
Data Mining and Knowledge Discovery manuscript No.
(will be inserted by the editor)

Summarizing Categorical Data by Clustering Attributes

Michael Mampaey · Jilles Vreeken

Received: date / Accepted: date

Abstract For a book, its title and abstract provide a good first impression of what to
expect from it. For a database, obtaining a good first impression is typically not so
straightforward. While low-order statistics only provide very limited insight, down-
right mining the data rapidly provides too much detail for such a quick glance. In
this paper we propose a middle ground, and introduce a parameter-free method for
constructing high-quality descriptive summaries of binary and categorical data. Our
approach builds a summary by clustering attributes that strongly correlate, and uses
the Minimum Description Length principle to identify the best clustering—without
requiring a distance measure between attributes.

Besides providing a practical overview of which attributes interact most strongly,
these summaries can also be used as surrogates for the data, and can easily be queried.
Extensive experimentation shows that our method discovers high-quality results: cor-
related attributes are correctly grouped, which is verified both objectively and sub-
jectively. Our models can also be employed as surrogates for the data; as an example
of this we show that we can quickly and accurately query the estimated supports of
frequent generalized itemsets.

Keywords Attribute Clustering ·MDL · Summarization · Categorical Data

The research described in this paper builds upon and extends the work appearing in ECML PKDD’10 as
Mampaey and Vreeken (2010).

Michael Mampaey (�) · Jilles Vreeken
Advanced Database Research and Modelling, Department of Mathematics and Computer Science
University of Antwerp, Antwerp, Belgium
E-mail: michael.mampaey@ua.ac.be

Jilles Vreeken
E-mail: jilles.vreeken@ua.ac.be

2 Michael Mampaey, Jilles Vreeken

1 Introduction

When handling a book, and wondering about its contents, we can simply start read-
ing it from A to Z. In practice, however, to get a good first impression we usually
first consult the summary. For a book, this can be anything from the title, abstract,
or blurb, up to simply paging through it. The common denominator here is that a
summary quickly provides high-quality and high-level information about the book.
Occasionally a summary may already offer us exactly what we were looking for, but
in general we just expect to get sufficient insight to determine what the book contains,
and whether we need to read it further.

When handling a database, on the other hand, and wondering about its contents
and whether (or how) we should analyze it, it is quite hard to get a good first impres-
sion. Naturally, we can inspect the schema of the database or look at the labels of the
attributes. However, this does not tell use what is in the database. Basic statistics only
help to a limited extent. For instance, first order statistics can tell us which values of
an attribute occur, and how often. While sometimes this may be enough information,
typically we would like to see in a bit more detail what the data looks like. However,
for binary and categorical databases, further basic statistics are not readily available.
Ironically, for these types of data this means that even if the goal is only to get a first
impression, in order to acquire this we will have to analyze the data in much more
detail. For non-trivially sized databases especially, this means investing far more time
and effort than we should at this stage of the analysis.

Having a good first impression of the data is highly important when analyzing
data, as data mining is an essentially iterative process (Hanhijärvi et al, 2009), where
each step in the analysis is aimed at obtaining new insight. Insight that, in turn, de-
termines what other results we would find interesting. And, hence, determines how
to proceed in order to extract further knowledge from the data. As such, a good sum-
mary allows us to make a well-informed decision on what basic assumptions to make
and how start mining the data.

To this end, we here propose a simple and parameter-free method for providing
high-quality summary overviews for categoric data, including binary transaction data.
These summaries provide insight in which attributes are most correlated, as well as
in what value configurations they occur. They are probabilistic models of the data
that can be queried fast and accurately, allowing them to be used instead of the data.
Further, by showing which attributes interact most strongly, these summaries can aid
in selecting or constructing features. In short, like a proper summary, they provide
both a good first impression and can be used as a surrogate.

We obtain these summaries by clustering attributes that interact strongly, such that
attributes from different clusters are more or less independent. We employ the Min-
imum Description Length (MDL) principle to identify the best clustering; so elimi-
nating the need for the user having to specify any parameters: the best summary is the
attribute clustering that describes the data best. Furthermore, our clustering approach
does not require a distance measure between attributes.

As an example of a summary, and how it provides basic insight, consider Fig-
ure 1, in which we depict the summary of a large hypothetical categorical database.
A summary provides information at two levels of detail. First, it tells us which groups

Summarizing Categorical Data by Clustering Attributes 3

Database

Summary
summary

high
low
high
mid
high
high

0
1
1
1
0
1

0
0
1
0
0
1

low
high
low
mid
low
low

0
1
1
1
0
0

+
+
-
+
+
1

0
0
1
0
0
1

0
0
1
0
0
1

red
red

blue
blue

purple
1

0
1
1
1
0
1

A B F JIHGEDC

Categorical Data

E HGFDCBA J I

Correlated Attributes

low
mid
high

high
mid
low

A J
33
33
33

%

0
1

I
50
50

%

0
1
1
0
1

0
1
1
0
0

48
25
10
5
2

%B F HGE DC
0
1
0
0
0

0
1
0
1
0

0
1
0
1
0

red
blue
blue
blue
purple

+
-
+
-
+

...etc... ...

Correlated Values

Fig. 1 Example of a database summary. A summary shows which groups of attributes most strongly
interact, as well as which value combinations these occur in the database. For presentational clarity, we
only show the top-5 most frequent value combinations for B–H here

of attributes correlate most strongly. Here, we see that attributes A and J are grouped
together, as are attributes B–H , and that I forms a singleton group. For these groups,
by the MDL principle, we know that the attributes within them interact strongly, while
between the groups the attributes can be considered virtually independent—because
if an attribute provides information on another, we would have saved bits by consid-
ering them together. As such, here, we learn that I does not interact much with any
of the other attributes.

At the second level, summaries allow quick inspection of the attribute-value dis-
tributions within the groups. In the example, we see that A and J are each other’s
inverse, and that attributes B–H have two strongly prevalent value configurations,
after which the frequencies drop off rapidly. While a summary contains the frequen-
cies of all attribute-value combinations per group, typically one is most interested in
the most prevalent, and hence we here only show the top-5.

We will investigate and analyze summaries obtained from real data in Section 7.
Extensive experimentation shows our method provides high-quality results: corre-
lated attributes are correctly grouped, representative features are identified, and the
supports of frequent generalized itemsets are closely approximated in very short time.
Randomization shows that our approach models relevant structure in the data, pro-
viding information far beyond simple first order statistics.

To the best of our knowledge, there currently do not exist light-weight data anal-
ysis methods that can easily be used for summary purposes. Instead, for binary and
categorical data, a standard approach is to first mine for frequent itemsets, the result of
which quickly grows to many times the size of the original database. Consequently,
many proposals exist that focus on reducing or summarizing these sets of frequent
patterns. That is, they choose groups of representative itemsets such that the informa-

4 Michael Mampaey, Jilles Vreeken

tion in the complete pattern set is maintained as well as possible. In this paper, we do
not summarize the outcome of an analysis (i.e., a set of patterns), but instead provide
a summary that can be used to decide how to further analyze the data.

Existing proposals for data summarization, such as KRIMP (Siebes et al, 2006)
and Summarization (Chandola and Kumar, 2005), provide highly detailed results. Al-
though this has obvious merit, analyzing these summaries consequently also requires
significant effort. Our method shares the approach of using compression to find a
good summary. However, we do not aim to find a group of descriptive itemsets. In-
stead, we look at the data on the level of attributes, and aim to optimally group those
attributes that interact most strongly. In this regard, our approach is related to mining
low-entropy sets (Heikinheimo et al, 2007), sets of attributes which identify strong
interactions in the data. An existing proposal to summarize data by low-entropy sets,
LESS (Heikinheimo et al, 2009), requires a collection of low-entropy sets as input,
and the resulting models are not probabilistic in nature, nor can they easily be queried.
For a more complete discussion of related work, please refer to Section 6.

A primary version of our approach was published as Mampaey and Vreeken
(2010). Here, we generalize our approach from binary to categoric data, we thor-
oughly discuss the theory and choices, and we give a refined variant of our encoding
that takes insights from modern MDL theory into account. Further, we provide a more
extensive experimental evaluation of our method, using 19 benchmark and real-world
datasets. In particular, we give a detailed evaluation of the heuristic choices made,
comparing between the different search strategies and encodings, and show that the
discovered summaries model relevant structure in the data. Furthermore, we investi-
gate the speed at which our summaries can be queried.

The road map of this paper is as follows. First, Section 2 introduces notation
and preliminaries. Section 3 formalizes the problem, and discusses how to identify
good summaries. In Section 4 we present our method for discovering good attribute
clusterings. Section 5 discusses potential alternative search strategies. Related work
is discussed in Section 6. We experimentally evaluate our method in Section 7. Lastly,
we round up with discussion in Section 8 and conclude the paper in Section 9.

2 Preliminaries

We denote the set of all attributes by A = {a1, . . . , an}. The set of possible val-
ues {v1, v2, . . .} that an attribute a can obtain is called the domain of a, written as
dom(a). In this paper we assume that all attributes are categorical, i.e., that they have
a discrete and finite domain: |dom(a)| ∈ N. Note that binary attributes are simply
categorical attributes whose domain is equal to {0, 1}. As such, any binary dataset
can be regarded as a categorical dataset. Hence, unless specified otherwise, whenever
we speak about categorical datasets, the same holds for binary datasets.

The domain of a set of attributes X is the Cartesian product of the domains of
its individual attributes: dom(X) =

∏
a∈X dom(a). An item is a attribute-value

combination, that is, a pair (a = v), where a ∈ A and v ∈ dom(a). Analogously, an
itemset is a pair (X = v), where X ⊆ A is an attribute set, and v ∈ dom(X) is a

Summarizing Categorical Data by Clustering Attributes 5

vector of length |X|. When A consists of binary attributes and v = 1 is a vector of
ones, the itemset (X = 1) is often written simply as X .

A categorical dataset D is a bag of transactions (or tuples) t, which are vectors of
length n containing one value for each attribute. A transaction t is said to contain an
itemset (X = v), denoted as (X = v) ⊆ t, if for all attributes a ∈ X it holds that
ta = va. The support of (X = v) is the number of transactions in D that contain it:

supp(X = v) = |{t ∈ D | (X = v) ⊆ t}| .

The frequency of (X = v) is defined as its support relative to the number of
transactions in D: fr(X = v) = supp(X = v)/|D|.

The entropy of an attribute set X is defined as

H(X) = −
∑

v∈dom(X)

fr(X = v) log fr(X = v) ,

where the base of the logarithm is 2, and by convention 0 log 0 = 0.

3 Summarizing Data by Clustering Attributes

In this section we formally introduce our approach. We start with a brief primer on
the Minimum description Length principle, and after defining what an attribute clus-
tering is, we show how we can use MDL to identify the best clustering. We then
formalize the problem, and discuss the search space. Finally, we discuss a more re-
fined encoding that takes cues from modern MDL theory.

3.1 MDL, a brief primer

The MDL (Minimum Description Length) principle (Rissanen, 1978), like its close
cousin MML (Minimum Message Length) (Wallace, 2005), is a practical version
of Kolmogorov Complexity (Li and Vitányi, 1993). All three embrace the slogan
Induction by Compression. The MDL principle can be roughly described as follows.

Given a set of modelsM, the best model M ∈M is the one that minimizes

L(M) + L(D |M)

in which

– L(M) is the length, in bits, of the description of M , and
– L(D |M) is the length, in bits, of the description of the data encoded with M .

This is called two-part MDL, or crude MDL. This stands opposed to refined MDL,
where model and data are encoded together (Grünwald, 2007). We use two-part MDL
because we are specifically interested in the model: the attribute clustering that yields
the best description length. Further, although refined MDL has stronger theoretical
foundations, it cannot be computed except for some special cases.

To use MDL, we have to define what our set of modelsM is, how a model M
describes a database, and how all of this is encoded in bits. Below, after giving some

6 Michael Mampaey, Jilles Vreeken

further intuition on MDL, we will first discuss a two-part MDL encoding for our
summaries, as well as a variant that draws from insights from refined MDL.

The reason we employ the MDL principle, is that it gives us a well-founded ap-
proach for selecting the model that best balances the complexity of the model and
the data. That is, models that encode the data concisely, i.e., for which L(D | M)
is low, are considered to be good models, because they are able to exploit, and ulti-
mately describe, the structure of the data. In practice, this term often corresponds to
the negative log-likelihood of the model.

However, it is possible to come up with an arbitrarily complex model that de-
scribes the data arbitrarily well—in the most extreme case the ‘model’ just states the
data verbatim, which is clearly a form of overfitting. Therefore, a model that has a
long description, i.e., for which L(M) is large, is likely to overfit the data, and hence
considered to be not so good. Models that can be described succinctly, on the other
hand, are less prone to overfitting, and additionally also tend to be easier to interpret.
Of course, models that are overly simple will not do a good job describing the data.

The MDL principle provides an appropriate balance between these extremes, by
taking both model fit and model complexity into account. MDL is tightly linked to
lossless data compression—the best model is the model that compresses the data best.
It is also often formulated as a sender/receiver framework, where a sender wants
to communicate the data to a receiver, in an as compact as possible message. The
sender encodes both the model and the data, and transmits them to the receiver, who
decodes them to obtain the original data. The goal of this paper is purely to model
and summarize the data, not to actually compress or transmit it. However, it is useful
to keep this analogy in mind.

Given this basic intuition, let us next formalize how to lossless encode a model
and how to encode the data given that model.

3.2 MDL for attribute clustering

The main idea for our data summaries are attribute clusterings. Therefore, we first
formally define the concept of an attribute clustering.

Definition 1 An attribute clustering C = {A1, . . . , Ak} of a set of attributes A is a
partition of A, that is,

1. every attribute belongs to a cluster:
⋃k

i=1Ai = A ,
2. all clusters are pairwise disjoint: ∀i 6= j : Ai ∩Aj = ∅ ,
3. there are no empty clusters: ∀Ai ∈ C : Ai 6= ∅ .

Informally speaking, an attribute clustering is simply a partition of the set of
attributesA. In order to give the user a bit more information, for each cluster we also
include the distribution of the attribute-value occurrences in the data.

Given this definition, we can formalize how we actually encode our models and
data, such that we can apply the MDL principle to distinguish good summaries from
bad ones. We start by specifying how we encode our models, since then the encoding

Summarizing Categorical Data by Clustering Attributes 7

Code Table

a b c code(A = v) L(code(v)) fr(A = v)

1 1 1 0 1 bits 50.00%
1 1 0 10 2 bits 25.00%
1 0 1 110 3 bits 12.50%
0 1 0 1110 4 bits 6.25%
0 0 0 1111 4 bits 6.25%

Fig. 2 Example of a code table CTi for a cluster Ai = {a, b, c} containing three binary attributes. The
(optimal) codes depicted here are included for illustration purposes, in practice we are only interested in
their lengths, L(code(v)). Assuming the database contains 256 transactions, the description length of this
code table is 44 bits

of the data follows straightforwardly. In our case, a model is a partition of the at-
tributes,A, together with descriptions of which value combinations occur how often,
per partition, i.e., the distributions within the clusters.

Encoding the Partition Let us first describe how we can encode an attribute parti-
tion. Recall that the number of unique partitions for a set of n attributes is given by
the well-known Bell number, denoted Bn, which can be computed using a simple
recursive formula:

Bn+1 =

n∑
k=0

(
n

k

)
Bk ,

with base case B0 = 1. Now, using a basic approach in information theory, we can
fix a canonical order on the set of partitions, which allows us to enumerate all possi-
ble partitions. More importantly, this allows us to uniquely and efficiently identify a
particular partition using logBn bits. This is called a model-to-data code (Vereshcha-
gin and Vitanyi, 2004), and is the encoding we use to identify the partition of A of a
given attribute clustering.

Encoding the Code Tables Next, we formalize how to encode the joint distribution
of clusters by using code tables. A code table is a simple two-column table that has
an entry for each possible value v from the domain of a cluster Ai. The left-hand
column contains the value, and the right-hand column the corresponding code. By
making sure the used codes are uniquely decodable, we can straightforwardly and
lossless translate between a code and the associated values. We give an example code
table in Figure 2. Note that the frequencies of the value occurrences are not explicitly
included in the code table, we will show below that we can derive these exactly from
the lengths of the codes in the right-hand column. Also, if a value combination does
not occur in the data (when its frequency is zero), it is omitted from the code table,
and it does not get a code.

We encode the entries of the left-hand column as follows. Again using a model-
to-data code, we can identify one of the values of an attribute a in log |dom(a)| bits,
given that the size of the domain of a is |dom(a)|. Therefore, the description length

8 Michael Mampaey, Jilles Vreeken

of a value v of a set of attributes Ai is equal to∑
a∈Ai

log |dom(a)| = log |dom(Ai)| .

The entries in the right-hand column of a code table are the codes that will be used
to encode the data. Clearly, these codes should be as efficient as possible, which is
why we employ an optimal prefix code. A prefix code (or, confusingly also known as
a prefix-free code) is a code that can be uniquely decoded without requiring a prefix.
A well-known result from information theory (Shannon, 1948; Cover and Thomas,
2006) states that a prefix code is optimal when for all v ∈ dom(Ai)

L(code(Ai = v)) = − log fr(Ai = v) .

The choice of one particular optimal coding scheme over another (for instance,
Huffman coding (Cover and Thomas, 2006), which we use to obtain the codes in
Figure 2), is irrelevant: recall that in MDL we are not concerned about actual materi-
alized codes, but only want to measure complexity. Hence, we are only interested in
the lengths of the theoretical optimal code the equation above gives us.

So, the encoded length of the right-hand side column of a code table is basically
the sum of each of the code lengths. However, in order to be able to uniquely decode
a code table, we need to take one further element into account: we need to know when
a bit representation of a code ends. Therefore, before a code is given, we specify its
length in a fixed number of bits; since the frequency of an itemset that occurs in the
data is at least 1/|D|, its corresponding code length is at most log |D|, and hence the
length of the code can be stated in log log |D| bits.

Now, a binary string so-representing a distribution, viz. code table, can unam-
biguously be decoded: by the association between code lengths and frequencies we
can derive the frequencies of the values on the left-hand side by regarding the code
lengths found on the right-hand side. By adding these frequencies together, we know
the distribution is fully specified when this sum equals one. Therefore, the description
length of the code table CTi of an attribute cluster Ai can be computed as

L(CTi) =
∑

v∈dom(Ai)
fr(Ai=v) 6=0

log |dom(Ai)|+ log log |D| − log fr(Ai = v) .

Using this encoding, clusters that have many value instantiations that are distributed
irregularly, will require many bits. Similarly, attribute clusters with few, evenly dis-
tributed values, are much cheaper. In other words, we favor simple distributions.

Encoding the Data Now that we know how to encode a clustering, we can discuss
how to determine L(D | C), the length of the encoded description of D given a
clustering C. This is done straightforwardly. First, each tuple t ∈ D is partitioned
according to C. We then encode a tuple by replacing the value in each part by the

Summarizing Categorical Data by Clustering Attributes 9

corresponding code in the code tables. Since an itemset (A = v) occurs in the data
|D| fr(A = v) times, the encoded size of D restricted to a single cluster Ai equals

L(DAi
| C) = −

∑
t∈D

log fr(A = tA)

= −|D|
∑

v∈dom(A)

fr(A = v) log fr(A = v)

= |D|H(Ai) .

That is, the description length of the data with respect to an attribute cluster is pro-
portional to its entropy, which is a measure of complexity.

Combining all of the above, the definition of the total encoded size is as follows.

Definition 2 The description length of a categorical datasetD using an attribute clus-
tering C = {A1, . . . , Ak} of size k is defined as

L(C, D) = L(C) + L(D | C) ,

where

L(D | C) = |D|
∑k

i=1H(Ai)

L(C) = logBn +
∑k

i=1 L(CTi)

L(CTi) =
∑

v∈dom(Ai)
fr(Ai=v) 6=0

log |dom(Ai)|+ log log |D| − log fr(Ai = v)

Note that in the middle line, we can simply take the sum over all code table
lengths, i.e., we do not need to indicate how many code tables there are (this is cap-
tured in the logBn term), nor do we need to separate them with additional bits, since
the descriptions of the code tables are self-terminating, as explained above.

Further, remark that we implicitly make a basic assumption. To use the above
definition, we assume that the number of attributes, their domains (their sizes in par-
ticular), and the number of transactions in the database are known beforehand to both
sender and receiver. The reason not to include these in our formalization is simple: we
are aiming to summarize a single given dataset. Clearly, these properties are constant
over all models we would consider for one dataset, and hence, including these would
increase the total description length only by a constant term, independent of the ac-
tual data instance and model, which makes no difference when comparing different
clusterings. If for one reason or another it would be required to explicitly include
the cost of these values into the total description length, one could do so by using a
Universal Code for integers (Rissanen, 2007).

3.3 Problem statement

Our goal is to discover a summary of a binary or categorical dataset, in the form of a
partitioning of the attributes of the data; separate attribute groups should be relatively
independent, while attributes within a cluster should exhibit strong interaction.

10 Michael Mampaey, Jilles Vreeken

Formally, the problem we address is the following. Given a database D over a set
of categorical attributes A, find the attribute clustering C∗ that minimizes L(C, D),

C∗ = arg min
C

L(C, D) = arg min
C

L(C) + L(D | C) .

By this problem statement, we identify the optimal clustering by MDL. Note that
we do not require the user to specify any parameters, e.g., a predetermined number
of clusters k. Essentially, this is done automatically, as k follows from the clustering
that has the shortest description.

3.4 Search space

The search space to be considered for our problem is rather large. The total number
of possible partitions of a set of n attributes equals the Bell number Bn, which is at
least Ω(2n). Therefore we cannot simply enumerate and test all possible partitions,
except for the most trivial cases. We must exploit the structure of the search space
somehow, in order to efficiently arrive at a good clustering.

The refinement relation of partitions naturally structures the search space into a
lattice. A partition C is said to refine a partition C′ if for all A ∈ C there exists
an A′ ∈ C′ such that A ⊆ A′. The transitive reduction of the refinement relation
corresponds to the merger of two clusters into one (or conversely, splitting a cluster
into two nonempty parts). As such, the search space lattice can be traversed in a
stepwise manner.

The maximal, most refined clustering contains a singleton cluster for each indi-
vidual attribute. We call this the independence clustering, denoted I, since it corre-
sponds to the independence distribution. On the other hand, the least refined, most
coarse partition consists of only one cluster containing all attributes, which corre-
sponds to the full joint distribution.

Note that L(C, D) is not (strictly or weakly) monotonically increasing or decreas-
ing with respect to refinement, which would make determining the optimum trivial—
this would require there would exist at least one monotonic path between I and {A}.
As far as we know, other useful properties that could be exploited to identify the op-
timal clustering efficiently, such as convertibility, also do not apply to this setting.
Hence, we will have to resort to heuristics. In this case, we will employ a greedy
hierarchical clustering strategy, the details of which are discussed in Section 4.

3.5 Measuring similarities between clusters

Based on the definition ofL(C, D) above, we can derive a similarity measure between
clusters that will turn out to be useful later on. Let C be an attribute clustering and
let C′ be the result of merging two clusters Ai and Aj in C, the merged cluster being
denoted Aij = Ai ∪Aj . Hence, C is a refinement of C′. Then the difference between
the description lengths of C and C′ defines a similarity measure between Ai and Aj .

Summarizing Categorical Data by Clustering Attributes 11

Definition 3 We define the similarity of two clusters Ai and Aj in a clustering C as

CSD(Ai, Aj) = L(C, D)− L(C′, D) ,

where C′ = C \ {Ai, Aj}
⋃
{Ai ∪ Aj}. Whenever D is clear from the context, we

simply write CS (Ai, Aj).

If Ai and Aj are highly correlated, then their merger results in a better clustering
with a lower description length, and hence their similarity is positive. Otherwise,
if the clusters are more or less independent, their merger increases the description
length, and their similarity is negative. The fact that CS expresses a similarity is
further illustrated by the following proposition, which allows us to calculate cluster
similarity without having to compute the total description length of a clustering.

Proposition 1 Let C be an attribute clustering of A, with Ai, Aj ∈ C, and let D be
a categorical dataset. Then

CSD(Ai, Aj) = |D|I(Ai, Aj) +∆L(CT) ,

where
I(Ai, Aj) = H(Ai) +H(Aj)−H(Aij)

is the mutual information between Ai and Aj , and

∆L(CT) = L(CTi) + L(CTj)− L(CTij) .

Proposition 1 shows that we can decompose cluster similarity into a mutual in-
formation term, and a term expressing the difference in code table description length.
Both of these values are high when Ai and Aj are highly correlated, and low when
they are more or less independent. It is interesting to note that CS is a local measure,
that is, it only depends on Ai and Aj , and is not influenced by the other clusters in C.

3.6 Canonical description length

It can be useful to compare the description length L(C, D) to a baseline description
of the data; a description that does not use a model, but simply communicates the
data ‘as is’. However, there are many different ways to encode a database, all with
different description lengths. A very natural approach is to use an encoding assuming
a uniform distribution of the values. In this encoding, every value of an attribute
a receives a code with the smallest possible number of bits under this assumption,
namely log |dom(a)|.

Definition 4 The canonical description length of a dataset D is defined as

Lc(D) = |D|
∑
a∈A

log |dom(a)| = |D| log |dom(A)| .

12 Michael Mampaey, Jilles Vreeken

For example, if D is a binary dataset, its canonical description length is equal to
|D||A| bits, i.e., each entry requires exactly one bit.

It can be argued that if for some model C, we observe that L(C, D)� Lc(D), we
can safely say that C better captures or explains the structure in the data, and hence
C can be considered a good model. On the other hand, if D mostly just consists of
random noise (that is,D does not exhibit any structure), then for any model C we will
find that L(C, D) ≥ Lc(D); if such is the case, we may conclude the data does not
exhibit any structure that our model can fit.

3.7 Refining the encoding

The description length of an attribute clustering for a certain dataset as described
above, is often called two-part or crude MDL, since it separately encodes the model
and the data. Refined MDL (Grünwald, 2007) is an improvement of two-part MDL
that does not explicitly encode model and data separately. Rather, it uses a so-called
Universal Code to describe the data. A universal code is a code that we can employ
without having any prior information, and for which the lengths of the code words are
within a constant factor of the optimal codes. As such, using universal codes avoids
the potential bias that can occur in two-part MDL.

Although refined MDL has stronger theoretical foundations, it cannot be com-
puted except for some special cases; those for which a universal code is known. As
only a very limited number of universal codes is known, for distributions of rela-
tively simple objects, the practical application of refined MDL is limited. However,
we can refine our encoding somewhat by using a notion from modern MDL the-
ory (Grünwald, 2007); we can employ prequential coding.

By prequential coding, we are not explicitly transmitting the codes that will be
used to encode the data—and so, we lose any potential bias that the explicit encoding
of those codes might give. Rather than using explicit fixed code words, we encode
the data using an implicitly assumed distribution on the data, and iteratively update
this distribution (and hence, the codes) after every transmitted/received code word.
As such, by each update the distribution changes slightly, and hence so does the
underlying code table, and thus the encoding of the data that is to be transmitted.

It may seem that by not explicitly including a cost for using long code words, we
do not penalize against this. However, the penalty is actually hidden in the description
of the data, since there is always an overhead incurred by using a code table that does
not exactly represent the distribution of the data, i.e., a code table that is suboptimal.

Before we discuss the size of this penalty, let us first specify how we can employ
prequential coding in our setting. When we start transmitting the data, instead of
using the actual attribute-value frequencies of the data, we start without such prior
knowledge and use a uniform distribution over these frequencies, by assigning some
constant occurrence count c to each possible value in the domain of an attribute set.
Then, we transmit the first value by encoding it using an optimal code derived from
this usage distribution, as defined in Section 3.2. After this value is transmitted, we
adjust the distribution by incrementing the occurrence count of that particular value
by 1. Clearly, this changes the usage distribution, and hence the codes in the code

Summarizing Categorical Data by Clustering Attributes 13

table must be recomputed in order to remain optimal. We simply repeat this process
iteratively for every tuple, until we have transmitted all of the data—after which, if
we disregard c, the codes in the code table are the same as when we would have
transmitted them explicitly.

The choice of the initial count c has an influence on the overhead. If c is taken
very large, updating the code table with new data has little effect. For c → ∞, the
overhead tends to KL (u ‖ fr), i.e., the Kullback-Leibler divergence between fr and
the uniform distribution u. Recall that the Kullback-Leibler divergence (Cover and
Thomas, 2006) between two probability distributions p and q is defined as

KL (p ‖ q) =
∑
x

p(x) log
p(x)

q(x)
,

is nonnegative, and is zero if and only if p = q.
On the other hand, if c is extremely small, say some ε > 0, adding data will

wildly change the code table to extremes, leading to larger codes for certain values,
especially when the data is not very large. In both cases, for |D| → ∞, the relative
overhead converges to zero, however, in practice the amount of available data is lim-
ited, and therefore c does have an impact on the encoded length. A natural and often
chosen value is c = 0.5 (Grünwald, 2007).

Let us consider the description length of the data for a single attribute cluster,
using prequential coding. Let l be the number of distinct values that can occur, let mi

be the count of each such value vi in the domain of the cluster (i.e., mi = supp(vi)),
and let m =

∑l
i=1mi be the total number of transactions (i.e., m = |D|). If in the

jth encountered tuple, we observe a value v that has up till now occurred mv times,
then its current frequency in the code table is (mv + 0.5)/(j + 0.5 l). Hence its code
length is− log ((mv + 0.5)/(j + 0.5 l)). Adding all code lengths together, we obtain

− log

∏l
i=1

∏mi−1
j=0 (j + 0.5)∏m−1

j=0 (j + 0.5 l)
= log

Γ(m+ 0.5 l)/Γ(0.5 l)∏l
i=1 Γ(mi + 0.5)/Γ(0.5)

= log Γ(m+ 0.5 l)− log Γ(0.5 l)−
l∑

i=1

(
log ((2mi − 1)!!)−mi

)
,

where !! denotes the double factorial defined as (2k−1)!! =
∏k

i=1(2i−1), and Γ is the
gamma function, which is an extension of the factorial function to the complex plane,
that is, Γ(x+ 1) = xΓ(x), with relevant base cases Γ(1) = 1 and Γ(0.5) =

√
π.

Interestingly, even though the distribution and hence the code lengths constantly
change during the encoding of D, the total description length does not depend on the
order in which the tuples are processed.

The number of values l in the formula above can be extremely large if we take it to
be the size of the domain of a cluster. However, in practice it will be a lot smaller than
the full domain, especially for large attribute sets. Therefore, we can first specify the
values that can occur. We do this using a model-to-data code for all nonempty subsets
of dom(A), which takes log(2|dom(A)| − 1) bits.

14 Michael Mampaey, Jilles Vreeken

Definition 5 The refined description length of the data for a single cluster A, using
prequential coding, is given by

Lr(A,D) = log(2|dom(A)| − 1) + log Γ(m+ 0.5 l)− log Γ(0.5 l)

−
l∑

i=1

(
log ((2mi − 1)!!)−mi

)
,

where l = |{v ∈ dom(A) | fr(A = v) 6= 0}| is the number of values with non-zero
support in the data. The refined description length of an attribute clustering C =
{A1, . . . , Ak}, using prequential coding, is then equal to

Lr(C, D) = log(Bn) +

k∑
i=1

Lr(Ai, D) .

3.8 Querying a Summary

Besides providing insight into which attributes interact most strongly, and which of
their values typically co-occur, our summaries can also be used as surrogates for
the data. That is, they form probabilistic models, being the product of independent
distributions on clusters of attributes that can easily be queried.

For categorical data, querying comes down to calculating marginal probabilities,
i.e., determining itemset frequencies. The frequency of an itemset (X = v) can sim-
ply be estimated from an attribute clustering by splitting up the itemset over the clus-
ters, and calculating the product of the marginal frequencies of the subsets in each
separate cluster.

This splitting up is justified by the fact that all relevant correlations between at-
tributes are captured by a good clustering. Note that the more attributes are clus-
tered together, the more detail the corresponding code table contains about their cor-
relations, and hence allow for better frequency estimations. In fact, for the trivial
complete clustering, where all attributes are grouped together, we will obtain exact
frequencies. As our summaries are constructed with the goal of capturing the key
correlations as well as possible using as few and simple code tables as possible, we
expect to obtain highly accurate, but not exact frequency estimations.

Definition 6 Let C = {A1, . . . , Ak} be a clustering of A, and let (X = v) be an
itemset, with v ∈ dom(X). Then the frequency of (X = v) is estimated as

f̂r(X = v) =

k∏
i=1

fr(X ∩Ai = vi) ,

where vi is the sub-vector of v for the corresponding attributes in X ∩Ai.

For instance, let A = {a, b, c, d, e, f} and C = {abc, de, f }, and let us consider the
itemset (abef = 1), then f̂r(abef = 1) = fr(ab = 1) · fr(e = 1) · fr(f = 1).

Summarizing Categorical Data by Clustering Attributes 15

Since the code table for each cluster Ai contains the frequencies of the values
for Ai—because of the one-to-one mapping between code length and frequency—
we can use our clustering model as a very efficient surrogate for the database. For a
cluster Ai, let Ωi be the subset of values in dom(Ai) having a non-zero frequency.
The complexity of frequency estimation is then upper bounded by

O

(
k∑

i=1

|Ai ∩X||Ωi|

)
≤ O (|X||D|) .

If |Ωi| � |D|, querying the summary is significantly faster than querying the data.
Note that this automatically holds for small clusters for which |dom(A)| < |D|.

4 Mining Attribute Clusterings

Now that we have defined how we can identify the best clustering, we need a way
to discover it. In this section we present our algorithm, and investigate its properties
and computational complexity.

4.1 Algorithm

As discussed in Section 3.4, the search space we have to consider is extremely large.
Furthermore, our quality score is not (anti-)monotonic, excluding the possibility of
efficient search. Hence, it is infeasible to examine the search space exhaustively, and
thus we settle for heuristics. In this section we introduce our algorithm, which finds
a good attribute clustering C for a dataset D, with a low description length L(C, D).

We use a greedy bottom-up hierarchical clustering algorithm that traverses the
search space by iteratively merging clusters such that in each step the description
length is minimized. The pseudo-code is given in Algorithm 1. We start by plac-
ing each attribute in its own cluster (line 1), which corresponds to the independence
model. Then, we iteratively find the pair of clusters whose merger results in a clus-
tering with the smallest description length. From Section 3.5 we know that this is the
pair of clusters with the highest similarity, which can be computed locally (5). The
clusters are merged (6), and the algorithm continues. We maintain the clustering with
the shortest description (8–9), and finally return the best clustering (10).

This results in a hierarchy of clusters, which can be represented visually as a
dendrogram, as shown in Figure 3. The clustering at the bottom corresponds to the
independence distribution, while the clustering at the top represents the joint empiri-
cal distribution of the data. In the figure, merges which result in a lower description
length are depicted in solid lines. Their height corresponds to the (cumulative) de-
crease in description length. An advantage of this approach is that it allows us to
visualize how the clusters were formed, and how they are structured internally.

The graph in Figure 4 shows how the description length behaves as a function
of k (the number of clusters), during a run of the algorithm on the binary Connect
dataset (Frank and Asuncion, 2010) (see Section 7 for more details on this dataset).

16 Michael Mampaey, Jilles Vreeken

Algorithm 1: ATTRIBUTECLUSTERING(D)
input : Categorical dataset D over a set of attributesA.
output : Attribute clustering C = {A1, . . . , Ak}.

1 C ← {{a} | a ∈ A}
2 Cmin ← C
3 Compute and store CSD(Ai, Aj) for all i 6= j
4 while |C| > 1 do
5 Ai, Aj ← arg maxi,jCSD(Ai, Aj)

6 C ← C \ {Ai, Aj}
⋃
{Ai ∪Aj}

7 Compute and store CSD(Aij , Al) for all l 6= ij
8 if L(C, D) < L(Cmin, D) then
9 Cmin ← C

10 return Cmin

Starting at k = n, the description length L(C, D) gradually decreases as correlated
clusters are merged. This indicates that there is structure present in the data, which is
exploited to obtain a shorter description of it. Note that the description length of the
data, L(D | C), decreases monotonically, since a less refined clustering uses more
information, and hence fits the data better. The total description length continues to
decrease until k = 7, which yields the best clustering found for this dataset. After-
wards, L(C, D) increases again, due to the fact that the decrease in L(D | C) does
not outweigh the dramatic increase of L(C), which means that the models are getting
far too complex past this point.

a b c d e f g h i j k l

Ac
cu

m
ul

at
ed

 d
is

ta
nc

e
be

tw
ee

n
cl

us
te

rin
gs

 (i
n

bi
ts

)

.13 .14 .00 .04 .16 .09 .30 .08 .39 .05 .09
Attributes

Pair-wise Mutual Information

0

5000

10000

15000

20000

Fig. 3 Example of a dendrogram depicting a hierarchy of attribute clusterings, for a subset of the at-
tributes of the categorical Markov dataset. Merges that save bits are depicted with solid lines; their height
corresponds to the cumulative drop in description length. There are three attribute clusters in this example

Summarizing Categorical Data by Clustering Attributes 17

 0

 1x106

 2x106

 3x106

 4x106

 5x106

 0 10 20 30 40 50 60 70 80 90 100 110 120

D
es

cr
ip

tio
n

le
ng

th
 (b

its
)

Number of clusters

best clustering

L(C,) L(| C) L(C)

Fig. 4 Evolution of the encoded length L(C, D) with respect to the number of clusters k, on the binary
Connect dataset (Frank and Asuncion, 2010). The best clustering is located at k = 7

4.2 Stopping criterion

Figure 4 seems to suggest that L(C, D), as a function of k, has a single minimum.
That is, first the description length decreases until a local optimum is reached, and af-
terwards the description length only increases. Naturally, the question arises whether
this is the case in general; if so, the algorithm can terminate as soon as a local mini-
mum is detected. Intuitively, we would expect that if the current best cluster merger
increases the total description length, then any future merger is probably also a bad
one. However, the following counterexample shows that this is not necessarily true.

Consider the dataset D in Figure 5 with four binary attributes, A = {a, b, c, d}.
Assume that a, b, and c are independent, and that for every transaction of D it holds
that d = a⊕ b⊕ c, where⊕ denotes exclusive or (XOR). Now, using this dependency,
let D contain a transaction for every v ∈ {0, 1}3 as values for abc, with multiplicity,
say, 10. Then every pair of clusters whose union contains strictly less than four at-
tributes (e.g., Ai = ab and Aj = d) is independent. As the algorithm starts to merge
clusters, the data description length L(D | C) remains constant (namely 4|D|), but
the code tables become more complex, and thus L(C) and L(C, D) increase. Only at
the last step, when the two last clusters are merged, can the structure be captured and
L(D | C) decreases to 3|D|, leading to a decrease of the total description length.

Note, however, that the drop in encoded length in the last step depends on the
number of transactions in the database. In the above example, if the multiplicity of
every unique transaction is 10, the complete clustering would be preferred over the
independence clustering. However, if there are fewer transactions (say, every unique
transaction occurs only once), then even though the dependencies are the same, the
algorithm decides that the best clustering corresponds to the independence model,
i.e., that there is no significant structure. Intuitively this can be explained by the fact

18 Michael Mampaey, Jilles Vreeken

a b c d multiplicity

0 0 0 0 × 10
0 0 1 1 × 10
0 1 0 1 × 10
0 1 1 0 × 10
1 0 0 1 × 10
1 0 1 0 × 10
1 1 0 0 × 10
1 1 1 1 × 10

Fig. 5 An exclusive or (XOR) dataset. The last attribute equals the XOR of the first three. The rightmost
column denotes the number of times each transaction occurs, i.e., there are 80 transactions

that if there is only a small number of samples then the observed dependencies might
be coincidental, but if many transactions exhibit it, the dependencies are truly present.
This is one of the benefits we get from using MDL to select models.

This example shows that in general we should not stop the algorithm when the
description length attains a local minimum. Nevertheless, it is a very synthetic ex-
ample with a strong requirement on the number of transactions. For instance, if we
generalize the XOR example to 20 attributes, the minimum number of transactions
for it to be detectable already runs in the millions. Moreover, in none of our experi-
ments with real data did we encounter a local minimum that was not also a minimum
over all considered clusterings. Therefore, we can say that for all practical purposes
it is acceptable to stop the algorithm when we encounter a clustering with a locally
minimal description length.

4.3 Algorithmic complexity

Naturally, a summarization method should be fast, because our aim is to get a quick
overview of the data. Notwithstanding the search for efficient algorithms in data min-
ing, in practice many exhibit an exponential runtime. Here we show that our algorithm
is polynomial in the number of attributes.

In the first iteration, we compute the description length of each singleton {a},
with a ∈ A, and then determine which two clusters to merge. To do this, we must
compute O(n2) cluster similarities, where n = |A|. Since we might need some of
these similarities later on, we store them in a heap, such that we can easily retrieve
the maximum. Now say that in a subsequent iteration k we have just merged clusters
Ai and Aj into Aij . Then we can delete the 2k− 3 similarities from the heap that are
no longer of use, and we need to compute and insert k − 2 new similarities, namely
those between Aij and the remaining clusters. Since heap insertion and deletion is
logarithmic in the size of a heap, maintaining the similarities in an iteration with k
clusters, takesO(k log k) time. The initial filling of the heap takesO(n2 log n). Since
the algorithm performs at mostN iterations, we see that the time complexity of main-
taining the cluster similarities is O(n2 log n) +

∑1
k=nO(k log k) = O(n2 log n).

Next we discuss the complexity of computing the similarities. Say that in an it-
eration k, we must compute the similarities CSD(Ai, Aj) between the last merged

Summarizing Categorical Data by Clustering Attributes 19

cluster Ai and all other remaining clusters Aj . This requires collecting all non-zero
frequencies fr(Aij = v), and we do this by simply iterating over all transactions t and
computing |Aij ∩ t|, which takes O(n|D|) per pair in the worst case. Computing the
initial similarities between all pairs of singletons takesO(n2|D|). Hence, over all iter-
ations, the similarity computations take O(n2|D|) +

∑1
k=nO(kn|D|) = O(n3|D|).

Therefore, the total time complexity of ATTRIBUTECLUSTERING is

O(n3|D|) .

The dominant cost in terms of storage comes from the heap containing the cluster
similarities, and hence the memory complexity of our algorithm is O(n2).

5 Alternative Approaches

Since we employ a greedy algorithm, we do not necessarily find the globally optimal
attribute clustering. Here we discuss some potential alternative search strategies.

5.1 Vertical clustering

A very straightforward approach to clustering attributes is to use any one of the wealth
of existing clustering algorithms that cluster rows of data, and adapt it to our setting.
By simply transposing the data, and applying say, k-means, we are done. However,
the issue is not that trivial. While transposing data could conceptually make sense for
binary data, this is arguably not the case for categorical data in general. Even so, most,
if not all, clustering algorithms require a distance measure between tuples, which
means we would need a distance measure for attributes. For categorical data, an often
used measure is Hamming distance, the number of locations with unequal values. If
two attributes have the same value in many transactions, clearly they are very similar.
However, the converse is not true, e.g., two binary attributes that are each other’s
inverse are clearly correlated. Moreover, attributes with different domains would be
incomparable. A similar argument can be made for Manhattan or Euclidean distances.

Turning to the area of information theory, a good choice is to use a distance mea-
sure based on mutual information. Specifically, let a1 and a2 be two attributes, then
we could use the distance d(a1, a2) = H(a1, a2)−I(a1, a2). This is a proper metric:
it is symmetric, nonnegative, zero if and only if both attributes are a function of one
another (i.e., there exists a bijection between them), and it obeys the triangle inequal-
ity. It reaches a maximum of H(a1, a2) when a1 and a2 are independent. We could
additionally choose to normalize d, e.g., by dividing by H(a1, a2).

However, using pairwise distances on attributes can only get us so far, as the fol-
lowing small example shows. Consider a dataset with six binary attributes that is the
Cartesian product of two (independent) XOR truth tables. Each pair of attributes in
this dataset is independent, and has the same distance of 2. Consequently, no algo-
rithm based on pairwise distances will be able to detect that there are two groups of
three correlated attributes in this dataset.

20 Michael Mampaey, Jilles Vreeken

Finally, we might consider directly using the mutual information between clus-
ters. Let A1 and A2 be two attribute clusters, then the distance between the clusters
is d(A1, A2) = H(A1, A2) − I(A1, A2). In this case, the best clustering is always
the complete clustering. In the absence of a complexity penalty term, this requires the
user to specify a parameter k for the number of clusters. Moreover, the choice of a
specific search strategy is crucial here. The mutual information between a large and a
small cluster will typically be larger than the mutual information between two small
clusters. If one cluster becomes large, it will typically have a high similarity with
other clusters. Hence, it will tend to ‘eat up’, as it were, the smaller clusters, rather
than that the small clusters would merge together, resulting in a very heterogeneous,
unbalanced clustering, which is not likely to be a desirable result.

5.2 Divisive hierarchical clustering

Instead of taking a bottom-up, agglomerative approach, a top-down divisive hierar-
chical clustering algorithm could be considered. Such an algorithm would start at the
least refined clustering, and then iteratively split a cluster such that the description
length decreases maximally. However, this approach is far from feasible, since al-
ready in the first step, the algorithm needs to consider 2|A|−1− 1 possible splits (i.e.,
there are 2|A| − 2 proper nonempty subsets; their complements describe the same
splits). While a divisive approach does consider more clusterings than an agglom-
erative one, and hence could possibly result in a clustering with a lower description
length, its exponential behavior makes it unsuitable for summarization purposes.

5.3 Beam search

Beam search attempts to balance the level-wise, large-coverage approach of breadth-
first search, with the memory-efficiency of depth-first or greedy search. Starting with
an initial state, a beam containing the b best solutions is maintained at each level,
where b is called the beam width. The beam at the next level consists of the b best
scoring neighbor states of the solutions in the current beam. Note that when the beam
width is set to one, beam search is equivalent to our greedy algorithm. On the other
hand, if we set b to infinity, the algorithm is simply breadth-first search. Since beam
search considers a larger part of the search space, it generally performs better for
larger values of b. However, in practice the beam often exhibits limited variability,
and may hence not lead to considerably better results. Further, both time and memory
complexity of the algorithm are multiplied by a factor b. We will empirically compare
our approach to beam search in Section 7.

5.4 Simulated annealing

Simulated annealing (Kirkpatrick, 1984) is a probabilistic optimization technique that
tries to avoid finding a locally but not globally optimal solution, by not only greedily
moving toward better neighbor solutions in the search space, but also heuristically

Summarizing Categorical Data by Clustering Attributes 21

moving to worse ones. The idea is borrowed from the physical process of annealing,
where a material is heated and then gradually cooled down to form a crystal structure,
which is a low energy state. The probability of transitioning to a neighboring state is
dependent on the difference in energy of both states, and the current temperature
of the system. As the temperature decreases, the probability of going to a higher
energy state decreases. Many parameters influence the end result, such as the initial
temperature, the cooling schedule, the material, etc.

In our setting, states are attribute clusterings, and the neighbors of a clustering
C are all clusterings that are the result of either merging two of its clusters, or split-
ting one. The description length acts as the energy function. For the temperature, we
employ a geometric cooling schedule: in iteration i, the temperature is decreased by
a factor α: ti+1 = αti. In this way, the number of iterations m and the cool down
rate are directly linked. We choose t0 = 1, and set α such that tm = αm becomes
equal to zero in double floating point precision. When in a certain state C, we ran-
domly choose to do either a split or a merge, and then uniformly pick a neighbor
state C′, and compute the difference in description length. The energy is normalized
by estimating the maximal possible difference by sampling.

The probability of switching from state C to state C′ in iteration i is given by

Pr(C → C′) = exp
−CS (C, C′)/N

λαi
.

The λ constant acts as a scaling parameter. If CS is positive, i.e., if C′ has a lower
description length than C, the transition is always made. On the other hand, if CS
is negative, C′ has a higher description length, and the transition is only made prob-
abilistically based on the magnitude of CS and the current temperature, which de-
creases over time. The algorithm is initiated in a random clustering.

Since simulated annealing has the potential to move away from a local minimum,
unlike true greedy approaches, it has the potential to find better solutions. However,
due to its inherently non-deterministic nature, a single run is not likely to give us a
satisfactory answer—rather, the algorithm will have to be run many times, and even
then we still have no guarantee that the best solution we encountered is anywhere
close to the global optimum. Furthermore, by considering both groupings and splits of
the current clustering, this approach is computationally heavy, as we have to calculate
up to an exponential number of switching probabilities per step. We will empirically
compare our greedy agglomerative approach to simulated annealing in Section 7.

6 Related Work

The main goal of our proposed method is to offer a good first impression of a categor-
ical dataset. For numerical data, averages and correlations can easily be computed,
and more importantly, are informative. For binary and categorical data, such informa-
tive statistics beyond simple counts are not readily available. As such, our work can
be seen as to provide an informative ‘average’ for categorical data; for those attributes
that interact strongly, it shows how often their value combinations occur.

22 Michael Mampaey, Jilles Vreeken

Many existing techniques for summarization are aimed at giving a succinct rep-
resentation of a given collection of patterns. Well-known examples include closed
itemsets (Pasquier et al, 1999) and non-derivable itemsets (Calders and Goethals,
2007), which both provide a lossless reduction of the complete pattern collection.

A lossy approach that provides a succinct summary of the patterns was proposed
by Yan et al (2005). The authors cluster groups of itemsets and describe these groups
using profiles, which can be characterized as conditional independence distributions
on a subset of the items, which can subsequently be queried. Experiments show that
our method provides better frequency estimates, while requiring fewer clusters than
profiles. Wang and Karypis (2004) give a method for directly mining a summary of
the frequent pattern collection for a given minsup threshold. Han et al (2007) provide
a more complete overview of pattern mining and summarization techniques.

For directly summarizing data rather than pattern sets much fewer proposals ex-
ist. Chandola and Kumar (2005) propose to induce k transaction templates such that
the database can be reconstructed with minimal loss of information. Alternatively,
the KRIMP algorithm (Vreeken et al, 2011; Siebes et al, 2006) selects those itemsets
that provide the best lossless compression of the database, i.e., the best description.
While it only considers the 1s in the data, it provides high-quality and detailed results,
which are consequently not as small and easily interpreted as our summaries. Though
the KRIMP code tables can generate data virtually indistinguishable from the origi-
nal (Vreeken et al, 2007), they are not probabilistic models and cannot be queried
directly, so they are not immediately suitable as data surrogates.

Wang and Parthasarathy (2006) build probabilistic Maximum Entropy models of
the data by incrementally adding those itemsets into the model that deviate more
than a given error threshold—considering the data as a bag of independent samples.
The approach ranks and adds itemsets in level-wise batches, i.e., first itemsets of size
1, then of size 2, and so on. Mampaey et al (2011) improve over this method by
avoiding the level-wise approach, and instead iteratively incorporate the itemset that
increases the likelihood of the model most. Furthermore, by employing the Bayesian
Information Criterion, the set of most informative itemsets can be identified without
requiring any parameters. De Bie (2011) proposes to use the Maximum Entropy prin-
ciple to instead model the data as a whole—considering it as a monolithic sample.
In (Kontonasios and De Bie, 2010) he shows this model can be used very effectively
to rank and select itemsets with regard to the information they provide, while also
taking their complexity into account.

All the above-mentioned techniques differ from our approach in that they model
the data in relatively high detail using itemsets, whereas we provide a more high level
summary, that identifies the most strongly interacting categoric attributes, and their
most prevalent attribute-value combinations.

Somewhat related to our method are low-entropy sets (Heikinheimo et al, 2007),
attribute sets for which the entropy lies below a given threshold. As entropy is strongly
monotonically increasing, typically very many low-entropy sets are discovered even
for low thresholds, and hence, this pattern explosion is often even worse than in fre-
quent itemset mining. To this end, Heikinheimo et al (2009) introduced LESS, a fil-
tering proposal called to select those low-entropy sets that together describe the data

Summarizing Categorical Data by Clustering Attributes 23

well. In our approach, instead of filtering, we discover attribute sets with low entropy
directly on the data.

Orthogonal to our approach, the maximally informative k-itemsets (miki’s) by
Knobbe and Ho (2006) are k items (or patterns) that together split the data opti-
mally, found through exhaustive search. Bringmann and Zimmermann (2007) pro-
pose a greedy alternative to this exhaustive method that can consider larger sets of
items. Our approach groups attributes together that correlate strongly, so the correla-
tions between groups are weak. As future work, we plan to investigate whether good
approximate miki’s can be extracted from our summaries.

Since our approach employs clustering, the work in this field is not unrelated.
However, clustering is foremost concerned with grouping rows together, typically re-
quiring a distance measure between objects. Co-clustering (Chakrabarti et al, 2004),
or bi-clustering (Pensa et al, 2005), is a type of clustering in which clusters are simul-
taneously detected over both attributes and rows. Chakrabarti et al (2004) also employ
the MDL principle to identify the best clustering, however, whereas our approach is
to identify groups of categoric attributes for which the attribute-value combinations
show strong correlation, their approach identifies locally dense areas in sparse binary
matrices, and is not trivially extendable for categoric data.

Au et al (2005) present an algorithm that clusters features in gene expression
data, taking into account a target attribute, in order to do classification. To this end
the authors introduce a distance measure between attributes, based on their mutual
information. However, as argued in Section 5, this may not always be a good choice.
The algorithm is a variant of the k-means algorithm—using mode attributes rather
than means. Since the number of clusters k is a parameter of the algorithm, the au-
thors propose to simply run the algorithm for all possible values of k, and select the
clustering minimizing a defined score. The application of the paper is classification of
gene expression data, which often suffers from the d � n problem, i.e., the number
of attributes (n) is far greater than the number of samples (d). This has implications
for the significance of the correlation (or mutual information) between attributes, and
might lead to overfitting. Our algorithm takes this into account by using MDL.

Dhillon et al (2003) provide an algorithm that clusters words in text data for clas-
sification. For each word cluster, a feature is constructed as a weighted average of the
distributions of the separate words in the cluster. While this inherently discards some
information, it also reduces the number of features, making classification easier, and
does not discard as much information as feature selection would. To find the clus-
ters, an algorithm similar to k-means is presented. The word clusters are then used
in a naive Bayes classifier. The number of clusters k is a parameter of the algorithm,
however, in this case it arguably is not a goal to find an optimal clustering, but to re-
duce the number of features purely for performance reasons, and hence it is probably
desirable to be able to control this parameter.

Our formalization can also be regarded as a distance measure between categoric
attributes (or, categoric data in general). As such, the proposal by Das et al (1997) is
both interesting and relevant. There, the authors take an orthogonal approach by mea-
suring the similarity of a set of binary attributes not by regarding the similarity over
the selected attributes, but by considering the marginal frequencies of a set of other
attributes, called probes. Although experimental results show that some true similar-

24 Michael Mampaey, Jilles Vreeken

ities between attributes are captured, the measure and its results do lack an intuitive
interpretation, and the selection of probes is manual, requiring further development
in order to be used in practice.

7 Experiments

In this section we experimentally evaluate our method and validate the quality of the
discovered attribute clusterings.

7.1 Setup

We implemented our algorithm in C++, and make the source code available for re-
search purposes.1 All experiments were executed on 2.67GHz (six-core) Intel Xeon
X5650 machines with 12GB of memory, running Linux, Ubuntu 11.4. All reported
runtimes were obtained using a single-threaded version of the implementation. Un-
less stated otherwise, empirical p-values were calculated against the scores of 1 000
randomized models or datasets, providing a resolution of at most 0.1%. For all exper-
iments we recorded memory usage during summary construction, which was at most
a few megabytes excluding the database.

7.2 Datasets

We evaluate our method on nineteen different datasets, covering a wide range of
different data characteristics. We use five synthetic datasets and fourteen real-world
and benchmark datasets, all of which, save one, are publicly available. Their basic
characteristics are depicted in Table 1.

The binary and categorical Independent datasets have independent attributes with
randomly drawn frequencies. The attributes of the Markov datasets form a Markov
chain. In the binary version each attribute is a copy of the previous one with a random
copy probability, the first attribute having a 50% probability of being one. Similarly,
the categorical version has attributes with up to eight values per attribute, and each
attribute depends on the previous one according to a randomly generated contingency
table. The categorical Independent and Markov data are generated such that they
have the same column margins. The DAG dataset is generated according to a directed
acyclic graph among its binary attributes. Each attribute depends on at most four of
its preceding attributes, according to randomly generated contingency tables.

Next, we use fourteen real-world and benchmark datasets. The well-known cate-
gorical Chess, Connect, and Mushroom datasets were obtained from the UCI Machine
Learning Repository (Frank and Asuncion, 2010). Their binary counterparts were
obtained from the FIMI Dataset Repository (Goethals and Zaki, 2003), and simply
contain one binary attribute for each attribute-value pair in the categorical versions.

1 http://www.adrem.ua.ac.be/implementations

Summarizing Categorical Data by Clustering Attributes 25

Table 1 The basic characteristics of the datasets used in the experiments. Shown are the number of
attributes |A|, the number of transactions |D|, the description length of the independence clustering
L(I, D), and the canonical description length Lc(D), both in bits

Binary Data |A| |D| L(I, D) Lc(D)

Independent 50 20 000 895 079 1 000 000
Markov 50 20 000 999 159 1 000 000
DAG 50 20 000 970 485 1 000 000
Accidents 468 340 183 25 991 622 159 205 644
BMS-Webview-1 497 59 602 1 201 522 29 622 194
Chess 75 3 196 142 812 239 700
Connect 129 67 557 3 593 260 8 714 853
DNA Amplification 391 4 590 191 428 1 794 690
Mammals 121 2 183 121 572 264 143
MCADD 198 31 924 2 844 465 6 320 952
Mushroom 119 8 124 443 247 966 756
Pen Digits 86 10 992 605 413 945 312

Categorical Data

Independent 50 20 000 2 037 016 2 109 825
Markov 50 20 000 2 036 871 2 109 824
Chess 37 3 196 71 651 120 122
Connect 43 67 557 2 013 066 4 604 239
MCADD 22 31 924 1 966 658 2 168 968
Mushroom 23 8 124 267 334 388 268
Pen Digits 17 10 992 377 801 430 723

The Accidents and BMS-Webview-1 datasets were also obtained from the FIMI
Dataset Repository.

The DNA Amplification database contains data on DNA copy number amplifi-
cations. Such copies activate oncogenes and are hallmarks of nearly all advanced
tumors (Myllykangas et al, 2006). Amplified genes represent targets for therapy, di-
agnostics and prognostics.

The Mammals data2 consists of presence records of European mammals within
geographical areas of 50×50 km2 (Mitchell-Jones et al, 1999).

The categoric MCADD data was obtained from the Antwerp University Hospi-
tal. Medium-Chain Acyl-coenzyme A Dehydrogenase Deficiency (MCADD) (Baum-
gartner et al, 2005; Van den Bulcke et al, 2011) is a deficiency newborn babies are
screened for during a Guthrie test on a heel prick blood sample. The instances are rep-
resented by a set of 21 features: 12 different acylcarnitine concentrations measured
by tandem mass spectrometry (TMS), together with 4 of their calculated ratios and 5
other biochemical parameters, each of which we discretized using k-means clustering
with a maximum of 10 clusters per feature.

Finally, the Pen Digits data was obtained from the LUCS-KDD data library (Coe-
nen, 2003), and contains handwritten samples of the digits 0–9. The attributes corre-
spond to eight x and y coordinates on a grid, describing the trace of a certain digit,
which is indicated by the class label.

2 http://www.european-mammals.org/

26 Michael Mampaey, Jilles Vreeken

Table 2 Results of our attribute clustering algorithm. Shown are the number of identified groups of at-
tributes k, the description length L(C, D) and the wall clock time used to discover the clusterings. Further,
we show the relative description lengths L(C,D)

L(I,D)
and L(C,D)

Lc(D)
with respect to the description length of the

independence clustering and canonical description length

Compression ratio

Binary Data k L(C, D) time L(I, D) Lc(D)

Independent 49 895 078 1 s 99.9% 89.5%
Markov 15 884 943 4 s 88.6% 88.5%
DAG 12 797 588 5 s 82.2% 79.8%
Accidents 116 16 893 671 120 m 65.0% 10.6%
BMS-Webview-1 140 1 078 905 16 m 89.8% 3.6%
Chess 11 58 457 1 s 40.9% 24.4%
Connect 7 1 559 773 88 s 43.4% 17.9%
DNA Amplification 56 82 209 33 s 42.9% 4.6%
Mammals 28 98 515 2 s 81.0% 37.3%
MCADD 12 1 816 628 146 s 63.9% 28.7%
Mushroom 9 169 425 13 s 38.2% 17.5%
Pen Digits 5 333 032 10 s 55.0% 35.2%

Categorical Data

Independent 50 2 037 016 4 s 100.0% 96.5%
Markov 20 1 932 611 12 s 94.9% 91.6%
Chess 9 57 353 1 s 80.0% 47.7%
Connect 7 1 554 827 11 s 77.2% 33.8%
MCADD 11 1 785 850 6 s 90.8% 82.3%
Mushroom 3 150 012 1 s 56.1% 38.6%
Pen Digits 5 309 788 1 s 82.0% 71.9%

7.3 Evaluation

Table 2 presents an overview of the results of our algorithm for the used datasets. We
show the number of clusters k in the clustering that our algorithm finds, its description
length L(C, D)—both absolute and relative to the both the description length of the
independence clustering L(I, D) and the canonical description length Lc(D)—and
the wall clock time the algorithm took to complete. A low number of clusters and a
short description length indicate that our algorithm models structure that is present in
the data. For most datasets we see that the number of clusters k is much lower than
the number of attributes |A|. In fact, these numbers are such that it is indeed feasible
to inspect these clusters by hand. Many of the datasets are highly structured, which
can be seen from the strong compression ratios the clusterings achieve with respect
to their canonical description lengths. Lastly, the table also shows that our algorithm
usually needs just a handful of seconds to complete.

Below, we investigate the clusterings discovered by our algorithm in closer detail.
For the categorical Independent data, we see that the algorithm identifies 50 clus-

ters of single attributes, which correctly corresponds to the generating independence
distribution. For the binary Independent data, though, the algorithm concludes that
there are 49 clusters. Upon further inspection, it turns out that the two attributes that
are grouped together are not really independent in the data. In fact, their joint distribu-

Summarizing Categorical Data by Clustering Attributes 27

tion differs significantly from their product distribution (p-value 0.04). This actually
makes an interesting point, because MDL does not specifically attempt to discover
the ‘true’ underlying model (which for the synthetic data is available to us), but in-
stead simply tries to describe the data best. For the data instance under consideration
here, where by chance two attributes happen to be somewhat correlated, the algorithm
cannot but conclude that they should be clustered together.

The attributes in both Markov datasets form a Markov chain, so we expect that
nearby attributes are clustered together. This is indeed what happens: each cluster
consists of consecutive attributes. Figure 3 shows the resulting dendrogram for a sub-
set of the attributes in the categorical dataset. Further, if we look at the mutual infor-
mation between pairs of adjacent attributes, the pairs with high mutual information
tend to be grouped together, whereas pairs with low mutual information are not.

Likewise, in the DAG dataset, which has attribute dependencies forming a di-
rected acyclic graph, the clusters contain attributes which form tightly linked sub-
graphs. Figure 6 depicts the dependency graph between the attributes of the DAG
dataset. The width of the edges is proportional to the mutual information between the
corresponding attributes. Note that this is done for illustration purposes only, since
pairwise mutual information does not capture all information, as pointed out in Sec-
tion 5. The discovered clusters are drawn in rectangles. As the figure shows, the edges
inside clusters are generally bold, while the few inter-cluster edges are usually thin.
This is a good indication of the quality of the discovered clustering.

The DNA Amplification dataset is an approximately banded dataset (Garriga et al,
2011): the majority of the ones form a staircase pattern, and are located in blocks
along the diagonal. In Figure 7, a selected subset of the rows and columns of the
data is plotted, along with some of the attribute clusters that our algorithm finds.
The 1s in the data are drawn dark, the 0s are white. For presentation purposes the
figure has been rotated. The clustering clearly distinguishes the blocks that form the
staircase pattern, even though the data is quite noisy. These blocks correspond to
related oncogenes that are often amplified in conjunction. Further, the clusters contain
genes that are located close to each other on their respective chromosomes. Inspecting
the code tables, we see that the attributes within them are strongly correlated: for
all code tables, the value with the highest frequency consists of zeroes (well over
90%, note this is a sparse dataset), and is followed by the value consisting of ones,
whereas the remaining values have considerably lower frequencies. This shows that
the attributes in a single are usually either all present or all absent, far more than
expected under independence.

The Connect dataset contains all legal grid configurations with eight discs, of the
well-known Connect Four game. The game grid has 7 columns and 6 rows, and for
each of the 42 locations there is an attribute describing whether it is empty, or which
one of the two players has positioned a disc there. Furthermore, a class label describes
which player can win or whether the game will result in a draw—note that as we are
mining the data exploratory, we consider the class label as ‘just another attribute’.
For both versions of the data, the algorithm discovers 7 clusters. Upon inspection, it
turns out that each of these clusters corresponds to a single column in the game, i.e.,
the structure found by the algorithm reflects the physical structure of the game, even
though our algorithm has no knowledge of this. Whereas different columns are more

28 Michael Mampaey, Jilles Vreeken

13

4 5

2

6 7

9

810

12 11

13 14

15

17 16

1918

2120

22

23 24

26

27

25

28

29

31

30

32

33

34

35

37

38

36

3940

4143

4546

47 4849

50

42

44

Fig. 6 Dependency graph of the attributes of the DAG dataset, with the discovered attribute clusters drawn
in rectangles. The width of an edge between two nodes is proportional to the mutual information between
the corresponding attributes

Summarizing Categorical Data by Clustering Attributes 29
Ite

m
s

(o
nc

og
en

es
)

Transactions (patients)

Fig. 7 A selected sub-matrix of the DNA Amplification data and the corresponding discovered attribute
clusters, which are separated by the dotted lines. For presentation purposes the figure is rotated sideways

or less independent, attributes within a column are dependent: an empty location
cannot have a nonempty location above it. This is also observed in the code tables:
all occurring values correspond to configurations with zero or more filled locations at
the bottom, with empty locations above that. Since the full grid contains only eight
discs, the highest frequency values in the code tables are the relatively sparse ones.
Furthermore, the class label is placed in the cluster of the middle column; this is a
very plausible finding, since any horizontal or diagonal row must necessarily pass
through the middle column, making it key to winning the game. Additionally, we
note that in the binary dataset items originating from the same categorical attribute
are grouped together, rather than being spread over different clusters.

For both the Chess and Mushroom datasets, we observe that the discovered clus-
terings for the categorical and binary datasets are not exactly the same. The algorithm
makes a few more merges in the categorical case, but otherwise the discovered clus-
terings are comparable. For these datasets we also see in the binary variants that
items originating from the same attribute in general tend to be clustered together. In-
terestingly, the (absolute) description lengths are very similar for both variants of the
datasets, being slightly smaller in the categorical case. The explanation lies in the fact
that for the categorical data we already know which values a given attribute may as-
sume, while for the binary versions we do not know which items belong to the same
attributes, which indirectly increases the cost to describe the code tables.

The attributes of the MCADD dataset consist of 12 different acylcarnitine con-
centrations measured by tandem mass spectrometry (TMS), together with 4 of their
calculated ratios and 5 other biochemical parameters, and the class label which in-
dicates whether MCADD is present. This recessive metabolic disease affects about
one in 10 000 people while around one in 65 is a carrier of the responsible mutated
gene. If left undiagnosed, this rare disease is fatal in 20 to 25% of the cases and many
survivors are left with severe brain damage after a severe crisis. In the results, we
see that acylcarnitines and corresponding calculated ratios are detected and grouped
together. For instance, the attributes for C8 and C10 are in a cluster together with the
ratio C8

C10 . Further, the class label cluster also contains the ratio C8
C12 , which is one of

the features commonly used in diagnostic criteria by experts and was also discovered
in previous in-depth studies (Baumgartner et al, 2005).

30 Michael Mampaey, Jilles Vreeken

Table 3 Results of our algorithm using the description length Lr(C, D), which uses prequential coding.
Shown are the number of discovered clusters k, and the absolute and relative description length with
respect to the description length of the independence and canonical clusterings

Binary Data k Lr(C, D)
Lr(C,D)
Lr(I,D)

Lr(C,D)
Lc(D)

Independent 48 894 855 99.9% 89.5%
Markov 11 880 567 88.1% 88.1%
DAG 8 774 276 82.5% 77.4%
Accidents 171 17 253 821 66.4% 10.8%
BMS-Webview-1 97 1 045 076 87.3% 3.5%
Chess 15 60 892 42.7% 25.4%
Connect 15 1 632 662 45.4% 18.7%
DNA Amplification 76 77 598 41.2% 4.3%
Mammals 29 92 990 76.9% 35.2%
MCADD 23 2 050 896 72.1% 32.4%
Mushroom 18 248 494 56.1% 25.7%
Pen Digits 12 379 027 62.6% 40.1%

Categorical Data

Independent 50 2 036 444 100.0% 96.5%
Markov 15 1 908 282 93.7% 90.4%
Chess 7 56 107 78.5% 46.7%
Connect 7 1 552 621 77.1% 33.7%
MCADD 7 1 756 006 89.3% 81.0%
Mushroom 6 188 540 70.7% 48.6%
Pen Digits 4 303 282 80.3% 70.4%

Finally, for the Pen Digits datasets, we discover five attribute clusters. Each clus-
ter consists entirely of either x or y coordinates. Besides spatially, the coordinate
attributes are also temporally clustered: coordinates appearing first along the trace of
a digit are grouped together, as are coordinates drawn later. More specifically, the x
coordinates are split in three groups: beginning, middle, and end. The y coordinates
are split in a beginning, and a middle-end cluster. This last cluster also contains the
class label, which means that the label is correlated to the vertical coordinates of the
pen when drawing the latter half of a digit, a statement the authors deem plausible.
The binary variant of this datasets results in a very similar summary, i.e., barring a
few exceptions, items originating from the same attributes are grouped together in the
same way as with the categorical data.

The above examples show that the attribute clusterings discovered by our algo-
rithm are of high quality. We find structure between correlated attributes, which can
be seen from the strong compression ratios and relatively small number of clusters.
When subjectively investigating the resulting clusters themselves, they are easily in-
terpretable and highly insightful.

Having established that we achieve good results, we investigate the contribution
our encoding. We compare our formalization of description length L(C, D) with the
description length Lr(C, D), which uses prequential coding (see Section 3). Table 3
shows the results for the discovered clusterings using Lr(C, D) as the description
length. We note that the numbers of discovered clusters are highly comparable over-
all. For the binary datasets we see that prequential coding is a bit more conservative

Summarizing Categorical Data by Clustering Attributes 31

in merging clusters, resulting in slightly higher numbers of clusters. For the categori-
cal data there is virtually no difference, as there the shorter encoding of the ’left hand
sides’ of the code tables allows the efficient prequential encoding to merge more of-
ten than for binary data. Furthermore, the description lengths for both encodings are
in the same ballpark.

It is important to emphasize, however, that we cannot simply compare the descrip-
tion lengths of two different clusterings under two different encodings. Nonetheless,
the fact that the returned best clusterings for both encodings tend to be alike, and
have a similar description length, is a good indication that our encoding is close to
the theoretically clean refined MDL. Upon inspection, the discovered clusters are
often comparable to the ones discovered using our L(C, D) description length, how-
ever, for many datasets the clusters discovered using Lr(C, D) tend to be of a slightly
lower subjective quality. For instance, for the binary Connect data we do not obtain
the seven column clusters that were obtained before. Consequently, since the results
using our encoding are comparable or better than those using prequential coding, and
additionally since our encoding is more intuitive, from this point on we will only be
using our description length L(C, D).

7.4 Randomization

Next, we investigate whether our algorithm is generally capable of discovering struc-
ture beyond what can be straightforwardly explained by simpler statistics. As such,
for the binary datasets, we here consider the row and column margins, i.e., the number
of ones per row and column. The idea is that if for some data the discovered attribute
clustering simply follows from the margins of the data, then we would obtain the
same result on any other dataset with the same margins. By considering random data
with the same margins as the real datasets, we can so check whether our models are
indeed able to model structure of the data at hand beyond what follows from its mar-
gins (assuming these datasets contain more structure than that). Note that for random
data we generally expect our approach to return the independence clustering.

To obtain the random data samples needed for these experiments, we use swap
randomization, which is the process of randomizing data to obscure the internal de-
pendencies, while preserving the row and column margins of the data (Gionis et al,
2007). This is achieved by applying individual swap operations that maintain these
margins. That is, one randomly finds two items a and b, and two transactions, such
that a occurs in the first transaction but not in the second, and vice versa. Then, a
swap operation simply swaps these items. This is a Markov Chain Monte Carlo pro-
cess, which has to be repeated numerous times, as often as is required to break down
the significant structure of the data, i.e., the mixing time of the chain; as suggested
by Gionis et al (2007), we use five times the number of ones in the data.

For each dataset we create 1 000 swap randomized datasets. We then calculate the
average number of clusters our algorithm finds, and the average description length.
Table 4 shows the results. We see that for all datasets the number of clusters is very
close to the number of attributes, indicating that the structure that was present in
the original datasets, was not simply a consequence of the row and column margins.

32 Michael Mampaey, Jilles Vreeken

Table 4 Swap randomization experiments on the binary data, for 1 000 swap randomized datasets. Shown
are the average number of clusters k, the average absolute description length L(C′, D′), the description
length L(C, D) of the original data, the average relative description length with respect to both the inde-
pendence clustering description length L(I, D′) and the canonical description length Lc(D′), and the
empirical p-value for the original data

Binary Data k L(C′, D′) L(C, D)
L(C′,D′)
L(I,D′)

L(C′,D′)
Lc(D′)

empirical
p-value

Independent 49.2 895 078 895 078 99.9% 89.5% 51.5%
Markov 48.9 999 157 884 943 99.9% 99.9% < 0.1%
DAG 48.9 970 481 797 588 99.9% 97.0% < 0.1%
Accidents 198.2 25 987 733 16 893 671 99.9% 16.3% < 0.1%
BMS-Webview-1 221.1 1 195 928 1 078 905 99.5% 4.0% < 0.1%
Chess 58.8 142 748 58 457 99.9% 59.5% < 0.1%
Connect 80.9 3 592 591 1 559 773 99.9% 41.2% < 0.1%
DNA Amplification 194.1 190 422 82 209 99.5% 10.6% < 0.1%
Mammals 62.3 121 048 98 515 99.5% 45.8% < 0.1%
MCADD 163.7 2 844 348 1 816 628 99.9% 45.0% < 0.1%
Mushroom 77.5 443 042 169 425 99.9% 45.8% < 0.1%
Pen Digits 64.6 605 330 333 032 99.9% 64.0% < 0.1%

Furthermore, the description lengths are much higher than those for the clusterings
discovered in the original data. In fact, the third to last column of Table 4 shows that
the average description length is almost exactly equal to the description length of the
independence clustering. The last column of Table 4 shows the empirical p-value of
our results, which is defined as the empirical probability of observing a description
length at least as low as L(C, D), and is computed as

p =
|{D′ | L(C′, D′) ≤ L(C, D)}|+ 1

|{D′}|+ 1
,

where {D′} is the set of 1 000 swap randomized datasets. Figure 8 shows the descrip-
tion length distribution of the swap randomized versions of the Connect dataset. We
see that the description length of the original dataset is significantly lower than that
of any of the swap randomized datasets. The p-values show that this holds for all the
binary datasets, except for Independent; the structure of this dataset can of course be
completely described by the column margins only.

Our algorithm is greedy in nature, and therefore does not necessarily discover the
optimal clustering, that is, the clustering C∗ which globally minimizes L(C, D). To
get an idea of how good the discovered clustering is, we compare it to random clus-
terings. We uniformly sampled 1 000 random k-attribute clusterings for each dataset
(where k is the size of the discovered clustering), and compute their description
lengths. Table 5 shows for each dataset the absolute and relative average descrip-
tion length and standard deviation. For most datasets the relative description length
is still less than 100%, indicating that even random clusterings can capture some of
the structure, especially for strongly structured datasets. However, we also see that
for all datasets (except trivially for the categorical Independent data) the description
length for random clusterings is much worse than that of the original discovered clus-
tering (see Table 2). From the empirical p-values in the last column of Table 5, we

Summarizing Categorical Data by Clustering Attributes 33

Table 5 Average description length over 1 000 randomly generated k-partitions, relative to the canoni-
cal description length of the datasets. Shown are the average absolute description length L(C′, D), the
description length L(C, D) of the original discovered clustering, the relative description length with stan-
dard deviation, and the empirical p-value of the original discovered clustering

Binary Data L(C′, D) L(C, D)
L(C′,D)
Lc(D)

standard
deviation

empirical
p-value

Independent 930 878 895 078 93.1% 0.3% < 0.1%
Markov 994 857 884 943 99.5% 0.7% < 0.1%
DAG 976 662 797 588 93.2% 1.1% < 0.1%
Accidents 25 830 095 16 893 671 16.2% 0.1% < 0.1%
BMS-Webview-1 1 200 869 1 078 905 4.1% 0.0% < 0.1%
Chess 135 785 58 457 56.6% 1.9% < 0.1%
Connect 3 274 147 1 559 773 37.6% 0.9% < 0.1%
DNA Amplification 199 770 82 209 11.1% 0.1% < 0.1%
Mammals 117 597 98 515 44.5% 0.3% < 0.1%
MCADD 3575766 1 816 628 56.6% 1.9% < 0.1%
Mushroom 341 035 169 425 35.3% 0.7% < 0.1%
Pen Digits 654 217 333 032 69.2% 2.4% < 0.1%

Categorical Data

Independent 2 037 016 2 037 016 96.5% 0.0% 100.0%
Markov 2 240 147 1 932 611 115.9% 9.2% < 0.1%
Chess 70 424 57 353 59.6% 1.0% < 0.1%
Connect 1 916 691 1 554 827 41.6% 0.6% < 0.1%
MCADD 2 169 650 1 785 850 100.0% 10.9% < 0.1%
Mushroom 179 259 150 012 46.2% 3.7% < 0.1%
Pen Digits 399 095 309 788 92.7% 7.8% < 0.1%

can see that our algorithm significantly outperforms randomly generated clusterings.
In fact, none of the random clusterings had a lower description length than the one
discovered by our algorithm (again, except for Independent). Figure 9 depicts the de-
scription length distribution for the BMS-Webview-1 dataset, of the 1 000 randomly
generated random attribute clusterings, together with the description length of the
clustering found by our algorithm.

3.5925 3.5926 3.59271.5587 1.5588
x 106

0

20

40

60

80

140

N
um

be
r o

f d
at

as
et

s

Total compressed size (bits)

Original
data

120

100

Fig. 8 Distribution of the description lengths of 1 000 swap randomized version of the binary version of
the Connect dataset. The description length of the original data is indicated by the arrow

34 Michael Mampaey, Jilles Vreeken

1.200 1.2051.195

160

1.050 1.010
x 106

0

20

40

60

80

140

N
um

be
r o

f c
lu

st
er

in
gs

Total compressed size (bits)

Discovered
clustering

120

100

Fig. 9 Distribution of the description lengths of 1 000 random k-clusterings, for the BMS-Webview-1
dataset. The description length of the clustering discovered by our algorithm is indicated by the arrow

7.5 Beam search and simulated annealing

In this subsection we investigate whether we can improve our algorithm by employ-
ing different search strategies. We ran experiments using beam search for a range
of beam widths. Table 6 shows the results for b equal to 2, 5, 10, and 15. Note that
using a beam width of 1 corresponds to our original algorithm. For most datasets
and parameter settings, the discovered summaries are exactly the same as for a beam
with of 1. In the other cases, some summaries with a lower description length were
discovered, however, this relative decrease is barely noticeable (i.e., 10−3 or less).
Meanwhile, it is clear that both runtime and memory consumption grow as the beam
size is increased, namely by a factor b. Therefore, it does not seem to be favorable
to add a beam to our algorithm, since neither the results nor the performance can no-
tably be improved upon. The reason for this is that although beam search considers
more search paths, the beam tends to exhibit very little variability and hence usually
ends up with the same result.

Table 7 gives the results of similar experiments using simulated annealing. For
each dataset, we execute 100 runs, where a single run consists of 1 000 iterations.
The best clustering over those 100 runs is then reported. We repeat the experiments
for varying settings of the λ scaling parameter. For the synthetic datasets, we see that
simulated annealing performs approximately the same as our algorithm, i.e., the com-
pression ratios are comparable. For most of the other datasets, however, the results
are noticeably worse than our algorithm. Only for MCADD does simulated annealing
provide a marginally better result. The influence of the λ parameter seems to be that
the compression ratios decrease slightly for larger λ, although not much. This is be-
cause the λ parameter controls the decrease of the probability threshold to move away
from a local optimum. Due to the inherently nondeterministic nature of the simulated
annealing algorithm, we must perform many runs, but we do not know how many in
advance. Furthermore, in practice the simulated annealing algorithm has many more
parameters than we used in our experiments, e.g., the cooling schedule, and tuning
these parameters can prove to be difficult. Hence, simulated annealing does not seem
to provide any improvement over our algorithm.

Summarizing Categorical Data by Clustering Attributes 35

Table 6 Results for the beam search experiments for various beam widths. The table gives the description
length L(C, D) of the best discovered clustering, relative to the canonical description length Lc(D). The
first column repeats the results from Table 2, and is equivalent to the case b = 1. Model that compresses
best depicted in bold at the smallest beam width for that score

Binary Data L(C,D)
Lc(D)

b = 2 b = 5 b = 10 b = 15

Independent 89.5% 89.5% 89.5% 89.5% 89.5%
Markov 88.5% 88.5% 88.5% 88.5% 88.5%
DAG 79.8% 79.7% 79.7% 79.7% 79.7%
Accidents 10.6% 10.6% 10.6% 10.6% 10.6%
BMS-Webview-1 3.6% 3.6% 3.6% 3.6% 3.6%
Chess 24.4% 24.4% 24.4% 24.4% 24.4%
Connect 17.9% 17.9% 17.9% 17.9% 17.9%
DNA Amplification 4.6% 4.6% 4.6% 4.6% 4.6%
Mammals 37.3% 37.3% 37.3% 37.3% 37.3%
MCADD 28.7% 28.7% 28.7% 28.7% 28.7%
Mushroom 17.5% 17.4% 17.4% 17.4% 17.4%
Pen Digits 35.2% 35.2% 35.2% 35.2% 35.2%

Categorical Data

Independent 96.5% 96.5% 96.5% 96.5% 96.5%
Markov 91.6% 91.4% 91.4% 91.4% 91.4%
Chess 47.7% 47.7% 47.7% 47.7% 47.7%
Connect 33.8% 33.8% 33.8% 33.8% 33.8%
MCADD 82.3% 82.3% 82.0% 82.0% 82.0%
Mushroom 38.6% 38.6% 38.3% 38.3% 38.3%
Pen Digits 71.9% 71.9% 71.9% 71.9% 71.9%

7.6 Frequency estimation

Finally, in this subsection we investigate how well our summaries can be used as
surrogates of the data. We do this by using the code tables to estimate itemset fre-
quencies, as described in Section 3.8. For each dataset we first mine the top 10 000
closed frequent itemsets.3 Then, for each itemset in this collection, we estimate its
frequency using the discovered attribute clustering, and compute both its absolute
and relative error. For comparison, we generate 1 000 random k-clusterings, estimate
the itemset frequencies for each one, and average their mean absolute and relative
error. The results are shown in Table 8.

Although frequency estimation is not the main goal of our approach, the results
we obtain are very good. For most datasets, the average absolute error is less than 1%.
Furthermore, the average relative error is usually also just a few percentage points.
For the datasets where the relative error is larger, we see that the cause for this lies
with the fact that the itemsets in those datasets have a very low average frequency.
Compared to the random k-clusterings, we see that our algorithm always performs
better on average, and this difference is significant, as can be seen from the empir-
ical p-values in the last column. Further, as the code tables corresponding to a k-
clustering—with k < n—inherently contain more information on how the attributes

3 More precisely, we use the largest minimum support threshold such that the number of frequent closed
itemsets is at least 10 000; therefore the total number of itemsets may be slightly larger.

36 Michael Mampaey, Jilles Vreeken

Table 7 Results for the simulated annealing experiments for various settings of the λ parameter. The table
gives the description length L(C, D) of the best discovered clustering, relative to the canonical description
length Lc(D). The first column repeats the results from Table 2. Best compressing model depicted in bold

Binary Data L(C,D)
Lc(D)

λ = 100 λ = 101 λ = 102 λ = 103

Independent 89.5% 89.5% 89.5% 89.5% 89.5%
Markov 88.5% 88.6% 88.6% 88.6% 88.5%
DAG 79.8% 80.3% 80.5% 80.0% 80.3%
Accidents 10.6% 15.8% 15.8% 15.6% 15.7%
BMS-Webview-1 3.6% 4.0% 4.0% 4.0% 4.0%
Chess 24.4% 30.9% 28.8% 30.9% 28.1%
Connect 17.9% 28.2% 26.3% 28.0% 26.9%
DNA Amplification 4.6% 10.0% 10.0% 10.1% 10.0%
Mammals 37.3% 40.4% 40.4% 40.6% 40.2%
MCADD 28.7% 43.2% 43.1% 43.3% 43.1%
Mushroom 17.5% 25.8% 24.0% 24.6% 24.7%
Pen Digits 35.2% 47.1% 48.2% 48.7% 48.1%

Categorical Data

Independent 96.5% 96.5% 96.5% 96.5% 96.5%
Markov 91.6% 92.4% 92.0% 92.2% 91.8%
Chess 47.7% 48.0% 48.0% 48.1% 48.0%
Connect 33.8% 34.2% 34.3% 34.2% 34.2%
MCADD 82.3% 82.1% 82.1% 82.1% 82.1%
Mushroom 38.6% 39.7% 39.5% 39.7% 39.7%
Pen Digits 71.9% 73.8% 72.3% 72.5% 72.1%

interact than for the independence clustering—which is an n-clustering, and hence by
definition contains no correlations between attributes—our algorithm also performs
better than the independence model in estimating count queries.

Figure 10 shows the average estimation error in function of the frequency of the
top-10 000 closed itemsets for the Mushroom dataset, in bins with a width of 5%. We
see that the error tends to grow as the frequency decreases; the reason for this lies in
the fact that low-frequency itemsets tend to be larger (as also depicted in the figure),
and hence we have to combine information from more code tables, which makes the
estimate less precise since in doing so we make more independence assumptions.

In Figure 11 we plot the cumulative probability of the absolute estimation er-
ror for Connect and Mushroom, respectively. For every ε ∈ [0, 1] we determine the
probability δ that the absolute estimation error | fr(X) − f̂r(X) | is greater than ε.
For both datasets we see that our summaries outperform the random k-clusterings,
which in turn only marginally improve upon the independence model. For instance,
for Mushroom we see that probability of an absolute estimation error larger than 5%
is about 40% for the k-random model, whereas for our model this is only 1%.

In Table 9 the speed of querying code tables is demonstrated. For each dataset,
we generate 100 000 itemsets uniformly, with sizes uniformly picked between 2 and
the size of the largest transaction. First, we measure the query speed of a straightfor-
ward counting algorithm, which iterates over all transactions, and increases a counter
whenever the queried itemset is contained in a transaction. Second, we measure the
speed of querying by using code tables rather than the data itself. Both methods were

Summarizing Categorical Data by Clustering Attributes 37

Table 8 Frequency estimation of the top 10 000 closed frequent itemsets. Depicted are the average fre-
quency fr of the itemsets in the original data, the average absolute and relative errors of the frequency
estimates using our model, the average absolute and relative errors for 1 000 random k-partitions, and the
empirical p-values of the result of our algorithm for the relative estimation error

Attribute Clustering Random k-partition

Binary Data fr
∣∣∣fr − f̂r

∣∣∣ |fr−f̂r|
fr

∣∣∣fr − f̂r
∣∣∣ |fr−f̂r|

fr

empirical
p-value

Independent 29.0% 0.1% 0.5% 1.3% 4.5% < 0.1%
Markov 15.7% 0.3% 2.0% 1.3% 7.9% < 0.1%
DAG 25.5% 0.6% 2.4% 2.1% 8.7% < 0.1%
Accidents 55.8% 1.4% 2.7% 2.9% 5.3% < 0.1%
BMS-Webview-1 0.1% 0.1% 83.8% 0.1% 91.2% < 0.1%
Chess 81.2% 1.0% 1.2% 1.4% 1.7% 0.2%
Connect 88.8% 0.4% 0.4% 2.2% 2.5% < 0.1%
DNA Amplification 0.7% 0.1% 53.3% 4.2% 86.6% < 0.1%
Mammals 43.0% 13.3% 31.7% 19.8% 46.8% < 0.1%
MCADD 2.6% 0.2% 8.7% 0.3% 13.1% < 0.1%
Mushroom 12.5% 1.3% 13.6% 5.1% 44.9% < 0.1%
Pen Digits 6.1% 2.9% 52.1% 3.3% 58.5% < 0.1%

Categorical Data

Independent 10.2% 0.1% 1.3% 0.1% 1.3% 100%
Markov 11.7% 0.3% 2.7% 0.6% 5.1% < 0.1%
Chess 81.2% 0.5% 0.6% 1.3% 1.6% < 0.1%
Connect 88.8% 0.4% 0.4% 2.2% 2.5% < 0.1%
MCADD 2.6% 0.2% 8.5% 0.3% 13.1% < 0.1%
Mushroom 12.5% 2.8% 2.5% 38.8% 380.7% < 0.1%
Pen Digits 6.1% 3.0% 53.8% 3.3% 58.9% 1.3%

implemented in C++, compiled with the same compilation flags, and executed on the
same machine, and are included in the provided implementation. The first and second
columns of Table 9 show the average query time in milliseconds per itemset. For all
datasets, using approximate querying is considerably faster, often an order of magni-
tude or more. Constructing the code tables, however, also takes time, and hence there
is a point up to which querying the data is still cheaper. The rightmost column shows
the number of queries such that the time taken to construct the model plus the time
to perform the queries, is equal to querying the data (measured in a resolution of ten
itemsets). For most datasets, the takeover point lies at a few thousand queries.

Lastly, we compare the estimation of our summaries to the profile-based sum-
marization approach by Yan et al (2005). A set of (overlapping) profiles summarizes
a given set of patterns—rather than the data itself. A profile can be seen as a con-
ditional independence distribution on a subset of the items, which can subsequently
be queried. Although summarization with profiles is different from our clustering
approach, we can compare the quality of the frequency estimates. We mimic the ex-
periments by Yan et al (2005) on the Mushroom and BMS-Webview-1 datasets, by
comparing the average relative error, also called restoration error in the paper. The
collection of itemsets contains all frequent closed itemsets for a minsup threshold
of 25% and 0.1% respectively. For Mushroom we attain a restoration error of 2.31%,

38 Michael Mampaey, Jilles Vreeken
Av

er
ag

e
ab

so
lu

te
 e

rr
or

True Frequency

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

Average item
set size

error size

Fig. 10 The average estimation error per frequency, and the average itemset size per frequency for the
Mushroom dataset

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25

δ=
Pr

(e
rr

or
>
ε)

Absolute error ε

Best clustering
Random k-clustering

Indep. clustering

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25

δ=
Pr

(e
rr

or
>
ε)

Absolute error ε

Best clustering
Random k-clustering

Indep. clustering

Fig. 11 Probability of a frequency estimation error larger than ε for Connect (left) and Mushroom (right)
on the top 10 000 closed frequent itemsets

which is lower than the results reported by Yan et al (2005) for any number of profiles.
For BMS-Webview-1 our restoration error is 70.4%, which is on par with the results
recorded by Yan et al. when using about 100 profiles. Their results improve when
increasing the number of profiles. However, the best scores require over a thousand
profiles, arguably not a feasible number of profiles to inspect by hand.

8 Discussion

The experiments show that our method discovers summaries of high quality. Their
description lengths are noticeably low compared to both the canonical description
lengths, as well as the independence encoding, which supports that they model im-
portant structure of the data. Moreover, inspection of the returned clusterings shows
that on synthetic data the discovered attribute clusterings are in accordance with their
respective generative processes, while on real data correlated attributes are correctly
grouped, and the discovered clusterings are intuitive and logical. Through inspection
of the code table of a cluster, we showed the user is given clear insight in the distri-

Summarizing Categorical Data by Clustering Attributes 39

Table 9 The speed of direct querying versus frequency estimation, averaged over 100 000 randomly sam-
pled itemsets, and the point at which the aggregate model construction and approximate querying time
overtakes exact querying. Values in italics are extrapolated

Summary

Binary Data query construction estimation takeover

Independent 2.37 ms 1 s 0.02 ms 740
Markov 2.27 ms 4 s 0.04 ms 1 400
DAG 2.31 ms 5 s 0.11 ms 2 450
Accidents 45.18 ms 120 m 2.07 ms 166 968
BMS-Webview-1 1.91 ms 13 m 0.29 ms 596 913
Chess 0.32 ms 1 s 0.03 ms 1 790
Connect 7.52 ms 88 s 0.06 ms 15 220
DNA Amplification 0.24 ms 33 s 0.16 ms 412 500
Mammals 0.20 ms 2 s 0.05 ms 5 390
MCADD 2.49 ms 146 s 0.08 ms 60 380
Mushroom 0.50 ms 13 s 0.05 ms 28 140
Pen Digits 0.58 ms 10 s 0.10 ms 31 660

Categorical Data

Independent 0.53 ms 4 s 0.05 ms 6 170
Markov 0.53 ms 12 s 0.11 ms 28 510
Chess 0.09 ms 1 s 0.04 ms 5 380
Connect 2.52 ms 11 s 0.07 ms 5 810
MCADD 0.59 ms 6 s 0.06 ms 9 030
Mushroom 0.17 ms 1 s 0.05 ms 2 850
Pen Digits 0.21 ms 1 s 0.07 ms 3 270

bution of the data over the grouped attributes, and can easily identify the prevalent
attribute-value combinations.

The comparison between the two encodings shows our basic two-part MDL en-
coding provides performance similar to or even slightly better than the theoretically
more refined encoding, which tends to be more conservative. Additionally, the ba-
sic encoding has the advantage of being more interpretable. While our algorithm is
greedy, and therefore does not necessarily produce an optimal result, experiments
showed that the discovered summaries obtain significantly lower description lengths
than for random clusterings. The swap randomization experiments validate that our
approach identifies structure that can generally not be explained through simple statis-
tics, i.e., the row and column margins of the data. As such, we meet our goal that our
summaries provide basic insight in the data that goes beyond first order statistics.

The experiments on alternative search strategies show that beam search and simu-
lated annealing do not provide any noticeable improvement over our algorithm, which
indicates that our greedy search indeed exploits the structure of the search space well.
Finally, we demonstrated that besides the fact that attribute clusterings are a simple
and intuitive way to gain insight into a dataset, they can also be used as a surrogate
for the data that can be queried fast and reliably; itemset frequencies of the top 10 000
closed frequent itemsets are approximated with very high precision.

As such, we have shown that the summaries we discover provide useful insight
into the data beyond simple first order statistics, and can hence be used as a quick first

40 Michael Mampaey, Jilles Vreeken

inspection of the basic structure of the data, for instance in order to decide whether
and how the data should be analyzed in detail. Moreover, as they are simply group-
ings of attributes, and counts of the value combinations thereof, they can be straight-
forwardly included explicitly as background knowledge in other mining algorithms,
in order to prevent discovery of results that can be explained by what we already
know (Hanhijärvi et al, 2009; Mampaey et al, 2011).

While much of the focus in data mining research is on detailed data analysis, we
point out the importance of lightweight methods providing basic insight in data, to
the end of making an informed decision on whether and how to mine the data at hand.
Although such methods clearly should be fast, it is important to stress that the ease
of interpreting their results is key.

Besides basic insight, other possible uses for our summaries include feature se-
lection and feature construction. While not the aim of this work, and hence we do
not go into detail, one could consider only clustering attributes with the target label,
in order to identify by MDL the set of features that together best describe the target.
Alternatively, one could consider each cluster as a new feature, choosing either all,
or only the most prevalent, value combinations as its values. A related interesting fu-
ture use for our summaries would be fast approximate frequent itemset mining, as the
possible combinations of attribute-values can be effectively enumerated by a-priori.

Although the experiments show that high-quality summaries are discovered, by
the greedy nature of our approach we have no guarantees on how well we approxi-
mate the optimum. While this is an often-encountered problem in MDL, it may be
worthwhile to investigate whether a connection can be made to well-studied opti-
mization problems, such as SETCOVER, for which optimality bounds are known.

By using MDL to determine the optimal summary, our method is parameter-free:
the amount and structure in the data determines what model is chosen as optimal. In
general, MDL can be regarded as data hungry. That is, the more data is available,
the better more complex correlations can be detected. In general, our method is best
applied to data of at least 100s of rows.

Even though the experiments show that our algorithm is fast in practice, we see
room for improvements. For instance, the algorithm can be trivially and massively
parallelized, as well as optimized by using tid-lists. The main bottleneck of our ap-
proach is the first step of the clustering, where all pair-wise distances have to be com-
puted; it would be worthwhile to develop bounds or heuristics to postpone calculation
of distances between attributes that will not be considered for joining. However, we
especially regard the development of fast approximate summarization techniques for
databases with many transaction and/or attributes as an important topic for future re-
search, in particular as many data mining techniques cannot consider such datasets
directly, but could be made to consider the summary surrogate.

In this work we only consider categoric data, for which it is difficult to construct
a sensible distance measure. As such, it would be interesting to investigate whether
our approach can be extended toward ordinal data, which would require non-trivial
extension of the encoding. Another, related, as well as important, open problem is
the generation of summaries for heterogeneous databases, e.g., consisting of both
numeric and categorical attributes.

Summarizing Categorical Data by Clustering Attributes 41

9 Conclusions

In this paper we introduced a method for getting a good first impression of a dataset
with categorical attributes. Our parameter-free method builds summaries by cluster-
ing attributes that strongly correlate, and uses the Minimum Description Length prin-
ciple to identify the best clustering—without requiring a distance measure between
attributes. The result offers an overview of which attributes interact most strongly,
and in what value instantiations they typically occur. Furthermore, since they form
probabilistic models of the data, these summaries are good surrogates for the data
that can be queried efficiently and accurately.

Experiments show that our method provides high-quality results that correctly
identify groups of correlated attributes, and can be used to obtain close approxima-
tions of itemset frequencies.

Acknowledgements The authors thank i-ICT of Antwerp University Hospital (UZA) for providing the
MCADD data and expertise. Furthermore, the authors wish to thank the anonymous reviewers for their
detailed and highly constructive comments.

Michael Mampaey is supported by a Ph.D. grant of the Agency for Innovation through Science and
Technology in Flanders (IWT). Jilles Vreeken is supported by a Post-Doctoral Fellowship of the Research
Foundation - Flanders (FWO).

References

Au W, Chan K, Wong A, Wang Y (2005) Attribute clustering for grouping, selection,
and classification of gene expression data. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics 2(2):83–101

Baumgartner C, Böhm C, Baumgartner D (2005) Modelling of classification rules on
metabolic patterns including machine learning and expert knowledge. Biomedical
Informatics 38(2):89–98

Bringmann B, Zimmermann A (2007) The chosen few: On identifying valuable
patterns. In: Proceedings of the IEEE International Conference on Data Mining
(ICDM’07), IEEE, pp 63–72

Calders T, Goethals B (2007) Non-derivable itemset mining. Data Mining and
Knowledge Discovery 14(1):171–206

Chakrabarti D, Papadimitriou S, Modha DS, Faloutsos C (2004) Fully automatic
cross-associations. In: Proceedings of the ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD’04), pp 79–88

Chandola V, Kumar V (2005) Summarization – compressing data into an informa-
tive representation. In: Proceedings of the IEEE International Conference on Data
Mining (ICDM’05), IEEE, pp 98–105

Coenen F (2003) The LUCS-KDD discretised/normalised ARM and CARM
data library. http://www.csc.liv.ac.uk/˜frans/KDD/Software/LUCS-KDD-
DN/DataSets/dataSets.html

Cover TM, Thomas JA (2006) Elements of Information Theory, 2nd ed. John Wiley
and Sons

42 Michael Mampaey, Jilles Vreeken

Das G, Mannila H, Ronkainen P (1997) Similarity of attributes by external probes.
In: Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’97), pp 23–29

De Bie T (2011) Maximum entropy models and subjective interestingness: an ap-
plication to tiles in binary databases. Data Mining and Knowledge Discovery pp
1–40

Dhillon I, Mallela S, Kumar R (2003) A divisive information theoretic feature clus-
tering algorithm for text classification. Journal of Machine Learning Research
3:1265–1287

Frank A, Asuncion A (2010) UCI machine learning repository,
http://archive.ics.uci.edu/ml

Garriga GC, Junttila E, Mannila H (2011) Banded structure in binary matrices.
Knowledge and Information Systems (KAIS) 28(1):197–226

Gionis A, Mannila H, Mielikäinen T, Tsaparas P (2007) Assessing data mining re-
sults via swap randomization. Transactions on Knowledge Discovery from Data
1(3):1556–4681

Goethals B, Zaki MJ (2003) Frequent itemset mining implementations repository
(FIMI), http://fimi.ua.ac.be

Grünwald PD (2007) The Minimum Description Length Principle. MIT Press
Han J, Cheng H, Xin D, Yan X (2007) Frequent pattern mining: Current status and

future directions. Data Mining and Knowledge Discovery 15(1):55–86
Hanhijärvi S, Ojala M, Vuokko N, Puolamäki K, Tatti N, Mannila H (2009) Tell

me something I don’t know: Randomization strategies for iterative data mining.
In: Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’09), ACM, pp 379–388

Heikinheimo H, Hinkkanen E, Mannila H, Mielikäinen T, Seppänen JK (2007) Find-
ing low-entropy sets and trees from binary data. In: Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’07), ACM, pp 350–359

Heikinheimo H, Vreeken J, Siebes A, Mannila H (2009) Low-entropy set selection.
In: Proceedings of the SIAM International Conference on Data Mining (SDM’09),
SIAM, pp 569–579

Kirkpatrick S (1984) Optimization by simulated annealing: Quantitative studies. Sta-
tistical Physics 34(5):975–986

Knobbe AJ, Ho EKY (2006) Maximally informative k-itemsets and their efficient dis-
covery. In: Proceedings of the ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD’06), ACM, pp 237–244

Kontonasios KN, De Bie T (2010) An information-theoretic approach to finding
noisy tiles in binary databases. In: Proceedings of the SIAM International Con-
ference on Data Mining (SDM’10), SIAM, pp 153–164

Li M, Vitányi P (1993) An Introduction to Kolmogorov Complexity and its Applica-
tions. Springer

Mampaey M, Vreeken J (2010) Summarising data by clustering items. In: Proceed-
ings of the European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML PKDD’10), Springer, pp 321–336

Summarizing Categorical Data by Clustering Attributes 43

Mampaey M, Tatti N, Vreeken J (2011) Tell me what I need to know: Succinctly
summarizing data with itemsets. In: Proceedings of the ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD’11), ACM,
pp 573–581

Mitchell-Jones A, Amori G, Bogdanowicz W, Krystufek B, Reijnders PH, Spitzen-
berger F, Stubbe M, Thissen J, Vohralik V, Zima J (1999) The Atlas of European
Mammals. Academic Press

Myllykangas S, Himberg J, Böhling T, Nagy B, Hollmén J, Knuutila S (2006) DNA
copy number amplification profiling of human neoplasms. Oncogene 25(55):7324–
7332

Pasquier N, Bastide Y, Taouil R, Lakhal L (1999) Discovering frequent closed item-
sets for association rules. In: Proceedings of the ICDT international conference on
database theory, pp 398–416

Pensa R, Robardet C, Boulicaut JF (2005) A bi-clustering framework for categorical
data. In: Proceedings of the European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD’05), Springer, pp 643–650

Rissanen J (1978) Modeling by shortest data description. Automatica 14(1):465–471
Rissanen J (2007) Information and complexity in statistical modeling. Springer
Shannon CE (1948) A mathematical theory of communication. Bell System Technical

Journal 27:379–423
Siebes A, Vreeken J, van Leeuwen M (2006) Item sets that compress. In: Proceedings

of the SIAM International Conference on Data Mining (SDM’06), SIAM, pp 393–
404

Van den Bulcke T, Vanden Broucke P, Van Hoof V, Wouters K, Vanden Broucke S,
Smits G, Smits E, Proesmans S, Van Genechten T, Eyskens F (2011) Data mining
methods for classification of Medium-Chain Acyl-CoA dehydrogenase deficiency
(MCADD) using non-derivatized tandem MS neonatal screening data. Journal of
Biomedical Informatics 44(2):319–325

Vereshchagin N, Vitanyi P (2004) Kolmogorov’s structure functions and model se-
lection. IEEE Transactions on Information Theory 50(12):3265– 3290

Vreeken J, van Leeuwen M, Siebes A (2007) Preserving privacy through data gen-
eration. In: Proceedings of the IEEE International Conference on Data Mining
(ICDM’07), IEEE, pp 685–690

Vreeken J, van Leeuwen M, Siebes A (2011) KRIMP: Mining itemsets that compress.
Data Mining and Knowledge Discovery 23(1):169–214

Wallace C (2005) Statistical and inductive inference by minimum message length.
Springer

Wang C, Parthasarathy S (2006) Summarizing itemset patterns using probabilis-
tic models. In: Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’06), ACM, pp 730–735

Wang J, Karypis G (2004) SUMMARY: Efficiently summarizing transactions for
clustering. In: Proceedings of the IEEE International Conference on Data Mining
(ICDM’04), IEEE, pp 241–248

Yan X, Cheng H, Han J, Xin D (2005) Summarizing itemset patterns: A profile-
based approach. In: Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD’05), ACM, pp 314–323

