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Abstract. We give a light-weight but formal introduction to XQuery by
defining a sublanguage of XQuery. We ignore typing, and don’t consider
namespaces, comments, programming instructions, and entities. To avoid
confusion we call our version LiXQuery (Light XQuery). LiXQuery is
fully downwards compatible with XQuery. Its syntax and its semantics
are far less complex than that of XQuery, but the typical expressions of
XQuery are included in LiXQuery. We claim that LiXQuery is an elegant
and simple sublanguage of XQuery that can be used for educational and
research purposes. We give the complete syntax and the formal semantics
of LiXQuery.

1 Introduction

XQuery is considered to become the standard query language for XML-documents
[1, 10, 7, 9]. However, this language is rather complex and its semantics, although
well defined (see [3, 2, 4]), is not easily defined in a precise and concise manner.
There seems therefore to be a need for a sublanguage of XQuery that has almost
the same expressive power as XQuery and that has an elegant syntax and se-
mantics that can be written down in a few pages. Similar proposals were made
for XPath 1.0 [12] and XSLT [6], and have subsequently played important roles
in practical and theoretical research [8, 11]

Such a language would enable us to investigate more easily certain aspects
of XQuery such as the expressive power of certain types of expressions found in
XQuery, the expressive power of recursion in XQuery and possible syntactical
restrictions that let us control this power, the complexity of deciding equivalence
of expressions for purposes such as query optimization, the functional character
of XQuery in comparison with functional languages such as LISP and ML, the
role of XPath 1.0 and 2.0 in XQuery in terms of expressive power and query op-
timization, and finally the relationship between XQuery queries and the classical
well-understood concept of generic database queries.

The contribution of this paper is the definition of LiXQuery, a sublanguage of
XQuery with a relatively simple syntax and semantics that is appropriate both
for educational and research purposes. Indeed, we are convinced that LiXQuery
has a number of interesting properties, that can be proved formally, and that
can be transposed to XQuery.
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Section 2 contains an example of a query in LiXQuery , while section 3 ex-
plains the design choices we made. In Section 4 we give the complete syntax and
its informal meaning. Section 5 further illustrates LiXQuery with more exam-
ples and finally in Section 6 the formal semantics of LiXQuery is given. In the
remainder of this paper the reader is assumed to be acquainted with XML and
to have some notions about XQuery.

2 Design choices

We designed LiXQuery with two audiences in mind. First of all, we target re-
searchers investigating the expressive power and the computational complexity
of XQuery. From experience, we know that the syntax and semantics in the
XQuery standard is unwieldy for proving certain properties, hence we dropped
a number of language features which are important for practical purposes but
not essential from a theory perspective. The second audience for LiXQuery are
teachers. Here as well we learned from experience that the XQuery standard
contains features which are important for designing an efficient and practical
language, but not essential to understand the typical queries written in XQuery.

Therefore, we choose to omit a number of standard XQuery features. How-
ever, to ensure the validity of LiXQuery, we designed it as a proper sublanguage.
Specifically, we specified LiXQuery so that all syntactically valid LiXQuery ex-
pressions do also satisfy the XQuery syntax. Moreover, the LiXQuery semantics
is defined in such a way that the result of a query evaluated using our semantics
will be a proper subset of the same query evaluated by XQuery. Of course, the
lack of a complete formal semantics for XQuery does not allow us to prove that
relation.

The most visible feature we dropped from XQuery are types (and conse-
quently type coercion). Types are indeed important for certain query optimiza-
tions because they enable to catch certain mistakes at compile time. Moreover,
type coercion is quite convenient when dealing with semi-structured data, as it
allows for shorter expressions. Unfortunately, types –especially type coercions–
add lots of complexity to a formal semantic definition of a language. And since
types are optional in XQuery anyway, we decided to omit them for our sub-
language.

Secondly, we removed most of the axes of navigation namely the horizontal
ones (‘following’, ‘following-sibling’, ‘preceding’, ‘preceding-sibling’) and half of
the vertical ones (‘ancestor’) preserving only the ‘descendant-or-self’ and ‘child’
directions. Indeed, it has been shown formally that all other axes of navigation
can be reduced to the ones we preserved, thus from a theory perspective such
a simplification makes sense. From an educational perspective, it is sufficient
to observe that the extra navigation axes are rarely needed, hence add to the
cognitive overhead.

Finally, we omitted primitive functions and primitive data-types, the order
by clause, namespaces, comments, programming instructions and entities. For
these features we argue that they are necessary to specify a full-fledged query



language, yet add to much overhead to incorporate them a concise, yet formal
semantics.

3 An Example

declare function oneLevel($l,$p) {

element { "part" } {

attribute { "partId" }{ $p/@partId },

for $s in $l//part where $s/@partOf=$p/@partId return oneLevel($l,$s)

}

};

let $list := doc("partList.xml")/partList return

element { "intList" } {

for $p in $list//part[empty(@partOf)] return oneLevel($list,$p)

}

Fig. 1. A LiXQuery query

The query in Fig. 1 restructures a list of parts, containing information about
their containing parts, to an embedded list of the parts with their subparts [5].
For instance, the document of Fig. 2 will be transformed into that of Fig. 3. The
query starts with the definition of the function oneLevel. This is followed by the
let-clause that defines the variable $list whose value is the partList element
on the file partList.xml. Then a new element is returned with name intList
and which has as content the result of the function oneLevel that is called
for each part-element $p in the $list element that has no partOf-attribute.
The function oneLevel constructs a new part-element, with one attribute. It is
named partId and its value is the string of the partId attribute of the element
$p (the second parameter of oneLevel). Furthermore the element part has a
child-element $s for each of the parts in the first parameter $l and which is part
of $p. For each such an $s the function oneLevel is called recursively. If the file
partList.xml contains Fig. 2 the result is shown in Fig. 3.

<?xml version ="1.0"?>

<partList>

<part partId="1"/> <part partId="2" partOf="1"/>

<part partId="3" partOf="1"/> <part partId="4" partOf="3"/>

<part partId="5"/> <part partId="6" partOf="5"/>

</partList>

Fig. 2. Content of the file partList.xml

4 Syntax and Informal Description of LiXQuery

We first give the syntax and the informal semantics of LiXQuery, and then extend
it with some syntactic sugar.



<intList>

<part partId="1">

<part partId="2"/>

<part partId="3"> <part partId="4"/> </part>

</part>

<part partId="5"> <part partId="6"/> </part>

</intList>

Fig. 3. Result of the query in Fig. 1

4.1 Basic Syntax

The syntax of LiXQuery is given in Fig. 4 as an abstract syntax, i.e., it assumes
that extra brackets and precedence rules are added for disambiguation.

All queries in LiXQuery are syntactically correct in XQuery and their LiX-
Query semantics is consistent with their XQuery syntax. Built-in functions for
manipulation of basic values are omitted. The non-terminal 〈Name〉 refers to the
set of names N which we will not describe in detail here except that the names
are strings that must start with a letter or “ ”. The non-terminal 〈String〉 refers
to strings that are enclosed in double quotes such as in "abc" and 〈Integer〉
refers to integers without quotes such as 100, +100, and -100.1 Therefore the
sets associated with 〈Name〉, 〈String〉 and 〈Integer〉 are pairwise disjoint.

The syntax contains 24 rules. Their informal semantics is mostly straightfor-
ward. Some of the rules were illustrated in the introductory example.

The ambiguity between rule [5] and [24] is resolved by giving precedence to
[5], and for path expressions we will assume that the operators “/” and “//”
(rule [18]) are left associative and are preceded by the filter operation (rule [17])
in priority.

4.2 Informal Semantics

Since we assume that the reader is already somewhat familiar with XQuery we
only describe here the semantics of some of the less common expressions.

In rule [5] the built-in functions are declared. The function doc() returns
the document node that is the root of the tree that corresponds to the content
of the file with the name that was given as its argument, e.g., doc("file.xq")
indicates the document root of the content of the file file.xq. The function
name() gives the tag name of an element node or the attribute name of an
attribute node. The function string() gives the string value of an attribute
node or text node, and converts integers to strings. The function xs:integer()2

converts strings to integers. The function root() gives for a node the root of
its tree. The function concat() concatenates strings. Rule [11] introduces the
comparison operators for basic values. Note that “2 < 10” and “"10" < "2"”
1 Integers are the only numeric type that exists in LiXQuery.
2 “xs:” indicates a namespace. Although we do not handle namespaces we use them

here to be compatible with XQuery.



[1] 〈Query〉 → (〈FunDef〉“;”)∗〈Expr〉
[2] 〈FunDef〉 → “declare” “function” 〈Name〉 “(”(〈Var〉(“,”〈Var〉)∗)?“)”

“{”〈Expr〉“}”
[3] 〈Expr〉 → 〈Var〉 | 〈BuiltIn〉 | 〈IfExpr〉 | 〈ForExpr〉 | 〈LetExpr〉 | 〈Concat〉 |

〈AndOr〉 | 〈ValCmp〉 | 〈NodeCmp〉 | 〈AddExpr〉 | 〈MultExpr〉 |
〈Union〉 | 〈Step〉 | 〈Filter〉 | 〈Path〉 | 〈Literal〉 | 〈EmpSeq〉 |
〈Constr〉 | 〈TypeSw〉 | 〈FunCall〉

[4] 〈Var〉 → “$”〈Name〉
[5] 〈BuiltIn〉 → “doc(”〈Expr〉“)” | “name(”〈Expr〉“)” | “string(”〈Expr〉“)” |

“xs:integer(”〈Expr〉“)” | “root(”〈Expr〉“)” |
“concat(”〈Expr〉, 〈Expr〉“)” | “true()” | “false()” |
“not(”〈Expr〉“)” | “count(”〈Expr〉“)” | “position()” | “last()”

[6] 〈IfExpr〉 → “if ”“(”〈Expr〉“)” “then”〈Expr〉 “else”〈Expr〉
[7] 〈ForExpr〉 → “for”〈Var〉(“at”〈Var〉)? “in”〈Expr〉 “return”〈Expr〉
[8] 〈LetExpr〉 → “let”〈Var〉“:=”〈Expr〉 “return”〈Expr〉
[9] 〈Concat〉 → 〈Expr〉“,”〈Expr〉
[10] 〈AndOr〉 → 〈Expr〉(“and” | “or”)〈Expr〉
[11] 〈ValCmp〉 → 〈Expr〉(“=” | “<”)〈Expr〉
[12] 〈NodeCmp〉 → 〈Expr〉(“is” | “<<”)〈Expr〉
[13] 〈AddExpr〉 → 〈Expr〉 (“+” | “-”) 〈Expr〉
[14] 〈MultExpr〉 → 〈Expr〉 (“*” | “idiv”) 〈Expr〉
[15] 〈Union〉 → 〈Expr〉“|”〈Expr〉
[16] 〈Step〉 → “.” | “..” | 〈Name〉 | “@”〈Name〉 | “*” | “@*” | “text()”
[17] 〈Filter〉 → 〈Expr〉“[”〈Expr〉“]”
[18] 〈Path〉 → 〈Expr〉(“/” | “//”)〈Expr〉
[19] 〈Literal〉 → 〈String〉 | 〈Integer〉
[20] 〈EmpSeq〉 → “()”
[21] 〈Constr〉 → “element”“{”〈Expr〉“}” “{”〈Expr〉“}” |

“attribute”“{”〈Expr〉“}” “{”〈Expr〉“}” |
“text”“{”〈Expr〉“}” | “document”“{”〈Expr〉“}”

[22] 〈TypeSw〉 → “typeswitch ”“(”〈Expr〉“)” (“case” 〈Type〉 “return”〈Expr〉)+
“default” “return”〈Expr〉

[23] 〈Type〉 → “xs:boolean” | “xs:integer” | “xs:string” | “element()” |
“attribute()” | “text()” | “document-node()”

[24] 〈FunCall〉 → 〈Name〉“(”(〈Expr〉(“,”〈Expr〉)∗)?“)”

Fig. 4. Syntax for LiXQuery queries and expressions



both hold. These comparison operators have existential semantics, i.e., they are
true for two sequences if there is a basic value in one sequence and a basic value
in the other sequence such that the comparison holds between these two basic
values. Rule [12] gives the comparison operators for nodes where “is” detects
the equality of nodes and “<<” compares nodes in document order. Rule [15]
expresses the union of two node sequences, i.e., it returns a sequence of nodes
that contains exactly all the nodes in the operands, contains no duplicates and
is sorted in document order. Rule [21] gives the constructors for each type of
node. The semantics of “element {e1}{e2}” is that an element node with name
e1 and content e2 is created. The semantics of “attribute {e1}{e2}” is that an
attribute node with name e1 and value e2 is created. The semantics of “text
{e}” is that a text node with value e is created. The semantics of “document
{e}” is that a document node with attributes and content as in e is created.
Rules [22] and [23] define the typeswitch-expression that checks whether a value
belongs to certain types and for the first type that matches returns a certain
value.

4.3 Syntactic Sugar

To allow for a shorter notation of certain very common expressions we introduce
the following short-hands.

The Empty Function The function empty() is assumed to be declared as follows:

declare function empty( $sequence ) { count( $sequence ) = 0 };

Quantified Formulas The expression “some $v in e1 satisfies e2” is intro-
duced as a shorthand for “not(empty(for $v in e1 return if (e2) then $v
else ()))”, and “every $v in e1 satisfies e2” is introduced as a shorthand
for “empty(for $v in e1 return if (e2) then () else $v)”.

FLWOR Expression When for- and let-expressions are nested we allow that
the intermediate “return” is removed. E.g., “for $v1 in e1 return let $v2

:= e2 return e3” may be written as “for $v1 in e1 let $v2 := e2 return
e3”. Furthermore we allow in for- and let-expressions the shorthand “where e1

return e2” for “return if e1 then e2 else ()”.

Coercion Let e1 (or e2) have the form “string(e)” where the result of e is
a sequence containing a single text node or a single attribute node. Then e1

(or e2) can be replaced by e in the following expressions: “xs:integer(e1)”,
“concat(e1,e2)”, “e1=e2”, “e1<e2” and “attribute{e3}{e2}”.

5 More Examples

In this section we demonstrate the expressive power of LiXQuery.



5.1 Simulating Deep Equality

The first example shows that we can express deep equality of two sequences. This
essentially means that we have to check whether two fragments are isomorphic
except that we have to take into account that attributes are unordered. For a
more formal definition see Definition 9.

declare function deepat1($e,$f) {
(: detects whether the attributes of $e are equal in name and value with those of $f :)

every $ae in $e/@* satisfies
some $af in $f/@* satisfies

( name($ae)=name($af) and string($ae)=string($af) )
and
every $af in $f/@* satisfies

some $ae in $e/@* satisfies
( name($ae)=name($af) and string($ae)=string($af) )

};

declare function typetext($e) {
(: verifies whether $e is a textnode :)

typeswitch ($e) case text() return true() default return false()
};

declare function deepequal($se,$sf) {
(: detects whether $se and $sf are sequences of pairwise deep equal items :)

if (empty($se) and empty($sf)) then true()
else

if (empty($se) or empty($sf)) then false()
else

if (typetext($se[1]))
then if (typetext($sf[1]))

then ( string($se[1])=string($sf[1]) and
deepequal($se[1 < position()], $sf[1 < position()]) )

else false()
else if (typetext($sf[1]))

then false()
else ( name($se[1])=name($sf[1]) and

deepat1($se[1],$sf[1]) and
deepequal($se[1]/(*|text()), $sf[1]/(*|text())) and
deepequal($se[1 < position()], $sf[1 < position()])
)

};

5.2 Simulation of other Axes

We can simulate all the axes that are not already directly supported in the
syntax of LiXQuery. To demonstrate this we show here the following-sibling
and ancestor axis.

declare function following-sibling($s) { declare function ancestor($s) {
(: retrieves all fs’s of the nodes in $s :) (: retrieves all anc’s of the nodes in $s :)

for $node in $s for $node in $s
for $sib in $node/../(*, text()) for $anc in root($node)//.
where $sib >> $node where some $v in $anc//* satisfies $v is $node
return $sib return $anc

}; };

5.3 Simulation of the full string() Function

In LiXQuery the string() function is only defined for integers, attribute nodes
and text nodes, but in XQuery it is defined for all items. We can simulate this
more general function as follows.



declare function concatAll($x) {
(: concatenate all strings in $x :)

if ( empty( $x ) )
then ""
else concat($x[position()=1], concatAll($x[position()>1]))

};

declare function xqString($x) {
(: simulates full xquery string function :)

if ( empty( $x ) )
then ""
else typeswitch ($x)

case document-node() return concatAll($x/text())
case element() return concatAll($x/text())
default return string($x)

};

5.4 Turing Completeness

It is easy to see that the amount of arithmetic and recursion in LiXQuery allows
us to express all partial recursive functions over numbers. It is also possible to
simulate LISP. For this purpose we represent a LISP list ((b c) d) as shown in
Fig. 5. Given this representation we simulation the car, cdr and cons functions:

declare function car($x) { $x/*[1] };

declare function cdr($x) { element{ "list" }{ $x/*[1 < position()] } };

declare function cons($x,$y) { element{ "list" }{ $x,$y/* } };

Since we can also compare strings and have conditional expressions, it is easy
to see that by using recursion we can define all partial recursive functions over
LISP lists.

<list>

<list> <atom> b </atom> <atom> c </atom> </list> <atom> d </atom>

</list>

Fig. 5. Simulation of the LISP list ((b c) d)

6 Formal Semantics

We now proceed with the formal semantics of LiXQuery.

Definition 1 (Atomic Value). We assume a set of booleans B = {true, false},
a set of strings S and a set of integers I that contains integers.3

Furthermore a set of Names N ⊆ S is identified that contains those strings
that may be used as tag names [1]. For each of these sets a strict total ordering,
written as <, is presumed to exist. The set of all atomic values is A = B∪S ∪I.

We also assume the functions AtValueToString : A → S which is a function
that maps the atomic values to their string representation, and StringToInteger :
S → I which is partial function that maps strings that represent integers to their
integer value.
3 We denote the empty string as “”, non-empty strings as for example “123” and the

concatenation of two strings s1 and s2 as s1 · s2.



Definition 2 (Node). We assume four countably infinite sets of nodes Vd, Ve,
Va and Vt which respectively represent the set of document, element, attribute
and text nodes. These sets are pairwise disjoint with each other and with the set
of atomic values.

The set of all nodes is denoted as V, i.e., V = Vd ∪ Ve ∪ Va ∪ Vt.
Expressions will be evaluated against an XML store which contains XML

fragments. This store contains the fragments that are created as intermediate
results, but also the web documents that are accessed by the expression. Al-
though in practice these documents are materialized in the store when they are
accessed for the first time, we will assume here that all documents are in fact
already in the store when the expression is evaluated.

Definition 3 (XML Store). An XML store is a 6-tuple St = (V,E, <, ν, σ, δ)
with

– V is a finite subset of V; we write V d for V ∩ Vd (resp. V e for V ∩ Ve, V a

for V ∩ Va, V t for V ∩ Vt);
– (V,E) is an acyclic directed graph (with nodes V and directed edges E) where

each node has an in-degree of at most one, and hence it is composed of trees;
if (m,n) ∈ E then we say that n is a child of m;4 we denote by E∗ the
reflexive transitive closure of E;

– < is a strict partial order on V that compares exactly the different children
of a common node, hence for two distinct nodes n1 and n2 it holds that
((n1 < n2) ∨ (n2 < n1)) ⇔ ∃m ∈ V ((m,n1) ∈ E ∧ (m,n2) ∈ E)

– ν : V e ∪ V a → N labels the element and attribute nodes with their node
name;

– σ : V a ∪ V t → S labels the attribute and text nodes with their string value;
– δ : S → Vd a partial function that associates with an URI or a file name, a

document node. It is called the document function. This function represents
all the URIs of the Web and all the names of the files, together with the
documents they contain. We suppose that all these documents are in the
store.

The following properties have to hold for an XML store:

– each document node of V d is the root of a tree and has only one child which
is an element node;

– attribute nodes of V a and text nodes of V t do not have any children;
– in the < -order attribute children precede the element and text children, i.e.

if n1 < n2 and n2 ∈ V a then n1 ∈ V a;
– there are no adjacent text children, i.e. if n1, n2 ∈ V t and n1 < n2 then there

is an n3 ∈ V e with n1 < n3 < n2;
– for all text nodes nt of V t holds σ(nt) 6= “”;

4 As opposed to the terminology of XQuery, we consider attribute nodes as children
of their associated element node. The definitions of parent, descendant and ancestor
are straightforward.



– all the attribute children of a common node have a different name, i.e. if
(m,n1), (m,n2) ∈ E and n1, n2 ∈ V a then ν(n1) 6= ν(n2).

Definition 4 (Union of stores). Two stores St = (V,E, <, ν, σ, δ) and St′ =
(V ′, E′, <′, ν′, σ′, δ′) are disjoint, denoted as St ∩ St′ = ∅, iff V ∩ V ′ = ∅. The
definition of the union of two disjoint stores St and St′, denoted as St ∪ St′, is
straightforward.

Definition 5 (Root of a node). Given a store St, the root of one of its nodes
n, denoted as root(n) is the unique root of the tree of n, i.e. root(n) = r iff
(r, n) ∈ E∗ and for no node s 6= r of St holds (s, r) ∈ E∗.

Definition 6 (Item). An item of an XML store St is an atomic value in A or
a node in St.

We denote the empty sequence as 〈〉, non-empty sequences as for example 〈1, 2, 3〉
and the concatenation of two sequences l1 and l2 as l1 ◦ l2. The expression
〈yi ∈ l|ϕ(y, i)〉 with ϕ(y, i) a formula of an item y and position i denotes the
subsequence of l that is obtained by selecting from l all items that satisfy ϕ(y, i).

ne
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5

nt
6
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nt
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Fig. 6. XML tree of Fig. 5

Example 1. The XML store that is represented in
Fig. 5 is St = (V,E, <, ν, σ, δ) and is shown in
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7) = “atom” and
σ(nt

4) = “b”, σ(nt
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8) = “d”.5

Definition 7 (Document Order of a Store).
A document order � 6 of a store St is a total
order on V such that

1. if (n1, n2) ∈ E∗ and n1 6= n2 then n1 �St n2;
2. if (n1, n2) ∈ E∗ and n1 < n3 then (n2 �St n3);
3. if (n1, n2), (n1, n4) ∈ E∗ and n2 �St n3 �St n4 then (n1, n3) ∈ E∗.

1. and 2. define the preorder in a tree. 3. say that the nodes of a tree are clustered.

The set of items in a sequence l is denoted as Set(l). Given a sequence
of nodes l in an XML store St we let OrdSt(l) denote the unique sequence
l′ = 〈y1, . . . , ym〉 such that Set(l) = Set(l′) and y1 �St . . . �St ym.

5 We do not mention here the documents on the Web and on files.
6 A store can have more than one document order, but we choose a fixed document

order here that we denote by �St.



6.1 Evaluation of Expressions

Expressions are evaluated against an environment. Assuming that X is the set
of LiXQuery-expressions this environment is defined as follows.

Definition 8 (Environment). An environment of an XML store St is a tuple
En = (a,b,v,x,k,m) with

1. a partial function a : N → N ∗ that maps a function name to its formal
arguments; it is used in rule [1,2,24];

2. a partial function b : N → X that maps a function name to the body of the
function; it is also used in rules [1,2,24];

3. a partial function v : N → (V ∪ A)∗ that maps variable names to their
values;

4. x which is undefined or an item of St and indicates the context item; it is
used in rule [16,17,18];

5. k which is undefined or an integer and gives the position of the context item
in the context sequence; it is used in rule [5,17,18];

6. m which is undefined or an integer and gives the size of the context sequence;
it is used in rule [5,17,18].

If En is an environment, n a name and y an item then we let En[a(n) 7→ y]
(En[b(n) 7→ y], En[v(n) 7→ y]) denote the environment that is equal to En
except that the function a (b, v) maps n to y. Similarly, we let En[x 7→ y]
(En[k 7→ y], En[m 7→ y]) denote the environment that is equal to En except
that x (k, n) is defined as y if y 6= ⊥ and undefined otherwise.

We write St,En ` e ⇒ (St′, v) to denote that the evaluation of expression
e against the XML store St and environment En of St may result in the new
XML store St′ and value v of St′.

6.2 Semantic Rules

In what follows we give the reasoning rules that are used to define the semantics
of LiXQuery. Each rule consists of a set of premises and a conclusion of the form
St,En ` e ⇒ (St′, v). The free variables in the rules are always assumed to
be universally quantified. We will use the following notation: v for values, x for
items, n for nodes, r for roots, s for strings and names, f for function names, b
for booleans , i for integers and e for expressions.

Query (Rules [1] and [2]) A function declaration extends a and b and then
the last expression is evaluated with these a and b. Function declarations are
allowed to be mutually recursive.

En′ = En[a(f) 7→ 〈s1, . . . sm〉][b(f) 7→ e] St, En′ ` e′ ⇒ (St′, v)

St, En ` declare function f(s1, . . . , sm){ e }; e′ ⇒ (St′, v)

Variable (Rule [4])
St, En ` $s ⇒ (St,vEn(s))



Built-in Functions (Rule [5])

St, En ` e ⇒ (St′, 〈s〉) δSt′(s) = n

St, En ` doc(e) ⇒ (St′, n)

St, En ` e ⇒ (St′, 〈n〉) n ∈ Ve ∪ Va

St, En ` name(e) ⇒ (St′, 〈νSt′(n)〉)

St, En ` e ⇒ (St′, 〈n〉) n ∈ Va ∪ Vt

St, En ` string(e) ⇒ (St′, 〈σSt′(n)〉)

St, En ` e ⇒ (St′, 〈x〉) x ∈ A AtValueToString(x) = s

St, En ` string(e) ⇒ (St′, 〈s〉)

St, En ` e ⇒ (St′, 〈s〉) s ∈ S StringToInteger(s) = i

St, En ` xs : integer(e) ⇒ (St′, 〈i〉)

St, En ` e ⇒ (St′, 〈n〉) n ∈ VSt′

St, En ` root(e) ⇒ (St′, 〈root(n)〉)

St, En ` e1 ⇒ (St1, 〈s1〉) s1 ∈ S St1, En ` e2 ⇒ (St2, 〈s2〉) s2 ∈ S
St, En ` concat(e1, e2) ⇒ (St2, 〈s1 · s2〉)

St, En ` true() ⇒ (St, 〈true〉) St, En ` false() ⇒ (St, 〈false〉)

St, En ` e ⇒ (St′, 〈b〉) b ∈ B
St, En ` not(e) ⇒ (St′, 〈¬b〉)

St, En ` e ⇒ (St′, 〈x1, . . . , xm〉)
St, En ` count(e) ⇒ (St′, 〈m〉)

St, En ` position() ⇒ (St, 〈kEn〉) St, En ` last() ⇒ (St, 〈mEn〉)

If-expression (Rule [6]) The semantics of the if-expression is given by two
inference rules: one for the case the condition evaluates to true and one for
false. Note that in each case only one of the branches is executed.

St, En ` e ⇒ (St′, 〈true〉) St′, En ` e1 ⇒ (St1, v1)

St, En ` if e then e1 else e2 ⇒ (St1, v1)

St, En ` e ⇒ (St′, 〈false〉) St′, En ` e2 ⇒ (St2, v2)

St, En ` if e then e1 else e2 ⇒ (St2, v2)

For-expression (Rule [7]) The rule for for $s at $s′ in e return e′ specifies
that first e is evaluated and then e′ for each item in the result of e but with s
and s′ in the environment bound to the respectively the item in question and its
position in the result of e. Finally the results for each item are concatenated to
a single sequence.

St, En ` e ⇒ (St0, 〈x1, . . . , xm〉) St0, En[v(s) 7→ x1][v(s′) 7→ 1] ` e′ ⇒ (St1, v1)
. . . Stm−1, En[v(s) 7→ xm][v(s′) 7→ m] ` e′ ⇒ (Stm, vm)

St, En ` for $s at $s′ in e return e′ ⇒ (Stm, v1 ◦ . . . ◦ vm)



Let-expression (Rule [8])

St, En ` e ⇒ (St′, v) St′, En[v(s) 7→ v] ` e′ ⇒ (St′′, v′)

St, En ` let $s := e return e′ ⇒ (St′′, v′)

Concatenation (Rule [9])

St, En ` e′ ⇒ (St′, v′) St′, En ` e′′ ⇒ (St′′, v′′)

St, En ` e′, e′′ ⇒ (St′′, v′ ◦ v′′)

Boolean Operators (Rule [10])

St, En ` e′ ⇒ (St′, 〈b′〉) St′, En ` e′′ ⇒ (St′′, 〈b′′〉) b′, b′′ ∈ B
St, En ` e′ and e′′ ⇒ (St′′, 〈b′ ∧ b′′〉) St, En ` e′ or e′′ ⇒ (St′′, 〈b′ ∨ b′′〉)

Atomic Value Comparisons (Rule [11])

St, En ` e′ ⇒ (St′, 〈x′1, . . . , x′m′〉)
x′1, . . . , x

′
m′ ∈ A St′, En ` e′′ ⇒ (St′′, 〈x′′1 , . . . , x′′m′′〉) x′′1 , . . . , x′′m′′ ∈ A

b= ⇔ ∃1≤i≤m′,1≤j≤m′′(x′i = x′′j ) b< ⇔ ∃1≤i≤m′,1≤j≤m′′(x′i < x′′j )

St, En ` e′ = e′′ ⇒ (St′′, 〈b=〉) St, En ` e′ < e′′ ⇒ (St′′, 〈b<〉)

Node Comparisons (Rule [12])

St, En ` e′ ⇒ (St′, 〈n′〉) St′, En ` e′′ ⇒ (St′′, 〈n′′〉)
n′, n′′ ∈ V bis ⇔ (n′ = n′′) b� ⇔ (n′ �St′′ n′′)

St, En ` e′ is e′′ ⇒ (St′′, 〈bis〉) St, En ` e′ << e′′ ⇒ (St′′, 〈b�〉)

Additions (Rule [13])

St, En ` e′ ⇒ (St′, 〈d′〉) St′, En ` e′′ ⇒ (St′′, 〈d′′〉) d′, d′′ ∈ I
St, En ` e′ + e′′ ⇒ (St′′, 〈d′ + d′′〉) St, En ` e′ − e′′ ⇒ (St′′, 〈d′ − d′′〉)

Multiplications (Rule [14])

St, En ` e′ ⇒ (St′, 〈d′〉) St′, En ` e′′ ⇒ (St′′, 〈d′′〉) d′, d′′ ∈ I
St, En ` e′ ∗ e′′ ⇒ (St′′, 〈d′ × d′′〉) St, En ` e′ idiv e′′ ⇒ (St′′, 〈d′/d′′〉)

Union (Rule [15])

St, En ` e′ ⇒ (St′, v′) St′, En ` e′′ ⇒ (St′′, v′′) v′, v′′ ∈ V∗

St, En ` e′ | e′′ ⇒ (St′′,OrdSt′′(Set(v′) ∪ Set(v′′)))

Axis Steps (Rule [16]) The semantics of a step consisting of an element name
s is that all element children of the context node (indicated in the envorment
by x) with name s are returned in document order. The semantics of the step



consisting of the wild-card * is the same except that all element children of the
context node are returned.

xEn is defined

St, En ` . ⇒ (St, 〈xEn〉)
(n,xEn) ∈ ESt

St, En ` .. ⇒ (St, 〈n〉)
6 ∃n(n,xEn) ∈ ESt

St, En ` .. ⇒ (St, 〈〉)

W = {n|(xEn, n) ∈ ESt ∧ n ∈ Ve ∧ νSt(n) = s}
St, En ` s ⇒ (St,OrdSt(W ))

W = {n|(xEn, n) ∈ ESt ∧ n ∈ Va ∧ νSt(n) = s}
St, En ` @s ⇒ (St,OrdSt(W ))

W = {n|(xEn, n) ∈ ESt ∧ n ∈ Ve}
St, En ` ∗ ⇒ (St,OrdSt(W ))

W = {n|(xEn, n) ∈ ESt ∧ n ∈ Va}
St, En ` @∗ ⇒ (St,OrdSt(W ))

W = {n|(xEn, n) ∈ ESt ∧ n ∈ Vt}
St, En ` text() ⇒ (St,OrdSt(W ))

Filter-expression (Rule [17]) The semantics of e′ [ e′′ ] is that first e′ is
evaluated, then for each item in the result of e′ the expression e′′ is evaluated
with x bound to this item, k to the position of the item in the result of e′ and
m to the number of items in the result of e′. The result of e′′ is a boolean or
an integer, in which case it is converted to true if this integer is equal to k and
to false otherwise. Finally, the result is the subsequence of the result of e′ that
contains exactly all items for which e′′ evaluated to true.

St, En ` e′ ⇒ (St0, 〈x1, . . . , xm〉)
En′ = En[m 7→ m] St0, En′[x 7→ x1][k 7→ 1] ` e′′ ⇒ (St1, 〈x′1〉)

. . . Stm−1, En′[x 7→ xm][k 7→ m] ` e′′ ⇒ (Stm, 〈x′m〉)
x′1, . . . , x

′
m ∈ B ∪ I v = 〈xi|(x′i ∈ I ∧ x′i = i) ∨ (x′i ∈ B ∧ x′i)〉

St, En ` e′ [ e′′ ] ⇒ (Stm, v)

Path Expression (Rule [18]) The semantics of (e′ / e′′) is as follows. First
e′ is evaluated. Then for each item in its result we bind in the environment x
to this item, k to the position of x in the result of e′, and m to the number of
items in the result of e′, and with this environment we evaluate e′′. The results
of all these evaluations are concatenated and finally this sequence is sorted by
document order and the duplicates are removed. The result is only defined if all
the evaluations of e′′ contain only nodes.

St, En ` e′ ⇒ (St0, 〈x1, . . . , xm〉)
En′ = En[m 7→ m] St0, En′[x 7→ x1][k 7→ 1] ` e′′ ⇒ (St1, v1)

. . . Stm−1, En′[x 7→ xm][k 7→ m] ` e′′ ⇒ (Stm, vm) v1, . . . , vm ∈ V∗

St, En ` e′ / e′′ ⇒ (Stm,OrdStm(∪1≤i≤mSet(vi)))

St, En ` e′ ⇒ (St0, 〈x1, . . . , xm〉) W1 = {x ∈ VSt0 |(x1, x) ∈ (ESt0)
∗}

. . . Wm = {x ∈ VSt0 |(xm, x) ∈ (ESt0)
∗} 〈x′1, . . . , x′m′〉 = OrdSt0(∪1≤i≤mWi)

En′ = En[m 7→ m′] St0, En′[x 7→ x′1][k 7→ 1] ` e′′ ⇒ (St1, v1)
. . . Stm′−1, En′[x 7→ x′m′ ][k 7→ m′] ` e′′ ⇒ (Stm′ , vm′) v1, . . . , vm′ ∈ V∗

St, En ` e′ // e′′ ⇒ (Stm′ ,OrdStm′ (∪1≤i≤m′Set(vi)))



Literal (Rule [19]) The result of a literal is simply a sequence with one element,
viz., the atomic value the literal represents.
Empty Sequence (Rule [20])

St, En ` () ⇒ (St, 〈〉)

Constructors (Rule [21]) Before we proceed with the presentation of the rule
for the element constructor, we first introduce the notion of deep equality. This
defines what it means for two nodes in an XML store to represent the same XML
fragment.

Definition 9 (Deep Equal). Given the XML store St = (V,E, <, ν, σ, δ) and
two nodes n1 and n2 in St. n1 and n2 are said to be deep equal, denoted as
DpEqSt(n1, n2), if n1 and n2 refer to two isomorphic trees, i.e., there is a
one-to-one function h : Cn1 → Cn2 with Cni

= {n|(ni, n) ∈ E∗} for i = 1, 2,
such that for each n, n′ ∈ Cn1 it holds that (1) if n ∈ Vd (Ve, Va, Vt) then
h(n) ∈ Vd (Ve, Va, Vt), (2) if ν(n) = s then ν(h(n)) = s, (3) if σ(n) = s′ then
σ(h(n)) = s′, (4) (n, n′) ∈ E iff (h(n), h(n′)) ∈ E and (5) if n, n′ 6∈ Va then
n < n′ iff h(n) < h(n′).

The semantics of the element constructor element{e′}{e′′} is defined as follows.
First e′ is evaluated and assumed to result in a single legal element name. Then
e′′ is evaluated and for the result we create a new store St3 that contains the
new element with the result of e′ as its name and with contents that are deep-
equivalent with the result of e′′ if we compare them item by item. Finally we
add St3 to the original store and return the newly created element node.

St, En ` e′ ⇒ (St1, 〈s〉) s ∈ N St1, En ` e′′ ⇒ (St2, 〈n1, . . . , nm〉)
n1, . . . , nm ∈ V St4 = St2 ∪ St3 n ∈ VSt3 ⇒ (r, n) ∈ E∗

St3 r ∈ Ve

νSt3(r) = s OrdSt3({n
′|(r, n′) ∈ ESt3}) = 〈n′1, . . . , n′m〉 DpEqSt4

(n1, n
′
1)

. . . DpEqSt4
(nm, n′m) ∀ n, n′ ∈ V((n �St2 n′) ⇒ (n �St4 n′))

St, En ` element{e′}{e′′} ⇒ (St4, 〈r〉)

St, En ` e′ ⇒ (St1, 〈s〉)
s ∈ N St1, En ` e′′ ⇒ (St2, 〈s′〉) s′ ∈ S St4 = St2 ∪ St3 VSt3 = {r}
r ∈ Va νSt3(r) = s σSt3(r) = s′ ∀ n, n′ ∈ V((n �St2 n′) ⇒ (n �St4 n′))

St, En ` attribute{e′}{e′′} ⇒ (St4, 〈r〉)

St, En ` e ⇒ (St1, 〈s〉) s ∈ S − {“”} St3 = St1 ∪ St2 VSt2 = {r}
r ∈ Vt σSt2(r) = s ∀ n, n′ ∈ V((n �St1 n′) ⇒ (n �St3 n′))

St, En ` text{e} ⇒ (St3, 〈r〉)

St, En ` e ⇒ (St1, 〈n1〉)
n1 ∈ Ve St3 = St1 ∪ St2 n ∈ VSt2 ⇒ (r, n) ∈ E∗

St2 r ∈ Vd

(r, n2) ∈ ESt2 DpEqSt3
(n1, n2) ∀ n, n′ ∈ V((n �St1 n′) ⇒ (n �St3 n′))

St, En ` document{e} ⇒ (St3, 〈r〉)

Typeswitch-expression (Rules [22] and [23]) Let [[xs : boolean]] = B,
[[xs : integer]] = I, [[xs : string]] = S, [[document-node()]] = Vd, [[attribute()]] =
Va, [[text()]] = Vt and [[element()]] = Ve.



St, En ` e ⇒ (St1, 〈x〉)
(x ∈ [[tj ]] ∨ j = m + 1) ∀1≤i<j(x 6∈ [[ti]]) St1, En ` ej ⇒ (St2, v)

St, En ` typeswitch(e) case t1 return e1 . . . case tm return em

default return em+1 ⇒ (St2, v)

Function Call (Rule [24]) The semantics of f(e1, . . . , em) is that e1, . . . , em

are consecutively evaluated, and then the expression b(f) is evaluated with the
variable names of a(f) bound to the results of e1, . . . , em.

St, En ` e1 ⇒ (St1, v1) . . .
Stm−1, En ` em ⇒ (Stm, vm) En = (a,b,v,x,k,m) a(f) = 〈s1, . . . , sm〉

En′ = (a,b, {(s1, v1), . . . , (sm, vm)},⊥,⊥,⊥) Stm, En′ ` b(f) ⇒ (St′, v′)

St, En ` f(e1, . . . , em) ⇒ (St′, v′)

7 Conclusion

In this paper we have presented a fragment of XQuery called LiXQuery together
with a formal and concise but complete description of its semantics that is consis-
tent with the formal semantics of XQuery. We claim that this fragment captures
the essence of XQuery as a query language and can therefore be used for educa-
tional purposes, e.g., teaching XQuery, and research purposes, e.g., investigating
the expressive power of XQuery fragments and query optimization in XQuery
implementations.
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