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Abstract

The interpretation of data mining results is an important step in the
KDD process. This paper argues that many aspects of this post-processing
phase can be conveniently viewed from the perspective of decision support
queries. To realize this view, it suffices to use a structured representation
of the data mining results, and to store these results together with the
data themselves. The usefulness of the proposed approach is illustrated
with an application from the Marketing domain.
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1 Introduction

The step following the data mining step in the KDD process consists of the interpre-
tation of the data mining results [6]. This post-processing phase is non-trivial, since
data mining results can be considerably large. We must thus provide the user with
tools that allow him to infer from the results the information that really interests
him.

Some authors even suggested terms such as “second-order data mining” or “rule
mining” in this context. However, these terms are of course a little bit exaggerated.
In the field of databases we know very well how to extract the information we are
interested in from a given information base: this is what we know as querying.

Mining differs from querying in that, rather than extracting information from
the base information, it produces meta-level information: information about the base
information. Nevertheless, the basic idea we want to put forward in this paper is that
unlike the mining step itself, many aspects of the post-processing step can already
conveniently be handled by querying, using a general-purpose query language without
any need for new syntactical constructs. This paper also fits in the subject of “data
mining query languages,” as we will explain later.

We develop our idea in the specific context of mining association rules [2]. Thereto,
we propose a natural format under which the association rules, generated in the
data mining step, can be stored in the database together with the data themselves.
Storing meta-level data together with ordinary data is not unusual; indeed, the data
dictionaries of most relational database systems consists of tables, holding meta data
such as relation names, attribute names, etc., that can be accessed (not updated) like
any other table in the database.

We will show that under the above view, all post-processing operations that we
have found proposed in the literature can be performed by standard SQL queries.
Put differently, our goal is to demonstrate that standard relational database systems,
used in a perhaps slightly unconventional way, offer a powerful platform on top of
which data mining post-processing tools can be implemented. Just for the same
reasons all data processing applications are nowadays developed on top of a database
system, we believe this approach is superior to incorporating post-processing features
in KDD systems from scratch every time in an ad-hoc manner. Particular proposals
which are naturally subsumed by our approach include the rule querying feature of
the DataMine system [10], the mining conditions of Meo et al. [13], the rule templates
of Klemettinen et al. [11], and the rule covers and groupings of Toivonen et al. [16].

Furthermore, we show that also specific post-processing needs of particular ap-
plications are covered by our approach, by presenting a concrete application in the
Marketing domain. The application deals with customer satisfaction tests. As illus-
trations we will show how so-called “basic patterns of dissatisfaction” can be detected,
and how customer satisfaction tests can be monitored.

As already mentioned, the queries produced by our approach are expressible in



SQL, although they are not especially simple. Most of them involve grouping, aggre-
gate operators, and the comparison of nested subqueries: the typical characteristics
of the class of queries known as decision support queries. We thus see that decision
support queries, which usually are more associated with OLAP, also have a role to
play in the KDD process. In general, non-standard query processing and optimiza-
tion techniques are required to allow efficient execution of decision support queries
on large databases [14, 5]. Much research has still to be done here, and will be done
given that current interest in OLAP and decision support is tremendous.

However, the ideal platform for implementation of our approach is not relational
at all, but is rather provided by OQL, the standard query language of object-oriented
database systems (OODBs) [4]. Indeed, we will see that our model of storing the meta-
data, as well as our queries used to process them, are made much more transparent by
the more powerful data modeling and query processing facilities offered by OODBs
and OQL [1, 12]. We are convinced that OODB technology, which has matured in
recent years, has a useful role to play in the KDD process and, for that matter, in
decision support queries in general.

This paper is organized as follows. Section 2 describes our model of storing meta-
data. Section 3 considers various filtering operations, an important kind of post-
processing. Section 4 presents the Marketing application. Section 5 concludes with a
discussion of the notion of data mining query language.

2 Representation of mining results

As already mentioned in the Introduction, we focus in this paper on the mining of
association rules [2].

Preliminaries Datasets are assumed to be stored in a relational database and are
represented naturally as two-column tables. Each row in a data table is a pair of
the form (¢,4), where ¢ is a transaction identifier (TID for short) and i is an item.
Items can either be numbers which have some meaning known to the user, or can be
references to a row (or rows) in another table (or tables) in the database that hold
additional information on the item. For example, in market basket analysis, items are
product codes, and there could be other tables in the database associating additional
information to product codes such as product prices.

A TID t occurring in a data table D represents a set of items, denoted by D(#),
in the obvious way: D(t) := {i | (¢,i) € D}. As for items, there could be other tables
in the database associating additional information to each transaction (other than its
set of items), such as the date and time (in a market basket analysis application).

The mining of association rules is based on the notion of support of an itemset.
The support of a set X of items is the percentage of TIDs in D that cover X. Here,
a TID ¢ is said to cover X simply if X is a subset of D(t). An association rule has
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Figure 1: Simple abstract example of a data table D, an itemset table I, a support
table S, and a rule table R.

the form X; = Xy, where X; and X, are itemsets. The confidence of this rule equals
the support of X; U X5 divided by the support of X;. The support of this rule equals
the support of X; U Xy. The mining step generates all association rules with support
and confidence at least certain tresholds.

Representation of mining results The association rules, resulting from the min-
ing of some data table, can be stored in the same database that contains the data
tables, using a simple and natural format which we now describe.

1. The itemset table. All itemsets that occur in the association rules are stored in
a two-column table. Thereto, we associate a unique identifier to each itemset.
We then store in the table all pairs (s,4) where s is an itemset identifier and i
is an item in the set identified by s.

2. The support table. The supports of the itemsets in the itemset table are stored
in a separate two-column table holding all pairs (s, o), where s is an itemset
identifier and o is the support of the set identified by s.

3. The rule table. The association rules are stored in a five-column table. For each
rule X; = X, with support o and confidence v, there is a row (r, s1, $3,0,7) in
the table, where r is a unique identifier for the rule, s; is the identifier of X,
and sy is the identifier of Xj.

A simple abstract example is given in Figure 1, which shows a data table D, an itemset
table I, a support table S, and a rule table R. The data table contains, among
others, TID #; representing the set of items {a,b,c}. The itemset table contains,
among others, identifier s; of the itemset {e, f}. The support table shows, among
others, that the support of {e, f} is 200. The rule table shows that, among others,
{e, f} = {a} is an association rule with identifier r, support 140, and confidence 0.8.

Querying As a first illustration of how these tables can be queried, we show how
an important auxiliary table for decision support and post-processing can be derived



select Il1.sid, I2.sid select s1, s2
from Itemsets I1, Itemsets I2 from s1 in Itemsets, s2 in Itemsets
where not exists where sl.elements <= s2.elements
(select I3.item
from Itemsets I3
where I3.sid=I1.sid and I3.item not in
(select I4.item
from Itemsets I4
where I4.sid=I2.sid))

Figure 2: The subset query in SQL (left) and in OQL (right).

from the itemset table in SQL. Assume we have an itemset table called Itemsets
with column names sid (for set identifier) and item. The query shown in Figure 2
(left) produces the table consisting of all pairs (sy, s2) of itemset identifiers such that
the itemset identified by s; is a subset of the itemset identified by ss.

Object-oriented representation If an object-oriented database system is avail-
able, we can exploit its more powerful data modeling and query processing capabilities
[1, 12] and do better.

Basically we assume we have a class Item the instances of which are items, and
a class Transaction the instances of which are transactions. Every Transaction
object has (among others) a property items of type set (Item). This means that if t
denotes a Transaction object, t.items denotes a set of Item objects. A data table
is then simply a set of Transaction objects.

To store itemsets and association rules, we define a class Itemset the instances
of which are itemsets. Like Transaction objects, every Itemset object has (among
others) a property elements of type set(Item). Every Itemset object also has a
property support. Furthermore, we define a class Rule the instances of which are
association rules. Among others, Rule objects have properties body and head of
type Itemset, and properties support and confidence. Itemset tables and rule
tables now simply become sets of Itemset and Rule objects, respectively. There is
no longer need for a separate support table since the support of an itemset is now
directly modeled as a property of the corresponding object.

Figure 3 shows the same data shown in Figure 1 in object-oriented form.

Using OQL. To illustrate the advantage of using the object-oriented representa-
tion, let us reconsider the subset query of Figure 2 in this setting. In OQL, the
standard object-oriented query language [4], the less-than (<=) comparison operator,
when applied to set values, is automatically interpreted as subset-of. As a conse-
quence, the subset query becomes much simpler when written in OQL, as shown in
Figure 2 (right), and thus also easier to optimize and process by the system.

For simplicity of presentation, in the sequel we will use the object-oriented repre-
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Figure 3: Object-oriented representation.

sentation of mining results, and we will use OQL as our query language. However,
everything we will do can also be done under the relational representation using SQL.

3 Filtering of association rules

Let us now illustrate how filtering operations on sets of association rules—an impor-
tant kind of post-processing operations—are readily expressed as standard queries
in OQL (or SQL), under the natural representation of rules given in the previous
section.

Templates A quite general mechanism for specifying typical filterings of association
rules was introduced by Klemettinen et al. [11] in the form of “templates”. Templates
are boolean combinations of two basic kinds of conditions: (i) an upper or lower bound
on the cardinality of the body or head of a rule; (i7) a given item that must, or must
not, appear in the body or the head.

Templates are expressible as straightforward selection queries on the rule table.
For example, to select those rules with a body of at least 3 items, among which the
item a, and with a head not containing the item b nor ¢, we write:

select r

from r in Rules

where count(r.body)>=3 and a in r.body
and b not in r.body and ¢ not in r.body

Mining conditions Meo et al. [13] suggested the possibility of putting qualitative
conditions on the items in the head or body of a rule, which they called “mining
conditions”. Again this amounts to a selection query on the rule table. For example,
to select those rules (in a market basket analysis application) having only expensive
items (costing more than a certain price p) in the head, we write:



select r
from r in Rules
where forall i in r.head : i.price > p

Here the object-oriented representation we are using allows us to naturally assume
that Item objects have a property price. In the relational representation, this would
require an extra join with a Prices table. (The forall quantifier of OQL needs to
be simulated in SQL using a not exists construction.)

Local versus global filtering Both templates and mining conditions are “local”
filtering conditions, in the sense that whether or not a particular rule is filtered out
depends only on that rule itself, not on how it compares to other rules. However,
using a general-purpose query language to express filterings, it becomes possible to
express also “global” rule filterings based on conditions that compare rules with each
other, or even relate the generated rules back to the data.

As an illustration, consider the following filtering condition introduced by Toivo-
nen et al. [16] under the term “structural rule covering:” a rule should only be retained
if there is no more general rule with a higher confidence. Here, we call a rule X{ = X}
more general than a rule X; = X, if X{ C X; and X, C XJ. So, a more general rule
requires less items in the body, and still infers more items in the head.

It is quite reasonable to discard a rule if there is a more general rule with at least
the same confidence. The set of rules that can be thus discarded is easily defined by
the following OQL query:

select r

from r in Rules

where exists rl in Rules : rl.body <= r.body and
r.head <= rl1.head and rl.confidence >= r.confidence

We have experimented with this filtering operation on rules generated for real
market basket data from a Belgian supermarket chain. To our suprise, it turned
out that no rules at all were discarded in this way! Indeed, many rules had more
general ones, but these invariably had less confidence. (Of course this is an empirical
observation; in theory it is very well possible that a more general rule has more
confidence.) However, when we slightly relaxed the restriction on the confidence of
the more general rule, so that it may be less as long as it does not deviate drastically
(more than 10%), we obtained a filter discarding almost 80% of the rules in our case.

Rule covers Another global filtering operation, also proposed by Toivonen et al.,
is to discard a rule r if there is another rule r’, with at least the same confidence,
such that the support set of r' is a superset of the support set of . Here, the support
set of a rule X; = X, is simply the set of transactions in the data table that cover
X1 U Xs. Again the set of rules that can be thus discarded is readily defined by an
OQL query:



select r

from r in Rules

where exists rl in Rules : ril.confidence >= r.confidence and
forall t in Transactions : covers(t,rl) or not covers(t,r)

Here, covers(t, r) is an abbreviation for (r.body <= t.items and r.head <= t.items).
Note that this query actually involves both the rule table and the data table.

As such it is not a purely “structural” filter, going beyond strict post-processing of

generated rules. The possibility of post-processing rules by relating them back to the

data was also hinted at by Imielinski et al. [10]. Expressing such operations does not

pose a problem in our approach, since we store the rule table in the same database

as the data tables.

Performance considerations Performance-wise, global filtering operations, such
as the last two OQL queries shown, are rather heavy. A powerful database server,
optimized for decision support queries, is needed to get fast response times. This is
the price we pay (literally!) for almost unlimited flexibility in post processing.

4 Application: customer satisfaction

In the previous section, we considered filtering operations that are generally relevant.
In this section, we consider post-processing operations specific to an application in
the Marketing domain, namely, the monitoring of customer satisfaction tests.

In this application, we analyze the answers to a customer questionnaire. The
questionnaire contains a number of specific questions, plus one question asking for his
global assessment. To simplify our discussion, we assume only two possible answers
to this last question: “dissatisfied” and “satisfied”. So we define an item in this
application as an answer to one of the questions; in particular, the two global answers
dissat and sat are items. We then identify each customer by a transaction, the items
of which are precisely the answers given by that customer.

Basic patterns and excitement patterns Studies on customer satisfaction [3]
suggest that services may be grouped in two categories: those fulfilling minimum
requirements, and those providing a genuine added value to the customer’s experi-
ence. To get information on customer’s expectations, we thus want to mine for basic
patterns: patterns that cause dissatisfaction when not present but do not cause sat-
isfaction when present; and for excitement patterns: patterns that cause satisfaction
when present but do not cause dissatisfaction when not present. The treatment of
excitement patterns is analogous to that of basic patterns. So we concentrate on the
latter.

We can formalize a pattern as an itemset not containing the items dissat or sat.
So a pattern is a set of answers to the other questions, used to try to predict the



global assessment. A basic pattern then can be formalized as a pattern X satisfying
the following properties: (i) the rule X = {sat} has low confidence; and (7i) the
support of the single-item set {dissat} does not change significantly if we ignore all
transactions in the data table that cover X.

However, the above formalization does not give us a clue as to which patterns
to test. It is practically impossible to generate and try them all. The solution is
to look instead for basic patterns of dissatisfaction. So, these are the patterns that
cause dissatisfaction when present, but do not cause satisfaction when not present.
Formally, we look for the patterns X satisfying the following properties: (i) the
rule X = {dissat} has high confidence; and (ii) the support of {sat} does not change
significantly if we ignore all transactions in the data table that cover X.

Property (i) now allows us to test only those patterns that have sufficient support
if we consider only the dissatisfied customers. This means we perform frequent itemset
mining on the subset of the data table defined by the query select t from t in
Transactions where dissal in t.items. We store the itemsets thus generated in
an itemset table called DissatPatterns.

Finally, we execute the query shown in Figure 4 which gives us the complements
of the basic patterns, as desired. In our experiments we processed this query on the
customer satisfaction tests of a Belgian bank. The set DissatPatterns consisted
of 1195 patterns. From these, 25 were selected by the query with value 85 for pa-
rameter h. An example of the outcome is that the presence of bank clerks who are
impatient, impersonal, and unclear in their explanations, will generally cause global
dissatisfaction of the customer.

The query of Figure 4 is another example of a filtering operation that relates the
results of mining back to the data. Performance-wise the query is quite heavy, and
will have to rely on good optimization and processing techniques. Obviously there is
a trade-off here between what we want to compute in the mining step and what in the
post-processing step. Indeed, we can alternatively customize the mining algorithm
and compute the needed confidences and supports there. Then the query becomes a
trivial selection query.

Monitoring customer satisfaction Other interesting post-processing operations
one can perform concern monitoring: comparing the results of the current customer
survey and a previous one (e.g., excitement patterns may well evolve into basic pat-
terns after some time!) Monitoring is again easy to perform by standard querying
operations; due to space limitations we omit all details.

5 A perspective on data mining query languages

The notion of data mining query language has appeared in a number of works [8, 10,
13, 9]. The idea is to have a language in which the complete data mining step can



select p
from p in DissatPatterns
where count(select t
from t in Transactions
where t.items >= p and dissat in t.items)
/ count(select t
from t in Transactions
where t.items >= p) >= h
and count(select t
from t in Transactions
where not (t.items >= p) and sat in t.items)
/ count(select t
from t in Transactions
where not (t.items >= p)) ~ o

Figure 4: Finding the complements of basic patterns. Here, h is some treshold value,
o is the support of {sat}, and 2 ~ y means that = and y are not significantly different
(eg, r~y&|r—y| <2).

be expressed. This includes the specification of many aspects of that step, including:
(i) how the actual data table (on which mining has to be performed) is obtained
from the tables in the database; (ii) which attributes determine the TID, and which
determine the items; (i) minimum support and confidence tresholds; (iv) filtering
conditions on the generated rules.

Aspect (i) is nothing but a query. We have shown in this paper that, under a
natural representation of the generated rules, aspect (iv) is also nothing but a query.
Aspects (ii) and (iii) are rather trivial.

It would be very nice if we could design a powerful query language in which not
only the above four aspects, but also the mining algorithm itself can be expressed
as “just another query”. Such an “ultimate” data mining query language could
look very much like a complex-object query language such as OQL, extended with
iteration capabilities so that the iterative nature of rule generation in association rule
mining algorithms such as Apriori [2] can be captured.! Tt would then be possible to
express mining and filtering together as one global query operation, which opens the
perspective of optimization techniques that incorporate the filtering of rules directly
within the generation of these rules (akin to the basic optimization technique of
pushing selections within joins in relational query processing [17]). Optimizing and
processing the query of Figure 4 is an interesting example challenge.

Of course, to make this dream come true, the crucial challenge is to investigate
whether there are query processing and optimization techniques for complex-object
query languages with iteration, so that the complexity of mining executed as a query
is not much higher than that of mining executed by a special-purpose program.

!For an exposition on query languages with iteration or recursion capabilities, see Abiteboul,
Hull, and Vianu’s book [1].
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