
RecPack: An(other) Experimentation Toolkit for Top-N
Recommendation using Implicit Feedback Data

Lien Michiels∗
Robin Verachtert∗

Froomle
Antwerp, Belgium

University of Antwerp
Antwerp, Belgium

Bart Goethals
University of Antwerp
Antwerp, Belgium
Monash University

Australia
Froomle

Antwerp, Belgium

ABSTRACT
RecPack is an easy-to-use, flexible and extensible toolkit for top-N
recommendation with implicit feedback data. Its goal is to sup-
port researchers with the development of their recommendation
algorithms, from similarity-based to deep learning algorithms, and
allow for correct, reproducible and reusable experimentation. In
this demo, we give an overview of the package and show how
researchers can use it to their advantage when developing recom-
mendation algorithms.

CCS CONCEPTS
• Information systems→ Recommender systems; Collabora-
tive filtering; Open source software; • Computing methodolo-
gies → Learning from implicit feedback.

KEYWORDS
Python, open-source framework, evaluation, top-N recommenda-
tion, implicit feedback data
ACM Reference Format:
LienMichiels, Robin Verachtert, and Bart Goethals. 2022. RecPack: An(other)
Experimentation Toolkit for Top-N Recommendation using Implicit Feed-
back Data. In Sixteenth ACM Conference on Recommender Systems (RecSys
’22), September 18–23, 2022, Seattle, WA, USA. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3523227.3551472

1 INTRODUCTION
Over the past decade, recommender systems have become a staple
of online user experiences across industries, from media to tourism
or e-commerce. At the same time, the domain of recommender
systems’ research has evolved from a focus on rating prediction
tasks, e.g. the Netflix 1Million Dollars Prize [5], to top-N recommen-
dation [26]. Today, the state-of-the-art in top-N recommendation
advances at a very fast pace. More and more, researchers are encour-
aged to share their code to enable reproducibility and increase the
transparency of their research process [30]. However, this code is
∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
RecSys ’22, September 18–23, 2022, Seattle, WA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9278-5/22/09.
https://doi.org/10.1145/3523227.3551472

often of low quality and/or is shared without instructions on how to
set up your environment to allow reproduction of the study [1, 30].
Even if this code allows the experiments to be reproduced, which
Trisovic et al. [30] found to be about 25% of the time, this does not
mean that the code can also be reused. Code is considered reusable
when it allows other researchers to easily conduct similar exper-
iments, e.g., in new contexts or on new data [1]. Reusable code
allows science to progress at an even faster pace. Unfortunately
writing reusable code requires significant effort on the part of the
researcher [1]. With RecPack, our aim is to assist researchers in
this important effort.

RecPack is an experimentation toolkit for top-N recommenda-
tion using implicit feedback data written in Python, with a familiar
interface and clear documentation. Its goal is to support researchers
who advance the state-of-the-art in top-N recommendation to write
reproducible and reusable experiments. RecPack comes with a
range of different datasets, recommendation scenarios, state-of-
the-art baselines and metrics. Wherever possible, RecPack sets
sensible defaults. For example, the hyperparameters of all recom-
mendation algorithms included in RecPack are initialized to the best
performing settings found in the original experiments. The design
of RecPack is heavily inspired by the interface of scikit-learn,
a popular Python package for classification, regression, and clus-
tering tasks. Data scientists who are familiar with scikit-learn
will already have an intuitive understanding of how to work with
RecPack. On top of this, RecPack was developed with a production
mindset: All contributions are rigorously reviewed and tested. The
RecPack maintainers strive to maintain a test coverage of more
than ninety percent at all times. Using RecPack, researchers can:

• Quickly develop algorithms by using one of RecPack’s
abstract algorithm base classes, which represent popular
recommendation paradigms such as factorization and item-
to-item similarity.

• Compare their algorithms against state-of-the-art base-
lines in several different recommendation scenarios using a
variety of performance metrics.

• Tune hyperparameters of both baselines and their own
implementations with minimal data leakage.

In recent years, many other Python packages for top-N recom-
mendation have been released [e.g. 3, 29, 35]. However, these focus
more on the purpose of ‘benchmarking’, i.e., quick and accurate
comparisons of state-of-the-art recommendation algorithms. Con-
sequently, they provide access through the use of a configuration
language or command-line interface. RecPack on the other hand

https://doi.org/10.1145/3523227.3551472
https://doi.org/10.1145/3523227.3551472


RecSys ’22, September 18–23, 2022, Seattle, WA Michiels and Verachtert, et al.

wishes to support researchers with the development of their own
algorithms through repeated refinement, experimentation and bug-
fixing in e.g., a Notebook environment.

In this demo, we will give you an overview of the different com-
ponents of RecPack and how to use them to run your experiments
and speed up the development of your own recommendation algo-
rithms.

2 RECPACK LIBRARY
A typical experimentation pipeline for top-N recommendation is
shown in Figure 11. RecPack provides a dedicated module to sup-
port you with each step. In this Section, we will discuss the func-
tionality of each of these modules.

Datasets. RecPack’s datasets provide easy access to many of
the most popular collaborative filtering datasets [4, 13, 14, 18, 21,
24, 33]. To use one, simply instantiate a Dataset object, e.g., d
= MovieLens25M(). Using RecPack’s datasets saves you time in
two ways. First, if the dataset is publicly available RecPack will
download it for you. If you already have a copy of the dataset
or access to the dataset is restricted, you can specify a path and
filename to tell RecPack where to find it. Second, for each dataset
a set of default preprocessing filters is defined. Using these default
preprocessing filters increases the comparability between your
experiments and those of other researchers. Of course, this default
filtering can be turned off when creating the Dataset, after which
you can add your own preprocessing filters, as detailed in the next
paragraph. If your dataset of choice is not included in RecPack we
recommend you load it as a pandas DataFrame [34].

Preprocessing. In collaborative filtering, it is customary to first
apply preprocessing filters to the raw dataset and then trans-
form it into a user-item interaction matrix [2, 8, 29]. If you use
one of RecPack’s built-in datasets with the default preprocessing
filters, this is done for you. If you are using your own dataset or
wish to override the default preprocessing filters, the first step is to
create the filters of your choice.

RecPack currently supports a choice of seven popular preprocess-
ing filters. MinUsersPerItem, MinItemsPerUser and MaxItemsPer
User are used to remove outliers that can negatively impact recom-
mendation performance. NMostPopular an NMostRecent can be
used to limit the size of the item catalogue. Deduplicate eliminates
repeat interactions by retaining only the first occurrence of every
user-item pair. Finally, MinRating selects ratings equal to or higher
than a minimum rating value. It is used to transform rating data
into implicit feedback data.

To apply these filters to your own DataFrame, create a DataFrame
Preprocessor. This DataFramePreprocessor will apply the fil-
ters and transform the user and item identifiers into consecutive
matrix indices. To add filters to either a Dataset or a DataFrame
Preprocessor, use their add_filter method.

Matrix. In RecPack, a user-item interaction matrix, optionally
with timestamps, is represented by an InteractionMatrix object.
To create one, call the load method of your Dataset or pass your
pandas DataFrame to the DataFramePreprocessor’s process
1Icons made by Freepik, Gregor Cresnar, Uniconlabs, alexdndz and orvipixel from
www.flaticon.com

method. You can also create an InteractionMatrix directly from
your own preprocessed pandas DataFrame or a SciPy [32] Sparse
csr_matrix. The InteractionMatrix provides different views of
your data. For example, you can extract your data as a csr_matrix
with user-item interaction counts, the same user-item interactions
binarized, or a list of items interacted with for every user, sorted
from first to last interaction. The best thing about the Interaction
Matrix is that for most experiments you do not have to worry
about it. The Scenarios, Algorithms and Pipeline, discussed in
the following paragraphs, know exactly what to do with it.

Scenarios. Avoiding data leakage, yet evaluating a recommen-
dation algorithm on a representative task is a difficult challenge.
Recommendations are used in many different contexts. In one, it
may be most important to make reasonable recommendations for
previously unseen users. In another, it is important to get the user’s
next move exactly right. RecPack comes with an elaborate set of
recommendation scenarios, covering virtually all train-validation-
test splits encountered in the scientific literature on recommender
systems [2, 6, 8, 25, 29]. When you do not need to tune any hy-
perparameters, pass validation=False to the constructor of your
Scenario to split your InteractionMatrix into a training and
test set. When you do wish to tune your hyperparameters, pass
validation=True instead to obtain a training, validation, and test
set. For a complete overview of all supported scenarios, see the
documentation.

Algorithms. RecPack currently includes over twenty state-of-
the-art recommendation algorithms that cover some of the most
popular recommendation paradigms: Item-to-item similarity [7, 12,
22, 31], factorization [2, 17, 23], auto-encoders [19, 27, 28], session-
based [10, 16] and time-aware recommendation algorithms [20].
Additionally, it provides three abstract base classes that you can
use to accelerate the development of your own algorithm: Item
SimilarityMatrixAlgorithm, FactorizationAlgorithm, and
TorchMLAlgorithm. These base classes implement a significant por-
tion of the shared recommendation logic so that you can focus your
efforts on the things that make your recommendation algorithm
unique. All of RecPack’s algorithms implement scikit-learn’s
BaseEstimator interface: They have fit and predict methods
and expect hyperparameters to be passed when the object is created.

Postprocessing. Real world recommender systems often apply
postprocessing, in the form of business rules, to the predictions
made by the recommendation algorithm. In an e-commerce context,
for example, it is customary to exclude sensitive or age-restricted
items. In a news context, the recommendations are limited to articles
published in the last two days. RecPack currently allows you to
either select a subset of items through the use of SelectItems or
exclude unwanted items via the ExcludeItems PostFilter.

Metrics. Of course, the ultimate goal of a recommendation ex-
periment is to evaluate the performance of a recommendation al-
gorithm. RecPack comes with a selection of the most commonly
used metrics in Top-N ranking [2, 25]. For example, to obtain
the NDCG@20 of your algorithm, first create the metric ndcg =
NDCGK(20). Next, pass the targets and predictions to the metric’s
calculate method. To obtain the average NDCG@20 over users,
use ndcg.value. However, RecPack’s metrics also allow for a more

https://recpack.froomle.ai/recpack.scenarios.html


RecPack: An(other) Experimentation Toolkit for Top-N Recommendation using Implicit Feedback Data RecSys ’22, September 18–23, 2022, Seattle, WA

Figure 1: Top-N Recommendation Pipeline: First, a dataset is preprocessed and transformed into a user-item interaction matrix.
Next, this matrix is split into a training, validation and test dataset. These datasets are then used to first train algorithms and
later make recommendations. Finally recommendations are postprocessed, after which performance metrics are computed.

fine-grained analysis of the performance of your algorithms. To in-
spect detailed performance results, e.g., the NDCG@20 of individual
users, use ndcg.results. For a complete overview of all metrics,
see the documentation.

Pipelines. RecPack’s Pipeline helps you to determine the op-
timal hyperparameters for a given algorithm and dataset, apply
postprocessing, and evaluate the performance of your algorithm
(and baselines) on a selection of performance metrics. To use it,
first create a pb = PipelineBuilder(). Then, pass your Scenario
to its set_data_from_scenario method to initialize the training,
validation and test set. Use the add_algorithm method to add any
algorithms you want to evaluate and add_metric to add perfor-
mance metrics. To obtain a Pipeline, call p = pb.build() and
then use p.run() to run your pipeline. For more advanced use, see
the documentation.

3 SETUP
RecPack is available for download from PyPI. In the documentation,
you will find Getting Started Guides as well as detailed documenta-
tion of each of RecPack’s modules. The code is open-source and
available on GitLab. RecPack is licensed under AGPL [9]. To raise
issues or ask questions about the use of RecPack, check out the
source code and contribution guidelines on GitLab.

4 DEMO
In the demo, we first implement MLP, a neural matrix factorization
algorithm proposed in He et al. [15], to showcase how RecPack’s
TorchMLAlgorithm’s base class assists you in the development of
your own recommendation algorithms. We then carry out a recom-
mendation experiment. First, we select the MovieLens25M Dataset
and transform it into an InteractionMatrix. Next, we split this
InteractionMatrix into a training, validation and test dataset us-
ing the WeakGeneralization Scenario. Subsequently, we create
a PipelineBuilder and start building a Pipeline in which we
compare the performance of MLP to WMF and BPRMF, two baselines
included in RecPack. We define a parameter grid for hyperparame-
ter tuning, an optimization metric, and evaluation metrics. Finally,
we build and run our pipeline and evaluate the performance of each
of the algorithms.

5 FUTUREWORK
RecPack is being actively maintained and developed. In the near
future, its maintainers plan to add beyond-accuracy metrics [11]
and hybrid and content-based recommendation algorithms [2].

REFERENCES
[1] 2021. But is the code (re)usable? Nature Computational Science 1, 7 (01 Jul 2021),

449–449. https://doi.org/10.1038/s43588-021-00109-9
[2] Charu C. Aggarwal. 2016. Recommender Systems: The Textbook. Springer Interna-

tional Publishing, Cham. https://doi.org/10.1007/978-3-319-29659-3
[3] Vito Walter Anelli, Alejandro Bellogin, Antonio Ferrara, Daniele Malitesta, Fe-

lice Antonio Merra, Claudio Pomo, Francesco Maria Donini, and Tommaso
Di Noia. 2021. Elliot: A Comprehensive and Rigorous Framework for Repro-
ducible Recommender Systems Evaluation. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval (Vir-
tual Event, Canada) (SIGIR ’21). Association for Computing Machinery, New York,
NY, USA, 2405–2414. https://doi.org/10.1145/3404835.3463245

[4] David Ben-Shimon, Alexander Tsikinovsky, Michael Friedmann, Bracha Shapira,
Lior Rokach, and Johannes Hoerle. 2015. RecSys Challenge 2015 and the YOO-
CHOOSE Dataset. In Proceedings of the 9th ACM Conference on Recommender
Systems (Vienna, Austria) (RecSys ’15). Association for Computing Machinery,
New York, NY, USA, 357–358. https://doi.org/10.1145/2792838.2798723

[5] James Bennett and Stan Lanning. 2007. The Netflix Prize. In Proceedings of KDD
Cup and Workshop 2007 (San Jose, California, USA) (KDDCup ’07). Association
for Computing Machinery, New York, NY, USA, 4 pages. https://www.cs.uic.
edu/~liub/KDD-cup-2007/NetflixPrize-description.pdf

[6] Pedro G. Campos, Fernando Díez, and Iván Cantador. 2014. Time-Aware Recom-
mender Systems: A Comprehensive Survey and Analysis of Existing Evaluation
Protocols. User Modeling and User-Adapted Interaction 24, 1–2 (feb 2014), 67–119.
https://doi.org/10.1007/s11257-012-9136-x

[7] Mukund Deshpande and George Karypis. 2004. Item-Based Top-N Recommen-
dation Algorithms. ACM Trans. Inf. Syst. 22, 1 (jan 2004), 143–177. https:
//doi.org/10.1145/963770.963776

[8] Kim Falk. 2019. Practical Recommender Systems. Manning. https://www.manning.
com/books/practical-recommender-systems

[9] Free Software Foundation. 2016. GNU Affero General Public License Version 3
(AGPL-3.0). Accessed 26 July 2022.

[10] Diksha Garg, Priyanka Gupta, Pankaj Malhotra, Lovekesh Vig, and Gautam Shroff.
2019. Sequence and Time Aware Neighborhood for Session-Based Recommenda-
tions: STAN (SIGIR’19). Association for Computing Machinery, New York, NY,
USA, 1069–1072. https://doi.org/10.1145/3331184.3331322

[11] Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach. 2010. Beyond
Accuracy: Evaluating Recommender Systems by Coverage and Serendipity. In
Proceedings of the Fourth ACM Conference on Recommender Systems (Barcelona,
Spain) (RecSys ’10). Association for Computing Machinery, New York, NY, USA,
257–260. https://doi.org/10.1145/1864708.1864761

[12] Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidipati,
Jaikit Savla, Varun Bhagwan, and Doug Sharp. 2015. E-Commerce in Your Inbox:
Product Recommendations at Scale. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (Sydney, NSW,
Australia) (KDD ’15). Association for Computing Machinery, New York, NY, USA,
1809–1818. https://doi.org/10.1145/2783258.2788627

[13] Jon Atle Gulla, Lemei Zhang, Peng Liu, Özlem Özgöbek, and Xiaomeng Su.
2017. The Adressa Dataset for News Recommendation. In Proceedings of the

https://recpack.froomle.ai/recpack.metrics.html
https://recpack.froomle.ai/recpack.pipelines.html
https://pypi.org/project/recpack/
https://recpack.froomle.ai/index.html
https://recpack.froomle.ai/guides.html
https://gitlab.com/recpack-maintainers/recpack
https://gitlab.com/recpack-maintainers/recpack
https://doi.org/10.1038/s43588-021-00109-9
https://doi.org/10.1007/978-3-319-29659-3
https://doi.org/10.1145/3404835.3463245
https://doi.org/10.1145/2792838.2798723
https://www.cs.uic.edu/~liub/KDD-cup-2007/NetflixPrize-description.pdf
https://www.cs.uic.edu/~liub/KDD-cup-2007/NetflixPrize-description.pdf
https://doi.org/10.1007/s11257-012-9136-x
https://doi.org/10.1145/963770.963776
https://doi.org/10.1145/963770.963776
https://www.manning.com/books/practical-recommender-systems
https://www.manning.com/books/practical-recommender-systems
https://www.gnu.org/licenses/agpl-3.0.en.html
https://www.gnu.org/licenses/agpl-3.0.en.html
https://doi.org/10.1145/3331184.3331322
https://doi.org/10.1145/1864708.1864761
https://doi.org/10.1145/2783258.2788627


RecSys ’22, September 18–23, 2022, Seattle, WA Michiels and Verachtert, et al.

International Conference on Web Intelligence (Leipzig, Germany) (WI ’17). As-
sociation for Computing Machinery, New York, NY, USA, 1042–1048. https:
//doi.org/10.1145/3106426.3109436

[14] F. Maxwell Harper and Joseph A. Konstan. 2015. TheMovieLens Datasets: History
and Context. ACM Trans. Interact. Intell. Syst. 5, 4, Article 19 (dec 2015), 19 pages.
https://doi.org/10.1145/2827872

[15] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th International
Conference onWorld WideWeb (Perth, Australia) (WWW ’17). International World
Wide Web Conferences Steering Committee, Republic and Canton of Geneva,
CHE, 173–182. https://doi.org/10.1145/3038912.3052569

[16] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based Recommendations with Recurrent Neural Networks. In 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings (San Juan, Puerto Rico), Yoshua
Bengio and Yann LeCun (Eds.). https://doi.org/10.48550/ARXIV.1511.06939

[17] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for
Implicit Feedback Datasets. In 2008 Eighth IEEE International Conference on Data
Mining. 263–272. https://doi.org/10.1109/ICDM.2008.22

[18] Michael Kechinov. 2020. CosmeticsShop E-commerce Dataset. https://www.
kaggle.com/mkechinov/ecommerce-events-history-in-cosmetics-shop Accessed:
2022-07-26.

[19] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018.
Variational Autoencoders for Collaborative Filtering. In Proceedings of the 2018
World Wide Web Conference (Lyon, France) (WWW ’18). International World
Wide Web Conferences Steering Committee, Republic and Canton of Geneva,
CHE, 689–698. https://doi.org/10.1145/3178876.3186150

[20] Nathan N. Liu, Min Zhao, Evan Xiang, and Qiang Yang. 2010. Online Evolu-
tionary Collaborative Filtering. In Proceedings of the Fourth ACM Conference on
Recommender Systems (Barcelona, Spain) (RecSys ’10). Association for Computing
Machinery, New York, NY, USA, 95–102. https://doi.org/10.1145/1864708.1864729

[21] Netflix. 2019. Netflix Prize Data. https://www.kaggle.com/datasets/netflix-
inc/netflix-prize-data Accessed: 2022-07-26.

[22] Xia Ning and George Karypis. 2011. SLIM: Sparse Linear Methods for Top-N
Recommender Systems. In 2011 IEEE 11th International Conference on Data Mining.
497–506. https://doi.org/10.1109/ICDM.2011.134

[23] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (Montreal,
Quebec, Canada) (UAI ’09). AUAI Press, Arlington, Virginia, USA, 452–461.

[24] Retailrocket. 2017. Retailrocket Recommender System Dataset. https://www.
kaggle.com/datasets/retailrocket/ecommerce-dataset Accessed: 2022-07-26.

[25] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor. 2011. Recom-
mender Systems Handbook. Springer US, Boston, MA. https://doi.org/10.1007/978-
0-387-85820-3

[26] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2000. Anal-
ysis of Recommendation Algorithms for E-Commerce. In Proceedings of the

2nd ACM Conference on Electronic Commerce (Minneapolis, Minnesota, USA)
(EC ’00). Association for Computing Machinery, New York, NY, USA, 158–167.
https://doi.org/10.1145/352871.352887

[27] Ilya Shenbin, Anton Alekseev, Elena Tutubalina, Valentin Malykh, and Sergey I.
Nikolenko. 2020. RecVAE: A New Variational Autoencoder for Top-N Recommenda-
tions with Implicit Feedback. Association for Computing Machinery, New York,
NY, USA, 528–536. https://doi.org/10.1145/3336191.3371831

[28] Harald Steck. 2019. Embarrassingly Shallow Autoencoders for Sparse Data. In The
World Wide Web Conference (San Francisco, CA, USA) (WWW ’19). Association
for Computing Machinery, New York, NY, USA, 3251–3257. https://doi.org/10.
1145/3308558.3313710

[29] Zhu Sun, Di Yu, Hui Fang, Jie Yang, Xinghua Qu, Jie Zhang, and Cong Geng. 2020.
Are We Evaluating Rigorously? Benchmarking Recommendation for Reproducible
Evaluation and Fair Comparison. Association for Computing Machinery, New
York, NY, USA, 23–32. https://doi.org/10.1145/3383313.3412489

[30] Ana Trisovic, Matthew K. Lau, Thomas Pasquier, and Mercè Crosas. 2022. A
large-scale study on research code quality and execution. Scientific Data 9, 1 (21
Feb 2022), 60. https://doi.org/10.1038/s41597-022-01143-6

[31] Koen Verstrepen and Bart Goethals. 2014. Unifying Nearest Neighbors Col-
laborative Filtering. In Proceedings of the 8th ACM Conference on Recommender
Systems (Foster City, Silicon Valley, California, USA) (RecSys ’14). Association for
Computing Machinery, New York, NY, USA, 177–184. https://doi.org/10.1145/
2645710.2645731

[32] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamental Al-
gorithms for Scientific Computing in Python. Nature Methods 17 (2020), 261–272.
https://doi.org/10.1038/s41592-019-0686-2

[33] HaoWang, Binyi Chen, andWu-Jun Li. 2013. Collaborative Topic Regression with
Social Regularization for Tag Recommendation. In Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence (Beijing, China) (IJCAI ’13).
AAAI Press, 2719–2725.

[34] Wes McKinney. 2010. Data Structures for Statistical Computing in Python. In
Proceedings of the 9th Python in Science Conference, Stéfan van derWalt and Jarrod
Millman (Eds.). 56 – 61. https://doi.org/10.25080/Majora-92bf1922-00a

[35] Wayne Xin Zhao, Junhua Chen, Pengfei Wang, Qi Gu, and Ji-Rong Wen. 2020.
Revisiting Alternative Experimental Settings for Evaluating Top-N Item Rec-
ommendation Algorithms. In Proceedings of the 29th ACM International Confer-
ence on Information & Knowledge Management (Virtual Event, Ireland) (CIKM
’20). Association for Computing Machinery, New York, NY, USA, 2329–2332.
https://doi.org/10.1145/3340531.3412095

https://doi.org/10.1145/3106426.3109436
https://doi.org/10.1145/3106426.3109436
https://doi.org/10.1145/2827872
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.48550/ARXIV.1511.06939
https://doi.org/10.1109/ICDM.2008.22
https://www.kaggle.com/mkechinov/ecommerce-events-history-in-cosmetics-shop
https://www.kaggle.com/mkechinov/ecommerce-events-history-in-cosmetics-shop
https://doi.org/10.1145/3178876.3186150
https://doi.org/10.1145/1864708.1864729
https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data
https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data
https://doi.org/10.1109/ICDM.2011.134
https://www.kaggle.com/datasets/retailrocket/ecommerce-dataset
https://www.kaggle.com/datasets/retailrocket/ecommerce-dataset
https://doi.org/10.1007/978-0-387-85820-3
https://doi.org/10.1007/978-0-387-85820-3
https://doi.org/10.1145/352871.352887
https://doi.org/10.1145/3336191.3371831
https://doi.org/10.1145/3308558.3313710
https://doi.org/10.1145/3308558.3313710
https://doi.org/10.1145/3383313.3412489
https://doi.org/10.1038/s41597-022-01143-6
https://doi.org/10.1145/2645710.2645731
https://doi.org/10.1145/2645710.2645731
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1145/3340531.3412095

	Abstract
	1 Introduction
	2 RecPack Library
	3 Setup
	4 Demo
	5 Future Work
	References

