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1 IntroductionThe step following the data mining step in the KDD process consists of the interpre-tation of the data mining results [6]. This post-processing phase is non-trivial, sincedata mining results can be considerably large. We must thus provide the user withtools that allow him to infer from the results the information that really interestshim.Some authors even suggested terms such as \second-order data mining" or \rulemining" in this context. However, these terms are of course a little bit exaggerated.In the �eld of databases we know very well how to extract the information we areinterested in from a given information base: this is what we know as querying.Mining di�ers from querying in that, rather than extracting information fromthe base information, it produces meta-level information: information about the baseinformation. Nevertheless, the basic idea we want to put forward in this paper is thatunlike the mining step itself, many aspects of the post-processing step can alreadyconveniently be handled by querying, using a general-purpose query language withoutany need for new syntactical constructs. This paper also �ts in the subject of \datamining query languages," as we will explain later.We develop our idea in the speci�c context of mining association rules [2]. Thereto,we propose a natural format under which the association rules, generated in thedata mining step, can be stored in the database together with the data themselves.Storing meta-level data together with ordinary data is not unusual; indeed, the datadictionaries of most relational database systems consists of tables, holding meta datasuch as relation names, attribute names, etc., that can be accessed (not updated) likeany other table in the database.We will show that under the above view, all post-processing operations that wehave found proposed in the literature can be performed by standard SQL queries.Put di�erently, our goal is to demonstrate that standard relational database systems,used in a perhaps slightly unconventional way, o�er a powerful platform on top ofwhich data mining post-processing tools can be implemented. Just for the samereasons all data processing applications are nowadays developed on top of a databasesystem, we believe this approach is superior to incorporating post-processing featuresin KDD systems from scratch every time in an ad-hoc manner. Particular proposalswhich are naturally subsumed by our approach include the rule querying feature ofthe DataMine system [10], the mining conditions of Meo et al. [13], the rule templatesof Klemettinen et al. [11], and the rule covers and groupings of Toivonen et al. [16].Furthermore, we show that also speci�c post-processing needs of particular ap-plications are covered by our approach, by presenting a concrete application in theMarketing domain. The application deals with customer satisfaction tests. As illus-trations we will show how so-called \basic patterns of dissatisfaction" can be detected,and how customer satisfaction tests can be monitored.As already mentioned, the queries produced by our approach are expressible in1



SQL, although they are not especially simple. Most of them involve grouping, aggre-gate operators, and the comparison of nested subqueries: the typical characteristicsof the class of queries known as decision support queries. We thus see that decisionsupport queries, which usually are more associated with OLAP, also have a role toplay in the KDD process. In general, non-standard query processing and optimiza-tion techniques are required to allow e�cient execution of decision support querieson large databases [14, 5]. Much research has still to be done here, and will be donegiven that current interest in OLAP and decision support is tremendous.However, the ideal platform for implementation of our approach is not relationalat all, but is rather provided by OQL, the standard query language of object-orienteddatabase systems (OODBs) [4]. Indeed, we will see that our model of storing the meta-data, as well as our queries used to process them, are made much more transparent bythe more powerful data modeling and query processing facilities o�ered by OODBsand OQL [1, 12]. We are convinced that OODB technology, which has matured inrecent years, has a useful role to play in the KDD process and, for that matter, indecision support queries in general.This paper is organized as follows. Section 2 describes our model of storing meta-data. Section 3 considers various �ltering operations, an important kind of post-processing. Section 4 presents the Marketing application. Section 5 concludes with adiscussion of the notion of data mining query language.2 Representation of mining resultsAs already mentioned in the Introduction, we focus in this paper on the mining ofassociation rules [2].Preliminaries Datasets are assumed to be stored in a relational database and arerepresented naturally as two-column tables. Each row in a data table is a pair ofthe form (t; i), where t is a transaction identi�er (TID for short) and i is an item.Items can either be numbers which have some meaning known to the user, or can bereferences to a row (or rows) in another table (or tables) in the database that holdadditional information on the item. For example, in market basket analysis, items areproduct codes, and there could be other tables in the database associating additionalinformation to product codes such as product prices.A TID t occurring in a data table D represents a set of items, denoted by D(t),in the obvious way: D(t) := fi j (t; i) 2 Dg. As for items, there could be other tablesin the database associating additional information to each transaction (other than itsset of items), such as the date and time (in a market basket analysis application).The mining of association rules is based on the notion of support of an itemset.The support of a set X of items is the percentage of TIDs in D that cover X. Here,a TID t is said to cover X simply if X is a subset of D(t). An association rule has2
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Figure 1: Simple abstract example of a data table D, an itemset table I, a supporttable S, and a rule table R.the form X1 ) X2, where X1 and X2 are itemsets. The con�dence of this rule equalsthe support of X1 [X2 divided by the support of X1. The support of this rule equalsthe support of X1 [X2. The mining step generates all association rules with supportand con�dence at least certain tresholds.Representation of mining results The association rules, resulting from the min-ing of some data table, can be stored in the same database that contains the datatables, using a simple and natural format which we now describe.1. The itemset table. All itemsets that occur in the association rules are stored ina two-column table. Thereto, we associate a unique identi�er to each itemset.We then store in the table all pairs (s; i) where s is an itemset identi�er and iis an item in the set identi�ed by s.2. The support table. The supports of the itemsets in the itemset table are storedin a separate two-column table holding all pairs (s; �), where s is an itemsetidenti�er and � is the support of the set identi�ed by s.3. The rule table. The association rules are stored in a �ve-column table. For eachrule X1 ) X2 with support � and con�dence 
, there is a row (r; s1; s2; �; 
) inthe table, where r is a unique identi�er for the rule, s1 is the identi�er of X1,and s2 is the identi�er of X2.A simple abstract example is given in Figure 1, which shows a data tableD, an itemsettable I, a support table S, and a rule table R. The data table contains, amongothers, TID t1 representing the set of items fa; b; cg. The itemset table contains,among others, identi�er s1 of the itemset fe; fg. The support table shows, amongothers, that the support of fe; fg is 200. The rule table shows that, among others,fe; fg ) fag is an association rule with identi�er r, support 140, and con�dence 0:8.Querying As a �rst illustration of how these tables can be queried, we show howan important auxiliary table for decision support and post-processing can be derived3



select I1.sid, I2.sidfrom Itemsets I1, Itemsets I2where not exists(select I3.itemfrom Itemsets I3where I3.sid=I1.sid and I3.item not in(select I4.itemfrom Itemsets I4where I4.sid=I2.sid))
select s1, s2from s1 in Itemsets, s2 in Itemsetswhere s1.elements <= s2.elements

Figure 2: The subset query in SQL (left) and in OQL (right).from the itemset table in SQL. Assume we have an itemset table called Itemsetswith column names sid (for set identi�er) and item. The query shown in Figure 2(left) produces the table consisting of all pairs (s1; s2) of itemset identi�ers such thatthe itemset identi�ed by s1 is a subset of the itemset identi�ed by s2.Object-oriented representation If an object-oriented database system is avail-able, we can exploit its more powerful data modeling and query processing capabilities[1, 12] and do better.Basically we assume we have a class Item the instances of which are items, anda class Transaction the instances of which are transactions. Every Transactionobject has (among others) a property items of type set(Item). This means that if tdenotes a Transaction object, t.items denotes a set of Item objects. A data tableis then simply a set of Transaction objects.To store itemsets and association rules, we de�ne a class Itemset the instancesof which are itemsets. Like Transaction objects, every Itemset object has (amongothers) a property elements of type set(Item). Every Itemset object also has aproperty support. Furthermore, we de�ne a class Rule the instances of which areassociation rules. Among others, Rule objects have properties body and head oftype Itemset, and properties support and confidence. Itemset tables and ruletables now simply become sets of Itemset and Rule objects, respectively. There isno longer need for a separate support table since the support of an itemset is nowdirectly modeled as a property of the corresponding object.Figure 3 shows the same data shown in Figure 1 in object-oriented form.Using OQL. To illustrate the advantage of using the object-oriented representa-tion, let us reconsider the subset query of Figure 2 in this setting. In OQL, thestandard object-oriented query language [4], the less-than (<=) comparison operator,when applied to set values, is automatically interpreted as subset-of. As a conse-quence, the subset query becomes much simpler when written in OQL, as shown inFigure 2 (right), and thus also easier to optimize and process by the system.For simplicity of presentation, in the sequel we will use the object-oriented repre-4



Transactionst1 itemsfa; b; cgt2 itemsfb; dgt3 itemsfcg
Itemsetss1 elements supportfe; fg 200s4 elements supportfag 397Rulesr body head support confidences1 s4 140 0.8Figure 3: Object-oriented representation.sentation of mining results, and we will use OQL as our query language. However,everything we will do can also be done under the relational representation using SQL.3 Filtering of association rulesLet us now illustrate how �ltering operations on sets of association rules|an impor-tant kind of post-processing operations|are readily expressed as standard queriesin OQL (or SQL), under the natural representation of rules given in the previoussection.Templates A quite general mechanism for specifying typical �lterings of associationrules was introduced by Klemettinen et al. [11] in the form of \templates". Templatesare boolean combinations of two basic kinds of conditions: (i) an upper or lower boundon the cardinality of the body or head of a rule; (ii) a given item that must, or mustnot, appear in the body or the head.Templates are expressible as straightforward selection queries on the rule table.For example, to select those rules with a body of at least 3 items, among which theitem a, and with a head not containing the item b nor c, we write:select rfrom r in Ruleswhere count(r.body)>=3 and a in r.bodyand b not in r.body and c not in r.bodyMining conditions Meo et al. [13] suggested the possibility of putting qualitativeconditions on the items in the head or body of a rule, which they called \miningconditions". Again this amounts to a selection query on the rule table. For example,to select those rules (in a market basket analysis application) having only expensiveitems (costing more than a certain price p) in the head, we write:5



select rfrom r in Ruleswhere forall i in r.head : i.price > pHere the object-oriented representation we are using allows us to naturally assumethat Item objects have a property price. In the relational representation, this wouldrequire an extra join with a Prices table. (The forall quanti�er of OQL needs tobe simulated in SQL using a not exists construction.)Local versus global �ltering Both templates and mining conditions are \local"�ltering conditions, in the sense that whether or not a particular rule is �ltered outdepends only on that rule itself, not on how it compares to other rules. However,using a general-purpose query language to express �lterings, it becomes possible toexpress also \global" rule �lterings based on conditions that compare rules with eachother, or even relate the generated rules back to the data.As an illustration, consider the following �ltering condition introduced by Toivo-nen et al. [16] under the term \structural rule covering:" a rule should only be retainedif there is no more general rule with a higher con�dence. Here, we call a ruleX 01 ) X 02more general than a rule X1 ) X2 if X 01 � X1 and X2 � X 02. So, a more general rulerequires less items in the body, and still infers more items in the head.It is quite reasonable to discard a rule if there is a more general rule with at leastthe same con�dence. The set of rules that can be thus discarded is easily de�ned bythe following OQL query:select rfrom r in Ruleswhere exists r1 in Rules : r1.body <= r.body andr.head <= r1.head and r1.confidence >= r.confidenceWe have experimented with this �ltering operation on rules generated for realmarket basket data from a Belgian supermarket chain. To our suprise, it turnedout that no rules at all were discarded in this way! Indeed, many rules had moregeneral ones, but these invariably had less con�dence. (Of course this is an empiricalobservation; in theory it is very well possible that a more general rule has morecon�dence.) However, when we slightly relaxed the restriction on the con�dence ofthe more general rule, so that it may be less as long as it does not deviate drastically(more than 10%), we obtained a �lter discarding almost 80% of the rules in our case.Rule covers Another global �ltering operation, also proposed by Toivonen et al.,is to discard a rule r if there is another rule r0, with at least the same con�dence,such that the support set of r0 is a superset of the support set of r. Here, the supportset of a rule X1 ) X2 is simply the set of transactions in the data table that coverX1 [ X2. Again the set of rules that can be thus discarded is readily de�ned by anOQL query: 6



select rfrom r in Ruleswhere exists r1 in Rules : r1.confidence >= r.confidence andforall t in Transactions : covers(t; r1) or not covers(t; r)Here, covers(t; r) is an abbreviation for (r.body <= t.items and r.head <= t.items).Note that this query actually involves both the rule table and the data table.As such it is not a purely \structural" �lter, going beyond strict post-processing ofgenerated rules. The possibility of post-processing rules by relating them back to thedata was also hinted at by Imielinski et al. [10]. Expressing such operations does notpose a problem in our approach, since we store the rule table in the same databaseas the data tables.Performance considerations Performance-wise, global �ltering operations, suchas the last two OQL queries shown, are rather heavy. A powerful database server,optimized for decision support queries, is needed to get fast response times. This isthe price we pay (literally!) for almost unlimited 
exibility in post processing.4 Application: customer satisfactionIn the previous section, we considered �ltering operations that are generally relevant.In this section, we consider post-processing operations speci�c to an application inthe Marketing domain, namely, the monitoring of customer satisfaction tests.In this application, we analyze the answers to a customer questionnaire. Thequestionnaire contains a number of speci�c questions, plus one question asking for hisglobal assessment. To simplify our discussion, we assume only two possible answersto this last question: \dissatis�ed" and \satis�ed". So we de�ne an item in thisapplication as an answer to one of the questions; in particular, the two global answersdissat and sat are items. We then identify each customer by a transaction, the itemsof which are precisely the answers given by that customer.Basic patterns and excitement patterns Studies on customer satisfaction [3]suggest that services may be grouped in two categories: those ful�lling minimumrequirements, and those providing a genuine added value to the customer's experi-ence. To get information on customer's expectations, we thus want to mine for basicpatterns: patterns that cause dissatisfaction when not present but do not cause sat-isfaction when present; and for excitement patterns: patterns that cause satisfactionwhen present but do not cause dissatisfaction when not present. The treatment ofexcitement patterns is analogous to that of basic patterns. So we concentrate on thelatter.We can formalize a pattern as an itemset not containing the items dissat or sat .So a pattern is a set of answers to the other questions, used to try to predict the7



global assessment. A basic pattern then can be formalized as a pattern X satisfyingthe following properties: (i) the rule X ) fsatg has low con�dence; and (ii) thesupport of the single-item set fdissatg does not change signi�cantly if we ignore alltransactions in the data table that cover X.However, the above formalization does not give us a clue as to which patternsto test. It is practically impossible to generate and try them all. The solution isto look instead for basic patterns of dissatisfaction. So, these are the patterns thatcause dissatisfaction when present, but do not cause satisfaction when not present.Formally, we look for the patterns X satisfying the following properties: (i) therule X ) fdissatg has high con�dence; and (ii) the support of fsatg does not changesigni�cantly if we ignore all transactions in the data table that cover X.Property (i) now allows us to test only those patterns that have su�cient supportif we consider only the dissatis�ed customers. This means we perform frequent itemsetmining on the subset of the data table de�ned by the query select t from t inTransactions where dissat in t.items. We store the itemsets thus generated inan itemset table called DissatPatterns.Finally, we execute the query shown in Figure 4 which gives us the complementsof the basic patterns, as desired. In our experiments we processed this query on thecustomer satisfaction tests of a Belgian bank. The set DissatPatterns consistedof 1195 patterns. From these, 25 were selected by the query with value 85 for pa-rameter h. An example of the outcome is that the presence of bank clerks who areimpatient, impersonal, and unclear in their explanations, will generally cause globaldissatisfaction of the customer.The query of Figure 4 is another example of a �ltering operation that relates theresults of mining back to the data. Performance-wise the query is quite heavy, andwill have to rely on good optimization and processing techniques. Obviously there isa trade-o� here between what we want to compute in the mining step and what in thepost-processing step. Indeed, we can alternatively customize the mining algorithmand compute the needed con�dences and supports there. Then the query becomes atrivial selection query.Monitoring customer satisfaction Other interesting post-processing operationsone can perform concern monitoring: comparing the results of the current customersurvey and a previous one (e.g., excitement patterns may well evolve into basic pat-terns after some time!) Monitoring is again easy to perform by standard queryingoperations; due to space limitations we omit all details.5 A perspective on data mining query languagesThe notion of data mining query language has appeared in a number of works [8, 10,13, 9]. The idea is to have a language in which the complete data mining step can8



select pfrom p in DissatPatternswhere count(select tfrom t in Transactionswhere t.items >= p and dissat in t.items)/ count(select tfrom t in Transactionswhere t.items >= p) >= hand count(select tfrom t in Transactionswhere not (t.items >= p) and sat in t.items)/ count(select tfrom t in Transactionswhere not (t.items >= p)) ' �Figure 4: Finding the complements of basic patterns. Here, h is some treshold value,� is the support of fsatg, and x ' y means that x and y are not signi�cantly di�erent(e.g., x ' y , jx� yj � 2).be expressed. This includes the speci�cation of many aspects of that step, including:(i) how the actual data table (on which mining has to be performed) is obtainedfrom the tables in the database; (ii) which attributes determine the TID, and whichdetermine the items; (iii) minimum support and con�dence tresholds; (iv) �lteringconditions on the generated rules.Aspect (i) is nothing but a query. We have shown in this paper that, under anatural representation of the generated rules, aspect (iv) is also nothing but a query.Aspects (ii) and (iii) are rather trivial.It would be very nice if we could design a powerful query language in which notonly the above four aspects, but also the mining algorithm itself can be expressedas \just another query". Such an \ultimate" data mining query language couldlook very much like a complex-object query language such as OQL, extended withiteration capabilities so that the iterative nature of rule generation in association rulemining algorithms such as Apriori [2] can be captured.1 It would then be possible toexpress mining and �ltering together as one global query operation, which opens theperspective of optimization techniques that incorporate the �ltering of rules directlywithin the generation of these rules (akin to the basic optimization technique ofpushing selections within joins in relational query processing [17]). Optimizing andprocessing the query of Figure 4 is an interesting example challenge.Of course, to make this dream come true, the crucial challenge is to investigatewhether there are query processing and optimization techniques for complex-objectquery languages with iteration, so that the complexity of mining executed as a queryis not much higher than that of mining executed by a special-purpose program.1For an exposition on query languages with iteration or recursion capabilities, see Abiteboul,Hull, and Vianu's book [1]. 9
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