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Abstract

We present a sound and complete rule set for de-
termining whether sorting and duplicate removal
operations in the query plan of XPath expressions
are unnecessary. Additionally we define a deter-
ministic finite automaton that illustrates how
these rules can be translated into an efficient al-
gorithm. This work is an important first step in
the understanding and tackling of XPath/XQuery
optimization problems that are related to ordering
and duplicate removal.

1 Introduction

The XQuery Formal Semantics [5] provide a full
description of both XPath’s [2] and XQuery’s [3]
semantics and an extensive set of rules for the
translation of both languages into the XQuery
Core language. The semantics of XPath [11] re-
quire that the result of an XPath expression (with
exception of the sequence operator) is sorted by
document order and duplicate-free. In addition,
some XPath expressions — for instance, those
that contain aggregate functions or element in-
dexes — also require that their input is duplicate-
free and sorted. As a consequence many of the
implementations that are faithful to the XPath se-
mantics, such as Galax [6], insert an explicit op-
eration for sorting and duplicate elimination after
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each step. These operations often create bottle-
necks in the evaluation of certain XPath expres-
sions on large documents. Therefore many other
implementations omit these operations and sacri-
fice correctness for the sake of efficiency. In many
cases however, these time consuming operations
are not necessary because (1) after certain steps
the result will always be sorted and/or duplicate-
free or (2) the context in which this XPath expres-
sion occurs does not depend on the ordering or
uniqueness of the nodes in the path expression’s
result.

The main contributions of this work are:

• A sound and complete set of inference rules
that deduce whether an XPath expression
that is evaluated by a straightforward im-
plementation, that omits all sorting and du-
plicate elimination operations, always re-
sults in a list of unique nodes that is in doc-
ument order.

• The illustration of how these rules interact
and how they can be used for the definition
of an efficient algorithm realised by deter-
ministic automata.

To understand why finding such a rule set is
not trivial, consider the following two examples.
The relative path expression ancestor::*/foll-

sibl::*/ parent::* when evaluated for a single,
always produces an ordered result. However, its
subexpression ancestor::*/follsibl::* clearly
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does not have that property. It is quite surpris-
ing to see that intermediate results are unordered
where the final result is ordered.

One might think that the above only occurs
after following certain axes. But this is not the
case. Take, for instance, the path /child::*/pa-

rent::*/foll-sibl::*/parent::*. Once again, this
result of the expression always is sorted (which
we will explain later). But the subexpression
/child::*/parent::*/foll-sibl::* sometimes
produces a result out of document order.

The remainder of the paper is organized as
follows. After defining some essential concepts
in Section 2, Section 3 discusses a set of proper-
ties that we need for categorizing XPath expres-
sions and for deducing the two essential proper-
ties: order and duplicate-freeness. These rules
are defined in Section 4. In Section 5 we present
deterministic automata that show the interactions
between the rules and illustrate how our approach
can be translated into an efficient algorithm. In
Section 6, we discuss how our work can be ap-
plied to improve the performance of the Galax
XQuery engine. Section 7 is about related work
and we conclude in Section 8.

2 XPath

We begin with a (simplified) formalization of an
XML document.

Definition 2.1 (XML Document). An XML doc-
ument is a tuple D = (N,C, r, λ,≺) such that
(N,C) is a directed graph that is a tree with root
r and C giving the parent-child relationship, λ :
N → T is a labeling of the nodes and ≺ is a strict
total order over on N that defines the document
order and orders the nodes of the tree in preorder.
The relation C

+ denotes the transitive closure of
C.

Note that we do not consider processing in-
structions, namespaces, text nodes or attributes
here. Next, we define the syntax of the XPath
fragment that we will consider.

Definition 2.2 (XPath Expression). The langu-
age of XPath expressions, denoted as P , is defined

by the following abstract grammar

P ::= A | P/A

A ::= ↑ | ↓ | ↑+ | ↓+ | ↑∗ | ↓∗ |

� | � | �̇ | �̇

where A is the set of all axes defined as follows:

symbol axis
↓ child

↓+ descendant

↓∗ descendant-or-self

� following

�̇ following-sibling

↑ parent

↑+ ancestor

↑∗ ancestor-or-self

� preceding

�̇ preceding-sibling

This notation is an extention of the one used in
[1] and is primarily used for compactness reasons.

In XPath, step expressions are of the form
axis::nodetest[predicate]. Our syntax
ignores predicates and node tests. For instance,
the path expression ↓/↑ actually represents the
XPath expression child::*/parent::*.

Also, the self axis is disregarded here, be-
cause it represents the identity function and as a
consequence preserves all properties of the pre-
ceding XPath expression. The grammar does not
include the production rule P ::= P/P. This im-
plies that we do not take into account path ex-
pressions of the form p1/(p2/p3). However, our
theory can be generalized to include such expres-
sions but this would take us too far.

The semantics of an XPath expression p in a
document D is denoted by the function

[[p]]D : N → L(N)

where N is the set of nodes in D and L(N) the
set of all finite lists over N . When it is obvious
which document the path expression queries, we
will omit D.

In addition to these formal semantics of path
expressions, we define a “sloppy” semantics that
corresponds to an implementation that does not
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a b c c

Figure 1: A simple XML document.

eliminate duplicates and does not sort by docu-
ment order after each step in the path expression.
The semantics are defined by giving for each path
expression p its “sloppy” implementation α(p) in
terms of the XQuery core algebra [5], that con-
tains one free variable $dot that represents the
context node. For this mapping, we assume that
for each axis a in A there is a function α(a) that
implements it and maps every node in the docu-
ment to a sorted and duplicate-free list of nodes.

α(p1/a) = for $dot in α(p1) return α(a)

The semantics of the implementation α(p) under
a document D is written as a function

[[α(p)]]D : N → L(N).

It is easy to see that the semantics of α(p) is equal
to the formal semantics of p up to sorting and du-
plicate elimination.

3 Path Properties

In this section, we introduce some properties that
XPath expressions can have. These properties
will assist us in determining whether a path ex-
pression always produces a result that is in doc-
ument order or free from duplicates. In the next
section, we define a set of rules for deriving these
properties for each expression p ∈ P .

The two main properties we want to derive for
these path expressions are

• ord - the order property, which says that
for all documents D and nodes n in D the

result of [[α(p)]]D(n) is in document order
(possibly with duplicates);

• nodup - the no-duplicates property that in-
dicates that for all documents D and nodes
n in D the result of [[α(p)]]D(n) contains
no duplicates (but may not be in document
order).

In order to derive these properties for all path ex-
pressions p in P we need an additional set of pro-
perties:

• gen - the generation property tells us whet-
her for all documents D and nodes n in
D all of the nodes in [[α(p)]]D(n) have the
same distance to the root;

For instance, in Figure 1, the list [n2, n3, n6] has
the gen property, but the list [n1, n6, n8] does not.

This property finds its use in that the notion
of nodes being of the same generation is a cru-
cial factor for deciding whether some expressions
generate duplicate nodes. For instance, the axes
↓+and ↓∗, in general produce duplicate nodes un-
less their inputs have the gen property.

• max1 - this property determines whether
for all documents D and nodes n in D the
number of nodes | [[α(p)]]D(n) | ≤ 1;

For instance, in Figure 1, the query ↑, executed
from the context node n1 results in the list [n0],
and clearly has the max1 property. However, the
query ↓, executed from the same context node re-
sults in [n2, n3] and does not have the max1 prop-
erty. The max1 property is important because, in
general, most of the axes evaluated from a list of
nodes generate duplicates or produce unordered
results. But if an axis is evaluated from one sin-
gle node, their results will — by definition — be
in order and duplicate free.

• unrel - the unrelated property tells us
whether for all documents D and nodes n in
D there are no two nodes in [[α(p/↑)]]D(n)
that have an ancestor-descendant relation-
ship; i.e.,
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Figure 2: An example XML fragment that shows
the relevance of the unrel property.

6 ∃n1, n2 : n1 6= n2 and n1 ∈
anc(n2) and n2 ∈ anc(n1)

For instance, in Figure 1, the query �̇, executed
from the context node n5 results in the list [n6, n7,
n8], which has the unrel property. However, the
query ↑+, executed from the same context node
results in [n0, n4] and does not have the unrel
property. This property is much alike the gen
property, but is less restrictive. In general, the ↓,
↓+and ↓∗ axes can produce duplicates, but the fol-
lowing rule states that if their inputs are ordered
and duplicate-free and the unrel property holds
for the input, the result will, again, be ordered.

p : ord0 p : unrel
p : nodup a ∈ {↓, ↓+, ↓∗}

p/a : ord0

Take for instance, the example XML document
fragment in figure 2 and consider the query //a/b.
It is clear that the result of //a is ordered and
produces the list [n0, n2]. However, if we iterate
over this list to retrieve the children, we obtain the
list [n1, n4, n3], which is not ordered at all! This
is because n0 and n2 are related. This example
also demonstrates the relation between gen prop-
erty and the unrel property. Consider following
the parent axis from the list of (unrelated) nodes
[n1, n3, n4]. Once again, the result is unordered.

• ordm - this property tells us that for all doc-
uments D and nodes n in D, the nodes in
[[α(p/↑m)]]D(n) are in document order.
This means that if we follow the ↑ axis m
times from [[α(p)]]D(n), that the result will

be in document order again. It is obvious
that ord is a special case of ordm, where
m = 0.

For instance, in Figure 1, the query ↓/�̇, exe-
cuted from the context node n3 results in the list
[n6, n7, n8, n7, n8, n8], which is clearly not in
document order. However, if we follow the ↑ axis
once we obtain a list of six times n3, which is
in order. The query ↓/�̇ has the property ord1.
Once again, we see that, even though a subexpres-
sion can produce an unordered result, the entire
expression could well be ordered. For instance,
the expression ↑+/�̇ does not have the ord prop-
erty, but the result of the expression ↑+/�̇/↑ is
always ordered.

• linm - the linear property indicates that for
all documents D and nodes n in D, the no-
des in [[α(p/↑m)]]D(n) are linear, i.e. for
all two nodes n1, n2 ∈ [[α(p/↑m)]]D(n) it
holds that n1 C

+ n2, n2 C
+ n1 or n1 = n2.

For instance, in Figure 1, the query ↑+, executed
from the context node n2 results in the list [n0,
n1], which is linear. The fact that a path expres-
sion has the lin property, for instance, tells us that
if the �̇ axis is followed from that path, the unrel
property holds.

• sibm - the sibling property tells us that for
all documents D and nodes n in D, if a
node is in [[α(p/↑m)]]D(n) then its left or
right siblings or both will also appear in the
result.

It is obvious that if we query the document from
context node n1 for the following siblings, that all
siblings added after n1 will also appear in the re-
sult. Thus, �̇ has the sib0 property. This property
is essential for proving that certain properties do
not hold. It plays a crucial role in the complete-
ness proof of Section 5.

4 Inference Rules

We have chosen for the use of inference rules be-
cause it easy to verify their correctness. We define
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a set of rules R for the inference of the nodup and
ord properties. The set of rules is given in Figure
3. Not all rules are intuitive. We explain a few of
them.

• The gen property is preserved by ↓, ↑, �̇

and �̇

p : gen a ∈ {↓, ↑, �̇, �̇}

p/a : gen

This rule states that if a path expression p
has the gen property i.e., all the nodes in
the result of p have the same distance to the
root, then if it is followed by one of the axes
↓, ↑, �̇, �̇, then the entire expression also
has the gen property.

• The ord property is preserved by the ↑ axis
if the gen property also holds

p : ord0 p : gen

p/↑ : ord0

If all nodes in the input of the ↑ axis have
the same distance to the root and if they
are in document order, then the result may
contain duplicate nodes. But these dupli-
cates are the result of evaluating the ↑ axis
from the children of the same node. Since
these children are ordered, the duplicates
will always occur in clusters and the result
will be ordered. Surprisingly, the gen prop-
erty is absolutely required and cannot be re-
placed by the less restrictive unrel prop-
erty. The above also implies that the re-
moval of duplicates in this situation can be
achieved very efficiently.

Theorem 4.1. The rules in R are sound for the
ord and nodup properties; i.e., if we can derive
with the rules in R in a finite number of steps that
p : ord (p : nodup) for all XML documents D
and nodes n ∈ D, it holds that [[α(p)]]D(n) is in
document order (contains no duplicate nodes).

Proof. (sketch1) To prove the theorem, we can
prove soundness individually for each rule in R.

5 Decision Procedure

The rules in R allow us to construct a determinis-
tic automaton that decides whether or not the re-
sult of a path expression contains duplicates or is
out of document order. To indicate that the al-
gorithm can be easily implemented, we consider
two separate automata: one for deriving the no-
dup property (Anodup) and one for deriving the
ord0 property (Aord). Both automata accept ex-
pressions p that have the ord (nodup) property,
in a time that is linear to the length of p; i.e., the
number of step expressions in p.

5.1 The Aord Automaton

This infinite automaton (see Figure 4) shows five
accept states. Each state is labeled with the prop-
erties that hold in that state. The three-dot sym-
bols at the right indicate that the automaton has
an infinite number of subsequent states with tran-
sitions from and to it that are the same as those
of the last state before the symbol. The states are
labeled with the same properties unless that prop-
erty has an index. In this case, the index ascends
in the subsequent states.

Note that the prefix of a path that has the ord
property does not necessarily have the ord prop-
erty itself, however it is possible to return from an
unordered state back into an ordered one.

Theorem 5.1. Aord is sound for the ord0 prop-
erty in P; i.e., Aord accepts only path expressions
in P that have the ord property.

Proof. For each transaction τ from state s1 to
state s2, labeled with axis a, it holds that there is
a set of rules in R that justifies it; i.e., for every
property that holds in s2 the rules in R derive this
property for a. Soundness now follows from the
soundness of R.

1For brevity, we will omit the proofs for the separate in-
ference rules.
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p : max1

p/↑ : max1
(1)

↑ : max1
(2) p : max1

p : gen
(3)

p : gen
a ∈ {↓, ↑, �̇, �̇}

p/a : gen
(4) p : gen

p : unrel
(5) p : unrel

p/↓ : unrel
(6)

p : lin0 a ∈ {�̇, �̇}

p/a : unrel
(8)

↓ : unrel
(9)

p : max1

a ∈ {↑
+

, ↑
∗
}

p/a : lin0

(10)

p : lin0

p/↑ : lin0

(11)
p : lin0

a ∈ {↓, �̇, �̇}

p/a : lin1

(12) p : linn n > 0

p/↑ : lin
n−1

(13)

p : linn n > 0

a ∈ {�̇, �̇}

p/a : linn

(14) p : linn

p/↓ : lin
n+1

(15) p : max1

p : nodup
(16)

p : max1

p/a : nodup
(17)

a : nodup
(18) p : nodup

p/↓ : nodup
(19)

p : nodup p : gen

a ∈ {↓
+

, ↓
∗
}

p/a : nodup
(20)

p : lin0 p : nodup
a ∈ {↑, �̇, �̇}

p/a : nodup
(21) p : max1

p/a : ord0

(23)

a : ord0

(24)
p : ord0

a ∈ {↓, �̇, �̇}

p/a : ord1

(25) p : ord0 n > 0

p/↑ : ord
n−1

(26)

p : ordn n > 0

a ∈ {�̇, �̇}

p/a : ordn

(27) p : ordn

p/↓ : ord
n+1

(28)
p : ord0 p : unrel

p : nodup a ∈ {↓, ↓
+

, ↓
∗
}

p/a : ord0

(29)

p : ord0 p : gen

p/↑ : ord0

(30)
a ∈ {↓, �̇, �̇,

�, �, ↓
+

, ↓
∗
}

p/a : sib0
(31) p : sibn

p/↓ : sib
n+1

(32)

p : sibn n > 0

a ∈ {�̇, �̇}

p : sibn

(33) p : sibn n > 0

p/↑ : sib
n−1

(34)

Figure 3: The rules of R for determining the nodup and ord properties for expressions in P .

Theorem 5.2. Aord is complete for the ord0 pro-
perty in P; i.e., every path expression in P that
has the ord property is accepted by Aord.

Proof. (sketch) We first extend the automaton in
Figure 4 as shown in Figure 7:

1. Add a sink state, which indicates that all
path expressions that lead to this state have
definitively lost their ord property; i.e.,
they cannot be extended to a path expres-
sion that has the ord property;

2. For each state S in Aord and for each axis a
that does not have a transition from S, add
a transition from S to the sink, labeled with
a;

3. Label all states with the negation of the pro-
perties that do not hold in that state.

Next, we define an additional set of rules for the
negative properties that justify the new transac-
tions inside the new automaton. For each state, we
determine the properties that do not hold and la-
bel the state accordingly. All non-accepting states
are labeled with the ¬ord property.

If we can prove these rules to be sound, then
we know that the automaton rejects only those ex-
pressions that do not have the ord property. Since
our automaton (by construction) now defines for
every axis a transition from each state to another
state, we can conclude that our original automa-
ton accepts all path expressions that have the ord
property. This implies that our set of principal
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ord0

lin0

ord1

lin1

ord2

lin2

ord3

lin2

ord0

max1

ord0

gen

sib0

nodup

ord0

gen

sib0

ord1

gen
ord2

gen

ord0

sib0

ord1

sib1

ord2

sib2

ord3

sib3

↑+ ↑∗

↓

�̇ �̇

↓+ ↓∗

↓+ ↓∗

� �

↑

�̇ �̇

�̇ �̇ ↓ ↓ ↓

↑ ↑ ↑

↓ �̇ �̇ ↓

↑ ↑

↓ ↓ ↓

↑ ↑ ↑

↑

�̇ �̇ �̇ �̇ �̇ �̇

↑

↓

�̇ �̇ �̇ �̇

�̇ �̇ �̇ �̇ �̇ �̇

Figure 4: The Aord automaton for the ord0 property has an infinite number of states.

rules R is complete for the ord property.

Figure 7 shows the result of extending our au-
tomaton. Note that in all accepting states, the
ord0 property holds and that in every other state,
somehow the negation of this property holds. For
instance ord1 and ¬ord≤0 together imply ¬ord0.
The new transitions and properties are justified by
the rules given in Appendix B. If a path expres-
sions brings the automaton into a sink state, we
now it’s result will be unordered, no matter what
the remainder of the expression is.
For instance, if a path expression begins with
↓+/↑, then — no matter what step expressions fol-
low — the entire expression will never regain the
ord0 property again.

5.2 The Anodup Automaton

This finite automaton (see Figure 5) shows that,
unlike the ord0 property, once the nodup prop-
erty is lost in P , it never recurs; i.e., if a path ex-
pression does not have the nodup property, then
neither will any of its prefixes.

Theorem 5.3. Anodup is sound for the nodup pro-
perty in P; i.e., Anodup accepts only path expres-
sions in P that have the nodup property.

Proof. Analogous to proof of theorem 5.1.

Theorem 5.4. Anodup is complete for the nodup
property in P , i.e., every path expression in P that
has the nodup property is accepted by Anodup.

Proof. (sketch) Analogous to the proof of theo-
rem 5.2 (see Figure 8).
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nodup

gen

max1

nodup

lin0

nodup

nodup

sib0

nodup

unrel0
sib0

gen

nodup

� �

↓+ ↓∗

↓

�̇ �̇

↑+ ↑∗
↓+ ↓∗

↓

�̇ �̇

↓+ ↓∗↑

↓

↓

↑

↓

↓

Figure 5: Unlike Aord, the Anodup automaton is finite.

6 Implementation in Galax

We will use the Galax XQuery engine for evalu-
ating our approach. Galax is one of the first im-
plementations of XQuery and one of a few that
implements XQuery’s static type system. Galax’s
architecture is based on the XQuery Formal Se-
mantics, making it an ideal platform on which to
implement and evaluate novel optimizations for
XPath and XQuery.

In the previous sections, we have seen that
ordering and duplicate elimination directly influ-
ence the evaluation efficiency of XPath. Indeed,
unnecessary ordering and duplicate removal can
cause a tremendous overhead during evaluation,
especially when larger XML documents are in-
volved. In the Galax [6] XQuery engine, for in-
stance, this problem sometimes results in an unac-
ceptable
evaluation performance.

Our approach impacts most XPath expressions
and, since XQuery is based on XPath, XQuery ex-
pressions can also profit from it. We can general-
ize our approach, working on the core expressions
where we apply the optimizations on the for-
loops into which XPath expressions are mapped.

Using our approach to determine whether a
path expression generates duplicate nodes or no-
des that are out of document order, we can opti-

mize almost any XQuery Core mapping by elimi-
nating any obsolete distinct-docorder oper-
ations. The distinct-docorder operation is
a meta-operator that is inserted into the core ex-
pression during normalization in order to assure
correctness regarding document order and no du-
plicates [5].

Take, for instance, the path expression

//b/c/d/following-sibling::d/parent::*

which selects all elements c that have a parent b
and that have more than one d child. This expres-
sion is mapped to the following, slightly simpli-
fied [4] core expression.

glx:distinct-docorder(
for $glx:dot in $input
return glx:distinct-docorder(
for $glx:dot in descendant-or-self::node()
return glx:distinct-docorder(

for $glx:dot in child::b
return glx:distinct-docorder(

for $glx:dot in child::c
return glx:distinct-docorder(

for $glx:dot in child::d
return glx:distinct-docorder(
for $glx:dot in foll-sibl::d
return parent::*

))))));

However, as our automaton shows, this expres-
sion results in an ordered sequence of nodes that
possibly contains duplicates. Therefore, the ex-
pression is equivalent to the following one
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distinct-nodes(
for $glx:dot in $input
return
for $glx:dot in descendant-or-self::b
return

for $glx:dot in child::c
return

for $glx:dot in child::d
return
for $glx:dot in foll-sibl::d
return parent::*

Note that no sorting options are required in the
last query, whereas the original query required no
less than six sorting operations. Additionally,
since we know that the result of the query is in
document order, we can remove duplicate nodes
in linear time.

As the example shows, it may be useful to
split the distinct-docorder operation into
two separate instructions (one for sorting and one
for eliminating duplicates from an ordered list)
for cases where the result is ordered but contains
duplicates.

There also seems to be an interesting interac-
tion between our optimization technique and
other schema-based optimizations. There are path
expressions for which we cannot derive the ord
or nodup properties. Nevertheless, when they are
rewritten to equivalent expressions based on sche-
ma information [7, 9], it can sometimes become
possible to derive these properties.

For example, if we consider the path expres-
sion //b/c, then our algorithm shows that it re-
turns nodes out of document order. But if we
know from the schema of the source XML docu-
ment that an element b cannot occur nested inside
another element b and there is only one path to b,
then we can substitute //b with the path to b us-
ing only child axes. In this way we avoid an or-
dering operation. This technique can be used for
optimizing path expressions that have any axes in
them that do not preserve the gen property.

7 Related Work

Galax is not the only implementation facing these
problems. In an attempt to pipeline step expres-
sions from an XPath expression, [8] proposes a
technique that avoids the generation of duplicate

nodes in the first place. This is done by trans-
lating XPath expressions into a sequence of al-
gebraic operations such that no duplicate nodes
are generated, which is very important because
the elimination of duplicates is a pipeline breaker.
One of the basics of this approach is the rewriting
of XPath expressions into equivalent expressions
that do not generate duplicates. These rewriting
rules are inspired by [10] where the setup is to
translate paths with reverse axis into equivalent
ones, containing only forward axes.

8 Conclusion and Future Work

Our approach has focussed primarily on two pro-
perties of XPath expressions: order and duplicate-
freeness. We have shown for our XPath fragment,
that we can efficiently derive whether a query
evaluated by the sloppy implementation α, returns
a result in document order and free from dupli-
cates. This knowledge can be used to remove
unnecessary ordering or duplicate removal oper-
ations from the query plan or to rewrite certain
expressions so that neither ordering nor duplicate
removal are required, like the schema based opti-
mizations we discussed in section 6.

We will implement our algorithm into the Ga-
lax XQuery engine, where unnecessary dis-

tinct-docorder operations sometimes cause
unacceptable evaluation performance for queries
on large documents. The optimizer will be ex-
tended with an algorithm that manipulates the ab-
stract syntax tree of XQuery core expressions to
remove unnecessary ordering and duplicate remo-
val operations. We expect that our approach will
be very helpful in improving the performance of
query evaluation however, not all unnecessary or-
dering or duplicate removal operations are
removed. One reason for this is that we fail to
take into account possible ordering or duplicate
removal operations on a part of a query that in-
fluence the entire query. A simple example can
illustrate this.

For instance, the expression

↓/↓/�̇/↑/↓

9



is normalized into the following simplified core
expression:

glx:distinct-docorder(
let $glx:sequence := child::*
return
for $glx:dot in $glx:sequence
return glx:distinct-docorder(

let $glx:sequence := child::*
return

for $glx:dot in $glx:sequence
return glx:distinct-docorder(

let $glx:sequence := fol-sibl::*
return
for $glx:dot in $glx:sequence
return glx:distinct-docorder(

let $glx:sequence := parent::*
return
for $glx:dot in $glx:sequence
return child::*)))))

which we represent simplified as ddo(↓/ddo(↓/
ddo(�̇/ddo(↑/↓)))). We can be simplify this
to ddo(↓/ddo(↓/ ddo(�̇/↑/↓))). The outer-
most ddo operation is useless because the one
near it removes all duplicate nodes, however we
cannot deduce this with our approach because we
lack the notion of the ddo operation.
In a next step we will extend our approach to de-
tect these unnecessary operations and enable us to
further optimize XPath evaluation.
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A Rules for negative properties

Figure 6 shows the ules for the negative properties that are used for justifying the transitions in the
extended automata (Figures 7 and 8). Proving the soundness for these rules is essential for proving
completeness of the rules in R.

a ∈ {↓
+

, ↓
∗

, �, �}

p/a : ¬ord≥1

¬ord≥

p : ¬ord≥n

p/↓ : ¬ord≥n+1

¬ord≥

p : ¬ord≥n
n > 0

p/↑ : ¬ord≥n−1

¬ord≥

p : ¬ord≥n
n > 0

a ∈ {�̇, �̇}

p/a : ¬ord≥n

¬ord≥
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a ∈ {↑
+
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p : ¬ord≥0 a ∈ {�̇, �̇}

p : ¬ord≥0

¬ord≥

p : ¬nodup

a ∈ {�̇, �̇, ↓, ↓
+

, ↓
∗
}

p/a : ¬ord≤0

¬ord≤
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a ∈ {↓, �̇, �̇, ↓
+

, ↓
∗
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¬ord≤

p : ¬ord≥0

p : ¬ord≤0
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a ∈ {↓, ↑

+
, ↑

∗
, �̇, �̇}

p/a : ¬ord≤0

¬ord≤

p : ¬ord≤n
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¬ord≤

p : ¬ord≤n
n > 0

p/↑ : ¬ord≤n−1

¬ord≤

p : ¬ord≤n
n > 0

a ∈ {�̇, �̇}

p/a : ¬ord≤n

¬ord≤

p : ¬ord≤n

p : ¬ord≤0

¬ord≤

a ∈ {↑
+

, ↓
+

, ↑
∗

, ↓
∗

, �, �}

p/a : ¬gen
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+
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∗

, ↑
+

,
↑
∗

, �̇, �̇, �, �}

p/a : ¬max1
¬max1

p : ¬max1
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¬max1

p : ¬gen

p/a : ¬max1
¬max1

a ∈ {↓
+

, ↓
∗

, ↑
+

, ↑
∗

, �, �}

p/a : ¬unrel0
¬unreln

p : ¬unrel0 a ∈ {↑, ↓}
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¬unreln

p : ¬unrel0 a ∈ {�̇, �̇}

p/a : ¬unrel1
¬unreln

p : ¬unreln n > 0

p/↑ : ¬unrel
n−1
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n+1
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p : ¬unreln n > 0
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p/a : ¬nodup
¬nodup

p : ¬nodup

p/a : ¬nodup
¬nodup

p : ¬max1

a ∈ {↑
+

, ↑
∗

, �, �}

p/a : ¬nodup
¬nodup

p : ¬gen p : ¬unrel0
a ∈ {↓
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Figure 6: The rules for the negative properties justify the transitions in the extended automata.
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B Extended Automata

Figure 7 shows the Aord automaton, extended according to the algorithm described in the proof of
Theorem 5.2 in Section 5. Figure 8 shows the same extension for the Anodup automaton.
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Figure 7: The extended version of the Aord automaton.
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Figure 8: The extended Anodup automaton.
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