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Abstract—Correlation clustering is to partition a set of objects
into clusters such that the number of false positives and negatives
is minimised. In this paper, we combine correlation clustering and
user interaction. More specifically, we allow the user to control
the quality of the clustering by providing error bounds on the
number of false positives and negatives. If no clusterings exist
that satisfy these bounds, a set of edges is returned for user
inspection such that the deletion or relabelling of these edges
guarantees the existence of a clustering consistent with the error
bounds. However, a user may reject the deletion or relabelling
of certain edges and ask for an alternative set of edges to be
provided. If no such set of edges exists, a minimal change to
the error bounds should be provided, after which the interactive
process continues. The focus of this paper is on the algorithmic
challenges involved in returning a minimal set of edges to the user.
More specifically, we formalise the INTERACTIVE CORRELATION
CLUSTERING problem and show that it is intractable. Therefore,
we propose an approximation algorithm based on the well-
known region growing technique. We experimentally validate the
efficiency and accuracy of the approximation algorithm.

I. INTRODUCTION

Clustering is to partition a set of given objects into clusters
of similar objects. Typically, the goal is to find a clustering that
minimises an objective function that measures the quality of
the clustering. A wide variety of formalisations and objective
functions have been considered in this context. In this paper,
we focus on the formalisation of the clustering problem, known
as CORRELATION CLUSTERING [1]. Intuitively, in correlation
clustering the set of objects are vertices of a graph whose
edges are labeled with either “+” or “−”. Here, a +-edge
indicates that its vertices (objects) are similar whereas a
−-edge indicates the opposite. The corresponding objective
function counts the number of false positives, i.e., −-edges
whose vertices belong to the same cluster, and the number
of false negatives, i.e., +-edges whose vertices belong two
distinct clusters.

In this paper we revisit correlation clustering from an inter-
active point of view, as illustrated by the following example.

Example I.1. Consider the graph G shown in Fig. 1(a).
An optimal correlation clustering of G will always have a
total of three false positive and negatives. For example, the
clustering shown in Fig. 1(b) has three false positives; the
clustering shown in Fig. 1(c) has one false positive and two
false negatives. A user may want to express that a clustering
should not have any errors, or more generally, want to bound
the number of false positives and negatives in a clustering. S/he
can do this by specifying two error bounds, µfp and µfn, for the
false positives and negatives, respectively. A valid clustering
will be one in which the number of false positives and
negatives does not exceed the given bounds. However, a valid

clustering may not exist. Indeed, if µfp = µfn = 0 then G does
not have a valid clustering (any optimal clustering has cost 3).

In interactive correlation clustering, we want to guide
the user towards a valid clustering by allowing him/her to
either minimally update the graph, to minimally change the
error bounds, or combinations thereof. For example, one way
to guarantee the existence of a valid clustering is to delete
or relabel a set ∆E of edges. Indeed, deleting all edges or
assigning all edges the same label trivially guarantees such
valid clusterings. Of course, we want to minimally modify the
input graph. Therefore, we envisage an interactive correlation
clustering system that provides the user with a minimal set ∆E
of edges to delete/relabel. For example, deleting or relabelling
the three edges ∆E = {(1, 4), (4, 6), (5, 7)} corresponding to
the errors in the clustering shown in Fig. 1(c) ensures that a
valid clustering with no errors exists, as shown in Fig. 1(d).

In addition, when presented with the set ∆E of edges, the
user may decide not to delete/relabel an edge in ∆E since s/he
regards the similarity information represented by this edge
as too important or trustworthy. In this case, we say that the
user marks an edge as immutable. The immutable edges are
then passed on to the interactive correlation clustering system
and another set of edges ∆E′ is returned, which excludes the
immutable edges. For example, the user may mark the edge
(1, 4) as immutable. By fixing the edge (1, 4), one now has to
delete ∆E′ = {(1, 2), (3, 4), (4, 5), (5, 7)} in order to obtain a
valid clustering for the bounds µfp = µfn = 0. Fig. 1(e) shows
a valid clustering on the updated graph. The user again inspects
this set of edges and the interactive process continues until
either the user is satisfied and a valid clustering does exist, or
no valid clustering exists. The latter case happens when the
user marked too many edges as immutable and no ∆E exists
whose deletion/relabelling ensures a valid clustering.

For example, suppose now that the user marks the edge
(1, 2) in G as immutable. Then to satisfy the bounds, a set of
edges ∆E′′ = {(1, 5), (2, 4), (3, 4), (5, 6)} needs to be deleted.
The corresponding valid clustering for µfp = µfn = 0 is shown
in Fig. 1(f). Imagine that at this point the user is still not happy
with ∆E′′ and marks the edge (2, 4) as immutable. In this case,
no ∆E exists that guarantees a valid clustering. Instead, the
interactive correlation clustering system should inform the user
as to how to minimally change the error bounds. For example,
by letting µfp = 1 and µfn = 0 (see Fig. 1(g). The interactive
process then continues. Observe that this process always
terminates. In the worst case, all edges in G are marked as im-
mutable and the bounds µfp and µfn are set such that a valid op-
timal correlation clustering in G exists. For example, for µfp =
1 and µfn = 2 the clustering shown in Fig. 1(c) is valid. ♦
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Fig. 1. Illustration of interactive correlation clustering process as explained in Example I.1.

In this paper, we focus on one key algorithmic component
of the interactive framework: when given an input graph G, set
of immutable edges IE, and error bounds µfp and µfn, return a
set ∆E of edges to the user such that the deletion/relabelling
of edges in ∆E guarantees the existence of a valid clustering.
More specifically, we make the following contributions:

• We formally define the INTERACTIVE CORRELATION
CLUSTERING problem and we show that it is in-
tractable.

• We present a region growing-based approximation al-
gorithm for solving the INTERACTIVE CORRELATION
CLUSTERING problem and provide a performance
guarantee. More specifically, the size of the set of
edges returned by the algorithm is at most a factor
O(log(|E|−)) away from the optimal size. The ap-
proximation algorithm leverages a close relationship
with a variant of the MULTICUT problem, called
BOUNDED MULTICUT problem, which may be of
interest in its own right.

• We empirically evaluate our algorithm on both syn-
thetic and a real-life dataset. Although the approxi-
mation factor may be large in theory, we verified that
in practice, the size of the returned set of edges is
close to optimal.

The rest of the paper is organised as follows. In the next
section, we formally define the INTERACTIVE CORRELATION
CLUSTERING problem and establish its intractability. In Sec-
tion III, we present our region growing-based approximation
algorithm. An experimental evaluation on both synthetic and
real-life data is presented in section IV. We conclude the paper
with related work in Section V and outline our future research
direction in section VI.

II. INTERACTIVE CORRELATION CLUSTERING

Let G = (V,E) be a graph with a weight function w :
E → N on its edges. Assume that the set E of edges can
be partitioned into two sets E+ and E−. An edge e ∈ E+

carries label “+”, whereas an edge e ∈ E− carries label “−”.
Intuitively, edges in E+ represent similar objects that should
be clustered together; edges in E− represent the opposite. A
clustering C of G is a partition of V . For a vertex v ∈ V , we
denote by C(v) the set of vertices in the same cluster as v. In
a clustering C, we call an edge e = (u, v) a false negative if
e ∈ E+ but u 6∈ C(v). Furthermore, if e ∈ E− and u ∈ C(v),
we call e = (u, v) a false positive. We denote by wfn(C) and
wfp(C) the sum of the weights of false negatives and positives
in C, respectively. Similarly, for an arbitrary set E of edges we
define w(E) as the sum of the weights of edges in E. Finally,
we define cost(C) = wfp(C)+wfn(C). Standard CORRELATION
CLUSTERING is to find a clustering C of minimal cost, cost(C).

Let µfp and µfn be two natural numbers. We regard a
clustering C as being valid provided that wfp(C) and wfn(C)
are below these thresholds. We have seen that such valid
clusterings do not always exist, however, but the existence
can be guaranteed when sufficiently many edges are deleted
from the input graph. Clearly, we want to delete as less edges
as possible. The determination of the set of edges to delete
constitutes the following problem:

Problem 1 (INTERACTIVE CORRELATION CLUSTERING).
Given a graph G = (V,E) and natural numbers µfp and µfn,
find a set ∆E of edges, such that w(∆E) is minimal and such
that there exists a clustering C of G′ = (V,E \∆E) for which
wfn(C) 6 µfn and wfp(C) 6 µfp holds.

An equivalent formulation would consist of finding the
set ∆E of edges to be relabelled instead of deleted. Here,
by relabelling we mean that a +-labeled edge becomes a −-
labeled edge, and vice versa. In this paper, we consider the
deletion variant of the problem as stated earlier.

Not surprisingly, the INTERACTIVE CORRELATION CLUS-
TERING problem is computationally infeasible. Indeed, its
decision version that is to determine given G = (V,E), µfp,
µfn, and integer L ≥ 0 whether or not there exists a set ∆E of
edges such that w(∆E) 6 L and such that after deleting ∆E
from G, the updated graph G′ = (V,E \∆E) has a clustering



C such that wfp(C) 6 µfp and wfn(C) 6 µfn, is NP-complete.

Proposition 1. The decision version of INTERACTIVE CORRE-
LATION CLUSTERING is NP-complete for both weighted and
unweighted graphs.

Proof: For the lower bound, we prove that the decision
version of INTERACTIVE CORRELATION CLUSTERING is NP-
hard by reducing it from the decision version of CORRELA-
TION CLUSTERING. The latter decision version is to determine
given an input graph H = (W,F ) and integer K ≥ 0,
whether or not there exists a clustering C of H such that
cost(C) 6 K. This problem was proven to be NP-hard in [1]
for both weighted and unweighted graphs.

The reduction is as follows. Let H = (W,F ) and K ≥ 0
be an instance of CORRELATION CLUSTERING. We define
the corresponding instance of INTERACTIVE CORRELATION
CLUSTERING by letting G = H , L = K, µfn = 0 and µfp = 0.
For the correctness of the reduction, consider a clustering
C of H such that cost(C) 6 K. If we delete all edges
corresponding to the false positives and negatives in C from
H , then the clustering induced by C on the updated graph has
no false positives and negatives. Hence, by letting ∆E be the
set of edges corresponding to the false positives and negatives
in C we obtain a solution for INTERACTIVE CORRELATION
CLUSTERING with |∆E| 6 L = K, µfn(C) = 0 and
µfp(C) = 0. Conversely, suppose that by deleting edges in ∆E
from G with |∆E| 6 K, we have that there is a clustering C of
G′ = (V,E \∆E) with no false positives and negatives. Then,
C is a clustering of H such that cost(C) = w(∆E) 6 K = L.
Hence, solutions of CORRELATION CLUSTERING correspond
to solutions of INTERACTIVE CORRELATION CLUSTERING
with µfn = 0 and µfp = 0, and vice versa.

For the upper bound, consider the following NP-algorithm:
(1) Guess (a) a set ∆E of at most L edges; and (b) a clustering
C of the updated graph G′ = (V,E \ ∆E). (2) Verify (in
PTIME) whether wfn(C) 6 µfn and wfp(C) 6 µfp hold. If so,
accept the guess and return “yes”; otherwise reject the guess.
Clearly, this algorithm correctly decides the (decision variant
of) INTERACTIVE CORRELATION CLUSTERING.

In view of this intractability result, we next develop an ap-
proximation algorithm for the INTERACTIVE CORRELATION
CLUSTERING problem.

III. APPROXIMATION ALGORITHM

We next present a O
(
log |E−|

)
-approximation algorithm

for the INTERACTIVE CORRELATION CLUSTERING problem.
The approximation algorithm is obtained by following a sim-
ilar strategy as is used for the approximation algorithm for
the CORRELATION CLUSTERING problem given in [2]. More
specifically, we first establish a relationship between the IN-
TERACTIVE CORRELATION CLUSTERING problem and variant
of the MULTICUT problem, called the BOUNDED MULTICUT
problem. Leveraging this relationship, we modify the region
growing approximation algorithm for the MULTICUT problem
[3] to an approximation algorithm for the BOUNDED MULTI-
CUT problem. All combined, this results in an approximation
algorithm for INTERACTIVE CORRELATION CLUSTERING.

A. Relationship between Correlation Clustering and the Mul-
ticut problem

We recall from [2] how the CORRELATION CLUSTER-
ING and MULTICUT problems are related. An instance of
the MULTICUT problem consists of an edge-weighted graph
G = (V,E) together with a set S = {(si, ti) | i ∈ [1, k]} of
source-sink pairs, and is to find a set T of minimal weight
(i.e., a multicut) such that the removal of the edges in T from
G disconnects all pairs in S. For our purpose, its suffices to
consider how a MULTICUT instance can be constructed from
an instance of CORRELATION CLUSTERING. Let G = (V,E)
be a graph with a weight function w : E → N on its edges,
and let µfn and µfp two integers. Recall that E = E+ ∪ E−.
We transform G as follows: (1) For every edge (u, v) ∈ E−,
we introduce a new vertex vuv and a new −-labeled edge
(vuv, u) with same weight as (u, v) and a source-sink pair
(vuv, v); (2) the edges in E+ remain the same. Note that
this transformation keeps the sizes of |E+| and |E−| intact,
and adds at most new |E−| vertices. Let S be the set of all
the source-sink pairs (vuv, v) and let Gmc be the new graph
obtained from G by the above transformation. The resulting
MULTICUT instance is then given by (Gmc, S). As an example,
the MULTICUT instance obtained from the graph G shown in
Fig 1(a) is given by

1

2

3

4

5

6 7

v1,4
v3,6

v5,6

s1

s2

s3

t3 t2t1

Here, the shaded vertices indicate the three source/sink pairs
corresponding to the negative edges. Given a clustering C of G
with cost(C) = W we obtain a multicut T of Gmc as follows:
Let T ′ be the set of edges in E corresponding to the false
positive and negatives in C. Then T = (T ′∩E+)∪{(vu,v, u) |
(u, v) ∈ T ′ ∩ E−} is a multicut for (Gmc, S) such that
w(T ) = W . Conversely, given a multicut T or (Gmc, S) such
that w(T ) = W , we define T ′ as the set T in which all newly
added −-labeled edges are replaced by their corresponding −-
labeled edges in G. The corresponding clustering C is obtained
by taking every connected component in E+ \T ′ as a cluster.
It can be shown that cost(C) = W [2].

B. Relationship between Interactive Correlation Clustering
and the Bounded Multicut problem

We next establish a similar relationship for the INTERAC-
TIVE CORRELATION CLUSTERING problem. For this, we need
the following variant of the MULTICUT problem.

Problem 2 (BOUNDED MULTICUT). Given a graph G =
(V,E) with E = E+ ∪E−, a weight function w : E → N on
its edges, and a collection S of pairs of distinct vertices (si, ti)
of G, find a set of edges ∆E of minimal weight such that there
is a multicut T in G = (V,E \∆E) such that wfp(T ) 6 µfp
and wfn(T ) 6 µfn.

Using the same construction as above, we can see the
INTERACTIVE CORRELATION CLUSTERING problem as an



instance of the BOUNDED MULTICUT problem. Indeed, let
∆E be a solution of INTERACTIVE CORRELATION CLUS-
TERING for the graph G = (V,E). That is, there exists a
clustering C in G′ = (V,E \ ∆E) such that wfp(C) ≤ µfp
and wfn(C) ≤ µfn. As shown above, this implies that there
is a multicut T of (G′mc, Sp) such that wfp(T ) 6 µfp and
wfn(T ) 6 µfn. Conversely, given a solution ∆E for the
BOUNDED MULTICUT problem for (Gmc = (V ′, E′), S), we
know that that there exists a multicut T in G = (V ′, E′\∆E′)
such that wfp(T ) 6 µfp and wfn(T ) 6 µfn. Then, by letting ∆E
to consist of the positive edges in ∆E′ and the negative edges
in G correspond to the new −-labeled edges in ∆E′, it is easy
to see that ∆E is a solution of INTERACTIVE CORRELATION
CLUSTERING, where the clustering C in G = (V,E \ ∆E)
is obtained from the multicut T , as described previously. This
implies the following.

Observation. Any (approximation) algorithm for the
BOUNDED MULTICUT problem results in an (approximation)
for the INTERACTIVE CORRELATION CLUSTERING problem.

In the remainder of this section we develop an approxima-
tion algorithm for BOUNDED MULTICUT.

C. Solving the Bounded Multicut problem exactly

We show that the BOUNDED MULTICUT problem can be
solved by means of the following integer program, IPBMC,
which is a modification of the standard program for solving
MULTICUT [4]. Let G = (V,E) be a graph with E = E+∪E−
and a weight function w : E → N on its edges. Furthermore,
let S be a set of k pairs of distinct vertices (si, ti). Let µfp
and µfn be two non-negative integers. We denote by wuv the
weight of edge (u, v).

IPBMC: minimize
∑

(u,v)∈E wuv(xuv − yuv)
subject to∑

(u,v)∈pi xuv ≥ 1, pi ∈ Pi, 1 ≤ i ≤ k (i)∑
(u,v)∈E+ wuvyuv ≤ µfn (ii)∑
(u,v)∈E− wuvyuv ≤ µfp (iii)

xuv ≥ yuv (iv)
xuv, yuv ∈ {0, 1} (v)

Here, Pi denotes the set of all paths from si to ti. Observe
that this integer program has exponentially many constraints
but, similarly as in the standard MULTICUT case, it can be
converted into one of polynomial size. For completeness,
we provide this conversion below. Observe that the integer
program for MULTICUT, IPMC, can be obtained by setting µfp
and µfn to zero, i.e., by ignoring the yuv variables.

We first verify the correctness of the integer program IPBMC.

Proposition 2. A solution of IPBMC corresponds to a solution
of the BOUNDED MULTICUT problem, and vice versa.

Proof: Let ∆E be a solution of BOUNDED MULTICUT
and let T be a multicut in G = (V,E\∆E) such that wfp(T ) 6
µfp and wfn(T ) 6 µfn. Based on this, we define the following
valuation ν:

ν(xuv) =

{
1 if (u, v) ∈ T ∪∆E

0 otherwise.

and

ν(yuv) =

{
1 if (u, v) ∈ T
0 otherwise.

We claim that this valuation satisfies the conditions (i) - (v) of
the integer program IPBMC. Clearly, (iv) and (v) are satisfied by
the definition. Note that T ∪∆E is a multicut for the original
graph G = (V,E). It is known that condition (i) expresses that
every source-sink pair is disconnected. Hence, condition (i) is
satisfied since ν(xuv) = 1 for all (u, v) ∈ T ∪ ∆E. Clearly,
(ii) and (iii) are satisfied since ν(yuv) = 1 for all (u, v) ∈ T .
Finally we also remark that the objective function corresponds
to w(∆E) =

∑
e∈∆E we. Indeed, ν(xuv)−ν(yuv) = 1 for all

(u, v) ∈ ∆E, and ν(xuv)− ν(yuv) = 0 for all other edges.

For the converse, let ν be a valuation that satisfies con-
ditions (i) - (v). Consider the set of edges ∆E = {(u, v) |
ν(xuv) − ν(yuv) = 1} and let T = {(u, v) | ν(yuv) = 1}.
It can be readily verified that this results in a solution of
BOUNDED MULTICUT. As before, w(∆E) =

∑
e∈∆E we.

We next describe a standard procedure to turn IPBMC into
an equivalent integer program of polynomial size. Let S be
the set of k source-sink pairs. We introduce binary variables
ziu, one for each vertex u in the graph and each (si, ti) ∈ S.
We then replace the constraint (i) in IPBMC with the following
two constraints:

ziu − ziv 6 xuv , for all (u, v) ∈ E, 1 ≤ i ≤ k (i’)
zisi − ziti ≥ 1, for all (si, ti) ∈ S. (i”)

We show that constraint (i) is equivalent to the constraints (i’)
& (i”). Consider a source-sink pair (si, ti) in S and assume that
we have a path p between this pair consist of the following
edges (si, v1), (v1, v2), . . . , (vn, ti). Using constraint (i”) we
have that

1 6 zisi − ziti = zisi − ziv1 + ziv1 − ziv2 + · · · − zivn + zivn − ziti
and using constraint (i’), we have

zisi − ziv1 6 xsiv1 , z
i
v1 − ziv2 6 xv1v2 , · · · , zivn − ziti 6 xvnti .

Hence,
1 6 zisi − ziti 6

∑
(u,v)∈p

xuv.

Note that this holds for any path p between any source-sink
pairs. Hence, condition (i) is satisfied.

For the converse, assume that constraint (i) is satisfied. For
each (si, ti) ∈ S we set the variables ziu as follows: zisi = 1
and ziti = 0 hence satisfying condition (i”). Furthermore, for
each path p from si to ti we identify the first edge (u, v)
such that xuv = 1. Note that such an edge must exist since
(i) is satisfied. Denote by Ti the initial vertices u of these
edges for all paths from si to ti. Let Pre(Ti) be the set of
vertices on paths from si to any vertex in Ti, including Ti;
and Post(Ti) the vertices on paths from any vertex in Ti to ti,
excluding Ti. We then define ziu = 1 if u ∈ Pre(Ti); ziu = 0
if u ∈ Post(Ti). It is readily verified that condition (i’) is
satisfied. Hence replacing constraint (i) with the constraints
(i’) & (i”) results in an equivalent integer program formulation
of BOUNDED MULTICUT, of polynomial size.



D. Approximation algorithm

We are finally ready to present our region growing-based
approximation algorithm for the BOUNDED MULTICUT prob-
lem. It is a modification of the standard region-growing algo-
rithm for the MULTICUT problem as given in [3]. In particular,
(a) we use the linear relaxation of IPBMC for BOUNDED
MULTICUT rather than the relaxation of the integer program
IPMC for MULTICUT; and (b) we postprocess the output of
the algorithm to obtain a set ∆E and multicut in the updated
graph G = (V,E \∆E).

Pseudo-code of the algorithm is shown in the Fig. 2. We
start from the integer program IPBMC for BOUNDED MUL-
TICUT and relax it to its corresponding linear program by
replacing the constraint (v) in the IPBMC with xuv, yuv ∈ [0, 1]
(line 1). We can obtain a solution for the relaxation of IPBMC

in PTIME by using its equivalent polynomially sized linear
program, as discussed earlier. Denote by de the returned valu-
ation for variable xe. We ignore the valuations returned for the
ye variables. Let F =

∑
(u,v)∈E wede. We grow regions (lines

4–15), starting from one source vertex at a time. Let s be a
source vertex. We add vertices to a region around s in the order
determined by their distance to s as given by the values de (line
6). Whenever we grow a region (line 8), we update the volume
V(region) of the region such that V = F/k+

∑
e∩region6=∅ wede

(line 9). That is, we add wede to the volume for every edge that
has at least one vertex in the current region. At the same time,
we update the cost of a region c(region) such that it equals∑
e∈δ(region) we, where δ(region) consists of all edges that have

a single vertex in the current region (line 9). We do this until
a stopping condition is satisfied (line 10). We then update the
graph by removing all vertices (and their incident edges) in
region from the current graph (line 12) and add δ(region) to
the result set T (line 13). It is well-known that the stopping
condition guarantees that T is a multicut and furthermore, that
w(T ) 6 4 ln(k+1)F [3]. Finally, we split T into a set ∆E and
multicut C of G = (V,E\∆E) and S, such that wfp(C) 6 µfp
and wfn(C) 6 µfn (line 16). This is done by removing edges
from T and putting those in ∆E until C = T \∆E satisfies the
bounds. Finally, ∆E is returned (line 17). Clearly, this results
in a solution for BOUNDED MULTICUT.

It remains to identify the approximation factor of the
algorithm. For this, it suffices to observe that

(
∑

(u,v)∈E
wuvduv)− (µfp + µfn) 6 (

∑
(u,v)∈E

wuvduv)

−(
∑

(u,v)∈E
wuvyuv) 6

∑
(u,v)∈E

wuvduv

and thus

F =
∑

(u,v)∈E
wuvduv6 (

∑
(u,v)∈E

wuv(duv − yuv)) + (µfp + µfn)

= |∆Elp|+ (µfp + µfn),

where |∆Elp| denotes the objective value of the relaxation of
IPBMC. Hence,

w(T ) = w(∆E) + w(C)6 4 ln(k + 1)F

6 4 ln(k + 1)(|∆Eopt|+ (µfp + µfn)).

BMulticut (G = (V,E), S = {(si, ti) | i ∈ [1, k]}, µfp, µfn)
1. Find an optimal fractional solution of LP obtaining in this way

distance labels de on the edges and the value F =
∑

(u,v)∈E wede;
2. Let k := |S|, ε := 2 ln(k + 1);
3. Initialize H := G, T := ∅ and ∆E := ∅; Let grow = true;
4. while(|S| > 0) /* assume that all pairs in S are connected */
5. pick a source-sink pair (s, t) from S and let region := ∅;
6. Let L be the list of vertices in H , sorted by their

increasing distance to s; Assume that s is the first
element L[0] in this list and let L = L[0];

7. while(grow)
8. region = region ∪ L;
9. update volume V(region) and cost c(region);
10. if c(region) 6 εV(region) then grow = false,

else let L = L.next;
11. end
12. H := H \ region;
13. T = T ∪ δ(region);
14. remove all pairs in S that are disconnected in H;
15. end
16. Remove edges from T and put these in ∆E until for C = T \ ∆E

we have that wfp(C) 6 µfp and wfn(C) 6 µfn;
17. return ∆E.

Fig. 2. Approximation algorithm for BOUNDED MULTICUT.

since |∆Elp| 6 |∆Eopt| where |∆Eopt| is the size of the
optimal solution as given by the integer program IPBMC. From
this, we may conclude that

w(∆E) 6 4 ln(k+ 1)F 6 4 ln(k+ 1)(|∆Eopt|+ (µfp +µfn)).

We thus have indeed obtained a O(log k)-approximation al-
gorithm for BOUNDED MULTICUT. Since the k source-sink
pairs correspond to the negative edges (recall that the trans-
formation from INTERACTIVE CORRELATION CLUSTERING
to BOUNDED MULTICUT), this algorithm is a O(log(|E−|))-
approximation algorithm for INTERACTIVE CORRELATION
CLUSTERING.

E. Discussion

The region growing algorithm uses the relaxation of IPBMC

to determine, among other things, the order in which vertices
are added to the region. However, the algorithm only uses the
valuations duv for the variables xuv and does not explicitly
leverages the availability of valuations cuv for yuv . As an
immediate consequence, the weight of the obtained multicut is
related to F =

∑
(u,v)∈E wede rather than the objective func-

tion of IPBMC (
∑

(u,v)∈E we(de − ce)). We thus get an overly
pessimistic upper bound on the quality of the approximation.
Nevertheless, we will see in the experimental section that we
get ∆E’s that are close to optimal.

Ideally, we would like to grow regions using duv − cuv
rather than duv . This does not work, however, since constraint
(i) in IPBMC only refers to the xuv variables and this constraint,
together with the stop condition for growing regions (line 10
in the algorithm), ensures that the result is indeed a multicut.
Further investigation is required as how to make better use of
the available valuations of the yuv variables.

However, we remark that the additional constraints (ii),
(iii), and (iv) in IPBMC may indeed help to guide the region
growing process towards a better solution than when ignoring



these constraints and using the relaxation of IPMC for the
standard MULTICUT problem. Indeed, consider the following
simple instance of BOUNDED MULITCUT for µfp = 1 and
µfn = 1, i.e., we allow for one positive and one negative edge to
belong to the multicut. As before, dashed edges represent edges
in E−, solid edges correspond to edges in E+. We adorned
the edges with valuations for xuv obtained by relaxing IPMC

(left) and with valuations for xuv and yuv obtained by relaxing
IPBMC (right). In this example, we get integer solutions.

s1 t1v

s2 t2w

xs1v = 0

xs2w = 0 xwt2 = 1

xvt1 = 1
s1 t1v

s2 t2w

xs1v = 0 xvt1 = 1

xs2w = 1 xwt2 = 0
ywt2 = 0ys2w = 1

ys1v = 0 yvt1 = 1

As can be seen, by growing regions based on IPMC we get a
multicut consisting of two positive edges (the regions are gray-
shaded). After post processing, we put one of these in ∆E and
thus |∆E| = 1. However, by growing regions based on IPBMC

we immediately obtain a multicut that is valid, i.e., it consists
of one positive and one negative edge. As a consequence, an
empty ∆E will be returned by the algorithm. This shows the
advantage of growing regions based on the relaxation of IPBMC.

IV. EXPERIMENTAL EVALUATION

In this section, we describe the empirical evaluation of our
approximation algorithm on synthetic and real datasets. For
solving the integer program IPBMC and its relaxation, we use the
IBM Cplex Optimizer [5]. The region growing algorithm itself
is implemented in Java. The experiments were conducted on
a GNU/Linux machine with Intel(R) Xeon(R) CPU 2.90GHz
(16 cores) and 32GB memory.

A. Synthetic data

We generate our synthetic graph data along the same lines
as in [6]. That is, starting with an initial number of vertices
and number of clusters, we randomly add “+” and “-” labelled
edges to the graph using parameters to control the number of
false positive and negatives. We report averaged results over
20 runs.

Quality of Approximation. We first investigate the quality
of our results by comparing it against the optimal solution,
obtained by solving the integer program IPBMC. To guarantee
the feasibility of solving the integer program, we only use
small graph datasets (up to 210 edges). For these datasets we
varied the user-defined bounds µfp and µfn between 0 and
20 and investigated the relationship with the returned ∆E.
Not surprisingly, as we increase the bounds the size of ∆E
dropped. We do not show the plot here due to lack of space.
Figure 3 (a) shows the size of the optimal ∆E, the size of
set of edges returned by the approximation algorithm, and the
theoretical upper bound on the approximation guarantee, in
terms of the number of edges in the input graph. One can
see that the approximation algorithm obtains solutions that are
consistently close to the optimal; much better than predicted
by the theoretical approximation guarantee.

Secondly, we investigate how large the ∆E’s returned by
our algorithm are, compared to number of edges in the graph.
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Fig. 3. Experimental evaluation on synthetic data

Since ∆E is returned to the user for inspection, we want its
size to be reasonable. Since there is no need for solving an
integer program in this experiment (we only need to solve its
linear relaxation), we report our findings in Table I for larger
graphs. As can be seen, only a small fraction of edges are
returned for user inspection.

No. Vertices |V | No. Edges |E| |∆E|/|E|
250 634 0.23
270 1250 0.13
290 2094 0.07
300 2566 0.06
310 3119 0.06
330 4389 0.04
450 5739 0.05

TABLE I. RATIO OF |∆E| VS |E|.



Scalability. As a sanity check, in Fig. 3(b) we compare the
running times of solving the integer program IPBMC against the
running time of our approximation algorithm. Not surprisingly,
solving IPBMC becomes quickly infeasible for large input
graphs. Instead, the approximation algorithm returns results
within reasonable time. We remark that for small graphs,
solving IPBMC exactly is sometimes faster than running the
approximation algorithm. Note, however, that these differences
are very small (log scale) and probably due to background
processes.

We also investigated the impact of solving the linear relax-
ation of IPBMC on the overall running time of our approximation
algorithm. Table II shows that solving the linear program
constitutes the dominant factor in the whole region growing
process.

No. Vertices
|V |

No. All Edges
|E|

LP Runtime (s) Region growing
runtime (s)

250 634 15.56 0.57
270 1250 89.93 0.45
290 2094 189.69 0.89
300 2566 172.18 0.99
310 3119 153.32 1.04
330 4389 196.48 1.51
450 5739 1269.41 2.28

TABLE II. LP AND REGION GROWING RUN TIMES

B. Real data

We used the Epinions social network dataset from [7].
It is a directed graph depicting a who-trust-whom network
from a general consumer site epinions.com. For each pair of
nodes in the graph (users), which had both directions, we
randomly picked one direction to obtain an undirected graph.
We sampled 10 subgraphs with sizes ranging from 1647 to
7808 in number of vertices and 1000 to 5500 in number
of edges. We varied the false negative and positive bounds
between 0 and 10. After 10 runs, for all the datasets we
obtained an average ∆E of size 6, with most datasets returning
0 even when both false negative and positive bounds were set
to 0. The largest value of ∆E was 22 returned from the 5500-
edge graph. This reflects a real-life situation in which in a
properly clustered social network, one would expect ∆E to
be small.

V. RELATED WORK

The CORRELATION CLUSTERING problem was introduced
in [1] and approximation algorithms have been reported in [1],
[8], [9], [10] with the goal of minimising disagreements or
maximising agreements. Since then, a number of variations of
the correlation clustering problem have been considered: by
fixing the number of clusters [11]; by allowing overlapping
clusters [12]; and for generally labeled edges [6]. None of
these works consider correlation clustering in the presence of
user-defined error bounds, however.

Similarly, the MULTICUT problem has received ample
attention, see e.g., [13] for a survey. Most relevant to our
work is the region-growing approximation algorithm presented
in [3], [4]. To our knowledge, the BOUNDED MULTICUT
problem has not been studied so far.

Most closely related to this paper is the O(log n)-
approximation algorithm for CORRELATION CLUSTERING

presented in [2]. In that work, the region growing algorithm for
MULTICUT [3] is used to obtain an approximation algorithm
for CORRELATION CLUSTERING. We follow a similar strategy
in this paper, albeit in the presence of error bounds, as
explained in Section III.

VI. CONCLUSION

We have formulated an interactive correlation clustering
framework and provided an approximation algorithm for one
of its main building blocks, i.e., the identification of a minimal
set of edges to delete in order to guarantee the existence of
valid clustering relative to the user-defined error bounds. The
algorithm is experimentally validated and despite being an
approximation, the returned set of edges is in practice close
to optimal. As part of future work, we aim to investigate the
techniques used in [14] to obtain an alternative approximation
algorithm, as well as to build a prototype system that fully
supports the interactive features mentioned in the Introduction.
Furthermore, a more extensive qualitative analysis of the
algorithms will be carried out. In addition, we are currently
investigating interactive correlation clustering when clusters
can overlap and when edges can carry labels from an arbitrary
set, i.e., not only + and − labels.
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