
Sequence Mining Automata:

a New Technique for Mining Frequent Sequences Under Regular Expressions

Roberto Trasarti

Pisa KDD Laboratory

ISTI - CNR, Italy

Francesco Bonchi

Yahoo! Research

Barcelona, Spain

Bart Goethals

Math. and CS Department

University of Antwerp, Belgium

Abstract

In this paper we study the problem of mining frequent se-

quences satisfying a given regular expression. Previous ap-

proaches to solve this problem were focusing on its search

space, pushing (in some way) the given regular expression

to prune unpromising candidate patterns. On the contrary,

we focus completely on the given input data and regular ex-

pression. We introduce Sequence Mining Automata (SMA),

a specialized kind of Petri Net that while reading input se-

quences, it produces for each sequence all and only the pat-

terns contained in the sequence and that satisfy the given

regular expression. Based on this automaton, we develop

a family of algorithms. Our thorough experimentation on

different datasets and application domains confirms that in

many cases our methods outperform the current state of the

art of frequent sequence mining algorithms using regular

expressions (in some cases of orders of magnitude).

1. Introduction

Extracting frequent subsequences from a database of se-

quences [7] is an important data mining task with plenty

of different application domains, such as web usage min-

ing, bioinformatics, mobility data analysis, etc. Let D be

a database of sequences, where each T ∈ D is a finite se-

quence of symbols from an alphabet Σ: T = 〈t1, . . . , tTn
〉

where ti ∈ Σ,∀i ∈ {1, . . . , Tn}. We denote the set of all

possible sequences as Σ∗. A sequence U ∈ Σ∗ is a subse-

quence of a sequence V ∈ Σ∗, denoted U ⊑ V , if U can be

obtained by deleting some symbols from V . More formally,

U = 〈u1, . . . , um〉 is subsequence of V = 〈v1, . . . , vn〉
if there are m indices i1 < . . . < im such that u1 =

vi1
, . . . , um = vim

. The support of a sequence S ∈ Σ∗

is the number of sequences in D that are supersequences of

S: sup
D

(S) = | {T ∈ D |S ⊑ T } |. Given a database D and a

minimum support threshold σ, the set of frequent patterns is

F(D, σ) = {S ∈ Σ∗ | sup
D

(S) ≥ σ}. In this paper we study

the problem of mining frequent subsequences satisfying a

given regular expression constraint R.

The set of all patterns denoted by a regular expression

R is usually said the language L(R). Thus the problem we

address is the following.

Problem 1 Given a database D of sequences over an al-

phabet Σ, a minimum support threshold σ, and a regular

expression R defined over Σ, compute:

F(D, σ,R) = {S ∈ L(R) | sup
D

(S) ≥ σ}

Related Work. Agrawal and Srikant introduced the prob-

lem of sequential pattern mining, an Apriori-like level-wise

algorithm, named GSP, and discussed how to handle time

constraints, sliding time window, and user-defined taxon-

omy [7]. Other methods proposed for mining sequential

patterns essentially differs from the Apriori horizontal ap-

proach, in the data structure used to index the database:

vertical approaches such as SPADE [9] or SPAM [2]; and

projection-based approaches such as PREFIXSPAN [6].

The first work introducing regular expression (RE) con-

straints in sequence mining is SPIRIT by Garofalakis et.

al [5]. SPIRIT is a family of Apriori-like algorithms whose

core is similar to the GSP algorithm. Following the SPIRIT

work, Albert-Lorincz and Boulicaut introduced an highly

adaptive algorithm named RE-Hackle, which represents

regular expressions by means of a tree structure and it is

able to choose the extraction method dynamically based on

the local sensitivity of the sub-RE [1].

An evolution of SPADE for handling constraints is in-

troduced by Zaki in [8]. The kinds of constraints consid-

ered are length and width restrictions, min and max gap,

and item constraints. Pei et al. extended the projection-

based approach of PREFIXSPAN to deal with a very large

class of constraints, among which also RE constraints. The

efficiency of the resulting algorithm, named prefix-growth,

derives from the fact that all this variety of constraints ex-

hibit a prefix-monotone property, and thus they result easy to

be pushed deeply in the projection-based computation [6].

In the experimental evaluation discussed later, we com-

pare of our methods with prefix-growth and SPIRIT(V)

(called simply SPIRIT in the rest of the paper).

Paper Contribution and Organization. In this paper

we introduced Sequence Mining Automata (SMA), a new

mechanism for mining frequent sequences under regular ex-

pressions. In the next section we introduce this basic mech-

anism and prove its correctness. In Section 3 we introduce

the first algorithm based on the SMA: SMA-1P. This algo-

rithm simply passes trough the SMA every sequence in the

input database, producing all the valid patterns, whose fre-

quency is then counted. In Section 4 we introduce another

method which instead uses frequency pruning. The method

is named SMA-FC, and it performs a number of scans of

the database equals to the number of states of the given reg-

ular expression. We further develop SMA-FC by equip-

ping it with a data reduction technique that allows to re-

move from the database useless sequences as the computa-

tion progresses: the resulting algorithm, named SMA-FC∗,

is introduced in Section 5. The efficiency of our proposal

is thoroughly proven empirically in Section 6 on different

datasets and application domains.

2. Subsequences Mining Automata

Previous approaches [5, 1, 6] to solve Problem 1 were fo-

cusing on its search space, exploiting in different ways the

pruning power of the regular expression R over unpromis-

ing patterns. Contrarily, the idea behind our solution is to

focus on the input dataset and the given regular expression.

In fact, a regular expression may be a very selective kind of

syntactical constraint, for which large fraction of an input

sequence may result useless w.r.t. counting support for pos-

sible valid patterns. The the main idea is to start checking

the constraint since the reading of the input database, pro-

ducing for each sequence in the database, all and only the

valid (w.r.t. the given regular expression R) patterns con-

tained in the sequence. This is done by means of a sequence

mining automata (SMA), that we introduce next.

A well-known result from complexity theory states that

regular expressions have exactly the same expressive power

as deterministic finite automata (DFA). Thus, given any

regular expression R, we can always build a deterministic

finite automaton AR such that AR accepts exactly the lan-

guage L(R). However, for our objective we do not need a

tool able to recognize the language L(R), instead we need

a tool that given a sequence T it returns all its valid subse-

quences, i.e., all S ∈ L(R) such that S ⊑ T . We denote this

set as sR(T) = {S ∈ L(R)|S ⊑ T }.

For our purposes we adopt a specialization of Petri Nets.

A Petri Net consists of places, transitions, and directed

arcs. Arcs run between places and transitions, and not be-

tween places and places or transitions and transitions. The

place from which an arc runs to a transition is called the

input place of the transition; the place to which arcs run

from a transition is called the output place of the transition.

Places may contain any number of tokens. A distribution of

tokens over the places of a net is called a marking. Tran-

sitions act on input tokens by a process known as firing.

When a transition fires, it may consume the tokens from its

input places, performs some processing task, and places a

specified number of tokens into each of its output places.

It does this atomically, i.e., in one non-interruptible step.

Moreover, transitions can fire concurrently.

Our subsequences mining automata SMA is a special-

ized kind of Petri Net, which can be constructed from a

DFA by transforming each edge of the DFA in a transi-

tion with its two arcs from its input place and to its output

place. Moreover it has the following peculiarities:

• Transitions do not consume tokens.

• External input: all the transitions are activated by a

global external signal, corresponding to one symbol of

the input sequence. For each input sequence we got as

many external signals as the symbols in the sequence,

and in the proper order. A transition fires only when

the actual signal is the one for which the transition is

devised. When a transition fires it appends the actual

signal to all the tokens in its input place, producing

new tokens in its output place, with the constraint that

no duplicate tokens are allowed in the same place.

• Parallel execution: all the transition activated by the

same signal are executed in parallel.

The initial marking consists of only the token represent-

ing the empty sequence ε in the starting transition. When

all the symbols of the input sequence T have been used as

global signal, the sequence has been processed and in the

acceptance place of the SMA we will find all the valid sub-

sequences of T , i.e., sR(T). The whole process is clarified

in the following example.

Example 1 Given R ≡ A∗B(B|C)D∗E, we show how the

sequence T ≡ ACDBFAEBCFDE is processed by the

SMA computing sR. The whole process is graphically de-

scribed in Figure 1. We start (initial marking) with only

an empty string token 〈ε〉 in the initial state. The input se-

quence is processed from left to right. The first symbol of

the sequence A is sent as signal to the net. There is only

one transition aimed at processing A: it fires and by ap-

pending A to the unique token 〈ε〉 it produces the token 〈A〉
in its output place. When the second signal C is sent to the

net there is no transition able to fire, because the unique

transition aimed at processing the signal C has no token in

its input place. So nothing change. Similarly happens for

the third symbol D. When the fourth symbol, a B, is sent to

the net, two new tokens 〈B〉 and 〈AB〉 are produced by ap-

pending B to 〈ε〉 and 〈A〉 respectively. With the fifth symbol

nothing happens. The sixth symbol is again an A. The first

2

Process(A,…)
Process(B,…)

Process(C,…)

Process(D,…)

Process(E,…)Process(B,…)
ε

ACDBFAEBCFDE

Process(A,…)
Process(B,…)

Process(C,…)

Process(D,…)

Process(E,…)Process(B,…)
ε
A

ACDBFAEBCFDE

Process(A,…)
Process(B,…)

Process(C,…)

Process(D,…)

Process(E,…)Process(B,…)
ε
A

AB

B

ACDBFAEBCFDE

Process(A,…)
Process(B,…)

Process(C,…)

Process(D,…)

Process(E,…)Process(B,…)
ε
A

AB

B

AA ABB
BB

AAB

ACDBFAEBCFDE

Process(A,…)
Process(B,…)

Process(C,…)

Process(D,…)

Process(E,…)Process(B,…)
ε
A

AB

B

AA ABB
BB

AAB

ABC

BC

AABC

ABBD
BBD

ABCD

BCD

AABCD

ACDBFAEBCFDE

Process(A,…)
Process(B,…)

Process(C,…)

Process(D,…)

Process(E,…)Process(B,…)
ε
A

AB

B

AA ABB
BB

AAB

ABC

BC

AABC

ABBD
BBD

ABCD

BCD

AABCD

ABBE

BBE ABCE

BCE

AABCE

ABBDE
BBDE

ABCDE

BCDE

AABCDE

ACDBFAEBCFDE

Figure 1. Processing example of the se-

quence ACDBFAEBCFDE by SMA computing
sR where R ≡ A∗B(B|C)D∗E.

transition fires but it produces only a new token 〈AA〉: the

token 〈A〉 produced by appending A to the token 〈ε〉 is not

produced because already present in the output place (that

for this transition corresponds to the input place). The pro-

cess continues this way until the whole sequence has been

processed. At the end, the tokens that are in the final place

are sR(T). [Proof of correctness omitted due to space con-

straints.]

We next discuss three simple extensions to the basic

SMA, that allow to deal with patterns that are strings, and

regular expressions containing wildcards and variables.

Mining Substrings. In many application domains what is

really needed is not subsequences, but substrings, i.e., sub-

sequences made of consecutive symbols. More formally

U = 〈u1, . . . , um〉 is a substring of V = 〈v1, . . . , vn〉 if it

exist and index i such that u1 = vi, u2 = vi+1, . . . , um =

vi+m−1. We can easily adapt our methods to produce

patterns that are substring by a simple modification to the

SMA processing: at each new signal, all tokens except

those ones produced by the current signal are deleted.

Allowing Wildcards. It is typical in the biological or chem-

ical domains, to have interesting patterns that contain holes,

i.e., positions where any symbol can be placed. To handle

these kind of patterns we must allow wildcards in the regu-

lar expression. A wildcard in a regular expression is asso-

ciated in the SMA to a transition without a proper label: in

other terms, a transition that matches any signal, and thus it

fires at every iteration.

Allowing Variables. Variables allow to define very expres-

sive regular expressions. They differ from wildcards as once

a variable has been bounded to a value, all its other appear-

ances within the same pattern must be bounded to the same

value. In the following example variables are represented in

lowercase. Consider the regular expression AxBx: the pat-

terns ABBB and ACBC are valid (with x = B and x = C

respectively). Allowing variables in our method is achieved

by maintaining for each token the list of variables instan-

tiated that it contains. A transition in the SMA associated

with a variable, will fire with any signal, but it will produce

new tokens starting from input token in which the variable

itself has not yet been instantiated or it has been previously

instantiated with the same symbol of the current signal.

3. One-pass Solution

In this section we introduce a first very simple, yet very

efficient way to exploit the sequence mining automata. The

proposed solution has two interesting features: (1) it per-

forms a unique pass over the input database, (2) it is mini-

mum support threshold independent. Obviously point 2, is

not only a nice feature, it is also a strong limitation as it can

be read also as “it does not perform any frequency-based

pruning”. This issue will be discussed later. The method,

3

Synth D400N20C50 - RE 6

Support

0 2000 4000 6000 8000 10000

T
im

e
 (

s
e
c
.
lo

g
s
c
a
le

)

1e+1

1e+2

1e+3

1e+4

1e+5

SPIRIT

SMA-1P

prefix-growth

Synth N20C50 - RE 6 - support 100

Transactions (in 1000’s)

0 100 200 300 400 500

T
im

e
 (

s
e
c
.
lo

g
s
c
a
le

)

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

SPIRIT

SMA-1P

prefix-growth

Synth D500N100C50 - RE 14

Support

0 2000 4000 6000 8000 10000 12000

T
im

e
 (

s
e
c
.
lo

g
s
c
a
le

)

100

1000

prefix-growth

SMA-1P

(a) (b) (c)

Figure 2. Run-time comparison between SMA − 1P, SPIRIT, and prefix-growth at different minimum
support thresholds, datasets and regular expressions.

named SMA-1P (SMA one pass) is described in Algo-

rithm 1. SMA-1P just processes by means of the SMA all

the input sequences T one by one, and enters all resulting

valid patterns sR(T) in a hash table HT for support count-

ing. After the whole input database D has been processed,

the hash table is visited and frequent patterns are outputted.

Algorithm 1 SMA-1P

Input: D, σ, R
Output: {S ∈ L(R) | sup

D
(S) ≥ σ}

1: for all T ∈ D do

2: compute sR(T) using the SMA corresponding to R
3: for all S ∈ sR(T) do

4: if S in HT then

5: HT [S].count + +

6: else insert S in HT with HT [S].count = 1

7: for all I ∈ HT do

8: if HT [I].count ≥ σ then

9: output I

In Figure 2 we report run-time comparison between

SPIRIT, prefix-growth and SMA-1P (details on experi-

ments settings are provided later in Section 6). Our method,

albeit so simple is very efficient, in some cases outperform-

ing of two orders of magnitude SPIRIT, and one order of

magnitude prefix-growth as evident in Figure 2(a). The gap

between the two previous methods and SMA-1P increases

as the minimum support threshold shrinks. SMA-1P is

support-independent and thus its run-time stays constant as

the support changes, while run-time of the two other meth-

ods explodes for small supports. This consideration makes

SMA-1P a very good algorithm for mining at low support

levels. Figure 2(b) shows that the run-time of SMA-1P in-

creases linearly with the size of the dataset. A deeper anal-

ysis on the behavior of SMA-1P and prefix-growth is re-

ported in Figure 3(a),(b), and (c). The three plots confirm

that, as predictable, the performance of our simple method

degrades when the selectivity of the regular expression con-

straint shrinks. In particular, for a given RE, if we reduce

the number of symbols in the alphabet (called “items” in

the plots), then larger part of the input sequences will match

the RE, i.e, the constraint is less selective. The same holds

also for prefix-growth. However we can observe that, as

the RE grows in size (and thus become less selective) the

difference between the two methods shrinks: i.e., SMA-1P

is much faster than prefix-growth on RE6, the difference

is reduced for R10, and for R14 we have that in the worst

selectivity case (an alphabet of 20 symbols) prefix-growth

outperforms SMA-1P. In conclusion, when the RE is not

selective enough, our method’s performance degrades. In

these cases we must rely on frequency-based pruning, as

presented in the next section.

4. Pushing Frequency

The well known anti-monotonicity property of frequency

is usually exploited by almost all pattern mining algorithms

by pruning from the search space super-patterns of patterns

found infrequent. One simple way of using the same prop-

erty with our SMA is to break the computation in parts by

introducing a set of cuts in the SMA, and check global fre-

quency of the various tokens before proceeding in the com-

putation. Given a SMA a valid set of cuts is a partition

p1, . . . , pn of the places of the SMA such as does not exist

a path from a place in pj to a place in pi if j > i.

Intuitively, by giving a set of cuts p1, . . . , pn we give a

series of n SMAs, where the SMA corresponding to pi is

the one containing all places p1∪p2∪. . .∪pi. In turn, these

SMAs correspond to n regular expressions R1, . . . ,Rn for

which the following properties trivially hold.

Property 1 Given a regular expression R, its correspond-

ing SMA and a set of cuts p1, . . . , pn, it holds that ∀ 1 ≤
i ≤ j ≤ n : ∀S ∈ L(Ri), ∃S ′ ∈ L(Rj) : S ⊑ S ′; and

∀S ′ ∈ F(D, σ,Rj),∃S ∈ F(D, σ,Ri) : S ⊑ S ′; and

Rn = R.

Following the properties above, the process starts with

the reduced SMA containing only the places in p1. The

SMA adopted during the second scan is the one given by

4

Synth D100 - RE 6

Average Transaction Length

0 20 40 60 80 100 120 140 160 180 200 220

T
im

e
 (

s
e
c
.
lo

g
s
c
a
le

)

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

SMA-1P 20 items

SMA-1P 50 items

SMA-1P 200 items

prefix-growth 20 items

prefix-growth 50 items

prefix-growth 200 items

Synth D100 - RE 10

Transaction Length (Avg)

0 20 40 60 80 100 120 140 160 180 200 220

T
im

e
 (

s
e
c
.
lo

g
s
c
a
le

)

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5 SMA-1P 20 items

SMA-1P 50 items

SMA-1P 200 items

prefix-growth 20 items

prefix-growth 50 items

prefix-growth 200 items

Synth D100 - RE 14

Transaction Length (Avg)

20 40 60 80 100

T
im

e
 (

s
e
c
.
lo

g
s
c
a
le

)

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5 SMA-1P 20 items

SMA-1P 50 items

SMA-1P 200 items

prefix-growth 20 items

prefix-growth 50 items

prefix-growth 200 items

Synth D100C50N20 - RE 6

Support Threshold

0 2000 4000 6000 8000 10000 12000

M
a

x
im

u
m

 n
u

m
b

e
r

o
f

to
k
e

n
s

o
n

 t
h

e
 S

M
A

 f
o

r
a

n
 i
n

p
u

t
s
e

q
u

e
n

c
e

100

200

300

400

500

600

700

SMA-1P

SMA-FC

(a) (b) (c) (d)

Figure 3. (a),(b),(c): run-time of SMA-1P and prefix-growth run-time for different problem settings,
and regular expressions. The minimum support used is σ = 500. (d): maximum number of tokens
produced on the SMA for an input sequence.

p1∪p2, during the third scan p1∪p2∪p3 and so on. At the

end of each scan, similarly to what done for the one-pass so-

lution, the tokens contained in the final place are memorized

in the hash table HT for support counting. This way, at the

end of the ith scan we obtain an intermediate information

about frequent patterns, i.e., F(D, σ,Rj), that can be used

in subsequent scans by removing the infrequent tokens. At

the end we have a number of scans equal to the number of

partitions n. Practically, this is obtained by changing the

operator that is performed by the transitions of the SMA in

such a way that only tokens that have not been previously

find infrequent are generated.

The method described above is general and does not

specify how the cuts are provided. An interesting line of re-

search is that of developing a method that, given the regular

expression, is able to decide how to cut the corresponding

SMA in such a way to optimize the trade-off between num-

ber of databases scans and frequency-based pruning. We

do not develop such a method in this paper, and we leave

it for future investigation. In this paper we adopt a simple

solution. We assume to have a cut after every place of the

SMA. This means that at the first scan of the input database

we use only the first place of the SMA, at the second itera-

tion only the first two places, and so on. This way we collect

information about infrequent patterns that can be exploited

by the subsequent scans allowing frequency based pruning

of unpromising tokens. We call this approach SAM-FC

(SMA Full Check). Figure 3(d) shows the benefits of the

frequency-based pruning in terms of the maximum number

of tokens produced over the SMA for an input sequence.

5. Adding data-reduction

Data reduction techniques have been used successfully

in the context of constrained frequent set mining [3]. In our

context we can use push data reduction techniques, when-

ever multiple scans of the database are performed, i.e., for

SMA-FC. In particular the following property holds.

Property 2 Given a regular expression R, its correspond-

ing SMA and a set of cuts p1, . . . , pn, it holds that:

sRi(T) = ∅ ⇒ sRj(T) = ∅,∀j ≥ i.

Exploiting this property, we enhance our method by

checking, for each sequence in the input database, if it gen-

erates at least one token in the border of the current cut, oth-

erwise the sequence can be pruned from the input database.

With this data reduction the total number of sequences

decreases as the computation progresses from a cut to the

following. Note that this data reduction is strengthened

by the frequency constraint: as less tokens survive in the

process, as more transactions are pruned. Moreover also

the opposite holds: as more transactions are pruned as

less tokens are found frequent, and thus the data reduc-

tion strengthen the frequency-based pruning. We denote our

method equipped with data reduction as SMA-FC∗.

6. Experimental evaluation

We implemented our methods, prefix-growth and

SPIRIT in C++ with Visual Studio 2003 and using STL.

All the experiments have been run on a Windows XP ma-

chine equipped with AMD Athlon XP processor, 2.09 GHz,

2 Gb RAM. All the software developed together with all

the datasets used in the experimentation can be downloaded

from http://www-kdd.isti.cnr.it/SMA/. Next

we describe the datasets and the RE we experimented with.

Synthetic Data. Several synthetic datasets have been

generated using the IBM dataset generator [7]. Each

dataset is named by its number of sequences (in thou-

sands), size of alphabet, and average size of sequences:

for instance the dataset D400N20C50 contains 400000 se-

quences over an alphabet of 20 symbols with an average

length of 50 symbols per sequence. The regular expres-

sions experimented over these synthetic datasets are: RE6

≡ A∗B(B|C)D∗E, RE10 ≡ A∗B(B|C)D∗EF∗(G|H)I∗, and

RE14 ≡ A∗(M|(N∗B(B|C))D∗E(N|F)∗(G|H)I∗L.

Moving Objects Data. We generated a large database

containing 250000 trajectories using Brinkhoff’s network-

based synthetic generator of moving objects [4], over the

San Francisco Bay Area map. In order to obtain sequences

from the trajectories, the map has been discretized using a

17*17 regular grid, obtaining an alphabet Σ of 289 symbols.

Regular expressions we use in our experiments are:

5

MOD - from San jose to San Francisco and back

Support Threshold

0 2000 4000 6000 8000 10000

T
im

e
 (

s
e
c
 l
o
g
s
c
a
le

)

100

1000

10000

SMA-1P

SMA-FC

SPIRIT

prefix-growth

MOD - Dumbarton Bridge

Support Threshold

0 2000 4000 6000 8000 10000

T
im

e
 (

s
e

c
.)

20

30

40

50

60

70
SMA-1P

SMA-FC

SMA-FC*

prefix-growth

MOD - 5 Zones

Support Threshold

0 2000 4000 6000 8000 10000

T
im

e
 (

s
e
c
.
)

600

800

1000

1200

1400

1600

1800

2000

2200

2400

SMA-1P

SMA-FC

SMA-FC*

prefix-growth

Protein kinase C phosphorylation site (String search)

Support Threshold

0 2000 4000 6000 8000

T
im

e
 (

s
e
c
.)

500

600

700

800
SMA-1P

SMA-FC

SMA-FC*

(a) (b) (c) (d)

Figure 4. Run time comparisons on different datasets and regular expressions.

Figure 5. The San Francisco Bay Area map.

From San Jose to San Francisco and back – via CA-101

(west-bound of the bay), i.e., passing through San Mateo

(cell H9 of our map); or via I-880 (est-bound of the bay),

i.e., passing through Hayward (cell J8 of our map)1.

Dumbarton Bridge – Find patterns that goes from Palo

Alto (I10) to San Francisco (F7). We want also to see those

patterns that still goes from Palo Alto to San Francisco but

that starts in San Jose (L12). Considering that the zone be-

tween I10 and H9 is congested by traffic, we want to know

if someone decides to cross the Dumbarton Bridge to avoid

the congested area2.

Five zones – Find patterns passing trough 5 different

zone, from north to south3.

Protein Sequences. Protein is an interesting applica-

tion domains, for the small size of the alphabet, and the

length of the sequences. Moreover in this domain, regular

expressions may be used to express meaningful and inter-

esting patterns. The dataset is downloaded from the Entrez

database at NCBI/NIH4. It contains 103120 sequences over

an alphabet of 24 symbols, and average sequence length

equals to 482. As RE we used one representing Protein

kinase C phosphorylation site5: i.e., R2 ≡ (S|T) · (R|K)

(where · represent the wildcard).

1
R ≡ (K11|L11|M11|K12|L12|M12|K13|L13|M13)(H9|J8)

(F6|F7|F8|G7)(K11|L11|M11|K12|L12|M12|K13|L13|M13).
2
R ≡ L12∗I10(I10|J9)H9∗F7.

3
R ≡ (D4|E4|F4|G4|H4|I4|D5|E5|F5|G5|H5|I5)(E6|F6|G6|H6|I6|

J6|E7|F7|G7|H7|I7|J7)(F8|G8|H8|I8|J8|K8|F9|G9|H9|I9|J9|K9)

(G10|H10|I10|J10|K10|L10|G11|H11|I11|J11|K11|L11)

(M11|I12|J12|K12|L12|M12|N12|J13|K13|L13|M13|N13).
4http://www.ncbi.nlm.nih.gov/sites/entrez
5http://www.expasy.org/prosite/PDOC00005

Run-time comparison. Figure 4 reports run-time com-

parison among the various methods: results change a lot

with the different regular expressions. In Figure 4(a) we

report the run-time of SPIRIT (note the logscale), while

in the other plots we avoid it, as SPIRIT is always much

slower than all the other methods. Surprisingly in Figure

4(a), the direct approach of SMA-1P is the fastest one. In

Figure 4(b) instead prefix-growth outperforms all the other

methods. In this plot we can also appreciate, as the mini-

mum support threshold grows, the benefits of the frequency-

based pruning in SMA-FC, and the additional benefits of

the data reduction technique in SMA-FC∗. These bene-

fits are also evident in Figure 4(c). Interestingly, in this

plot prefix-growth is the fastest method for some support

thresholds, but it performs very poorly for small supports,

while for large supports it is outperformed by SMA-FC∗.

Figure 4(d), reports run-time on the protein dataset in the

case of the string search showing that the direct approach of

SMA-1P is very effective. In fact at every new step only the

newly created tokens are kept on the SMA: this reduces a

lot the advantage of frequency-based pruning, making it not

worth the price of multiple database scans. This explains the

poor performance of SMA-FC. However, the combination

of frequency-based pruning and data reduction technique of

SMA-FC∗ performs very well on strings.

References

[1] H. Albert-Lorincz and J.-F. Boulicaut. Mining frequent se-

quential patterns under regular expressions: A highly adap-

tive strategy for pushing contraints. In Proc. of SDM’03.
[2] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pat-

tern mining using a bitmap representation. In KDD’02.
[3] F. Bonchi and B. Goethals. FP-Bonsai: the art of growing

and pruning small fp-trees. In Proceedings of PAKDD’04.
[4] T. Brinkhoff. Generating traffic data. IEEE Data Eng. Bull.,

26(2):19–25, 2003.
[5] M. N. Garofalakis, R. Rastogi, and K. Shim. Spirit: Sequen-

tial pattern mining with regular expression constraints. In

Proceedings of VLDB’99.
[6] J. Pei, J. Han, and W. Wang. Mining sequential patterns with

constraints in large databases. In Proc. of CIKM’02.
[7] R. Srikant and R. Agrawal. Mining sequential patterns: Gen-

eralizations and performance improvements. In EDBT’96.
[8] M. J. Zaki. Sequence mining in categorical domains: Incor-

porating constraints. In Proceedings of CIKM’00.
[9] M. J. Zaki. Spade: An efficient algorithm for mining fre-

quent sequences. Machine Learning, 42(1/2):31–60, 2001.

6

