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ABSTRACT
A substantial part of the database research field focusses
on optimizing XQuery evaluation. However, optimization
techniques are rarely validated by means of cross platform
benchmarking. The reason for this is that there is a lack
of tools that allows one to easily compare different imple-
mentations of isolated language features. This implies that
there is no overview of which engines perform best at certain
XQuery aspects, which in turn makes it hard to pick a refer-
ence platform for an objective comparison. This paper is a
first step in a larger effort to bring an overview of the avail-
able implementations along with their strengths and weak-
nesses. It is meant to guide implementors in benchmarking
and improving their products.

1. INTRODUCTION
In the recent past, a lot of energy has been spent on op-

timizing XML querying. This resulted in many implemen-
tations of the corresponding specifications, notably XQuery
and XPath. Usually, little time and space is spent on thor-
ough measurements across different implementations. This
complicates the task of implementors to compare their im-
plementations to the state of the art technology, since no
one really knows what system actually represents it.

As is pointed out in [4], there are two possible approaches
for comparing systems using benchmarks. Application bench-
marks like XMark [15], XMach-1 [8], X007 [9] and
XBench [17] are used to evaluate the overall performance of a
database system by testing as many query language features
as possible, using only a limited set of queries. As such, this
kind of benchmarks are not very useful for XPath/XQuery
implementors, since they are mainly interested in isolated
aspects of an implementation that need improvement.

Micro-benchmarks, on the other hand, are designed to
verify the performance of isolated features of a system. We
believe that microbenchmarks are crucial in order to get
a good understanding of an implementation. Moreover, it
rarely happens that one platform is the fastest on all as-
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pects. Only microbenchmarks can reveal which implemen-
tation performs best for isolated features.

Our focus is to benchmark a set of important XQuery
constructs that form the foundation of the language and
thus greatly impact the overall query engine performance.
These features are:

• XPath navigation

• XPath predicates (including positional predicates)

• XQuery FLWORs

• XQuery Node Construction

The selected XQuery processors are chosen to represent both
in-memory and disk-based implementations of the language
as well as freelance engineering products.

We regard this paper as an initial step to a much larger
micro-benchmarking effort that started with MemBeR [4]
and which we hope to continue, using automated tools such
as XCheck [5, 1]. This continuation involves the population
of a repository with a large amount of ready-made micro-
benchmarks as well as the benchmarking of many more plat-
forms. We hope that this work can guide XQuery implemen-
tors to improve their products based on objective, thorough
and relevant measurements.

Limitations This work does not attempt to make an ab-
solute comparison of the tested XQuery implementations,
nor does it mean to give an overview of the possible con-
figurations of the implementations and their impact on the
performance. Indeed, all tested systems have been run in
their default configurations. Since not all implementations
allowed an easy measurement of the the different query pro-
cessing phases, we were forced to make an abstraction and
focus on query execution an result serialization times. Hence,
detailed discussions of query compilation and tree construc-
tion are out of this paper’s scope. Further details on the
methodology used for running the experiments can be found
in Section 2.

2. SETTINGS
In this section, we present the documents (Section 2.1)

and queries (Section 2.2 and 2.3) used for the performance
measures in this paper, as well as the rationale for choos-
ing them. Section 2.4 describes our hardware and software
environment, and the system versions used.

All documents, queries, settings, and (links to) the sys-
tems used in these measures can be found at [2].



2.1 Documents
In order to have full control over the parameters charac-

terizing our documents, we used synthetic ones, generated
by the MemBeR project’s XML document generator [4, 3].
MemBeR-generated documents consist of simple XML ele-
ments, whose element names and tree structure is controlled
by the generator’s user. Each element has a single attribute
called @id, whose value is the element’s positional order in
the document. The elements have no text children.

Some of the systems we tested are based on a persistent
store, while the others run completely in memory. While we
are aware of the inherent limitations that an in-memory sys-
tem encounters, we believe it is interesting to include both
classes of systems in our comparison, since performant tech-
niques have been developed independently on both sides,
and the research community can learn interesting lessons
from both. To enable uniform testing of all systems, we set-
tled for moderate-sized documents of about 11 MB, which
most systems can handle well. As such, the stress testing of
the systems below has a focus on query scalability, rather
than data scalability.

Three documents have been used in these measures, whose
structure is outlined in Figure 1. In this figure, white nodes
represent elements, whose names range from t1 to t19; black
nodes represent @id attributes. All documents have the
depth 19, which we chose so that complex navigation can
be studied, and in accordance with the average-to-high doc-
ument depth recorded in a previous experimental study [14].

• The exponential2.xml document’s size is 11.39 MB.
At level i (where the root is at level 1), the document
has 2i−1 elements labeled ti.

• The layered.xml document’s size is 12.33 MB. The
root is labeled t1, and it has 32768 children labeled
t2. At any level i comprised between 3 and 19, there
are 32768 nodes labeled ti. Each element labeled ti,
with 3 ≤ i ≤ 18, has exactly one child labeled t(i + 1).
Elements labeled t19 are leaves.

• The mixed.xml document’s size is 12.33 MB. The
root is labeled t1, and it has 3268 children labeled t1.
Each such child (at level 2) has 10 children labeled
(with equal probability) t3, t4, . . ., t12. Nodes at
levels comprised between 3 and 18 each have 1 child,
labeled (with equal probability) t3, t4, . . ., t12. At
level 19, all nodes are leaves, and are labeled t13.

The rationale for choosing these documents is the follow-
ing. The document exponential2.xml allows studying the
impact of increasing number of nodes at a given level, on the
performance of path traversal queries. At the same time,
in this document, the size of a subtree rooted at level i is
exponential in i. At another extreme, the document lay-
ered.xml has the same depth and approximate tree size
as exponential2.xml, but the size of subtrees rooted at
various levels depends only linearly on the level. The sub-
tree shapes exhibited by both exponential2.xml and lay-
ered.xml are quite extreme; subtrees from real-life docu-
ments are likely to be somewhere in between. Controlling
both the path depth and the size of the subtrees rooted at
each depth is important, since these parameters have impor-
tant, independent impacts on query performance: the first
determines the performance of navigation queries, while the

second determines the performance of reconstructing (or re-
trieving) full document subtrees.

Our last document was chosen so as: (i) to be of overall
size and aspects close to the two previous documents; (ii) to
feature different tags uniformly distributed over many levels,
thus allowing us to vary, in a controlled manner, the struc-
tural selectivity of various queries (by allowing some tags to
range over increasingly large subsets of {t1,t2,. . .,t13}).

For simplicity, and unless otherwise specified, the docu-
ments were not characterized by type information.

2.2 XPath Queries
We measured on the document exponential2.xml seven

parameterized XPath queries, denoted Q1.1(n), Q1.2(n),
. . ., Q1.7(n), where 1 ≤ n ≤ 19, as follows:

• Q1.1(n) is: /t1/t2/. . ./tn
This query retrieves nodes at increasing depths of the
document. Its output size decreases as the roots of the
returned subtrees move lower in the document. This
query is designed to test the ability of the query proces-
sor to deal with increasing lengths of path expressions.
For instance, intermediate materialization will have an
increasing performance impact for longer queries. We
also measured Q1.1(n) on layered.xml, which pro-
vided some interesting insights when compared to the
results on the first document.

• Q1.2(n) is: /t1/t2/. . ./tn/@id
To distinguish the impact of navigation from the im-
pact of subtree serialization in the output, we also use
the query Q1.2(n), which navigates at the same depth
as Q1.1(n) but only returns simple attribute values.

• Q1.3(n) is: (/t1/t2/. . ./tn)[1]/@id
This query is used to see if query engines are able
to take advantage of the [1] predicate to shortcircuit
navigation as soon as a single node is found.

• Q1.4(n) is:
(/t1/t2/. . ./tn)[position()=last()]/@id
This query is similar to Q1.3(n), but it uses the [posi-
tion()=last()] predicate, which does not easily allow
the same optimization as [1] if the engine is coded to
navigate over the target nodes in the order dictated by
XPath’s semantics [10]. Measuring both Q1.3(n) and
Q1.4(n) hints at the navigation optimization tech-
niques supported in the engine.

• Q1.5(n) is: /t1[t2/. . ./tn]/@id
The queries Q1.5(n) aim at quantifying the impact of
increasingly deeper navigation along existential
branches. Once again this verifies whether query en-
gines can get around materializing the predicate re-
sults and/or if they are capable to use shortcut evalu-
ation, once a single predicate result has been found.

• Q1.6(n) is: /t1[t2/. . ./tn]/t2/. . ./tn/@id
Query Q1.6(n) presents an optimization opportunity
(the existential branch can be suppressed without chang-
ing the query semantics); its results are to be inter-
preted together with those of Q1.2(n)

• Q1.7(n) is: //tn
Finally, query Q1.7(n) retrieves all elements of a given
tag. Its results are to be compared with those of
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Figure 1: Outline of the documents exponential2.xml, layered.xml and mixed.xml used in the measures.

Q1.1(n), to see if the user’s knowledge of the depth
of the desired elements simplifies the query processor’s
task.

2.3 XQuery Queries
We measured on the document mixed.xml a set of six pa-

rameterized XQuery queries, denoted Q2.1(n), Q2.2(n),
. . ., Q2.6(n), where 0 ≤ n ≤ 9, as follows:

• Q2.1(n) is:
for $x in /t1/t2
return <res>{ for $y in $x/*/*/. . ./*

return fn:data($y/@id)}
</res>

where the path expression to which $y is bound fea-
tures n child navigation steps starting from $x. These
queries test the performance of increasingly deeper
navigation in the return clause, while returning results
of modest (and, on mixed.xml, constant) size.

• Q2.2(n) is:
for $x in /t1/t2
return <res>{$x/*/*/. . ./*}</res>

where the path expression in the return clause fea-
tures n child navigation steps starting from $x. The
queries Q2.2(n) combine increasingly deep navigation
with decreasingly large subtrees to be copied in the
output (recall that XQuery semantics [7] requires the
content of newly created elements to be copied).

• Q2.3(n) is:
for $x in /t1/t2
return <res>{$x//t3, $x//t4, . . .,

$x//t(n + 2)}</res>

The queries Q2.3(n) are designed to return results
whose size is expected to increase with n, given that
elements labeled t3, t4, . . ., t12 are uniformly dis-
tributed over levels 3-18 in mixed.xml. Moreover,
the elements which Q2.3(n) must retrieve are scat-
tered over the document. This allows us to verify how
increasingly big and scattered results are dealt with by
the processor.

• Q2.4(n) is:
for $x in /t1/t2
return <res>{$x/*[position()≤ n]}</res>

Q2.4(n) returns results whose size linearly grows with
n, however in this case, the elements to be returned
are grouped in contiguous subtrees in the original doc-
ument. The performance of Q2.3(n) compared with
that of Q2.4(n) provides interesting insight on the
node clustering strategy used by the system (if any).

• Q2.5(n) is:
for $x in /t1/t2
return $x/*[position()≤ n]

The queries Q2.5(n) are similar to Q2.4(n), however
Q2.5(n) does not construct new elements. Strictly
speaking, Q2.5(n) could have been expressed in XPath,
but we keep it in the XQueries group for comparison
with Q2.4(n). Given that Q2.5(n) does not construct
new elements, there is an opportunity for a more effi-
cient evaluation than in the case of Q2.4(n), since no
tree copy operation is needed.

• Q2.6(n) have increasingly deeply nested return clauses.
All the queries retrieve t13 elements, and return them
“wrapped” in increasingly deeper <res> elements.
Rather than giving the general form, quite difficult to
read, we provide here some examples:

Q2.6(0):
for $x in /t1/t2 return
<res>{for $x1 in $x/* return

<res>{$x1//t13}</res>}
</res>

Q2.6(1):
for $x in /t1/t2 return
<res>{for $x1 in $x/* return

<res>{for $x2 in $x1/* return
<res>{$x2//t13}</res>}

</res>}
</res>

Q2.6(2):
for $x in /t1/t2 return
<res>{for $x1 in $x/* return

<res>{for $x2 in $x1/* return
<res>{for $x3 in $x1/* return

<res>{$x3//t13}</res>}
</res>}

</res>}
</res>

Query Q2.6(n) returns subtrees consisting of n + 2
recursively nested <res> elements, each of which en-
closes some t13 elements. on the document mixed.xml,
will all return 3260 <res> elements, since there are
3260 t2 elements in mixed.xml. Moreover, each such
<res> elements will include copies of 10 t13 elements.
As n grows, however, the number of “layers” of <res>
elements in which the t13 elements are wrapped in-
creases. The queries and the document have been cho-
sen to capture the impact of result nesting only.



Figure 2: CDuce XPath total times on exponen-
tial2.xml.

Figure 3: CDuce XPath component times for
Q1.1(n).

2.4 Hardware and software environment
Our measures were performed on four different computers.

While ideally a single machine should have been used, the
four computers have overall similar parameters. Also, in this
paper we are mostly interested in identifying the tendency
of each system’s running time across increasingly complex
queries, which tend to be quite stable, even if different com-
puters are used. The machines are described by the following
hardware and software parameters:

M1 is equipped with a 2.00 GHz Pentium 4, 512 MB of
RAM, running Linux 2.6.12-10-386.

M2 is a DELL Precision M70 laptop, equipped with a 2.00
GHz Pentium, 1GB of RAM, running Linux 2.6.13.

M3 is equipped with a 3.00 GHz Pentium 4, 512 MB of
RAM, running Linux Debian 2.6.16.

M4 is equipped with a 3.00 GHz Pentium 4 CPU, with 2026
MB of RAM, running Linux version 2.6.12.

We tested the following systems:

CDuce/CQL version 0.4.0. The system is implemented in
OCaml. CDuce execution proceeds in two stages: first
the query is compiled by invoking cduce --compile

Figure 4: CDuce XPath total on exponential2.xml
times in the presence of precise DTD information

Figure 5: CDuce XQuery total times on mixed.xml.

query.cd --obj-dir cdo, then the query is executed
by invoking cduce --run query.cdo -I cdo.

eXist version 1.0 beta 1. The system is implemented in
Java. We first launched an eXist server using the
startup.sh script part of the distribution. Then, we
launched the execution of each query by running the
org.exist.examples.xmldb.XQueryExample Java class,
slightly modified to measure serialization time.

Galax version 0.5.0. The system is implemented in OCaml.
The command line used to launch the experiment was:
galax-run -monitor-time on query.xq.

MonetDB/XQuery version 0.10. The system is imple-
mented in C++. We used a 32-bit compilation with
no optimizations. A MonetDB server was launched us-
ing the MServer command, and queries were ran using
the MapiClient utility.

QizX/open version 1.0. The system is implemented in
Java. We lauched the execution by calling qizxopen batch.sh

query.xq > buf, where query.xq is a file containing
the query, and buf is a temporary buffer file receiving
the output. The script qizxopen batch.sh is part of
the distribution.

Saxon version 8.6.1. The system is implemented in Java.



Figure 6: Galax XPath total times on exponen-
tial2.xml.

Figure 7: Galax XPath partial times on exponen-
tial2.xml.

The command line used was: net.sf.saxon.Query -t

-o result query >& times.

We chose systems that (i) were freely available (if possible
open source), (ii) had a user community and/or (iii) were
the target of recent published research works. Our choice
of systems includes some endowed with a persistent store
(eXist and MonetDB), as well as purely in-memory systems
(CDuce, Galax as used in these measures, QizX and Saxon).
In this work, we did not specifically target our measures at
disk-based retrieve times of disk-resident systems (although,
of course, this aspect is interesting). Rather, we aimed
at studying the performance of various algorithms imple-
mented in the engines once they run in memory.

To that effect, we ran each measure 4 times, and report
the average of the last 3 (hot) runs.

We are aware that more systems meeting our criteria exist,
and plan to extend our tests to such systems in the near
future.

3. RESULTS BY SYSTEM
This section discusses the results for each of the bench-

marks per individual system.

3.1 CDuce

Figure 8: Galax XQuery total times on mixed.xml.

Figure 2 depicts the total running time of CDuce for our
XPath queries on exponential2.xml. These measures were
performed on M3.
CDuce (pronounce ”seduce”) is a general purpose typed

functional programming language, specifically targeted to
XML applications. It conforms to basic standards such
as DTDs, Namespaces etc. Theoretical foundations of the
CDuce’s type system can be found in [12]. The system is
implemented in OCaml.

Recently, a ”Select-From-Where” syntax similar to XPath
has been added for user convenience on top of CDuce [6]; it is
translated into CDuce. The CDuce system, a sample demo,
and online documentation can be found at [16]. An im-
portant characteristic of CDuce is its pattern algebra, which
extends the XDuce [13] pattern algebra, allowing complex
and powerful pattern matching. Pattern matching in CDuce
is implemented by means of automata constructed “just-in-
time”.
CDuce has a strong type system, which enables static ver-

ification of safe program composition. Of course, CDuce can
also evaluate queries in the absence of type information, us-
ing a more general automaton. A large subset of XQuery
(excluding, for instance, function calls) is covered by CQL,
and all the queries we measured in this paper are part of
this subset. (Other XQuery features not considered here
can be expressed directly in the CDuce language.) Among
the XQuery features not supported is node identity: CDuce
is value-based, that is, it does not distinguish two distinct
nodes having the same serialized value (other than by their
respective positions in the original document). In particular,
there is no way to test if two variable bindings correspond
to the same node, in XQuery sense [7].

The running times of Q1.1(n) and Q1.7(n) are compar-
atively more important, and decrease as n grows, due to
the decreasing total size of the query result. Interestingly,
Q1.7(n) causes a stack overflow for n = 19. This is because
descendent navigation is implemented in CDuce via a stack
that keeps all descendant matched on recursive function calls
(and automata), unlike child, parent and sibling navigation,
which are implemented by automata alone. However, the
curves for Q1.1(n) and Q1.7(n) are roughly similar.

Both Q1.3(n) and Q1.4(n) have very short running time
and are almost constant. The translation of these XPath
queries to CQL, combined with the pattern matching con-
cept underlying the system, allows to push the [1] and [posi-



tion()=last()] predicates at all levels up, thus the efficient
evaluation.

The time for Q1.2(n) exhibits an exponential growth as
the number of returned nodes grows exponentially. The
same observation holds for Q1.6(n), which is more expen-
sive than Q1.2(n), although they are equivalent. The rea-
son is that the pattern resulting from the translation of
Q1.6(n) has twice the size of the pattern for Q1.2(n) (in
other words, the pattern is not minimized to eliminate the
redundant existential branch).

Q1.5(n) times tend to grow sensibly for large values of n.
The reason is that the corresponding pattern’s size grows
linearly with n, and the curve reflects the complexity of
automata-based evaluation for such patterns.
CDuce reported times are the sum of: the automaton

construction time, determined by the query and the input
document’s DTD; the execution time, during which the
results are constructed but not serialized yet; and the se-
rialization time. We refine our analysis of CDuce running
times in Figure 3, which plots execution and serialization
time for Q1.1(n) on exponential2.xml and layered.xml.
The serialization time linearly reflects the total result size,
and the number of returned subtrees (the former dominates,
however, in the case of exponential2.xml). The execution
(retrieval) time is almost constant for increasing n, due to
the efficient pattern matching operator.

In the above results (as in all other curves of this paper),
no type information was present, and the automaton con-
struction time was in all cases of about 20 ms.

Given CDuce’s strong reliance on types (the evaluation
is made by automata, which are built based on types), we
re-ran the XPath queries, this time providing CDuce with
a precise level-by-level DTD according to which exponen-
tial2.xml is valid. The results are shown in Figure 4. From
Q1.1(n) to Q1.7(n), the running times are equivalent with
the running times in Figure 2.

Figure 5 presents CDuce’s running times on XQueries.
Q2.1(n) grows very slowly with n, reflecting a moderately
increasing navigation time, and a small serialization effort.
Q2.2(n) running time decreases as the size of the returned
subtrees decreases. Q2.3(n), which builds the larger results,
failed to run for n ≥ 2. The reason is that each serialized el-
ement in CDuce is written in an OCaml string variable, and
the maximum size of such string variables is constrained by
the language environment. Elements returned by Q2.3(n)
grow larger with n, and outgrow at some point the avail-
able space. Clearly, this is an engineering problem, whose
solution involves the usage of some buffered data structure
continuously writing to a file.

Q2.4(n) and Q2.5(n) have roughly the same running
time, since for CDuce, a newly constructed node is just an-
other value (there is no need to deeply copy trees). Finally,
Q2.6(n) grows linearly with the result nesting levels.

3.2 eXist
Figure 10 shows eXist’s running times on our XPath queries.

These measures were performed on M2.
The queries Q1.1(n) and Q1.7(n) have similar running

times, although there is some difference for large n values.
Q1.2(n) and Q1.6(n) are very close, reflecting the negli-
gible influence of the extra existential branch in Q1.6(n).
Both Q1.3(n) and Q1.4(n) are significantly faster than
Q1.2(n), showing that eXist is capable of optimizing path

navigation based on global position predicates. Q1.5(n) is
the fastest, yet it does feature an exponential growth with
large n values.

All the curves tend to grow exponentially for large n val-
ues, whether the query returns exponentially many nodes (as
Q1.1(n) and Q1.2(n) do, or a constant number of nodes
(as Q1.5(n) does). A possible explanation for this is that
navigation traverses nodes at all layers from 1 to n for each
of the queries Q1.1(n)-Q1.7(n); the number of such nodes
is exponential with n, and the cost of this traversal domi-
nates XPath evaluation costs.

To verify this hypothesis, we take a closer look at the par-
tial times recorded for Q1.1(n), on exponential2.xml and
also on layered.xml. The locate time (reported by eXist as
execution) and the serialization time (reported by eXist as
display) are shown in Figure 9. For readability, we sepa-
rated the locate times (quite small) from the serialization
times.

Figure 9 shows that the locate time grows linearly on the
layered.xml document, and exponentially with the expo-
nential2.xml document. This is consistent with the hy-
pothesis that eXist navigates top-down and thus traverses
all nodes from the root to the targets of the XPath expres-
sion. Concerning serialization times, Figure 9 shows that
it is directly correlated with the serialized result size (thus
the decrease on the layered document), but also with the
number of returned subtrees (thus the exponential increase
on the exponential2.xml document).

Figure 11 shows eXist’s running times on the XQueries
we considered. For Q2.3(1) and Q2.6(0) we stopped the
execution after failing to get any output in 180 seconds.
Clearly, descendent navigation in return clauses is hard to
handle for eXist.

For the remaining queries, we record almost constant times
for Q2.2(n), Q2.4(n) and Q2.5(n).

For Q2.2(n), the execution time grows from 2 seconds
(n=0) to 27 seconds (n=9) as longer paths are navigated,
while the serialization time decreases correspondingly as smaller
subtrees are output. The two tendencies almost compensate
each other, thus the quasi-constant overall running time.

For Q2.4(n) and Q2.5(n), the execution and serialization
times are both quite unchanged as n increases. This is a
surprising result, for which we do not have a satisfactory
explanation. We plan to approach the eXist developers for
further explanations.

Finally, Q2.1(n) running times grow linearly with n. The
execution time is the main factor here, ranging from 7.3s
(n=0) to 43s (n=9); the serialization time is about un-
changed, as same-volume results are returned.

From the detailed running times of Q2.1(n) and Q2.2(n),
we may infer that execution times as reported by eXist also
reflect navigation performed inside return clauses. “Execu-
tion time” as reported by some other systems may be more
restricted (see Section 3.5). This highlights the importance
of carefully measuring and interpreting various partial times
reported by the engines.

3.3 Galax
These tests where run on machine M1. Galax is a main

memory XQuery engine that implements the XQuery Data
Model (XDM). XPath evaluation happens iteratively, i.e.,
using nested loops with intermediate sorting and duplicate
elimination. Constructors are implemented as cursors and



Figure 9: eXist XPath locate and serialization times on exponential2.xml.

Figure 10: eXist XPath total times on exponen-
tial2.xml.

should have a limited impact on query performance. The
greatest drawback of Galax’s evaluation strategy is the need
for materialization of intermediate results of path expres-
sions, which requires a substantial amount of memory.

The results for the XPath queries are depicted in Figure 6.
The result for Q1.1(n), Q1.3(n), Q1.4(n) and Q1.7(n)
are quite similar. The curious fallback starting at n = 9
is believed to be an artifact of Galax serialization, which
relies on OCaml pretty printing. This thesis is supported
by more detailed monitoring information, given in Figure 7.
The similarity of the results indicates that all four kinds of
queries are handled in a similar fashion, implying material-
ization of all the result sequences. The exponential growth
of query evaluation time is cancelled out by decreasing se-
rialization overheads for the shrinking results. This effect
is not noticeable for Q1.3(n) which selects only attribute
nodes. The exponential growth here corresponds with the
exponentially increasing result size. The constant behavior
of queries Q1.5(n) and Q1.6(n) is an indication that Galax
uses shortcut evaluation for predicates.

The XQuery results for Galax in Figure 8 show similar
performance problems for Q2.3(n) as seen on other plat-
forms, which are related to materializing large intermedi-
ate results in main memory. In the case of Galax, queries
Q2.3(n) for n ≥ 2 did not even finish within a reasonable
time. Similar to MonetDB, Galax performs much better for

Figure 11: eXist XQuery times on mixed.xml.

Q2.5(n), which returns similar result sizes but has no need
for materializing the result in memory before serializing it.
The other queries seem to scale along with the result size,
since their performance is largely determined by the cost of
serialization.

The execution times for Galax are relatively high for most
queries. This is due to the fact that the Galax release used
for benchmarking is quite old and due to a subtle bug related
to node construction, which was revealed by these bench-
marks.

3.4 MonetDB
Figure 12 plots MonetDB’s execution times on the XPath

queries we considered. These measures were performed on
M4.

Note that the times for Q1.1(n) and Q1.7(n) coincide,
showing that descendent navigation does not pose partic-
ular difficulties for MonetDB. The times for Q1.3(n) and
Q1.5(n) are very similar, and very low for all n values. The
times for Q1.2(n) and Q1.6(n) are very low until n = 16,
then an exponential growth projects the curves upwards (the
actual value for n = 19 is shown on top of the graph). Sim-
ilarly, Q1.4(n) exhibits an abrupt growth at n = 11.

The overall descending tendency of Q1.1(n) demonstrates
that deep navigation does not pose difficulties for Mon-
etDB; the dominating cost component here is clearly seri-
alization, which decreases as n grows. Comparing Q1.1(n)



Figure 12: MonetDB XPath total times on exponen-
tial2.xml.

Figure 13: MonetDB XPath component times on
exponential2.xml.

and Q1.2(n) (on its initial segment) highlights the impact
of the size of each returned subtree on the evaluation time;
Q1.2(n) only returns simple data nodes, while Q1.1(n) re-
turns more complex subtrees. The almost identical curves
for Q1.2(n) and Q1.6(n) shows that the extra existential
branch in Q1.6(n) is either eliminated at query compile
time, or very efficiently executed.

The very low cost of Q1.3(n), compared with the cost
of Q1.4(n) which explodes above n = 11 and the cost of
Q1.2(n) as a baseline, leads to the following observation.
The [1] predicate after a long path expression in Q1.3(n) is
exploited to make the evaluation more efficient than plainly
enumerating all nodes of the path expression, and then re-
turning just the first one. Thus, Q1.3(n) is stable and
cheap, while Q1.2(n) (which has to enumerate exponen-
tially many @id nodes) explodes at some point. On the
contrary, the [position()=last()] predicate in Q1.4(n), far
from giving optimization opportunities, only makes matters
worse than if no predicate is present, since Q1.4(n) costs
rise before Q1.2(n) costs do.

The behavior exhibited by Q1.2(n), Q1.4(n) and Q1.6(n)
can be attributed to the handling of exponentially many
nodes in intermediary XPath results. Curiously enough
Q1.2(n) exhibits a significant performance difference with
Q1.1(n), indicating that the attribute axis is not handled

Figure 14: MonetDB XQuery total times on
mixed.xml.

in the same way as the child axis1.
Figure 13 plots MonetDB’s detailed times for Q1.1(n),

on exponential2.xml and layered.xml. The partial times
reflect, respectively, query compile, query execution, and re-
sult serialization. Figure 13 clearly shows that serialization
is the single most important cost component for Q1.1(n);
both query compilation and query execution (understood
here as the time to locate the return nodes only) are very
small (more precisely, smaller than 0.2s across all documents
and n).

MonetDB execution time on XQueries is depicted in Fig-
ure 14. Q2.3(n) and Q2.4(n) are of similar costs, and by
far the most expensive. Both these queries return large re-
sults, constructed either from contiguous subtrees (Q2.4(n))
or from elements scattered all over the document (Q2.3(n).
Clearly, the location of the elements to be copied in the
output does not have a big impact on evaluation perfor-
mance. In contrast, Q2.5(n) which returns similar data
volumes takes much less time. This shows that MonetDB
correctly realizes no tree copy is needed for this query, but
only a serialization of the existing returned nodes. The
time of Q2.5(n) is of the same order of magnitude as the
times for Q1.1(n) (Figure 12). Thus, we conclude that tree
copying is significantly more expensive than serializing ex-
isting nodes in MonetDB (while keeping a linear scale-up),
and that MonetDB correctly recognizes the situations where
each of these should be used.

3.5 QizX
Figure 15 shows QizX execution times for the XPath queries

we considered, on the exponential2.xml document. All
measures of this section were performed on M2.

For low n values, the execution times of Q1.1(n) and
Q1.7(n) decrease with n, due to the decrease in the vol-
ume of returned data. Q1.1(n) and Q1.7(n) exhibit an
exponential growth with large n values, justified by the ex-
ponential increase in the number of returned nodes. Inter-
estingly, the times for the //ti queries are quite different
from the times of the equivalent query based on child steps,
suggesting that QizX’s search for elements to return at any
depth in the document actually does search at all levels (no

1The explosion of both Q1.2(n) and Q1.4(n) is believed
to be due to a flaw in attribute handling and is currently
under investigation by the MonetDB developers.



Figure 15: QizX XPath total times on exponen-
tial2.xml.

Figure 16: QizX XPath component times on expo-
nential2.xml.

structural or tag-based index seems to be in place).
QizX allows to isolate in a measure:

the evaluation time: presumably the time spent process-
ing the navigation (XPath) part of a query (in other
words, the locate time);

the display time: the time needed to produce a serializa-
tion of the returned nodes (in other words, the serial-
ization time).

We refine our understanding of QizX’s behavior on Q1.1(n)
by measuring the evaluation and the display times both on
exponential2.xml and on layered.xml. Figure 16 shows
the results. We notice that QizX’s reported evaluation time
is almost unchanged for all documents and path depths,
which is quite surprising, and leads to believe that it corre-
sponds to some document pre-processing time (e.g. to build
a tree representation of the document and/or index all nodes
by their paths etc.). The display (probably serialization)
time decreases almost linearly with the growth of n, which
is the expected behavior for the layered.xml document.
However, the display time on exponential2.xml shows an
exponential increase for large n values. On this document,
the size of the query result decreases as n grows, and so does
the number of nodes included in the result subtrees, however

Figure 17: QizX XQuery total times on mixed.xml.

Figure 18: Same as Figure 17, excluding Q2.3(n).

the number of result subtrees increases exponentially with n.
Thus, the serialization complexity of QizX is strongly influ-
enced number of result subtrees, and also (to a lesser extent)
by the number of nodes in the result subtrees.

Figure 17 shows QizX’s total XQuery execution times on
mixed.xml. For all queries, QizX’s reported evaluation
time was between 12ms and 30ms, thus the times in Fig-
ure 17 practically coincide with its display time. Such in-
significant (and constant) evaluation times lead to believe
that for an XQuery, QizX reports as evaluation time the time
needed to process the for clause of the outermost FLWOR
expression only, while the rest of the query execution is re-
ported as display time.

Figure 17 shows that Q2.3(n), which returns massive
results scattered over the whole document, is the single
most expensive query. Comparing this with the times for
Q2.4(n), which returns similar data volumes but contiguous
subtrees, allows to infer that // navigation, in the return
clause as well as in for clauses (or XPaths) brings quite a
penalty to QizX.

Figure 18 plots the same times for all XQueries except
Q2.3(n). Q1.1(n) takes almost constant time; given that
the cardinality and size of its result is constant as n grows,
we can conclude that deep step-by-step navigation has no big
impact on QizX performance, and confirm that the size and
cardinality of the result strongly impacts serialization. The
decreasing times of Q2.2(n), producing shallower trees as n



grows, support the same assertion. Q2.4(n) and Q2.5(n)
are quite close, with a small (but persistent) overhead of
Q2.4 over Q2.5, probably due to the construction of a new
<res> node as required by Q2.4. However, the difference
seems too small to reflect fully copying the subtrees included
in <res>.

The overhead of nested <res> elements in Q2.6(n) is
noticeable, while the scale-up remains linear.

3.6 Saxon
Figure 19 shows Saxon’s running time on our XPath queries.

These measures were performed on M4.
A first remark is that Q1.1(n) and Q1.7(n) coincide,

demonstrating that descendent navigation is quite efficient
in Saxon; these results indicate the presence of a path index
and
pipelined evaluation. Essentially this is done with a straight-
forward ”nested loop” or rather, a Jackson-inverted nested
loop using a cascading set of iterators. The main trick that
Saxon uses is efficient testing of the element names by com-
paring integer fingerprints. Also, a lot of effort goes into
static analysis of the expression to decide whether a sort
and duplicate elimination is needed or not.

Compare queries Q1.2(n), returning all @id attributes
at a given depth, Q1.3(n), returning just the first @id at-
tribute, and Q1.4(n), returning just the last @id attribute
at a given depth. Q1.2(n) is the most expensive. Q1.4(n)
is faster, but still exhibits an exponential growth with large
n values, which allows to infer that all @id nodes at a given
level are enumerated, prior to choosing the last one. Finally,
Q1.3(n) is the fastest, and runs in almost constant time as
n grows. This hints to a short-circuited evaluation of path
queries followed by [1], which stops after the first node at
each level is found.

Q1.5(n) is fast and runs almost in constant time, show-
ing the existential predicate of Q1.5 is efficiently handled.
Finally, Q1.6(n) has running times very similar to those of
Q1.2(n), confirming the efficient handling of the existential
branch.

Saxon’s times on XQuery queries are reported in Fig-
ure 20. The standalone, expensive query is Q2.3(n), which
copies deep trees, starting at locations scattered over the
document. In contrast, Q2.4(n), whose copied subtrees
are smaller and are found at contiguous locations, is much
faster, and Q2.5, which does not need to copy subtrees, is
yet a little bit faster.

4. CONCLUDING REMARKS
In this section, we summarize some of our experiments’

conclusions, and hint to avenues for future work.

4.1 Methodology Lessons Learned
A first observation is that benchmarking needs to per-

formed for a quite substantial number of data points. Fail-
ing to do so comes at the risk of not picking up important
facts. For instance, in the QizX case exponential behavior
of XPath evaluation only becomes apparent for path expres-
sions that are long enough (see Figure 16).

Another important part of our approach is to vary only
one benchmark parameter at a time. For instance, varying
both document size and query size at the same time may
cause effects that cancel each other out, eventually blurring
or hiding the impact of the separate changes.

Figure 19: Saxon XPath total times on exponen-
tial2.xml.

We also believe it is important to decompose query evalu-
ation times into their components, as this is the only way to
understand the impact of several parameters on the times.
For instance, for Galax (Figure 7) and QizX (Figure 16)
we have seen that query evaluation times are sometimes
dwarfed by the time needed to serialize the result. It would
be quite inappropriate to only report query evaluation time
for such queries and systems, ignoring serialization. It would
just be puzzling to report the overall time, without checking
the respective evolution of its components.

We notice, however, that current system releases make it
difficult or impossible to properly evaluate component times.
The names and interpretations of such components time also
vary. For instance, while the separation between “execu-
tion” and “serialization” seemed clean in all systems (and is
reliable when measuring XPath queries), in the case of QizX,
this separation seems arbitrary in the case of XQueries (re-
call Section 3.5). Extreme caution is therefore advised to
the careful tester; few assumptions should be made on what
a system does, or what its intermediate times mean, as long
as these assumptions have not been checked with the system
developers !

4.2 Performance Lessons Learned
Our study does not warrant a claim of having found the

best XQuery processor among the systems we tested. It
seems likely that different systems perform well at differ-
ent features and under different circumstances. Compare
for instance, MonetDB (Figure 12), performing quite badly
on Q1.4(n), with QizX (Figure 15) which is clearly faster,
while on query Q2.2(n) MonetDB (Figure 14) and QizX
(Figure 17) have very similar performance.

Tradeoffs between features and efficiency are sometimes
visible. For instance, CDuce sacrifices node identity for effi-
ciency.

The impact of the implementation language on perfor-
mance is quite limited. We might have expected a system
implemented in C++ to perform some order of magnitude
faster, however Java and OCaml times are very competitve
and sometimes even better. (While our measures were per-
formed on different machines, their computing power was
quite uniform, which we believe enables such rough com-
parisons). This is reason for optimism, as we would indeed
prefer algorithmics and efficient techniques to have a big-



Figure 20: Saxon XQuery total times on mixed.xml.
The second graph excludes Q2.3(n).

ger impact on performance than the simple choice of the
development language.

The performance of child axis navigation, a basic XPath
feature, can be assessed by inspecting the execution time of
Q1.1(n) (not including serialization), as shown in Figures 3,
9, 7, 13, and 16). Consider the behavior of Q1.1(n) on
exponential2.xml and layered.xml, respectively:

• On exponential2.xml, the number of returned nodes
is in O(2n), and the number of nodes visited by a näıve
XPath evaluation strategy is also in O(2n).

• On layered.xml, the number of returned nodes is con-
stant (and equal to the numbered of nodes returned by
Q1.1(14), whereas the number of nodes visited by a
näıve XPath evaluation strategy is in O(n).

A linearly increasing execution time for Q1.1(n) on lay-
ered.xml may show that the engine indeed implements a
näıve top-down XPath evaluation strategy, which visits all
intermediate nodes between the root and the target nodes.
This is the case for eXist (Figure 9). On the contrary, for sys-
tems such as MonetDB (Figure 13), we see that the execu-
tion time is extremely small (and roughly constant). Other
systems, such as QizX (Figure 16) and CDuce (Figure 3),
exhibit constant time for finding the target nodes on lay-
ered.xml. This hints to the usage of efficient techniques for
locating the nodes part of the query result. Observe that the
retrieval time on Q1.1(n) needs to exhibit an exponential
growth due to the number of returned nodes, but for sys-

tems such as MonetDB and QizX, the growth is negligible
(unlike for eXist).

The impact of imprecise navigation (expressed with //
steps) can be assessed by comparing Q1.1(n) with Q1.7(n).
In our tests, these queries are equivalent, while the sec-
ond uses //. There is no noticeable difference among these
queries for MonetDB and Saxon, which shows that these sys-
tems do not need to visit irrelevant nodes when evaluating
Q1.7(n). The other four systems exhibit some performance
differences, most noticeable in the case of QizX.

Attribute navigation is well supported by all systems as
can be seen by inspecting Q1.2(n) and Q1.6(n). The ex-
ception is a performance problem of MonetDB, which was
being solved at the time of this writing.

Early-stop optimizations allow the evaluation of queries
like Q1.3(n) to proceed much faster than Q1.2(n). This is
the case of all systems except Galax, hinting to the fact that
it needs to materialize all intermediate result sequences.

Existential branches or path predicates exhibit different
performance depending on the tested system. This can be
assessed by comparing Q1.2(n) with Q1.6(n), as well as
comparing Q1.2(1) with Q1.5(n). Each of these pairs con-
tains equivalent queries on the tested documents. These
times coincide for eXist (Figure 10), MonetDB (Figure 12),
QizX (Figure 15), and Saxon (Figure 19). However, Q1.6(n),
featuring an existential test, is more expensive for CDuce
and Galax, the difference for Galax being quite important
for large n values. In the case of CDuce, the bulk of the
work in answering an XPath query is spent matching a cor-
responding tree pattern. This implies that all pattern em-
beddings in the data tree have to be found, whether or not
they are actually returned.

Result serialization times corresponding to our queries are
an important component of total running times, and in some
cases, the dominant one (see, for instance Figure 13). This
depends of course on the chosen queries and data, however
our tests stress the importance this (often ignored) part
of query execution times may take. Overall, serialization
time reflects the number and size of the returned subtrees.
The impact of some OCaml (or system programming) issues
leads either to surprising performance variations (Figure 7),
or to unfeasible queries such as Q2.3(n) for CDuce (Fig-
ure 5), eXist (Figure 11) and Galax (Figure 8).

Complex result construction such as required by Q2.3(n)
and Q2.6(n) is related to the problem of serializing large
results; Q2.6(n) constructs more complex new trees, but
of smaller size. Interestingly, CDuce (Figure 5) and Galax
(Figure 8) handle Q2.6(n) well, whereas eXist doesn’t (Fig-
ure 11).

The above two observations highlight the work that some
systems still need to scale up their serialization. Clearly,
efficient algorithms exist, since MonetDB (Figure 14), QizX
(Figure 17) and Saxon (Figure 20) handle such queries well.

New node creation is also an interesting feature in our
measures. Queries Q2.4(n) and Q2.5(n) differ only by the
fact that Q2.4 constructs new trees (which requires copy-
ing some t2 descendents) whereas Q2.5 returns these nodes
from the original documents. Three strategies are possible:

1. The system copies the trees for both queries. This
would be incorrect for Q2.5, however if the query re-
sult is used directly serialized (as opposed to a “live”
XQuery Data Model instance [11]), the incorrectness
will go unnoticed. This is the strategy employed by



CDuce (Figure 5), which does not actually implement
node identity.

2. The system copies the tree for Q2.4 and does not copy
them for Q2.5. This seems to be the strategy of eXist
(Figure 11), Galax (Figure 8), MonetDB (Figure 14),
QizX (Figure 18) and Saxon (Figure 20).

3. The system does not copy the trees neither for Q2.4
nor for Q2.5. This is incorrect for Q2.4, however
it will go unnoticed if query results are used directly
serialized. None of the tested systems seems to use
this strategy – although, in our setting, it would be
optimal.

We also remark the the good performance of main mem-
ory implementations, notably Saxon, for the moderate-sized
documents used in the experiments.

4.3 Future Work
As mentioned earlier, this paper is only a first in a greater

effort, which targets a better understanding of the draw-
backs and advantages of XPath/XQuery implementation strate-
gies. An important step towards such a better understand-
ing is the development of many more microbenchmarks, to
reveal detailed information regarding the performance of im-
plementations at isolated language features. We need to test
more systems, such as e.g. BerkeleyDB/XML and Timber,
and encourage developers to use our microbenchmarks to
identify potential bottlenecks in their implementations. The
“bad” cases for Galax and CDuce detected in this paper were
news to their implementors. In the Galax case, these tests
have revealed a subtle bug, which caused too much memory
to be allocated, which in turn was also compromising time
performance.

A platform for easy comparison of XQuery engines is cur-
rently under development. One thing that we can take away
from the results of our tests is that a more clear separation of
query evaluation times and serialization times is desirable.
This could be included in the platform mentioned above
by doing an additional run without serialization. Unfortu-
nately, just like monitoring serialization separately, such is
not supported by all engines. The same holds for document
loading times in the case of main memory engines, which
can be easily measured by just loading the document.

Important additional tests to be performed are system
stress tests, that identify the operational boundaries of XPath
and XQuery implementations. Other interesting aspects to
be tested include: the impact of XML Schema information
on navigation queries; handling of atomic values, value joins
etc.; handling of increasing branching factors by XPath etc.
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