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The Formal Model of a Pattern Browsing Technique

Jan Hidders Cora Hoskens Jan Paredaens

Abstract

In this report we introduce a general browsing model that describes intuitive ideas about
browsing. In this model it is assumed that the database scheme, as well as the instance of
the database are represented by graphs. The most important browsing step in this model
is the pattern step. It is based upon finding subgraphs in the instance matching a pattern
and supplied with a browsing condition that links it to previous steps. This allows the user
to visually specify a browsing step based upon the results of previous steps. Other browsing
steps and operators in the model allow the user to randomly select some subgraphs found
by a step, replace an old browsing step with a new one or undo some of the last browsing
steps. After presenting the model we compare its expressive power with that of the relational

algebra.



1 Introduction

This paper introduces a browsing model. Browsing provides a means to investigate the contents
of a database in a special way. It adds to querying the possibility to reuse former results. It is
like moving around in the database by specifying intermediate results and using these to get more
specific ones. In a sequence of steps the user tries to get closer to the information he wants to get.

What characterizes browsing, is that it is an interactive and iterative process of specifying
queries and investigating the results of those queries in order to be able to state new ones. This
is particularly useful when a user does not know exactly what he is locking for, or how to access
the information he is looking for.

An example of a browsing facility is available in Smalltalk [8]. Smalltalk provides the possibility

to wander around the class structure in order to find the particular class that the user is looking
for. The classes are ordered in a tree structure and by means of browsing one can go from one
class to one of its subclasses. Without this possibility it would be very hard to find the classes of
interest.
Another way of browsing is available in hypertext documents [7]. In a hypertext, links are provided
to other (parts of) documents which in some way or another are related to the current document.
By choosing the right links, the user tries to find the document he is interested in. World Wide
Web is a very nice example of a (world wide) hypertext [2]. Both examples show the characteristic
of browsing: the use of intermediate results in order to get the required result.

This paper does not describe some new innovative browsing technique. It provides a general
model to describe intuitive ideas about browsing {3], [4].

In this particular browsing model it is assumed that the database scheme, as well as the instances
of the database are represented by graphs, such as in the GOOD model [1], [5], [6]. In this
model, the nodes of the graph represent objects while the edges represent the properties of and
the relationships between the objects.

A pattern is also a graph, and can be used to select subsets of an instance by the notion of
pattern matching. This means that every subgraph of an instance that matches the pattern is
selected. Such a subgraph is called an embedding,

With the pattern browsing technique, every possible action that the user can take is called a brows-
ing stalement. Browsing statements can be divided into drowsing steps and browsing operators.
There are two different steps in the model and two different operators. Actually, the steps are the
elementary browsing statements. They provide the user with all necessary actions to enable him
to browse. The operators, on the other hand, are meant to ease the task of the user. We first
discuss the two possible browsing steps.

First of all, embeddings can be selected by specifying a pattern. Assuch it is a pattern matching

step, or paitern step for short. The nodes in the pattern are labeled, and they can also be given
a condition. Such a condition is called a node condition. By means of these node conditions, the
uscr can restrict the subgraphs that are selected. The node conditions put an extra restriction
on embeddings. Thus, an embedding is a subgraph that matches the pattern and fulfills the node
conditions. :
However, in the context of browsing a more general condition can apply to a pattern step, which is
therefore called the browsing condition. This condition links the pattern to embeddings found in
previous steps, and is therefore essential for the process of browsing. In such a way, it is possible
to combine the results of several steps by combining conditions, that refer to different steps, into
one condition.

Secondly, it is possible to select a set of embeddings amongst the ones that resulted from a
previous step. Such a step is called the selection step. That way it is possible to select only the
embeddings that seem interesting to the user. It narrows down future searches.

Besides these two steps, there are two operators. Each of these operators changes, in fact, a
browsing program, which is a sequence of browsing steps. The first one, the change operator
changes one step of the program, which may affect the result of this step and also of later steps



that refer to that step. The second one, on the other hand, the rollback operator, rolls back one
or more browsing steps.

The operators are introduced because they add to the intuitive ideas about browsing. Browsing
means investigating the contents of the database in an interactive manner. The possibility to
backtrack (as provided by the change and rollback operator), and retrace steps (as with the
change operator) can be part of that process. Including the operators makes it possible to have
more user friendly browsings sessions.

It is possible to show the results of subsequent statements in a tree, as will be shown later in this
paper. The embeddings that are found in the pattern and selection steps make up the nodes of
this tree, while each edge is labeled with the step label. Each of these steps adds one layer to the
browsing tree. The layer that contains the result of step p is called layer p. The browsing tree
is a visual aid for the representation of the result. The browsing tree not only shows the results
of each step, but also shows (by means of the edges) the dependencies between nodes in different
steps.

Every node in a pattern has a node label. However, we presume that the nodes of a pattern
are linearly ordered and that it is therefore also possible to speak about e.g. the third node of
a pattern. Consequently, embeddings can be represented by unlabeled tuples. Also, an infinite
countable set L = {10, 11, 12, ...} of step labels is presumed, with 10 denoting step 0.

2 Definition of the Pattern Browsing Model

2.1 An example

First an informal example is given that illustrates the notion of browsing and the intended meaning
of the different staternents. In this example steps as well as operators are used. Note that each
time an operator is encountered in the program, this operator can be replaced by rewriting the
steps of the program according to this operator.

G e »
G

p-3

Brussels
(e simeess

Kees has_child

p4

Figure 1: A simple instance



Example 1 This example uses a small instance, given in Figure 1. In this instance the objecls
have an identification label, which makes i possible to distinguish between them.

The instance represents four persons with their name, address and age (if those are known)
together with their child—relationships.

Step 1 (pattern step): Select the nodes with pattern:

ny ng na
- address has_child
@: Person = Person
age
n4
na 2 40

This query asks for all persons that are at least {0 years of age, together with their address and
one of their children.

The resull of this step is sel of embeddings that match the pattern. Every embedding can therefore
be represented by a (address, person, person, age)-tuple. The result can be represented by the

n_1 | n2 | n3| nyg
Jollowing lable: Antwerp | p_1 | p_2 | 40
Antwerp | p_1 | p-3 | 40




Step 2 (pattern step with pattern condition): Select the nodes with pattern:

n ng na
name address

and condition: node n_2 matchez node n_3 of step 1,
and node n_3 matches node n_1 of step 1.

Node n_2 of the instance (Person) has to match node n_3 of a {uple of step 1, which is the
‘child’ object of that patiern. In the same way, node n_3 of the instance (Address) has to match
node n_1 of the same tuple, which is the ‘address of the parent’ of that pattern. This means that
this query asks for all children who live at the same address of one of their parents, for those
parenis that were selected in step 1, logether with their name and address.

nl | n2| a8
Piet | p.3 | Antwerp

This step will have the following tlable as resull:

Step 3 (change operator): Change the pattern of step 1 into the following

one:
m na n3
- address has._child
@ Person Person
age
ny
Ny 2 20

This operator will change the original step 1. This adapled version of step I asks for all persons
that are at least 20 years of age, together with their address and one of their children. Step I and
2 are ezecuted again, which will now result in the following tables:

n_l | n_2| n.9| n 4
Antwerp | p_I | p.2 | 40
Antwerp | p_.1 | p 3 | 40
Antwerp | p.8 | p{ | 25

nl | n2|ng
and step 2: Piet | p_3 | Antwerp
Kees | p_{ | Antwerp

Step 1:




Step 4 (selection step): Select the following embedding from the result
of step 2:

nl | n2|n3
Kees | p_4 | Antwerp

This query can be formulaled as follows: select from the embeddings that where found in step 2,
ezactly the ones given in the lable.

The result of this step is that the given embeddings are selected. This narrows down future searches

as will be visualised when the resulls are presenied in a browsing tree furtheron in this paper.
nl | n2|n3

Kees | p4 | Antwerp

The result of this step is given by the following table:

Now imagine that the user finds thal he made the wrong selection in step 4. What he can do
now, 15 esther change it with a change operalor, or throw away step § allogether by means of a
rollback operator. Imagine that he wanis to do the latter. Step 5 would then look like:

Step B (rellback operator): Now roll back all actions from step 4 on.

This query can be translated as: throw away slep 4.

The result of this step is that the result of step 4 is removed, and can no longer be used in subsequent
sieps.

This concludes the illustration of the different browsing steps.

2.2 Syntax of a browsing program

In this section, the syntax of a browsing program is described. First of all, the notion of a primitive
browsing program is introduced. A primitive browsing program uses only (pattern and selection)
steps. The syntax of the steps is given. Then, the notion of a non-primitive browsing program is
introduced, in which also the change and rollback operators can be used. Also, the syntax of the
operators is given.

The example given in the introduction is then worked out in the proper syntax. Finally, the
result of the example is presented in a browsing tree.

2.2.1 Primitive statements: pattern step and selection step
Definition 1 A pattern step has the following syntaz:

l: {pat p,cond c});

and is defined by

e a labell
® g patlern p

o a paitern condition ¢ € C, where C is defined by:



C = (n!'u"l'm"':n’l'h)::= (m‘ (".fu LT P n.iu)) |

(niy,miy, . .ony,) o= (existy (nj,, ny,, ..., n5,)) | FOTC C)|(C AND C)|(C OR C)|T
where i, , niy, ..., NG, and nj,ng,, ..., n;, are node labels, and I' is a step label.

This step is essentially a pattern matching step with a possibility to include a pattern condition
c.

All nodes of the pattern are labeled with an identifier. In the pattern, each node may have a node
condition. The syntax of the node condition of a node n; is as follows:

NCu= ni=¢|n<e|nmi<e| ni>e| ni>e| NOT( NC) | (NC AND NC) | (NC OR NC)

where expression e is either a node label, a value, or an numerical expression (in which the binary
operators +, —, ¥, / can be used) including a node label.

When a node is given a node condition, the value of this node is restricted. This means that each
node in an embedding fulfills its condition. If e contains a node label n; it means that the value
of n; is dependent on the value of n;.

An example of a pattern with node-conditions is given in Figure 2. This pattern specifies persons
who live in Antwerp and who are not older than 50 years, who have a child who is at least 30 years
younger then him/herself. The result will consist of tuples of the form (name, address, person,
age, person, age) for embeddings that match the pattern. They fulfill the following conditions:
“Person n_3 lives in Antwerp, is less than 50 years old, and his/her stepchild n_5 is at least 30
years younger than him/herself.”.

n.l

@ name n.3 nd
age

n?2 Person

s n4 <50

n.2 = ‘Antwerp’ has_child
n.b n.6
age
Person

nb6 < (n4 - 30)
Figure 2: A pattern with node-conditions

In a pattern step ! : {pat p, cond c}, label | is used to identify the step within the program.
Pattern condition ¢ links the pattern to the selected embeddings of one or more preceding steps.

It consists of subconditions of the form: {(n;,,ni,,...,m,) == (ancp(n;,, nj,, ..., nj.))) and
((miy, Mgy o ooy iy ) o= (existy(ny,, njy, ..., nj,))). Each subcondition specifies for certain nodes

of the pattern, which nodes of previously selected embeddings they have to match. There is a
subtle difference between the meaning of the first and the second subcondition, which is explained
later in the paper. Basically, they both say that nodes n;,,n;,,...,n; have to match nodes
iy, Mgy . - -, Ny, Tespectively, of an embedding of step I'. Later on in the paper, we will explain
the semantics of anc and exist in more detail.

The result of a pattern step is the set of embeddings of the pattern that satisfy the pattern
condition.

Definition 2 A selection step has the following syntaz:
{: (label V', select S),
and is defined by



o alabell
o g label V'
e g selection set S.

The meaning of a selection step is that of the embeddings, found in step I, the ones in set S are
selected. The idea behind a selection step is that the user selects the embeddings that he finds
interesting and wants to continue with. Generally, it narrows down the search path for future
steps. The pattern of selection step ! is defined as the pattern of step I'. This means is that
selection step [ inherits the pattern of step I'. This pattern is needed when a future pattern step
refers to step ! in its pattern condition.

In the remainder of this paper we identify a step by its label, i.e. step I is short for the step with
label 1.

2.2.2 Primitive browsing programs

We introduce the notion of a closed primitive browsing program. A primitive browsing program is
a sequence of browsing steps that fulfill certain conditions. These conditions make sure that each
step encountered during the evaluation of the program has a defined meaning. A closed primitive
browsing program is a browsing program that starts from scratch. An open primitive browsing
program, on the other hand, takes an existing browsing program as input, and then adds one or
more steps to it.

A pattern step with a non-empty pattern condition refers to a previously defined step in a
browsing program. The embeddings of the pattern step then have to match an embedding of the
referenced step. A selection step also refers to a previously defined step in a browsing program.
The embeddings of its selection set are taken from the referenced step. To define the syntax of
a primitive browsing program it is therefore necessary to know the set of steps that a pattern or
selection step I can refer to. This is known as the set of referencable labels of step .

Definition 3 The set of referencable labels of step I; in the context of a primitive browsing program
o, ta, .o lic1, iy 1n), is the set of labels that I; may refer to in the program, and is defined as
follows:

srl([lﬂ;lla'"all'—lsfl'a"')lﬂ]’lt') :{ IU!II)""III.—I }

Definition 4 A closed primitive browsing program is a finite list of browsing steps, for which the
following holds:

o Every step in the list has a unigue step label.

o If a pattern step | has a patlern condition containing a subcondition of the form

(niy, nigy .oy m4) = (anep(ng,, nj,,..., n;)), or
(Riys Mgy ooy ng, ) o= (existu(ng,, nj,, ..., nj,)) then
— I has to be in the sel of referencable labels of |
— Ny, Rigy ..., Ny, are unique node labels of the pattern of step |
— N, Ny, ..., 1y, are node labels of the pattern of step I'.

e For every selection step I : (label ', select 5) 1 holds that

— ! has 1o be in the set of referencable labels of 1

~ selection set S only contains embeddings that are in the resull of step .

Definition 5 An open primitive browsing program is a consecutive subsequence [I;,..., 1] of a
closed primitive browsing program [lo, ..., L, ... I, ..., 1]



2.2.3 Operators: change and rollback operator
Definition 6 A change operator has the following syntaz:
change | into s;

where

s is a patlern step 1: {pat p,cond c), or a selection step 1 : (label I', select S).

The meaning of the change operator is that it changes step |. The existing step [ is replaced by
the new step, identified by the change operator. The idea behind a change operator is, that the
user can backtrack to a certain point in a program to change a move, and then retrace the rest of
the steps.

Definition 7 A rollback operator has the following syntaz:
rollback {;

where
1 is o step label.

The meaning of a rollback operator is that it identifies a certain position in the program (by means
of the step label). The program then rolls back all steps up to and including step I. It is like
backtracking to the step that precedes step I.

Note that operators do not have a step label. They do not need one, because statements never
refer to operators.

2.2.4 Non-primitive browsing programs

Non-primitive browsing programs are browsing programs in which steps as well as operators can
be used. Therefore it is a sequence of statements. A non-primitive browsing program can be
rewritten to a primitive browsing program. Therefore, primitive browsing programs have the
same expressive power as non-primitive browsing programs.

Operators refer to browsing steps, which are identified by their label. Change operators refer
to the step that they change, and rollback operators refer to the first step that has to be undone.
To define the syntax of a non-primitive browsing program, it is therefore necessary to define a
set of labels that an operator can refer to. This is known as the set of referencable labels of the
operator. Since we already defined the set of referencable labels of a browsing step, we can now
define the set of referencable labels of an arbitrary statement, in the context of a non-primitive
browsing program.

Definition 8 The set of referencable labels of statement s;, in the contezt of a browsing program,
18 the set of labels that s; may refer to in the program, and is defined as follows:

sri([l : {pat p, cond ¢)] = {1},

sri([so,..., I:{pat p,cond ¢}, s;,..., 8a), 8) =
sri([so,..., I: (pat p,cand ¢} ], ! : {pat p,cond ¢c)) U {I},

sri([so, ..., {: {label V' select S), s;,...,8,], &) =
sri([so,..., 1 : {label U, select S) ], 1: (label ¥, select S)) U {I},

srl([so,..., change linto s, s;,...,8,}, &) =
srl{[so,..., change [ into 8), change | into s},

sri([so,..., step ,..., rollback !, si,...,sn], 8i) =
sri({so,..., step l], step i),
where | € sri([so,..., step I,..., rollback I], rollback I).




The set of referencable labels of a statement s; in the context of a browsing program is determined
by considering the previous statement s;_;. If 5;_; is a step, then sri(s;) is equal to the union of
srl(s;_1) and the label of s;_;. If, s;_, is a change operator, then sri(s;) is equal to sri(s;—; ). The
last possibility is that s;_; is a rollback operator that rolls back all statements up and including
1. Then, sri(s;) is equal to srl(s;). If, however, a statement has no predecessor it means that the
statement itself is a pattern step, because a browsing program always starts with a pattern step.
Therefore, the set of referencable labels of a pattern step in the context of itself, is defined.

Definition 9 A closed non-primitive browsing program is a finite list of browsing statements, for
which the following holds:

1 Every step in the list has a unique step label.

2 If a pattern step | has a paltern condilion containing a subcondition of the form

(niysmiys ..o my,) = (B0cp (nj,, 0y, .., B4,)), or
(n;l,n,-:, i -’nl'k) S (L'Stl'(nju(nim ey "’J'k)) then

o U' is an element the set of referencable labels of I,
® N, Ni,,...,n;, are unique node labels of the patiern of step |,

® nj,, 0., ..., 0y, are node labels of the patlern of step I'.
3 For every selection step | : {label I, select S) it holds that

o " is an element of the set of referencable labels of I,

o selection set S only contains embeddings that are in the resulf of step ',
4 For every change operalor change l into 1: {pat p,cond c), it holds that

o lis an element of the set of referencable labels of this change operator,

o step | is a paitern step | : {pat p',cond ') such that p' at most differs from p in its
relationships between its nodes and in its node conditions,

e [ : {pat p,cond c} conforms to rule [2].
5 For every change operator change | into |: (label ¥, select S) it holds that

o lis an element of the set of referencable labels of this change operator,

o step | is a selection, step | : {label V', select S'), which therefore also selects embeddings
from step I,

o 1:{label U, select S) conforms to rule [3].

6 For every rollback operator rollback I it holds that I is an element of the set of referencable labels
of this rollback operalor.

Definition 10 An open non-primitive browsing program is a consecutive subsequence s;,. .., s)
of a closed non-primitive browsing program (sg,...,8i,...,8k,...,8n).

Example 2 Here, Ezample I is worked out in the notation of the pattern browsing technique.
15 @ closed, non-primitive browsing program.

[

11:
<pat



m na ng

addrass has_child
@: Person a1 Person
age
Tiq
ny 2 40
, cond T>,
12:
<pat
ny 2 ni3
name address -
, cond (n2, n3) :: = (anc[11]{(n3,n1))>,
change 11 into
11;
<pat
n n; na
address has_child
Person Person
age
na
ny 2 20
, cond: T>,

10



The resulting browsing trees of executing respectively the first to fifth statement of Example 2 are
given in Figures 3, 4, 5, 6, and 7. The edges of each layer in a browsing tree are labeled with
the corresponding step label. Executing the rollback operation deletes layer I3 as shown by the
cutting edge. The result of a subsequent pattern or selection step, would then be drawn in level

13:
<label 12, select: {(Kees, p_4, Antwerp)}>,

rollback 13

3 of the browsing tree.

l2|

ns

ny ny
L, G Pereor Persor

b h J

ny

(Antwerp,p-1,p-2,40) (Antwerp,p.1,p.3, 40)

Figure 3: Browsing tree after executing the first statement

(Antwerp,p1,p_2,40) {Antwerp,p1,p_3,40)

ni 3 n3 12

Ferer @
(Piet,p3,Antwerp)

Figure 4: Browsing tree after executing the first and second statement
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{Antwerp,p1,p-2, 40) {Antwerp,p_1,p_3,40) (Antwerp,p.3, p4, 25)

7y n3 a3

b,  @ring Pereon Grinp I
@

(Piet,p.3,Antwerp) (Kees,p4,Antwerp)

Figure 5: Browsing tree after executing the first to third statement

‘1 [}
h 15
(Antwerp,p2,p.2,40) (Antwerp,p1,p_3, 40) {Antwerp,p.3,p.4, 25)
ny ng ny
i
(Piet,p.3,Antwerp) {Kees,p4,Antwerp)
n3 la

Is, o

(Kees,p_4,Antwerp)

Figure 6: Browsing tree after executing the first to fourth statement

2.3 Semantics of a browsing program

In this section the exact meaning of a browsing program is given, by means of its semantics. First,
the definition of a browsing tree is given. A browsing tree provides the possibility to visualize the
result of a browsing program. There are different ways to represent the results in the browsing
tree. For instance, edges can be labeled with a step label, with a step label and the pattern of the
step, or with the complete step. Also, the resulting embeddings can be represented as a tuple or
as a graph. In this model, the edges are label with a step label and the pattern of the step. This
makes it possible for other steps to refer to a step (and its pattern) in the browsing tree.

A primitive browsing program is made up of individual browsing steps, therefore the semantics
of these steps is given. The semantics of the different steps is given with respect to a certain
instance and a browsing tree. Then the semantics of a browsing program is given in terms of the
semantics of the individual steps. Further, it is shown how a non-primitive browsing program can
be translated into a primitive browsing program.

12



(Antwerp,p.1,p.2, 40) (Antwerp,p.1, p.3,40) {Antwerp,p_3, p_4,25)
"y na ns
t2y  (ring [Perser Giring b2
| @
{Piet,p3,Antwerp) (Kees,p4,Antwerp)
........................... 3@ g g Ceerenenas
L n; "3 I3
la,  Quring [Persoy Qiring) [

(Kees,p_4,Antwerp)

Figure 7: Browsing tree after executing the whole program

2.3.1 Browsing trees

The result of a browsing program can be shown in a tree: the browsing tree. Every step extends
the browsing tree with a new layer. For each node in the bottom layer a (possibly empty) set of
embeddings is added to the tree. Which embeddings are in this set, depends on the step iiself,
and of the embeddings in layers of steps that are referenced by in this step. A change operator
backtracks to a certain layer, changes that step and then retraces its steps back to the bottom
layer. A rollback operator rolls back a sequence of executed statements, up to and including the
step indicated by the operator. In the browsing tree, this means that a rollback operator removes
the layer of the indicated step, and all layers beneath it.

Definition 11 A browsing tree is a labeled tree where each edge is labeled with the label and the
patiern of a step, and where each node is labeled with an embedding. Furthermore, it must hold
that:

e The root is labeled with the emply embedding.

o Edges are labeled with the same siep label if and only if they are on the same level.

Embeddings in a layer of the browsing tree are embeddings of the patiern of that layer.

Every node of the tree can be uniquely identified by the list of edge and node labels that are
encountered on the path from the rool to that node.

The browsing tree that consists of only the root is called the empty browsing tree or biy. The
expression result(bt,l) represents the set of nodes in the browsing tree bt that are the result of
step I, except for result(bt,0) which represents the root of bt.

2.3.2 Semantics of the pattern and selection step

Definition 12 The semantics of a pattern step is a partial function that given a pattern step, an
tnstance and a browsing tree defermines the updated browsing tree.

sps(l : (pat p,cond c},i,bt) is defined whenever

o labell does not yet have a layer in bt, and

13



e for every subcondition in ¢ of the form (ny,,n;,, ..., ny) == (angy (nj,, Rjgy ...y M)

or (ni,, Ny, ..., ng,) u= (existy (nj,, nj,, ..., 85,))
- "y, N4,,..., 0, are unique labels of a node of pattern p,

— U is the label of a layer in the browsing tree,
= My, Ny, ..., Ny, are labels of a node of the pattern of layer I'.

The resulf of sps(l : (pat p, cond ¢}, ,bt) is a browsing tree that is a super-tree of bt in the following
way. For each node n tn the botiom layer of bt, every embedding e of step patlern p into instance
i is considered. If this embedding fulfills condition ¢ ¢ node m is added to bt, as well as an edge
from node n to node m. Node m is labeled with embedding e, and the edge is labeled with label |
and patlern p.

The super-iree thus has an extra {possible empty) layer I, as opposed to bt.

Whether embedding e fulfills condition ¢ is defined by induclion on the condition:

o (ni,,niy,...,n4,) = (existy (nj,, Ny, ..., n;,)) holds if and only if
3 embedding €' € result(bt,l') such that Vi € {1,2,...,k} (e(ni,) = €'(n;,))
® (niy, iy, . .ym4, ) o= (angy (nj,, ny,, .., nj,)) holds if and only if

3 embedding ¢’ € result(bt,l') such that
1. vte{l,2,...,k} (e(ni,) = &(n;,)) , and
2. ¢ lies on the path from iree node n to the root of bt.
s (c1 AND c2) holds if and only if c; helds and ¢ holds.
e (cy OR c2) holds if and only if ¢y holds or ¢y holds.
BOT(c) holds if and only if ¢ does not hold.
o T holds always.

Definition 13 The semantics of a selection step is a parfial function that given a selection step
and a browsing Iree delermines the new (ertended) browsing tree.

ses(l : (label U, select SY,b1) is defined whenever

o label V' has a layer in bi, and
o labell does not yet have a layer in bt, and
o VYe:e € S:ec€ result(bt,l’).

The result of scs(l : {label U, select S),bt) is a browsing tree that is a super-tree of bt in the
Jollowing way. For each node n in the bottom layer of bt node n} is considered, where n} is defined
as follows:

¢ n; lies on the path from n to the root of bt, and

® n; is a node in layer I'.
If the label of nj is an embedding ¢’ € selection sei S, then a new node m is added, as well as an
edge from node n to node m. Node m is labeled with embedding e/, and the edge is labeled with |
and the pallern of layer V.
The super-tree thus has an extra (possible empty) layer |, as opposed to bt.

14



Semantics of a primitive browsing program

Definition 14 The semantics of an cpen primitive browsing program is a partial function that
given an open primilive browsing program, a browsing iree and an insience delermines the new
(extended)} browsing tree.

Whether the result of sopb([sy, . .., st], bt, 1) is defined, can be deduced by induction upon the struc-
ture of the browsing program:

o sopb([si], bt, i) is defined if either s, is a patiern slep and sps(sy,i,bt) is defined, or s, is a
selection step and scs(sy, bt) is defined.

o sopb([s1,53,...,8:),bt, 1) is defined if sopb([s,], bt, i) is defined and sopb([s, . . ., si], sopb([s1], bt, i), 1)
is defined.

This means that the function is defined if for cvery step s, the siep semantics function sps or
scs (depending on whether it is a patiern or selection step) is defined in the contexl of the iree that
this step lakes as input lree. This is the tree thai is created if the steps thal precede s, are execuled
with bt as original input iree.

The result of sopb({si,...,s:],bt,1) is defined as follows:

sopb([],bt,4) = bt
sopb([sy, 82, ..., 85],bt, 1) = sopb([sa, ..., s:], sps(s1,i,bE), 1) if 8; is a paitern step
sopb([sa, ..., 8], scs(s1,bt), ) if sy is a selection step

Definition 15 The semantics of a closed primitive browsing program is a function that given a
closed primitive browsing program and an instance determines the browsing tree of the program.

In fact, the semantics is equal 1o the open browsing program semantics if if takes the closed browsing
program logether with the emply browsing tree (blo, which consisis only of the root} as input. The
only difference is, that the well defined siructure of a closed browsing program ensures that the
semantics function exisis,

Hence, scpb([sy, ..., sn), 1) = sopb{([s1, ..., sn], blo, 7).

Semantics of a non-primitive browsing program

Instead of defining the semantics of a non-primitive program in terms of the semantics of its
individual statements, a translation is given to a primitive browsing program. The semantics of
a primitive browsing program which has been given earlier in this paper, can then be applied.
The reason we can do this, is that each operator is, in fact, a short cut for rewriting an existing
primitive browsing program to another primitive browsing program.

Definition 16 The translation of a closed non-primitive browsing program trans : CBP —
CPBP is a funclion that given a closed non-primiltve browsing program cbp translates it to an
equivalent closed primilive browsing program cpbp.

This function is defined by induction upon the siruciure of the browsing program. The result
of trans(obp) is defined as follows:

trans([s,..., |: {pat p,cond ¢),..., s, change l into 1: (pal p’,cond ¢y, 8¢,...,84)),
where s1,..., 8 are steps, T
=trans([s1,...,l: (pat p',cond ¢}, ..., 8k,81,...,84]),

trans([sy,..., {: {label I, select &),..., s, change ! into I: {label V', select §'), 5,...,8a)),
where 81,..., §p are sieps,
= trans([sy,..., {: (label V', select §'), ..., 8k,8,...,8n]),

15



trans([s1,...,8i, stepl,..., s, rollback I, s,..., 84])

where 81,..., s are steps,
=trans([s1,...,si,51,...,8n]),

trans([sy,...,8,]), where s1,..., 5, are sieps,
= [81,...,8n].

Because closed non-primitive browsing programs have, by definition, a well defined structure, the
above translation rules will always result in a closed primitive browsing program.

The translation function traverses to the first operator in the list of statements. If this is
a change operator, it changes the indicated pattern or selection step, and then continues. The
change operator is deleted from the list. If the first operator in the list is a rollback operator, the
steps between the indicated step and the rollback operator are deleted from the list, as well as the
rollback operator itself. The translation function is then repeated, with the new list of steps as
input. This repeats itself until all steps in the list are primitive steps.

Definition 17 The semantics of a closed non-primitive browsing program és a function that given
a closed non-primitive browsing program delermines the browsing tree of the program.

The semantics can now be defined in termas of the translation function as follows:
sch([sy, ..., 8a),1) = scpb(trans([s1,...,sn])).

This means that a closed non-primitive program is first iransiated 1o a closed primilive program.
Then the semantics of a closed primitive program is applied lo his primilive program.

16



Figure 8: Simulation Diagram

3 The Expressiveness of the Model

In this section we will discuss the expressiveness of the browsing model. With expressiveness we
mean the ability to calculate certain transformations. The browsing model will be compared with
the relational algebra in several ways. We will consider only the model with primitive programs
(consisting of steps only) since operations can be regarded as syntactic sugar. Also, we will not
consider arithmetic in the node conditions because this would make the model incomparable with
the relational model.

To be able to determine whether the browsing model is as expressive as the relational algebra
and vice versa we have to establish what it means for one system of transformations to be as
expressive as another.

Definition 18 Let A and B be transformation systems and let im be a total mapping of the input
domain of A to the inpul domain B and let om be a lotal mapping of the output domain of A to
the outpui domain of B, as shown in Figure 8). A is as expressive as B under input mapping im
and output mapping om if for every transformation g in B there is a transformation f in A such
that omo f = imo g. If the reverse holds we say that B can implement A under input mapping
tm and oulpul maepping om,

Whether the browsing model is as expressive as the relational algebra depends upon the chosen
mappings. Another important factor is how we choose the input and output domain of the browsing
model and what we consider to be the transformations that are defined by the system.

For the relational model these choices are fairly obvious:

Input Domain A set of relations.
Output Domain A single relation.
Transformations Those expressed by an expression of the relational algebra.

For the browsing model they are less obvious. The first system we will consider is the following:

Input Domain A browsing tree.

Output Domain The embeddings of the nodes in the bottom layer of the resulting browsing
tree.

Transformations Those expressed by a an open browsing program.

This system is called PBM, (Pattern Browsing Model 1). Now we know what the system is
we can determine the mapping of the input and the output domains. The input mapping maps
the layers of the browsing tree to tables containing the embeddings of the nodes of those layers.
‘There will be a table for every layer and its name will the label of that layer. This mapping is

17
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Figure 9: Input mapping example for im;

called ém;. An example is given in Figure 9 where the result of im; applied to the browsing tree
of Figure 7 (after the roll back operator) is shown.

The output mapping om; maps the embeddings of the nodes in the bottom layer to a table
contain exactly these embeddings.

Theorem 1 Under input mapping im; and outpul mapping om, it holds that PBM, is as ez-
pressive as the relational algebra.

Proof: The proof is given by induction upon the algebra expression. We will show that the
theorem holds for every individual algebra operator. Because we can concatenate them into one
program it follows that any algebra expression can be simulated. It is presumed that every step
receives a fresh step label that is not in the browsing tree. The exact order is not relevant but
it should hold that the simulations of subexpressions precede the simulation of the comprising
expression.

The translation of algebra operators in steps is demonstrated in Figure 10. Notice that in this
proof we presume that there is only one node label 4. It is possible to generalize the proof for more
node labels but this would complicate the proof. Note also that we do not consider relational
algebra operations such as ¢,<3(R) but it is easy to see how they might be simulated with the
help of node conditions. m]

The expressiveness of PBM; as stated in Theorem 1 is slightly “crude”. It says something
about the manipulation of complete layers whereas in the browsing model with every step an
extension is calculated for every separate branch. This explains why the anc-references were not
really needed for the simulation, because they refer to the branch-specific embeddings. It is
possible to define a more subtle expressiveness by extending the input domain of PBM; with a
branch identification and define the output as the embeddings of the nodes at the bottom of the
tree that was added to this branch. The relational algebra expression would then not only operate
on tables containing the layers but also on tables containing the (single) embedding of every layer
in the branch. The question whether the browsing model is as expressive as the relational algebra
in this way, is still open.

Up to now we have regarded the expressiveness of the browsing model as a manipulation
language for browsing trees. Yet, the user is only interested in the browsing tree as an intermediate
result and, ultimately, is more interested in the final result (a set of embeddings) he can obtain
starting with a certain instance. Therefore, it may be more interesting to see which sets of
embeddings can be found given a certain instance and starting with the empty browsing tree. For
this purpose we define PBMy:

Input Domain An instance.

Output Domain The embeddings of the nodes in the bottom layer of the resulting browsing
tree.

Transformations Those expressed by a closed browsing program.

The input mapping ¢m; maps an instance (a labeled graph) to unary and binary tables. For
every node label there will be an unary table of that name containing all the nodes in the instance

18



pattern: ny :[A]...np o [4]
condition: (my,...,my,) 1= exist; (n1,...,7,)
where p is the arity of step I; and m;,...,m, are the nodes of step ;.

pattern: ny : [A].. np i [A]
Oni=o(la) = with n; = v as node condition of n;
condition: T

where v is a printable value and ni, ..., n, are the nodes of step {,.

pattern: ny @ [A]...np : [4]

Tsreny (la) = condition: (ny,...,n,) u=exist; (ny,...,=n
P =400, P

! pattern: ny[A]onaoy [Alme [A]nggy 2 (4] onp 2 [4]

Pri-m(la) = LS , . e ey , ,
condition: (ny,...,Mi-1,0, R4, ..., Np) = existy (R1,..., i1, M, Nig1, ..., Np)
where ny,...,n, are the nodes of step I,.

(1} 1) = pattern:  my : [A]...m, : [4]
a condition:  (ny,...,ng) = exist; (n1,...,ng)AND(n],..., n;) = exist; (n],...,n})
where ny,...,n, and n},..., n. are, respectively, the nodes of step {, and step I, and
{m1,...mp} is the union of these two sets.

(e — 1) = pattern: ny :[A]...np : [A]

where ny,...,n, are the nodes of step I, and step ;.
pattern: ny : [A]...np: [A]

condition:  (ny,...,np) = existy (n1,...,np)0R(ny,...,np) = exist; (ny,...,np)
where ny,...,n, are the nodes of step I, and step I,.

(la U Ib) =

Figure 10: Translation of relational algebra operators
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with that label. For every edge label there will be a binary table of that name containing all
the pairs of begin and end nodes of edges in the instance. The output mapping om; is the same
as om; and maps the embeddings of the bottom layer nodes to a table containing exactly these
embeddings.

Theorem 2 Under input mapping ims and culpul mapping omy it holds that PBM, is as ez-
pressive as the relational algebra.

Proof: The edges and nodes can be encoded in the layer as, respectively, binary and unary em-
beddings. The first steps of the (closed) program will therefore be n; : [N] for every node label N
and ny : [N] A [N2] for every edge label a allowed between the node labels Ny and No. The
rest of the program is constructed according to Theorem 1, performing the algebraic expression
upon these layers. ]

An important difference between PBM; and PBM; is the injectivity of the input mapping
imy. This means that no information is lost during that mapping and that it is now a meaningful
question to ask the dual question of Theorem 2, i.e., can the relational algebra implement PBM,?

Theorem 3 Under input mapping img and oulput mapping omy it holds that the relational algebra
con tmplement PBM,.

Before we can give the proof of this theorem we need a lemma that says that the relational
algebra can implement a single pattern step of the browsing model. Therefore we define PBM}:

Input Domain An instance and a browsing tree.
Output Domain The extended browsing tree.
Transformations Those expressed by a single pattern step.

The input mapping ém/, maps the instance to unary and binary tables as ims. Furthermore,
the browsing tree is mapped a set of relations with for every layer a relation containing all the
embeddings of that layer and a single relation representing the browsing tree limited to its bottom
nodes and their ancestors. The relations representing a layer are named with the label of the
layer they represent. Their column names will be the the nodes of the step of that layer. The
relation representing (a part of) the browsing tree is named BT and its column names will be all
li.n; with l; a label of a step of a layer in the browsing tree and n; a node in the pattern of that
step. This relation will contain a tuple for every node in the bottom layer of the browsing tree
consisting of the joined embeddings that are encountered on the path from this node to the root
of the browsing tree. An example is given in Figure 11 where the result is shown of applying im}
to the browsing tree of Figure 11 (after the rollback operation). Note that the tables representing
the layers are not simply projections of the table BT.

The output mapping om$ maps the new browsing tree to a relation in the same way as im}
maps the old browsing tree to BT

Lemma 4 Under input mapping im} and outpul mapping om}, it holds that PBM} can be imple-
mented by the relational algebra.

Proof: The pattern step that is to be implemented is { : {pat p;, cond ¢;). The relational algebra
expression that will do this is constructed in 4 phases:

1. The first phase consists of construction the algebra expression emb that determines the
embeddings of the pattern p; in the instance without considering the node conditions. Let
pi be (N, E, )} where ) is the function that gives the labels of nodes in N and edges in E.
For every node n; in N we construct ne,; = pg1—n,;{A(n;)). Note that A(n;) denotes here
the unary table that belongs to the label A(n;) with the single column #1. For every edge
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Figure 11: Input mapping example for im},

e; in E we construct ee.; = pg1r.n,(Pg2-n.(A(e;))) where ny and n, are, respectively, the

begin and end node of ¢;. Note that A(e;) denotes here the binary table that belongs to

the label A(e;) with the two columns #1 and #2. Finally, the table of embeddings can be

constructed by simply joining all the relations of the nodes and the edges: emb = (ne,, M
.. Mne,, ) M (ee., M ... Mee,) where N = {n;,...,n,} and E = {eq,...,¢,}.

. The second phase constructs the algebra expression emb,,, that determines the set of embed-
dings that fulfill the node conditions. For this purpose we define the functionC : AEXNC —
AE where AFE is the set of relational algebra expressions and NC is the set of node condi-
tions, such that C(emb, c) is the algebra expression that gives all the embeddings that fulfill
node condition ¢. It is defined with induction upon the condition:

(a) C(ae,c) = ae if the condition ¢ is empty.

(b) C(ae,n; 6 m) = opn,9m(ae) where 6 is either =, <, <, > or >.
(¢) C(ae,¥0T(c)) = ae — C(ae, c).

(d) C(ae,(c1 AND ¢2)) = Cae, ¢) NC(ae,c).

(e) C(ae,(c1 OR c2)}) = C(ae, c) U C{ae,c).

The complete expression emby,, now has the form C(emb, ¢1)N. . .NC(emb, ¢,) where ¢y, ..., ¢p
are the node conditions of, respectively, the nodes ny,..., n,.

. The third phase constructs the expressicn nbi that renames the columns of the result of
emby,. to appropriate names for the browsing tree representation (by prefixing I, the label
of the step) and joins the result with the original browsing tree representation (BT').

nbt = BT M (pg, iy (- - Pn,,'-i-n,(embnc)---))

. The fourth phase constructs the final expression that selects from the result of nbt those
tuples that contain embeddings that fulfill the pattern condition ¢;. As in the second phase
we define a function ¢’ : AE x PC — AE where PC is the set of pattern conditions, such
that C'(emby., ¢} selects from the result of emb,. those tuples that contain embeddings that
fulfill the pattern condition e. It is defined with induction upon the condition:

(a) C'(ae,T) = ae

(b) C'(ae,(n1,...,n,) = anep(my,...,=m,)) = Orn,=1t.m, (- - - Oln,=tr.m, (2€)...)
(c) C'(ae,(m,...,n.) = exist,,(ml, ceamy)) =
Tral.,-wﬂo(a‘»ﬂx:ml( Oln,.=m, ae M I’) ))
where aj,...,a, are the column names of the result of emb,,. and I’ denotes the table

containing the embeddings of the nodes in the layer with label I'.
(d) C'(ae,NOT(c)) = ae — C'(ae,c).
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(e) C'(ae,(c1 AND c3)) = C'(ae, c) N C'(ae, ).
(f) C'(ae,(c1 OR ¢3)) = C'(ae,c) U C'(ae,c).

The final relational algebra expression that simulates step { is now given by C’(nbt, c,).

a

Just like the pattern step can be simulated in the relational algebra it is also possible to
simulate the choice step in the relational algebra. Therefore we define PBM/' that is equal to
PBMj; except that the transformation are those expressed by a single choice step.

Lemma 5 Under input mapping imy and outpul mapping om, il holds that PBMY can be im-
plemented by the relational algebra.

Proof: The choice step that is to be implemented is ! : {label I, set {n1,...,n,}} where n1,...,n,
are all embeddings.

We will construct for every embedding #; an expression ae; that selects those tuples that have
that embedding for step {":

ae; = O ny=ni(n)(- - OV.n,=ni(n,) (BT} ...) where ny, ..., n, are the nodes of the pattern of step
I'. The final result can then be computed by taking the union of the tables found per embedding:
acy U... Uae, 0

With the last two lemmas it is now easy to prove the previous theorem.

Proof: (of Theorem 3) It is easy to see how a complete closed browsing program can be simulated
in the relational algebra by concatenating the simulations of the individual steps and starting with
a table BT that has no columns and contains only the empty tuple.

However, this simulation fails if there is a step that has no result i.e. no nodes are added to the
browsing tree. This is because in the browsing model the results of a step are always placed under
the bottom layer nodes i.e. the result of the last step that was not empty, whereas in the simulation
BT remains empty once it has become empty. This problem is solved by testing after every step
if the result is empty. If it is not then the simulation of the following steps proceeds normally, but
if it is then the simulation proceeds as if this step never happened. This is possible because the
expression if e; then e; else ey with e1, e2 and e3 algebra expressions, can be emulated in the
relational algebra. ]

An objection against PBM; might be that its transformations always act upon unary and
binary relations. In the relational algebra the arity of the input relations is in general not limited.
Furthermore, it is well known that relational tables of arbitrary arity can be coded in graphs as
shown in Figure 12. Here the top node represents the relation with element-edges to the nodes
that represent the tuples in the relation. The tuple nodes have edges that each represent a field
of the tuple, labeled with the name of the field and ending in the value of the field. This leads us
to the definition of PBAMj;:

Input Domain An instance consisting of graphs of the form shown in Figure 12 with N the
name of the p-ary relation, 7" a special tuple lable, a4, ...,a, the (distinct) column names of
N and Dy,..., D, the corresponding (printable) domain types. Nodes with relation names
are always uniquely identified by their label.

Output Domain The embeddings of the nodes in the bottom layer of the resulting browsing
tree,

Transformations Those expressed by a closed browsing program.
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Figure 12: Pattern for representing simulated tables in layers

The input mapping im3 maps an instance to a set of tables, one for every node with a relation
name as its label. The relation will contain the tuples that are represented by the tuple nodes
that they have element-edges to. These tuples contain exactly those fields that are labels of edges
leaving the tuple node. The values of those fields are the values of the printable nodes that these
edges end in. The output mapping oms is the same as om; and maps the embeddings of the
bottom layer nodes to a table containing exactly these embeddings.

Theorem 6 Under inpul mapping ima and output mapping oma it holds that PBMs is as ez-
pressive as the relational algebra,

Proof: The proof is similar to that of Theorem 2. The first steps of the program will be the
encoding of the relations in the layers. For this we can use the pattern that is given in Figure 12
followed by a step for projecting the relation node and tuple node away. This is done for every
relation that is represented in the instance. Once the relations are encoded in the layers we can
construct the rest of the closed program according to Theorem 1, for performing the algebraic
expression upon these layers. a
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