
Mining Frequent Itemsets in a Stream

Toon Calders
Eindhoven University of Technology

Nele Dexters
University of Antwerp

Bart Goethals
University of Antwerp

Abstract

We study the problem of finding frequent itemsets in a
continuous stream of transactions. The current frequency of
an itemset in a stream is defined as its maximal frequency
over all possible windows in the stream from any point in
the past until the current state that satisfy a minimal length
constraint. Properties of this new measure are studied and
an incremental algorithm that allows, at any time, to im-
mediately produce the current frequencies of all frequent
itemsets is proposed. Experimental and theoretical analy-
sis show that the space requirements for the algorithm are
extremely small for many realistic data distributions.

1. Introduction

Mining frequent sets over streams of itemsets presents
interesting new challenges over traditional mining in static
databases. Due to the speed of new arriving data, it is as-
sumed that the history of the stream can not be revisited,
unless it is stored. Storing large parts of a stream, however,
is impossible as the amount of data is typically huge.

Most previous work on mining frequently occurring
itemsets over data streams either focusses on (1) the sliding
window model, (2) the time-fading model, or (3) the land-
mark model. Each of these models requires a fixed window
length or decay factor, given by the user. In many applica-
tions, however, choosing such parameters that are most ap-
propriate for every itemset at every timepoint in an evolving
stream is almost impossible. For example, consider a large
retail chain of which sales can be considered as a stream.
Then, in order to find frequent sets to do market basket
analysis, it is very difficult to choose in which period of the
collected data you are interested. For many products, the
amount of them sold depends highly on the period of the
year. In summer time, e.g., sales of ice cream increase and
during the soccer world cup, sales of beer increase. Such
seasonal behavior of a specific item or combination of items
can only be discovered when choosing the correct window
size for that item(set). This size, however, can hide a similar
behavior of other item(set)s in another window.

Therefore, we propose to consider for each itemset the
window in which it has the highest frequency. More specif-
ically, we define the current frequency of an itemset as the
maximum over all windows from the past until the current
state that satisfy a minimal size constraint. Notice that this
is an extension of the max-frequency measure defined be-
fore for items [1]. Hence, when the stream evolves, the
length of the window containing the highest frequency for
a given itemset can change continuously. This new stream
measure turns out to be very suitable to early detect sud-
den bursts of occurrences of itemsets, while still taking into
account the history of the itemset. This behavior might be
particularly useful in applications where hot topics, or pop-
ular combinations of topics need to be tracked. Examples
of such applications include, e.g., identifying stocks with a
strong growth or tracking popular search terms on the inter-
net. In these applications it is of vital importance to identify
sudden bursts quickly, while still taking into account the
history.

Concretely, our contributions are the following. First,
(1) the max-frequency measure [1] is extended to itemsets
and minimal window length, and (2) a detailed study of its
behavior is performed, taking into account minimal win-
dow length and minimal frequency thresholds, resulting in
several important properties. (3) An efficient algorithm for
computing the exact frequencies for all frequent itemsets at
any time is proposed; this in contrast to the often only ap-
proximate algorithms for other methods. Finally, (4) a the-
oretical and empirical evaluation of our proposed method is
given.

The organization of the paper is as follows. In Section 2,
the new measure is defined and the central problem state-
ment is formally introduced. Section 3 gives several prop-
erties of the max-frequency and states the main theorem, on
which the incremental algorithm in Section 4 is based. In
Section 5, a theoretical analysis for the worst case is done.
Experimental results in Section 6 show that the memory re-
quirements for the algorithm are extremely small for many
real-life data distributions. In Section 7, the relation be-
tween our measure and existing related work is explored,
and Section 8 concludes the paper.

2. Problem Statement

2.1. Streams and Max-Frequency

A stream 〈I1 I2 . . . In〉 is a sequence of itemsets, de-
noted S, where n = |S| is the length of the stream. I1 is
considered the first and oldest itemset in the stream, and In

the latest and most recent. We assume that the items in the
stream come from a finite set of items I.

The number of sets in a stream S that con-
tain itemset I is denoted count(I, S). For example,
count(a, 〈ab c adf〉) = 2 and count(af, 〈ab c adf〉) =
1. The frequency of I in S is defined as

freq(I, S) :=
count(I, S)

|S| .

For example, freq(a, 〈ab c adf〉) = 2/3 and
freq(af, 〈ab c adf〉) = 1/3.

Let S1 be 〈I1
1 . . . I1

n1
〉, S2 be 〈I2

1 . . . I2
n2
〉, . . . and

Sm be 〈Im
1 . . . Im

nm
〉. The concatenation of the streams

S1, . . . , Sm, denoted S1 · S2 · . . . · Sm, is

〈 I1
1 . . . I1

n1
I2
1 . . . I2

n2
. . . Im

1 . . . Im
nm

〉 .

Let S = 〈I1 I2 . . . In〉. Then, S[s, t] denotes the sub-
stream or window 〈Is Is+1 . . . It〉. The sub-stream of S

consisting of the last k items of S, denoted last(k, S), is

last(k, S) := S
[|S| − k + 1, |S|] .

We are now ready to define our new frequency measure:

Definition 1 Given a minimal window size mwl , the max-
frequency mfreqmwl(I, S) of itemset I in a stream S is de-
fined as the maximum of the frequencies of I over all win-
dows, of size at least mwl , extending from the end of the
stream; that is:

mfreqmwl(I, S) := max
k=mwl,...,|S|

(freq(I, last(k, S))) .

If the length of the stream is less than mwl , the max-
frequency is defined to be 0.

The longest window in which the maximum frequency
is reached is called the maximal window for I in S, and
its starting point is denoted startmaxmwl(I, S). That is,
startmaxmwl(I, S) is the smallest index such that

mfreqmwl(I, S) = freq(I, S
[
startmaxmwl(I, S), |S|]) .

mwl wil be omitted when clear from the context.

Example 1 Let mwl = 3.

mfreqmwl(a, 〈a b a a a b〉) = 3/4 .

mfreqmwl(a, 〈b c d a b c d a〉) = 2/5 .

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

bacbccbacbbcbcbbabcbbcbaccbbcccbbacbccbacbbcbcbbabcbbcbaccbbcccba

mwl=3
mwl=5

mwl=10

Figure 1. Max-frequency for minimal window
lengths 1, 3, and 10.

In the definition of the max-frequency, an explicit lower
bound is given on the size of the windows in which the fre-
quencies are considered. This lower bound is given to re-
lieve the undesirable effect of having a frequency of 100%
in a window of length 1, every time the target item arrives in
the stream. The effect of the minimal window length mwl
is illustrated in Figure 1. It is clear that for longer mini-
mal window lengths, there are still jumps in the frequency,
but they are less pronounced. Hence, setting an appropriate
minimal window length effectively resolves the instability
of the max-frequency measure.

2.2. Evolving Streams

A stream was defined as a statical object. In reality, how-
ever, a stream is an evolving object that is essentially un-
bounded. When processing a stream, it is to be assumed
that only a small part of it can be kept in memory.

St will denote the stream S up to timestamp t; that is, the
part of the stream that already passed at time t, St = S[1, t].
For simplicity, we assume that the first itemset arrives at
timestamp 1, and since then, at every timestamp a new item-
set is inserted into the stream.

The main problem we study in this paper is the fol-
lowing: Given a minimal frequency threshold and a min-
imal window length, for an evolving stream S, main-
tain a small summary of the stream in time, such that,
at any timepoint t, all current frequent itemsets can be
produced instantly from this summary. More formally,
we will introduce a concise summary, summary(St), and
efficient procedures Update , and Get mfreq , such that
Update(summary(St), I) equals summary(St · 〈I〉), and
Get mfreq(summary(St+1)) equals mfreqmwl(A, St+1).

Because Update has to be executed every time a new
itemset arrives, it has to be extremely efficient in order to be
finished before the next itemset arrives. Similarly, because
the stream continuously grows, the summary must be inde-
pendent of the number of items seen so far, or, at least grow

very slowly as the stream evolves. The method we develop
will indeed meet these criteria, as the theoretical analysis in
Section 5, and the experiments in Section 6 show.

For ease of presentation, we present our solution in a
modular way; first we present how a summary can be main-
tained that allows for one itemset A, to produce its max-
frequency at any point in time, for the case no minimal win-
dow length has been set. Notice that no minimal window
length actually corresponds to having a minimal window
length of 1. We denote the max-frequency of A in S with-
out minimal window length simply as mfreq1(A, S). Then,
we extend the method to work with minimal window length
and minimal frequency, but still for only one target itemset
A. Finally, we show how to combine everything into one
solution for mining all frequent itemsets at once, without
having to maintain a separate summary for every itemset.

3. Properties of Max-Frequency

In this section, we show some properties of max-
frequency for one itemset A without a minimal window
length constraint. These properties will be crucial for the
incremental algorithm that maintains the summary of the
stream for A.

Obviously, checking all possible windows to find the
maximal one is infeasible algorithmically, given the con-
straints of stream problems. Fortunately, not every point in
the stream needs to be checked. The theoretical results from
this section show exactly which points need to be inspected.
These points will be called the borders in the stream. The
summary of the stream will consist exactly of the recording
of these borders, and the corresponding frequency of the
target itemset.

Definition 2 Timestamp q is called a border for set A in S if
there exists a stream B such that q = startmax (A, S · B) .

Thus, a border is a point in the stream that can still become
the starting point of the maximal window. Based on the next
theorem, it is possible to give an exact syntactic characteri-
zation of the borders.

Theorem 1 Let S be a stream of length L, and let S[q, L]
be the maximal window for the itemset A. Then, for any p,
r with p < q ≤ r: freq(A, S[p, q − 1]) < freq(A, S[q, r]).

Proof 1 Let B1 denote S[p, q − 1], B2 denote S[q, r], and
B3 denote S[r + 1, L]. Because B2 · B3 is the maximal
window for A in S, it holds that the frequency of A in
B2 · B3 is strictly higher than in B1 · B2 · B3 and it is at
least as high as in B3 (remember that in the case of multi-
ple windows with maximal frequency the largest one is se-
lected). Now, let l1 = |B1|, l2 = |B2|, and l3 = |B3|,

and let a1 = count(A, B1), a2 = count(A, B2), and
a3 = count(A, B3), as depicted in:

B1︷ ︸︸ ︷
a1/l1

B2︷ ︸︸ ︷
a2/l2

B3︷ ︸︸ ︷
a3/l3

.

Then, the conditions on the frequency translate into:

a2 + a3

l2 + l3
>

a1 + a2 + a3

l1 + l2 + l3
and

a2 + a3

l2 + l3
≥ a3

l3
.

From these conditions, it can be derived that

freq(A, B1) =
a1

l1
<

a2

l2
= freq(A, B2) .

Corollary 1 Let S be a stream of length L, and let 1 ≤ q ≤
L. Position q is a border for target itemset A in S if and
only if for all indices j, k with 1 ≤ j < q and q ≤ k ≤ L, it
holds that freq(A, S[j, q − 1]) < freq(A, S[q, k]) .

Proof 2 Only if: Follows directly from Theorem 1.
If: We need to show that there exists a continuation S

′ of
stream S (resulting in stream S ·S′) in which q is the starting
point of the maximal window. We consider two cases: either
q is the rightmost border in S, or not. If q is the rightmost
border, then q is the maximal border in S, because for any
other border p < q, freq(A, S[p, q − 1]) < freq(A, S[q, L])
which implies freq(A, S[p, L]) < freq(A, S[q, L]), and
hence the Corollary holds.

In the other case, we will show that it is always possible
to continue S in such a way that the rightmost border disap-
pears, while all other borders remain and no new borders
are introduced. By consecutively applying this procedure,
any border will eventually become the rightmost border at
one point, and hence become the starting point of the maxi-
mal window.

Let q < q′ be the two largest borders in S. Since, because
of the only-if part of this theorem,

freq(A, S[q, q′ − 1]) ≤ freq(A, S[q′, L])

=
count(A, S[q′, L])

L − q′ + 1
,

we can always find positive integers x ≤ y such that:

freq(A, S[q, q′ − 1]) =
count(A, S[q′, L]) + x

L − q′ + 1 + y
.

Then, the following continuation of S has exactly the same
borders as S, except from q′, which is no longer a border:

S · 〈
x×︷ ︸︸ ︷

A A · · · A

y−x×︷ ︸︸ ︷
∅ ∅ · · · ∅〉 .

4/9 4/10 2/3 1/2
〈 a a a b b b a b b

∖
a b a b a b a b b b b a a b

∖
a b b a 〉

Figure 2. Example of dropping borders.

Example 2 Assume we have the stream S27, given in Fig-
ure 2 and we focus on target {a}. In this stream, two posi-
tions have been marked with a backslash. Both these points
do not meet the criteria to be a border given in Corollary 1.
Indeed, for both positions, a block before and after it is in-
dicated such that the frequency in the before-block is higher
than in the after-block. The only positions that do meet the
requirement are indicated by vertical bars.

4. Algorithm

Based on the results of Section 3, we present an incre-
mental algorithm to efficiently maintain the summary for
one itemset A allowing us to produce the current max-
frequency (without minimal window length constraint) of
an itemset instantly at any time.

4.1. The Summary

Let p1 < p2 < . . . < pr be the border positions for
itemset A in the stream St, ordered from oldest to most re-
cent. Let ai = count(A, St[pi, pi+1 − 1]) be the number of
occurrences of the target itemset A in between two subse-
quent border positions pi and pi+1 (for i = 1, . . . , r − 1).
ar = count(A, St[pr, t]) denotes the number of occur-
rences of A since the last border. The summary St of St

is defined as the array

St =
p1 · · · pr

a1 · · · ar
.

We can easily compute the frequencies of itemset A for any
of the border positions from this summary:

freq(A, St[pi, t]) =

∑r
j=i aj

t − pi + 1
.

Example 3 The summary S17 for target a in stream

S17 = 〈b a a a b a a b a b b a a a a b a〉 :

S17 =
2 12 17
6 4 1

.

We can find the frequencies of itemset {a} since any of the
border positions:

freq(a, St[2, 17]) = 11/16 ,

freq(a, St[12, 17]) = 5/6 ,

freq(a, St[17, 17]) = 1/1 .

We now give some properties of the summary that will
be used by the algorithm. First of all, we show that the
fractions in the blocks in between two subsequent border
positions are increasing, and as a consequence, among all
borders pi, we have that freq(A, St[pi, t]) is maximal for i
equal to r.

Property 1 Let St be a stream and summary(St) =
[(p1, a1), . . . , (pr, ar)]. Then,

a1

p2 − p1
<

a2

p3 − p2
< . . . <

ar−1

pr − pr−1
<

ar

t − pr + 1

and

freq(A, St[p1, t]) < freq(A, St[p2, t]) <

. . . < freq(A, St[pr, t]) .

(The proof is a direct consequence of Corollary 1).

From this property, it follows directly that the last entry
of a summary always represents the max-frequency.

On every timestamp a new itemset arrives and the
summary needs to be updated. Algorithm 1 presents
the pseudo-code of the algorithm. First the summary is
initialized after the first target itemset entered the stream.
Then, we consider the following cases.

1. A superset of the target itemset arrives in the stream
(lines 6–10):

(a) (lines 7–8) If the frequency of the last block is 1, and
hence, the previous itemset in the stream also con-
tained the target itemset, then we need to increment
its number of occurrences in the last entry of the sum-
mary. Otherwise, (lines 9–10) a new border (t + 1, 1)
needs to be added as the frequency in this last window
of size 1 is 1, and hence, it is larger than the previous
max-frequency.

(b) None of the existing borders can be removed from the
summary.

2. An itemset not containing the target itemset arrives in the
stream (lines 11–20):

(a) No new borders need to be added to the summary.

(b) This is the only case in which borders can actually
be removed from the summary. Therefore, accord-
ing to Corollary 1, we have to compare the frequen-
cies of every two blocks adjacent to a border. That

Algorithm 1 Update(St, I) for target itemset A on time
t + 1
Require: St = summary(St) = [(p1, a1), · · · , (pr, ar)]
Ensure: St+1 = summary(St+1) = summary(St · 〈I〉)

1: Set St+1 := []
2: if (St is empty) then
3: if (target itemset A ⊆ I) then
4: St+1 := [(t + 1, 1)]
5: else
6: if (target itemset A ⊆ I) then
7: if ar = t − pr + 1 then
8: St+1 := [(p1, a1), · · · , (pr, ar + 1)]
9: else

10: St+1 := [(p1, a1), · · · , (pr, ar), (t + 1, 1)]
11: else
12: St+1 := St

13: i := r
14: while i > 1 do
15: if ai

t−pi+1 ≤ ai+ai−1
t−pi−1+1 then

16: ai−1 := ai−1 + ai

17: remove (pi, ai) from St+1

18: i := i − 1
19: else
20: i := 1

is, to drop border p, we have to find a before-block
and an after-block such that the before-block has a
higher frequency than the after-block. Obviously, the
before-block with the highest frequency is exactly the
block represented by the border before p. Indeed, at
timestamp p, that border represented the maximum
window according to Property 1. Then, we only have
to compare this frequency with the frequency from p
until the current timestamp t. Indeed, any other after-
block with a lower frequency would have caused the
border to have been removed earlier. Furthermore, we
do not have to consider every border for removal inde-
pendently, but, as stated in the following property, only
the most recent borders need to be considered for re-
moval. In other words, if a border can not be removed,
then all earlier borders can not be removed either, and
hence, we must only consider the removal of borders
from right to left, until one can not be removed (lines
12–15).

Example 4 The working of the algorithm is explained in
detail for the following stream

S17 = 〈b a a a b a a b a b b a a a a b a〉

and target itemset {a}. In Figure 3, a sample run of the
algorithm is illustrated for each timepoint.

In this example, some interesting things happen. First of
all, the stream starts with an itemset, {b}, that does not con-
tain the target itemset {a}. Therefore, Update(S0, {b}) =
Update([], {b}) at timestamp 1 remains empty, i.e., S1 =
[]. At timestamp 2, Update([], {a}) results in S2 =
[(2, 1)], corresponding to the stream 〈b |a〉 with a border
at position 2 and the corresponding frequency 1/(2 − 2 +
1) = 1/1. At timestamp 8, something interesting hap-
pens. S7 = [(2, 3), (6, 2)], corresponding with stream
〈b |a a a b |a a〉. Update(S7, {b}) will yield S8 =
[(2, 5)], and not [(2, 3), (6, 2)]. Because the corresponding
frequencies decrease from the border at position 2 to the
border at position 6, namely (3+2)/[(6−2)+(8−6+1)] =
5/7 > 2/(8− 6 + 1) = 2/3, we can conclude that position
6 is no longer a border. This is reflected in summary S8 =
[(2, 3 + 2)] and can be visualised by 〈b |a a a b a a b〉.

4.2. Minimal Frequency

Until now, we assumed that for the target itemset we
need to be able to report its frequency exactly. We will
now relax this requirement by setting a minimal frequency
threshold minfreq . That is, for the target itemset, we should
be able, at any timepoint, to produce its exact frequency
only if it is above the frequency threshold. This relaxation
allows us to decrease the size of the summary.

Let St be a stream with St = [(p1, a1), . . . , (pr, ar)], and
suppose that

freq(a, St[p1, t]) =
a1 + . . . + ar

t − p1 + 1
< minfreq .

Then we can safely remove (p1, a1) from the left-side of the
summary; even though it is possible that p1 can still become
the starting point of a maximal window in the future, it can
be proven that it can never be the starting point of a maxi-
mal window in which the target item is above the threshold.
Indeed; suppose that freq(A, (St · B)[p1, t + |B|]) exceeds
the minimal frequency threshold, then it is easy to show
that freq(A, B) must be even larger, and hence p1 is not the
maximal border. In order to be able to perform this pruning
efficiently, we store and maintain for the summaries also the
count total = a1+a2+. . .+ar. When the left-most border
is pruned, total is decreased by a1 to reflect the new total.

4.3. Minimal Window Length

In the algorithm without minimal window length, as
given in Algorithm 1, we use the fact that a border q in
stream S can be pruned if we can find two blocks B1 =
S[p, q − 1] and B2 = S[q, r] such that the frequency of the
target in B1 is higher than in B2. The intuition behind the
proof of this theorem is that in such a situation, q can never
become a border again, because either the window starting

1 2 3 4 5 6 7 8
b−→ a−→ 2

1
a−→ 2

2
a−→ 2

3
b−→ 2

3
a−→ 2 6

3 1
a−→ 2 6

3 2
b−→ 2

5
9 10 11 12 13 14 15

a−→ 2 9
5 1

b−→ 2
6

b−→ 2
6

a−→ 2 12
6 1

a−→ 2 12
6 2

a−→ 2 12
6 3

a−→ 2 12
6 4

16 17
b−→ 2 12

6 4
a−→ 2 12 17

6 4 1

Figure 3. Example for stream 〈 b a a a b a a b a b b a a a a b a〉.

at p will have higher frequency, or the window starting at
r + 1 has. When we are working with a minimal window
length, however, this observation does no longer imply that
q can be pruned! Indeed; it could be the case that the suffix
of the stream starting at r + 1 does not meet the minimal
window length requirement. In that case, even though the
window starting at q has lower frequency than the window
starting at r+1, it can still have the highest frequency of all
windows that meet the minimal window requirement! The
next example illustrates this situation.

Example 5 Consider stream S = 〈|a a a b |a a〉 in
which the borders 1 and 5 are marked with a vertical
bar. When itemset {b} arrives in the stream, resulting in
〈|a a a b a a b〉, then position 5 is no longer a border, as the
block a a a b before position 5 has a higher frequency of the
target item than the block a a b after position 5. Therefore,
in the algorithm without minimal window length, the border
at position 5 is pruned, because no matter how the stream
evolves, position 5 will never be a border again.

However, consider now the case where we do have a min-
imal window length of 3. Then, position 5 can still become
a border again! Indeed, suppose two more target itemsets
are added to the stream, resulting in: 〈|a a a b .a a b |a a〉.
In this stream, the window starting at position 5 has the
highest frequency of the target items among the windows
satisfying the minimal window length.

Similarly, the minimal window length also has an influ-
ence on the pruning of summary entries based on the mini-
mal frequency. In the case we have to check if we have to
remove the last entry of a summary [(p, a)] of a stream St,
we test whether a/(t − p + 1) < minfreq , and the reason-
ing is that if this is the case, every extension B that would
turn p into a maximal and frequent border, would be even
more frequent itself, so p can be removed as a border. With
minimal window length, this is no longer true, though, as
this B could not meet the minimal window length. In this
case, p might be the starting point of the maximal window
of length at least mwl .

Fortunately, as the next theorem states, this problem can
easily be resolved as follows:

Theorem 2 Let S be a stream of length L, and let mwl be
the minimal window length. Let S

−mwl denote S[1, L −
mwl]. If q = startmaxmwl(A, S), then,

• either, q = L − mwl + 1,

• or, q is a border in S
−mwl .

Proof 3 Notice that, because the length of the maximal
window is at least mwl , we have q ≤ L − mwl + 1.
Hence, either q = L − mwl + 1, or q < L − mwl + 1.
In the latter case, we have to show that q is a border in
S[1, L − mwl]. Because of Theorem 1 it now suffices to
show that for any positions p and r in S[1, L − mwl],
such that 1 ≤ p < q < r ≤ L − mwl , the frequency
of A in S[p, q − 1] is less than the frequency of A in
S[q, r]. We denote the number of occurrences of target
A in S[p, q − 1] by a and q − p by b, and we denote the
number of occurrences of the target A in S[q, r] by c and
r − q + 1 by d. The number of occurrences of the target A
in S[r+1, L−mwl] is denoted x and y is L−mwl −r and
the number of occurrences of the target A in last(mwl , S)
by t. These notations are summarized in the next picture:

Using basic arithmetic operations, it is easy to show that
in this setting, freq(A, S[p, q − 1]) < freq(A, S[q, r]),
i.e. a/b < c/d.

Hence, in order to know the maximal frequency with a
minimal window length mwl , it suffices to apply the method
without any minimal window length to keep track of the bor-
ders for the stream S[1, L − mwl]. Then, when we need
the max-frequency, we check the borders of S[1, L − mwl]
in the complete stream S, and the minimal window itself,
last(mwl , S).

4.4. Mining All Itemsets

Until now, we merely focused on mining a single fre-
quent itemset. Of course, in reality, the goal is to find all
frequent itemsets in the stream. A straightforward way to
do this is to apply Algorithm 1, together with Theorem 2
for all itemsets at the same time. That is, for every itemset,
we maintain a summary for the stream minus the last mwl
transactions. Of course, this is impossible to do for all item-
sets. Fortunately, this can be resolved using the following
observation (without proof due to space limitations).

Theorem 3 Let S be a stream of length L. S
−mwl denotes

S[1, L − mwl]. Suppose that mfreqmwl(A, S) ≥ minfreq .
If q = startmaxmwl(A, S), then,

• either L − 2 · mwl + 2 ≤ q ≤ L − mwl + 1

• or, the following conditions are all fulfilled:

– freq(A, S[q, q + mwl − 1]) ≥ minfreq ,

– mfreq1(A, S−mwl) ≥ minfreq , and

– q is a border in S
−mwl .

Proof 4 First of all, because the length of the maximal
window is at least mwl , we have that q ≤ L−mwl +1. We
now can have that q > L−2mwl +1 or q ≤ L−2mwl +1.
The first case, q > L − 2mwl + 1, leads to the situation
L − 2mwl + 2 ≤ q ≤ L − mwl + 1. In the case that
q ≤ L − 2mwl + 1, we have to prove the above three
statements.

This can easily be proven using similar techniques as in
the proof of Theorem 2.

Hence, we do not need to maintain the summaries of all
itemsets, but only of those that were once frequent in the
minimal window, and that are, at the same time, frequent
now within the part of the stream S[1, L − mwl]. Further-
more, we need to find the frequent itemsets in the mwl win-
dows S[L − 2mwl + 1, L], . . ., S[L − mwl, L].

Hence, the algorithm to update the summary when a new
transaction T arrives is as follows: for every itemset A for
which we are maintaining a summary, update the summary
with the transaction that leaves the minimal window. Check
if max-frequency in the part of the stream without the min-
imal window is still frequent. If not, remove the summary.
Then, for all itemsets that are frequent in the minimal win-
dow and for which we are not yet maintaining a summary,
start a summary. In this way, we guarantee that we are able
to capture all maximal windows with q ≤ L − 2 · mwl .
Furthermore, we always keep the last 2 · mwl transactions.
When the frequent itemsets are required, we need to gener-
ate all frequent itemsets from the summaries plus all item-
sets frequent in one of the windows S[L−2mwl+1, L], . . .,

S[L − mwl, L]. This can be done efficiently with a small
adaptation to efficient incremental algorithms that have al-
ready been proposed in literature [11].

5. Worst Case Analysis

In this section we study how large the summary can be in
worst case. For a specific streamlength l, we will identify a
stream of this length that maximizes the number of borders.
Farey sequences play an important role in this analysis.

5.1. Farey Streams

Consider a stream of length l in which we have N bor-
ders, and the blocks separated by these borders have lengths
l1, . . . , lN , and contain respectively a1, . . . , aN times the
target:

a1/l1 a2/l2 · · · aN/lN .

From Theorem 1, we know that the frequencies of the
target itemset in the blocks must be increasing:

a1

l1
<

a2

l2
< · · · <

aN

lN
.

Thus, with every stream with N borders corresponds such
an increasing sequence of N fractions. We call this se-
quence of fractions the block frequency sequence of the
stream. The length of the stream is the sum of the denom-
inators l1 + . . . + lN . The other direction is also true: for
every increasing sequence of numbers

0 <
a′
1

l′1
<

a′
2

l′2
< · · · <

a′
N

l′N
≤ 1 ,

we can find a stream of length l′1 + . . .+ l′N with N borders,
namely:

|
a′
1×︷ ︸︸ ︷

a . . . a

l′1−a′
1×︷ ︸︸ ︷

b . . . b |
a′
2×︷ ︸︸ ︷

a . . . a

l′2−a′
2×︷ ︸︸ ︷

b . . . b | . . . |
a′

N×︷ ︸︸ ︷
a . . . a

l′N−a′
N×︷ ︸︸ ︷

b . . . b

We will call this stream the canonical stream associated
with the sequence a′

1/l′1 < a′
2/l′2 < . . . < a′

N/l′N . There-
fore, finding the maximal number of borders for a stream
length l corresponds to finding the largest number of dif-
ferent fractions between 0 and 1, of which the sum of the
denominators adds up to l. In this context, the notion of
Farey sets and Farey sequences will be very useful.

Definition 3 The Farey set of order k, denoted Fk is the
following set of completely reduced fractions:

Fk :=
{a

b

∣∣∣ gcd(a, b) = 1, 0 < a ≤ b ≤ k
}

.

The Farey Sequence [2] of order k, is the list where the
elements of Fk are ordered in increasing order.

Just like any other increasing sequence of fractions, also
the Farey sequence Fk can be associated with its canonical
stream Fk, which has |Fk| borders, and a length that equals
the sum of the denominators of the elements in Fk. For
example, consider the Farey sequence of the fifth order:

F5 =
1
5

<
1
4

<
1
3

<
2
5

<
1
2

<
3
5

<
2
3

<
3
4

<
4
5

<
1
1
.

The corresponding Farey stream of the fifth order, F5, is
given in Figure 4. This stream has |F5| = 10 borders and a
total length of 5 + 4 + 3 + 5 + 2 + 5 + 3 + 4 + 5 + 1 = 37.

We will now show that the Farey streams have the maxi-
mal number of borders; that is, for every stream S of length
equal to the length of Fk, the number of borders in S is less
than or equal to the number of borders in Fk = |Fk|. This
result is based on the following straightforward observation.
Let dsum({a1/l1, . . . , aN/lN}) =

∑N
i=1 li, i.e., dsum(S)

is the sum of the denominators of the elements in S.

Lemma 1 Let S = {a1/l1, . . . , aN/lN} be a set of N dif-
ferent fractions, with 0 < ai < li, for all i = 1 . . . N . Let k
be such that |S| > |Fk|, then

dsum(S) > dsum(Fk) .

Theorem 4 Let S be a stream with L = |Fk|. Then, the
number of borders in S is at most the number of borders in
Fk.

Corollary 2 Let l = dsum(Fk), and N = |Fk|, for a fixed
k. A stream of length l has maximally N borders.

5.2. Bounds

For a Farey stream Fk the number of borders in it equals
|Fk| and the length equals dsum(Fk). This representation
does, however, not reveal the actual ratio between the size
and the number of borders of a stream. Therefore, the as-
ymptotic behavior of these quantities has been worked out,
based on known results in number theory.

k∑
i=1

φ(i) =
3k2

π2
+ O(k log k) ,

k∑
i=1

i · φ(i) =
2k3

π2
+ O(k2 log k) .

This leads to the observation that, asymptotically, the num-
ber of borders N and the length of the stream L in worst
case are related as follows:

N =
(

π2L

2

)2/3 3
π2

.

Experiments for Farey streams up to length 107 has shown
this approximation to be extremely accurate.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

0 100 5 103 1 104 2 104 2 104 2 104 3 104 4 104 4 104 5 104

bo

rd
er

s

stream size

maximum
average

Figure 6. Size of the summaries for a real-life
dataset

6. Experiments

From the description of the algorithm it is clear that the
update procedure is very efficient, given that the summaries
remain small. Producing the current support of the target
itemset is obviously very efficient, as it amounts to simply
a lookup of the most recent entry. Hence, the complete ap-
proach will be feasible if and only if the summaries remain
small. Therefore, for different synthetical streams, we have
recorded the size of the summary. The results are reported
in Figure 5. For didactic reasons, we consider streams over
two items a and b. Note that it does not matter whether we
report for 2 itemsets or for 1 000 itemsets, as the itemsets do
not influence the size of each others summary. The streams
have a length of 107, and after every 10 000 items, the size
of the summary for the items a and b are reported. The
streams are randomly generated. The probability of having
itemset {a} in the stream is given by the line P (a). Thus, in
the random graph, the probability of having a is 1/2 in the
whole stream, independent of the moment. The probability
of b is 1 minus the probability of a. The graphs report the
average over 100 streams, generated with the indicated dis-
tributions. In general, we can conclude that the size of the
summary is extremely small w.r.t. the size of the stream. If
the probability of the target item increases also the size of
the summary will increase, when the probability decreases
the summary will shrink. This is easily explained by the en-
tries in the summary that need to have increasing frequency.

In Figure 6, this experiment is repeated for a real-life
dataset. This dataset was obtained by collecting one month
of click-stream data of visitors of the website of the Uni-
versity of Antwerp. For every minute a transaction is gen-
erated, consisting of the set of all webpages visited in that
minute. For every webpage the max-frequency is monitored
with a minimal window length of 60. No minimal support
threshold was used. At every timepoint, the maximal and
the average number of borders is plotted for all web-pages.
As can be seen in this real-life experiment, again the sizes

〈 |a b b b b |a b b b |a b b |a a b b b |a b |a a a b b |a a b |a a a b |a a a a b |a〉

Figure 4. Illustration of F5, the Farey Stream of fifth order.

 0

 100

 200

 300

 400

 500

 600

0 100 1 106 2 106 3 106 4 106 5 106 6 106 7 106 8 106 9 106 1 107

bo

rd
er

s

stream size

item a
item b

P(a)

(a) linear distribution

 0

 50

 100

 150

 200

 250

 300

 350

 400

0 100 1 106 2 106 3 106 4 106 5 106 6 106 7 106 8 106 9 106 1 107

bo

rd
er

s

stream size

item a
item b

P(a)

(b) twin peaks

 10

 11

 12

 13

 14

 15

 16

0 100 1 106 2 106 3 106 4 106 5 106 6 106 7 106 8 106 9 106 1 107

bo

rd
er

s

stream size

item a
item b

P(a)

(c) random distribution

 0

 20

 40

 60

 80

 100

 120

 140

0 100 1 106 2 106 3 106 4 106 5 106 6 106 7 106 8 106 9 106 1 107

bo

rd
er

s

stream size

item a
item b

P(a)

(d) sinus distribution

Figure 5. Size of the summaries for synthetic data

of the summaries remain extremely small, leading to a very
efficient algorithm.

7. Related Work

There are already many other measures defined for fre-
quency of itemsets over streams. These measures can
roughly be divided into three categories: the sliding win-
dow model [3, 6, 7, 8, 10, 12], the time fading model [9],
and the landmark model [7, 8, 13]. The different frequency
measures are illustrated in Figure 7. The bottom line reports
the probability at that timepoint in the stream of the itemset
for which the frequency is reported. Notice that this bottom
line only gives the probability; the actual frequency can be
slightly different. At every timestamp, the frequency of the
target itemset has been plotted for the different measures.

In the time-fading model [9], the entire stream is taken
into account to compute the frequency of an itemset, but
more recent transactions contribute more to the frequency
than older ones. This is achieved by introducing a decay
factor d < 1. A transaction that is n timepoints in the

past, is weighted dn, thus the weight is exponentially de-
creasing. In general, the closer to 1 the decay, the more the
history is taken into account. In Figure 7, the time-fading
frequency has been given for two different decay factors,
0.99 and 0.999. Notice that although these two values are
very similar, the evolution of the frequency is very different.

In the sliding window [3, 6, 7, 8, 10] model, at every time
point, only the data in the most recent window of a prede-
fined fixed length (measured either in duration or in number
of transactions) is considered. In Figure 7, the sliding win-
dow frequency is plotted for window lengths 200 and 400.
Notice that for window length 400, some of the frequency
jumps go by unnoticed and others are significantly lowered,
because of the smoothing implied by a large window length.

In the landmark model [7, 8, 13], particular timepoints,
called landmarks, are fixed. The analysis of the stream
is performed for only the part of the stream between the
landmarks and the current time instance. Clearly, this
method is less suitable for evaluating evolving and un-
bounded streams.

The tilted-time windows [5, 4] can be seen as a combina-

maxfreq, 20

landmark

sliding, 400

sliding, 200

decay, 0.999

decay, 0.99

Distribution

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

fr
eq

ue
nc

y

time

Figure 7. Comparison of different frequency
measures

tion of the different models. For an itemset, frequencies are
computed for the most recent windows of lengths w, 2w,
4w, 8w, etc. So, the most recent part of the stream is cov-
ered more thoroughly. The combination of these frequen-
cies allow for efficient query answering over the history of
the stream.

Also the max-frequency is given (the top line) in Fig-
ure 7. As can be seen in the illustration, max-frequency
takes into account the history without fading away sudden
jumps in the frequency. As a direct result of this, the line for
the max-frequency is less smooth than the other lines, be-
cause the actual frequency of the item only approximates
the given distribution. Notice that these deviations also
show in the time-fading model (e.g. with decay .99), al-
though in a far less pronounced way. The other methods do
not show the existing short deviations from the ideal distrib-
ution, as they are less sensitive to short-time changes. Max-
frequency is much less dependent on finding the exact right
parameter setting than other models, because it only deter-
mines a lower bound on the window size; e.g., for a stream
of length 10 000, and extreme minimum window lengths of
10 and 1 000, still 9 010 of the 10 000 windows are treated
in the same way for both parameter settings. In the other
models, the parameters completely determine the weight of
every point in the stream; for different parameter settings,
all 10 000 points in the stream will be handled differently.

8. Conclusion

We presented a new frequency measure for itemsets in
streams that does not rely on a fixed window length or a
time-decaying factor. Based on the properties of the mea-
sure, an algorithm to compute it was shown. An experimen-
tal evaluation supported the claim that the new measure can
be computed from a summary with extremely small mem-
ory requirements, that can be maintained and updated ef-
ficiently. The summary of the stream consists of the bor-

ders and their corresponding frequencies. For a specific
type of streams, the so-called Farey streams, we theoreti-
cally showed an upper bound on the size of the summary,
by giving an upper bound on the size of the borders.

References

[1] T. Calders, N. Dexters, and B. Goethals. Mining frequent
items in a stream using flexible windows. Intelligent Data
Analysis, 12(3), May 2008.

[2] J. H. Conway and R. K. Guy. Farey fractions and ford cir-
cles. In The Book of Numbers, pages 152–154. Springer-
Verlag, 1996.

[3] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Frequency
estimation of internet packet streams with limited space. In
ESA, pages 348–360, 2002.

[4] C. Giannella, J. Han, J. Pei, X. Yan, and P. Yu. Mining fre-
quent patterns in data streams at multiple time granularities.
In H. Kargupta, A. Joshi, K. Sivakumar, and Y. Yesha, edi-
tors, NSF Workshop on Next Generation Data Mining, 2002.

[5] C. Giannella, J. Han, E. Robertson, and C. Liu. Mining fre-
quent itemsets over arbitrary time intervals in data streams.
Technical Report TR587, Indiana University, Bloomington,
USA, November 2003.

[6] L. Golab, D. DeHaan, E. D. Demaine, A. López-Ortiz, and
J. I. Munro. Identifying frequent items in sliding windows
over on-line packet streams. In Internet Measurement Com-
ference, pages 173–178, 2003.

[7] R. Jin and G. Agrawal. An algorithm for in-core frequent
itemset mining on streaming data. In ICDM, pages 210–217,
2005.

[8] R. M. Karp, S. Shenker, and P. H. A simple algorithm for
finding frequent elements in streams and bags. ACM Trans.
Database Syst., 28:51–55, 2003.

[9] D. Lee and W. Lee. Finding maximal frequent itemsets over
online data streams adaptively. In ICDM, pages 266–273,
2005.

[10] C.-H. Lin, D.-Y. Chiu, Y.-H. Wu, and A. L. P. Chen. Min-
ing frequent itemsets from data streams with a time-sensitive
sliding window. In SDM, 2005.

[11] A. Veloso, W. Meira Jr., M. de Carvalho, B. Pôssas,
S. Parthasarathy, and M. J. Zaki. Mining frequent itemsets
in evolving databases. In SDM, 2002.

[12] R. Wong and A. Fu. Mining top-K frequent itemsets from
data streams. Data Mining and Knowledge Discovery,
13(2):193–217, 2006.

[13] J. X. Yu, Z. Chong, H. Lu, and A. Zhou. False positive or
false negative: Mining frequent itemsets from high speed
transactional data streams. In VLDB, pages 204–215, 2004.

