how these annotations are modeled in
the underlying relational database system. More specifically, the color algebra,
or CA for short, consists of the following operators:

– Projection (πcol
X): which behaves like a standard projection on the data

part and simply inherits all color blocks, restricted to the attributes in X;
– Lower and upper block selection (ΠL

X , ΠU
X): which simply select all

tuples and their color blocks covering all attributes in X (lower), or cover
only attributes in X (upper);

– Color selection (Σγ): which selects all tuples that contain a color block of
color γ;

– Selection (σA=B): which behaves like the standard selection on the data
part and simply copies all color blocks in the selected tuples;

5

Table 1. Simulation of CA by conjunctive queries (CQ). If X is a set of attributes, then
Xb denotes its corresponding set of block attributes. Furthermore, in the case of the
tuple join, xony, the letter R (S) refers to the relation scheme of the color block relation
x (y), f (resp. g) renames the common block attributes Abi in R∩S to attributes of the
form Cbi (resp. Db

i), and finally, or is the truth table of disjunction in which the third
attribute contains the result of the union of the bits in first two attributes. The latter
is needed to combine all blocks in the joined tuples.

CA 7→ CQ

πcol
X (x) 7→ πX∪Xb∪{col}(x)

ΠL
X(x) 7→ σ∧

A∈X Ab=1(x)

ΠU
X(x) 7→ σ∧

A6∈X Ab=0(x)

Σγ(x) 7→ σcol=γ(x)
σA=B(x) 7→ σA=B(x)
x∪y 7→ x∪y
ρA/B(x) 7→ ρA/B(ρAb/Bb(x))

xony 7→ πR∪S∪Rb∪Sb∪{col}
(
ρf (x))

)
onρg(ρcol/col′(y))

)onp
i=1

or(Cbi ,D
p
i ,A

p
i)
)

∪ Same expression but with the roles of x and y reversed.
x�y 7→ xony
�A
B (x) 7→ ρAb/Bb(x)

– Union (∪): which behaves like the standard union on the data part and
simply copies color blocks in the tuples in the component relations;

– Block join (�): which joins tuples together that agree on the data part and
share the same color block on common attributes;

– Tuple join (on): which joins tuples together that agree on the data part,
irregardless of any color blocks that may be present;

– Renaming (ρA/B): which simply renames attributes; and finally
– Block switch (�A

B): which switches color blocks involving covering at-
tribute A by blocks involving attribute B.

Note that none of these operators access the color blocks explicitly. Indeed,
their semantics does not rely on the relational representation used to model color
databases. However, to make the semantics more precise we provide a transla-
tion from the operators in CA to conjunctive queries (CQ) over the relational
representation described earlier (Table 1).

Example 3. Consider again the color relation shown in Fig. 1(d). Suppose that
we want to find all the tuples that have a block of color “Verified by Mary”, or
concern the country Brazil. Also, assume that we are only interested in keeping
the {country,partner} attributes from these tuples. Then, the CA expression

e=πcol
country,partner((Σ“Verified by Mary”(r))∪(σcountry=“Brazil”(r)))

returns the desired result. As another example, asking for all the tuples that have
an annotation of the attribute product can be simply expressed in CA by means of

6

country partner countryb partnerb col

Brazil South Korea 1 1
Brazil US 0 1
Chile Germany 1 1

country partner

Brazil South Korea
Brazil US
Chile Germany Verified by Mary

Verified by Eric

S. Korea = Korea, South = South Korea

(a) Relational representation of result (b) Color result relation

Fig. 3. Query result as relational representation (a); and color relation (b).

ΠL
product(r). When interested in all tuples that involve annotations exactly cover-

ing country, partner, then the CA expressions ΠL
country,partner(Π

U
country,partner(r))

would give the desired result. We refer to [13] for more examples. ut

The MONDRIAN system leverages the translation given in Table 1 by trans-
lating the user’s CA query into a CQ query on the underlying relational rep-
resentation. Once the result of the CQ query is obtained, it is converted again
into a color relation that is given to the user. We refer to [12] for more details
of the MONDRIAN system. It is noteworthy to point out that the evaluation of
CA expressions, by means of the intermediate translation step to the underlying
RDBMS, is comparable in terms of query execution time when compared to its
unannotated version [13].

Example 4. Consider the CA expression e from the previous example. To eval-
uate e on the color relation shown in Fig. 1(d), MONDRIAN first translates e
into a CQ query qe as specified by Table 1. It is readily verified that qe equals

πcountry,partner,countryb,partnerb,col(σcol=“Verified by Mary”(r̄)∪σcountry=“Brazil”(r̄))),

where r̄ denotes the schema r extended with block and color attributes. The CQ
query qe is then executed on the relational representation shown in Fig. 2. The
result of the qe and the corresponding color relation is shown in Fig. 3. ut

We conclude the description of the MONDRIAN system by stating that
CA (on color databases) has the same expressive power as CQ (over relational
representations of color databases), even though CA does not access color blocks
explicitly. Observe that Table 1 implies that for every CA-expression over S,
there exists an equivalent CQ-expression over S̄. The converse is also true:

Theorem 1 ([13]). For every conjunctive query over S̄ whose result relation
scheme is of the form R̄ for some relation scheme R, there exists an equivalent
CA expression over S.

As final remark, we note that in the setting that blocks cover all the attributes,
and thus only the colors matter, Theorem 1 is shown to hold even in the presence
of negation [11].

7

3 The XArch archiving system

Curated databases are predominantly kept in well-organized hierarchical data
formats. These data formats are often equipped with a key structure that pro-
vides a canonical identification for each element in the hierarchical data. For
instance, a key for an element can be taken as the combination of the path in
which the element occurs together with the values of some of its sub-elements.
Buneman et al. [6] developed an archiving approach that takes advantage of
such keys to maintain multiple versions of an evolving curated databases. The
archiving system XArch implements an extended version of the original ap-
proach that allows archiving databases of arbitrary size [15]. More specifically,
in XArch, multiple snapshots of an evolving database are merged into a single
archive. Corresponding elements in different snapshots are identified based on
their key values and stored only once in the resulting archive. Each snapshot is
then given a unique identifier and each element is annotated with a timestamp
that represents the sequence of snapshots in which the particular element was
contained in. Archives in XArch are currently stored as XML documents. We
next provide a high-level description of the archiving process by means of the
following example and refer to [6, 15] for more details.

Example 5. Consider the following two (XML) entries from two releases of the
CIA Factbook in 1992 (left) and 1998 (right). These entries concern the number
of airports in Kazakhstan:

<country>

<name>Kazakhstan</name>
<category>

<name>Communications</name>
<property>

<name>Airports</name>
<value>NA</value>

</property>

</category>

<country>

<country>
<name>Kazakhstan</name>
<category>

<name>Transportation</name>
<property>

<name>Air Transport</name>
<subprop>

<name>Airports</value>
<value>10</value>

</subprop>

</property>

</category>

</country>

In order to compare, merge and archive these two entries, a key specification
is required to tell what the corresponding elements are in these two releases. The
keys relevant for this fragment of the CIA Factbook are as follows:

k1 = (/country,{name})
k2 = (/country/name,{})
k3 = (/country/category,{name})
k4 = (/country/category/name,{})
k5 = (/country/category/property,{name})
k6 = (/country/category/property/name,{})
k7 = (/country/category/property/value,{})

8

k8 = (/country/category/property/subprop,{name})
k9 = (/country/category/property/subprop/name,{})
k10 = (/country/category/property/subprop/value,{})

We provide the formal definition of keys below. The archiver will merge
corresponding nodes in both entries, in a top-down manner, starting from the
country nodes. The key k1 specifies that elements nodes of type country are
uniquely specified by the value of their name child node. Clearly, in order for this
to make sense /country/name nodes should carry a unique value and have no
further nodes below them (they are frontier nodes). For the two entries given
above, “Kazakhstan” is the key for both country nodes and thus both nodes
correspond to the same country. As a consequence, they will be merged in the
archive. The resulting country node has timestamps {1992,1998}. The key k2

specifies that nodes of type name are identified by their own value. Again, the
archiver merges both name nodes and the corresponding timestamps are inher-
ited from its parent country node. As another example, k3 says that category
nodes are again identified by the value of their name child node. In the archive,
we thus have two distinct nodes for the entries above, one for “Communica-
tions” (with timestamp {1992}) and one for “Transportation” (with timestamp
{1998}). Proceeding along this way, until all nodes are processed, we obtain
a timestamped XML documents that contains both entries. In case that more
versions are available, the archiver will sequentially add each version to the
archive computed so far. Figure 4 shows a minor modification of part of our
current archive of the CIA World Factbook that contains the annual releases
of the Factbook from 1992 to 2002. We only show the information related to
the number of airports in Kazakhstan over these years. In the figure, element
nodes are shown in square boxes together with their label (in angle brackets)
and their key value (in square brackets). Timestamps are shown as edge labels.
Note that elements (or edges) without an explicit timestamp inherit the times-
tamp of their parent. The two entries from 1992 and 1998 are embedded in
the archive and are highlighted by bold edges. As already mentioned, frontier
nodes that are used as key values, e. g., /country/name, can have only one text
node as their child since objects are identified based on this value. Thus, the
key value for each country is the value of this text node. Other frontier nodes,
e. g., /country/category/property/value, may have multiple text nodes as
children, each with a different (disjoint) timestamp. Indeed, these nodes are not
used as key for any node and may have multiple values. ut

More formally, an archive A is a tree with two types of nodes: (i) element
nodes, and (ii) text nodes. Only element nodes may occur as internal nodes.
In addition, each element node has a label and a key value. Element keys are
defined using key constraints. Here, we consider only a limited form of key con-
straints and refer to [5, 6] for an extended definition and for further details. A
key specification K is a set of key definitions k=(p,q), where p is an absolute
path of element labels and q is a set of element labels. The key definition spec-
ifies for each element e reachable by path p how the key value is derived from
the subtree of e. If q is empty then key(e)=⊥. Otherwise, key(e) is an array of

9

/

<country>
[Kazakhstan]

<country>
[Kazakstan]

<name>
[]

<category>
[Communications]

<category>
[Transportation]

<category>
[Economy]

<category>
[Transportation]

<name>
[]

<name>
[]

<property>
[Airports]

<name>
[]

<property>
[Airports]

<name>
[]

<property>
[Air Transport]

<name>
[]

<property>
[Airports]

<property>
[Air Transport]

<name>
[] []

<value> <name>
[] []

<value> <name>
[]

<name>
[] []

<value> <name>
[]

<subprop>
[Airports]

<subprop>
[Airports]

<name>
[] []

<value> <name>
[] []

<value>

Kazakhstan Kazakstan

Communications Economy Transportation Transportation

Airports Airports

Airports

Airports

Airports

Air Transport Air Transport

NA 365

352

10 449

352

352

{1992 − 1995, 1998 − 2002} {1996 − 1997}

{1992 − 1994} {1995} {1998 − 2002} {1996} {1997}

{1992}{1993 − 1994}

{2001 − 2002}{1998 − 2000}

Fig. 4. Part of the archive of the CIA World Factbook (1992–2002).

values; one for each the children of e reachable by path p/`, for `∈q. Elements
whose values are used as key values are called key path values. Note that (i) there
has to be exactly one child of e for each label `∈q, and (ii) this child is a frontier
node, i. e., it does not have other element nodes as children. All element keys
are relative keys, i. e., the key identifies an element among its siblings (with the
same label). Moreover, the concatenation of key values along the path from the
root to an element e forms an absolute key for e. Let T denote the set of snap-
shot identifiers. Each node n∈A has a timestamp time(n)⊆T that represents
the set of snapshots that node was present in. Timestamps satisfy the following
property: if a node n is a descendant of a node m in A, then time(n)⊆ time(m).
Since changes to databases are largely accretive and an element is likely to exist
for a long time, we compactly represent its timestamp using time intervals rather
than a sequence of version numbers. As illustrated in the previous example, the
timestamps are assigned when merging different versions of the data.

Merging different snapshots into a single archive has several advantages: (i)
any specific snapshot is retrievable from the archive in a single pass over the data,
(ii) the storage space required is comparable to that of delta-based approaches
that keep a sequence of records of changes between pairs of consecutive versions,
(iii) tracking object history is easy. XArch implements a query language (xaql)
for retrieval of individual database snapshots as well as queries over the history
of data. The query language xaql has a SQL-like syntax and it uses a restricted
form of XPath expressions to filter output elements.

Example 6. The following xaql query returns the name and population of Eu-
ropean countries between years 2000 and 2008 in our current archive of the CIA
World Factbook:
SELECT $c/name, $c/category[name =’People ’]/property[name =’Population ’]/value

10

FROM $c IN archive(’CIAWFB’)/country

VERSION 2000-2008

WHERE $c/category[name =’Geography ’]/property[name = ’Map references ’]/value = ’Europe ’ ut
XArch has been successfully used to maintain the history of several curated

databases. While the archiving approach generally works very well, it does make
the critical assumption that the structure of the archived database remains un-
changed. This restriction, however, is almost certainly to become an issue when
archiving over a long period of time.

Figure 4 shows a typical problem the archiver currently faces, that is, the
change of (absolute) key values. Over the history of the Factbook, the informa-
tion about the total number of airports in Kazakhstan (referred to as Kazakstan
in 1996 and 1997) was first located under category Communications, then un-
der category Economy and 1996 moved to category Transportation. In 1997, the
Factbook started to group information about the airports, heliports, and airlines
(not shown in Figure 4) as sub-properties under a new property Air Transport.
Due to the change in its absolute key value the archiver maintains different ele-
ments at different levels of the tree about the number of airports in Kazakhstan.
While this redundancy causes a slight storage overhead, a more severe problem
occurs when querying the archive. Indeed, the same information can now be
found under different paths in different snapshots.

As another example, more recently, the Factbook renamed category People
into People and Society. Thus, the query shown in Example 6 would return an
empty result for the more recent snapshots in our archive. Making matters worse,
the population of China can now be found under different paths in the history
of the Factbook. xaql queries in XArch are currently not able to handle such
changes. That is, in order to retrieve to full history of the population of China
one would have to issue two separate queries and manually merge the results.
Moreover, XArch currently does not provide any mechanism to maintain in-
formation about different key values for the same element. In the following, we
show how MONDRIAN can be used to maintain and query historic data in the
presence of key value changes.

4 Mondrianizing XARCH

We start by showing that an archive in XArch is a special form of a color
database where timestamps are represented as color blocks. That is, we can turn
any archive into a color relation. Annotations in such a relation have temporal
semantics, i. e., they represent the snapshots in which a data value was valid.
Then, the color algebra can be used for temporal queries over the history of
data. We can use additional annotations to capture the semantic relationships
of different elements in an archive, and use this to better answer queries over the
history of data. In comparison to xaql this gives us (a) a formal query language,
and (b) the ability to query data under key value changes.

Consider an archive A following key specification K. For simplicity, assume
that for all key definitions (p,q)∈K, q is either empty or contains exactly one

11

label. When transforming A into a color database we generate a single color
relation with schema Rk={A1, . . . ,An}∪{Ab1, . . . ,Abn}∪{col}. The schema Rk

has exactly one attribute Ai for each key definition (p,q)∈K where p does not
identify a key path value. That is, if p=p1/` then (p1,{`}) is not in K. We use
Ψ to denote the mapping from path p in the key definition to the corresponding
attribute Ai∈Rk. Figure 5(a) shows the mapping Ψ for the archive in Figure 4,

while Figures 5(b) and (c) show the schema of the generated relation Rk. For

convenience, in our implementation we split Rk into two relations (as mentioned
in Section 2), one relation for storing the archive raw data and another for storing
just the annotations.

We now turn our attention on how to compute the instances shown in the
figures and concentrate first on the raw data. Let rk be in general the instance
for schema Rk. We create one tuple in rk for each text node n in A that is
not a child of a key path value. Let value(n) denote the text value of n and let
<e1, . . . ,em> denote the sequence of elements on the path to n. Furthermore,
let path(e) denote the path of element e. Then, for the text node n, we create
a tuple t where for each e∈<e1, . . . ,em−1> we set t[Ψ(path(e))]=key(e) and for
em we set t[Ψ(path(em))]=value(n). For attributes A∈Rk where no element e
with Ψ(path(e))=A exists in <e1, . . . ,em>, we set t[A]=⊥. Figure 5(b) shows
an instance rk for the archive in Figure 4.

We next consider the creation of colors and blocks. For each of the tuples
t in rk and each snapshot identifier s in time(e) with e the text element that

warranted the creation of t in rk, we create one tuple rk with t[col] representing
the snapshot identifier s. This sets the color of the tuples. For the blocks, we set
t[Abi]=1, for 1≤ i<m if s∈ time(ei). Likewise, for Abm we use the timestamp of
text node n to decide the value of t[Abm]. We illustrate the above construction
by means of the following example.

Example 7. The instance rk of Rk corresponding the CIA Factbook fragment
shown in Figure 4 consists of the raw data instance shown in Figure 5(b) to-
gether with colored blocks represented by the first 11 tuples in Figure 5(c). For
example, there are two blocks for the tuple with tid=3 of Figure 5(b), since the
corresponding path is present in both 1994 and 1995. Similarly, there are three
blocks for the tuple with tid=6 for the years 1998, 1999 and 2000. ut

In our example the timestamp of every internal node equals the union of
timestamps of its children. This is not true in general, however. For example, in
any snapshot of the CIA World Factbook a country may have a category without
property elements or a property value without a text node child. Note that the
key path values for a node, however, always have to exists, i. e., there are no
missing values in element keys. To ensure that our transformation of an archive
into a color relation is lossless we have to create a tuple in rk for every element
e whose timestamp contains snapshot identifiers that are not contained in the
timestamp of any of e’s children. We set tuple values according to the sequence
of elements on the path to e. That is, for every snapshot identifier s∈ time(e)
that does not appear in any of the timestamps of the children of e we create one
tuple rk such that t[col] represents s.

12

/country → co
/country/category → ca
/country/category/property → pr
/country/category/property/value → prv
/country/category/property/subprop → sp
/country/category/property/subprop/value → spv

(a) Mapping Ψ of element paths to attributes

tid co ca pr prv sp spv

1 Kazakhstan Communications Airports NA ⊥ ⊥
2 Kazakhstan Communications Airports 365 ⊥ ⊥
3 Kazakhstan Economy Airports 352 ⊥ ⊥
4 Kazakstan Transportation Airports 352 ⊥ ⊥
5 Kazakstan Transportation Air Transport ⊥ Airports 352
6 Kazakhstan Transportation Air Transport ⊥ Airports 10
7 Kazakhstan Transportation Air Transport ⊥ Airports 449

(b) An archive relation for the number of airports in Kazakhstan

tid cob cab prb prvb spb spvb col

1 1 1 1 1 0 0 1992
2 1 1 1 1 0 0 1993
3 1 1 1 1 0 0 1994
3 1 1 1 1 0 0 1995
4 1 1 1 1 0 0 1996
5 1 1 1 0 1 1 1997
6 1 1 1 0 1 1 1998
6 1 1 1 0 1 1 1999
6 1 1 1 0 1 1 2000
7 1 1 1 0 1 1 2001
7 1 1 1 0 1 1 2002
1 1 1 1 1 0 0 KZ
2 1 1 1 1 0 0 KZ
3 1 1 1 1 0 0 KZ
4 1 1 1 1 0 0 KZ
5 1 1 1 0 1 1 KZ
6 1 1 1 0 1 1 KZ
7 1 1 1 0 1 1 KZ
2 0 0 0 1 0 0 APNo
3 0 0 0 1 0 0 APNo
4 0 0 0 1 0 0 APNo
5 0 0 0 0 0 1 APNo
6 0 0 0 0 0 1 APNo
7 0 0 0 0 0 1 APNo

(c) Encoding of timestamps and
semantics using colors/blocks

Fig. 5. A representation of archives in MONDRIAN

The advantage of modeling archives by means of color relations is that one
can annotate the archived data, beyond the encoding of timestamps, at no ad-
ditional cost.

Example 8. For example, we already mentioned that there are (at least) two
spellings, namely Kazakstan and Kazakhstan, for the same country. With colors
and blocks, we alleviate such issues by introducing a new color KZ that corre-
sponds to the ISO 3166 country code for this country. Then, we use this color to
define 7 blocks that cover each of the tuples in Figure 5(b). Another semantic
annotation can be used to denote that, in spite of the structural differences, all
tuples in Figure 5(b) actually represent information about the number of airports
in Kazakhstan. For that, we can use a new color APNo (for Airport Number)
to create a block for each column (it can be a different column for each tuple)
that is used to store the number of airports. The last six tuples in Figure 5(c)
define these blocks. Notice that for the tuple with tid=1 in Figure 5(b) there
is no block with color APNo in Figure 5(c) since the number of airports is not
available (NA). ut

We conclude this section by showing that the color algebra allows for the
querying of the archived data beyond current capabilities of xaql.

Example 9. We can use CA to query the annotated relation with timestamps.
The following CA query retrieves the tuples between 1995 and 1997.

Σ“1995”(rk)∪Σ“1996”(rk)∪Σ“1997”(rk)

13

Notice that while the blocks annotate different columns in different tuples, this
difference is not visible in the query itself. This is unlike the XArch sys-
tem where structural differences manifest themselves in the query expression.
With this in place, the following simple CA expression retrieves all the different
spellings of the country’s name:

πco(Σ“KZ”(rk))

Notice that this query is not expressible in the XArch system since unless we
know explicitly the different spellings, we cannot identify the relevant parts of
the tree that refer to this country (and not another one). As another example,
the following CA expression retrieves all the tuples for which the number of
airports in Kazakhstan is stored in the prv column:

Σ“KZ”(ΠU
prv(r

k))

The query returns the tuples with tid=2, tid=3 and tid=4. Again, notice that
we retrieve these numbers for different spellings of the country’s name, and for
values that are located at different paths of the corresponding tree in the XArch
system. ut

All combined, this shows that MONDRIAN naturally allows for the modeling
of curated evolving data and that the color algebra provides an elegant way to
pose historical queries. The current paper provides only a proof-of-concept of
our approach. We leave the experimental validation to future work.

References

1. https://www.cia.gov/library/publications/the-world-factbook/index.html
2. http://www.iuphar-db.org
3. Bhagwat, D., Chiticariu, L., Tan, W.C., Vijayvargiya, G.: An annotation manage-

ment system for relational databases. In: Proceedings of the 30th International
Conference on Very Large Data Bases (VLDB). pp. 900–911 (2004)

4. Buneman, P., Cheney, J., Tan, W.C., Vansummeren, S.: Curated databases. In:
Proceedings of the 27th Symposium on Principles of Database Systems (PODS).
pp. 1–12 (2008)

5. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.C.: Keys for xml. In:
Proceedings of the 10th international conference on World Wide Web (WWW).
pp. 201–210 (2001)

6. Buneman, P., Khanna, S., Tajima, K., Tan, W.C.: Archiving scientific data. ACM
Trans. Database Syst. 29(1), 2–42 (2004)

7. Buneman, P., Khanna, S., Tan, W.C.: On propagation of deletions and annotations
through views. In: Proceedings of the 21st Symposium on Principles of Database
Systems (PODS). pp. 150–158 (2002)

8. Curino, C.A., Moon, H.J., Zaniolo, C.: Graceful database schema evolution: the
prism workbench. Proc. VLDB Endow. 1(1), 761–772 (2008)

9. Eltabakh, M.Y., Aref, W.G., Elmagarmid, A.K., Ouzzani, M., Silva, Y.N.: Sup-
porting annotations on relations. In: Proceedings of 12th International Conference
on Extending Database Technology (EDBT). pp. 379–390 (2009)

14

10. Eltabakh, M.Y., Ouzzani, M., Aref, W.G., Elmagarmid, A.K., Laura-Silva, Y.,
Arshad, M.U., Salt, D., Baxter, I.: Managing biological data using bdbms. In:
Proceedings of the 25th International Conference on Data Engineering (ICDE).
pp. 1600–1603 (2008)

11. Geerts, F., den Bussche, J.V.: Relational completeness of query languages for an-
notated databases. J. Comput. Syst. Sci. 77(3), 491–504 (2011)

12. Geerts, F., Kementsietsidis, A., Milano, D.: imondrian: A visual tool to annotate
and query scientific databases. In: Proceedings of 10th International Conference
on Extending Database Technology (EDBT). pp. 1168–1171 (2006)

13. Geerts, F., Kementsietsidis, A., Milano, D.: Mondrian: Annotating and querying
databases through colors and blocks. In: Proceedings of the 22nd International
Conference on Data Engineering (ICDE) (2006)

14. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceedings
of the 26th Symposium on Principles of Database Systems (PODS). pp. 31–40
(2007)

15. Koltsidas, I., Müller, H., Viglas, S.D.: Sorting hierarchical data in external memory
for archiving. Proc. VLDB Endow. 1(1), 1205–1216 (2008)

16. Kostylev, E., Buneman, P.: Combining dependent annotations for relational al-
gebra. In: Proceedings of the 15th International Conference on Database Theory
(ICDT) (2012)

17. Mavromatis, M.: Indexing in the MONDRIAN annotation management system.
Master’s thesis, University of Edinburgh, United Kingdom (2006)

18. Moon, H.J., Curino, C.A., Deutsch, A., Hou, C.Y., Zaniolo, C.: Managing and
querying transaction-time databases under schema evolution. Proc. VLDB Endow.
1(1), 882–895 (2008)

19. Müller, H., Buneman, P., Koltsidas, I.: Xarch: archiving scientific and reference
data. In: Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD). pp. 1295–1298 (2008)

20. Srivastava, D., Velegrakis, Y.: Intensional associations between data and metadata.
In: Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD). pp. 401–412 (2007)

21. Wang, H., Liu, R., Theodoratos, D., Wu, X.: Efficient storage and temporal query
evaluation in hierarchical data archiving systems. In: Proceedings of the 23rd Inter-
national Conference on Scientific and Statistical Database Management (SSDBM).
pp. 109–128 (2011)

