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Abstract. We present a graph-based data model called GDM where
database instances and database schemas are described by certain types
of labeled graphs called instance graphs and schema graphs. For this data
model we introduce two graph-manipulation operations, an addition and
a deletion, that are based on pattern matching and can be represented
in a graphical way. For these operations it is investigated if they can be
typed such that it is guaranteed for well-typed operations that the result
belongs to a certain database schema graph, and what the complexity of
deciding this well-typedness is.

1 Introduction

Since the introduction of the Entity-Relationship (ER) Model [1] labeled graphs
have been used in many data models to represent schemas. This is not only the
case for subsequent extensions of the ER Model but also in object-oriented data
models such as LDM (the Logical Data Model) [2] and IFO [3].

Although the representation of instances as labeled graphs was already con-
sidered in FDM (the Functional Data Model) [4] the first data model that explic-
itly used labeled graphs as instances and regarded database transformation as
graph transformations was GOOD (the Graph-Oriented Object Database Model)
[5]. To represent complex values more naturally some data models have proposed
to use generalizations of graphs such as hypergraphs [6], hierarchical graphs [7],
hygraphs as used in the Hy+ system [8], and finally graphs in the hypernode
model [9].

The data model we propose here is based on the GOOD approach and rep-
resents both instances and schemas as labeled graphs called instance graph and
schema graphs. The differences with GOOD are that (1) these two notions are
defined independently such that instance graphs can exist without a correspond-
ing schema graph and the data model can be used to represent semistructured
data [10, 11] and (2) the data model explicitly supports the notions of complex
values, inheritance and n-ary symmetric relationships as are found in ER models.

The language introduced with the GOOD data model was one of the first
graph-based languages that was shown to be able to express all constructive
database transformations [12]. This was followed by languages such as PaMaL
[13, 14] and GOAL [15] that showed that only an addition and a deletion are



sufficient to express all these transformation if certain nodes explicitly represent
complex values. In this paper we show how these two operations can be rede-
fined for our data model and we investigate the decidability of whether these
operations respect a certain schema, i.e., whether the result of an operation will
stay within that schema.

2 The Graph-based Data Model GDM

2.1 Instance Graphs

In GDM an instance is represented by labeled graphs such as shown in Fig. 1
which are called instance graphs. The nodes in the graph represent entities, the
edges represent attributes of these entities and the nodes are labeled with zero
or more class names to indicate that they belong to certain classes. If from a
certain node several edges leave that have the same label then this is interpreted
as a single set-valued attribute. For example, the Department in Fig. 1 has an
attribute sections that contains two sections. As is usual in object-oriented data-
bases we distinguish three mutually exclusive kinds of entities [16]: objects which
are represented by square nodes, composite values (or complex values) which are
represented by round empty nodes and basic values which are represented by
round nodes with a basic-type name inside and labeled with a representation of
the basic value it represents.

Employee

Engineer Contract Department

Section Section

street number city

employee

address

department

sections sections

name

namename

str

str str str str str

“R&D”

“Development”“Research”“Chicago”“25a”

“D. Johnson”

str

name

“Birch Street”

Fig. 1. An instance graph

Before we proceed with
the formal definition of
instance graphs we pos-
tulate the following sym-
bols and sets. The pos-
tulated symbols are: isa,
to label isa edges with,
is, to label is edges
with, com, to indicate
composite-value nodes, and
obj, to indicate object
nodes. Given a set X

we let P(X) denote the
power set of X , i.e., the
set of subsets of X , and
Pfin(X) denotes the set of finite subsets of X . The postulated sets are: the set
A of attribute names, not containing isa or is, the set B of basic-type names, not
containing com and obj, the set C of class names, the set D of representations
of basic values, and the function δ : B → P(D) that gives for every basic-type
name the corresponding domain of basic-value representations.

The definition of instance graph will be based on the notion of data graph.
A data graph is defined as I = 〈N, E, λ, σ, ρ〉 where 〈N, E, λ〉 is a finite labeled
graph with node labels Pfin(C) and edge labels A, and with the function σ :
N → {com,obj} ∪ B that gives the sort of every node, and the function ρ :



{ n ∈ N | σ(n) ∈ B } → D that gives a basic-value representation for basic-value
nodes.

In a data graph nodes with sort obj are called object nodes, nodes with sort
com are called composite-value nodes and nodes with a sort in B are called
basic-value nodes. If λ(n) = ∅ then n is called a class-free node and otherwise
it is called a class-labeled node. If the components of I are not explicitly named
then they are presumed to be NI , EI , λI , σI and ρI , respectively.

A data graph is called a well-formed data graph if (I-BVA) no edge leaves
from a basic-value node, (I-BVT) if ρ(n) is defined then ρ(n) ∈ δ(σ(n)), (I-
REA) for every class-free node n there is a path that ends in n and starts in
a class-labeled node, and (I-NS) composite-value nodes have either exactly one
incoming edge or are labeled with exactly one class name, but not both.

The constraints I-BVA and I-BVT follow from the meaning of basic-value
nodes. The constraint I-REA is introduced to prevent “floating entities”, i.e.,
entities that do not belong to any class and are not in the value of any attribute.
Finally, the constraint I-NS is introduced because we assume that representa-
tions of composite values are weak entities that are not identified by only their
attributes but also by the attribute or class that they belong to. This is con-
sistent with, for example, the relational model and complex-value data models
where an update to a tuple in a certain table or attribute does not imply that
representations of the same tuple in other tables or attributes are also updated.

To establish when two nodes in a data graph I represent the same complex
value we define the value-equivalence relation ∼=I⊆ NI × NI as the smallest
reflexive relation such that (1) two basic-value nodes are value equivalent if they
are labeled with the same basic-value representation and (2) two composite-value
nodes n1 and n2 are value equivalent if for every edge 〈n1, α, n′

1〉 in EI there is
an edge 〈n2, α, n′

2〉 in EI such that n′

1
∼=I n′

2 and vice versa.
Finally, we define instance graphs as well-formed data graphs for which it

holds that (1) basic-value nodes are value-equivalent only if they are the same
node, (2) two composite-value nodes that are labeled with the same class name
are value-equivalent only if they are the same node and (3) two composite-value
nodes that have both an incoming edge from the same node are value-equivalent
only if they are the same node.

2.2 Schema Graphs

In GDM a schema is represented by labeled graphs such as shown in Fig. 2 which
are called schema graphs. The nodes in a schema graph represent classes and the
edges labeled with attribute names indicate that entities in that class may have
that attribute. The nodes are labeled with zero or one class name to indicate
the name of the class. As in data graphs the nodes have a sort which in this
case indicates the sort of the entities in this class. The special edges that are not
labeled with an attribute name but are drawn as hollow edges are isa edges that
indicate that the class where the edge leaves is a subclass of the class where it
arrives, i.e., all entities in the first class also belong to the second class.
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Fig. 2. A schema graph

Formally, a schema
graph is defined as S =
〈N, E, λ, σ〉 where 〈N, E, λ〉
is a finite partially la-
beled graph, i.e., λ may
be undefined for some
nodes, with node labels C
and edge labels A∪{isa},
and the function σ : N →
{com,obj} ∪B gives the
sort of every node.

Nodes with sort obj

are called object class
nodes, node with sort
com are called composite-
value class nodes and nodes with a sort in B are called basic-value class nodes. If
λ(n) is undefined then n is called an implied class node and otherwise n is called
an explicit class node. The difference between an explicit class and an implied
class is not that one has a name and the other does not, but rather that for
the explicit class class-membership is explicitly indicated in the instance graph.
Note that this is similar to the usual distinction between classes and types.

If the components of a schema graph S are not explicitly named then they
are presumed to be NS , ES , λS and σS , respectively. The reflexive transitive
closure of the binary relation over NS that is defined by the isa edges is written
as isa∗

S .

2.3 Extension Relations

The relationship between data graphs and schema graphs is established through
extension relations which are many-to-many relations between the nodes in the
data graph and nodes in the schema graph that indicate which entity belongs
to which class. Such a relation must respect the meaning of the class names,
the attribute edges and the isa edges, i.e., the extension relation must at least
associate the nodes that should be associated according to these labels and
edges. Therefore we define an extension relation from a schema graph S to a
data graph I is defined as a relation ξ ⊆ NS × NI for which it holds that1

(ER-CLN) if λS(m) is defined and λS(m) ∈ λI(n) then ξ(m, n), (ER-ATT) if
ξ(m1, n1), 〈n1, α, n2〉 ∈ EI and 〈m1, α, m2〉 ∈ ES then ξ(m2, n2), and (ER-ISA)
if 〈m1, isa, m2〉 ∈ ES and ξ(m1, n) then ξ(m2, n).

A node in the data graph should be labeled with a class name iff it belongs
to a class with that name. Therefore we say that an extension relation ξ from
S to I is class-name correct if whenever λS(m) is defined and ξ(m, n) then
λS(m) ∈ λI(n).

1 We will usually abbreviate 〈m, n〉 ∈ ξ to ξ(m, n).



Another requirement is that nodes of different sorts may not be associated
with each other. Therefore we say that an extension relation from S to I is sort
correct if it only associates nodes with the same sort.

Finally, we require that all nodes, edges and class names in the data graph
are somehow justified by corresponding nodes, edges and class names in the
schema graph. We say that an extension relation ξ from S to I covers I if (CV-
N) for every node n ∈ NI then there is some node m ∈ NS such that ξ(m, n),
(CV-E) for every edge 〈n1, α, n2〉 in EI there is some edge 〈m1, α, m2〉 in ES

such that ξ(m1, n1) and ξ(m2, n2), and (CV-C) for every node n ∈ NI and class
name c ∈ λI(n) there is some explicit class node m ∈ NS such that ξ(m, n) and
c = λS(m).

int
day

23

address
Employee

citynumberstreet

str str str

“London”“1a”“De Crespigny Park”

Fig. 3. An instance graph that not be-
longs to the schema graph in Fig. 2

Summarizing, we say that a data
graph I belongs to a schema graph S if
it holds for the minimal extension rela-
tion from S to I that it is class-name
correct, sort correct and covers I. It
can be verified that under this defini-
tion the data graph in Fig. 1 belongs
indeed to the schema graph in Fig. 2.
To understand why only the minimal
extension relation is considered look,
for example, at the instance graph in
Fig. 3 that would otherwise have be-
longed to the schema graph in Fig. 2 because the node at the end of the address
edge might have been associated with the node at the end of the begin-date edge
in the schema graph.

2.4 Discussion of GDM
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Fig. 4. Simulating other data models

The purpose of GDM is to present
a data model that is based on la-
beled graphs such that we can think of
data manipulations as graph manipu-
lations, and at the same time general-
ize over existing data models such as
object-oriented data models and semi-
structured data models.

An example of a simulation of an
object-oriented schema is shown in
Fig. 4 (a). This schema graph defines a
class B and a subclass A that inherits
the attributes of B.

By allowing composite-value class
nodes to play the same roles as object-
class nodes GDM can also simulate
the relational model [17] and even the



nested relational model [18] that al-
lows non-first-normal-form relations and the Format Model [19] that allows ar-
bitrary nesting of sets, tuples and tagged unions. An example of a simulation of
this in GDM is given in Fig. 4 (c).

Moreover, since the attributes of composite values can also contain objects we
can represent relationships between objects as shown in Fig. 4 (b). This enables
GDM to simulate relationships as found in the ER model and ORM [20].

Finally, GDM can also be used to describe semistructured data because be-
cause instance graphs are self-describing and exist independently of any schema
graph, it can represent arbitrarily nested values and a schema graph can express
that the paths in a composite-value tree form a prefix of a certain regular ex-
pression. For example in Fig. 4 (d) the attribute of an D object can contain only
paths that are a prefix of ab(c∪d)e(f(c∪d)e)*g.

3 The Graph-based Update Language GUL

The basic mechanism of GUL is pattern matching. This means that every opera-
tion contains a pattern, i.e, a labeled graph that is similar to a well-formed data
graph, and everywhere in the instance graph that this pattern can be embedded
the operation is performed. Based on this mechanism we define an addition and a
deletion and finally we introduce a reduction operation that reduces well-formed
data graphs to instance graphs.

3.1 Patterns

address

address
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Section

Manager

employees

employees

Fig. 5. A pattern with an
is edge

The main difference between data graphs and pat-
terns is the presence of is edges between composite-
value nodes, which are drawn as hollow undirected
edges. An is edge between two nodes specifies that
these must be embedded upon two value-equivalent
nodes in the instance graph. An example of a pat-
tern with an is edge is given in Fig. 5. This pattern
looks for an Engineer and a Manager that work for
the same Section and live at the same address.

More formally we define a pattern as a well-
formed data graph J = 〈N, E, λ, σ, ρ〉 except that ρ

may be undefined for certain basic value nodes and
we allow extra edges labeled with is between composite-value nodes if (1) these
edges are symmetric, i.e., for every edge 〈n1, is, n2〉 there is an edge 〈n2, is, n1〉
and (2) in every cycle of edges with at least one attribute edge there is at least
one object node. The final constraint is necessary because recursive composite-
values are not allowed in well-formed data graphs.

An embedding of a pattern J in a well-formed data graph I is a function
h : NJ → NI that respects the class names, the sorts, the basic-value represen-
tations, the attribute edges and the is edges, i.e., for all nodes n1 and n2 in NJ



it holds that (1) λJ(n1) ⊆ λI(h(n1)), (2) σJ (n1) = σI(h(n1)), (3) if 〈n1, r〉 ∈ ρJ

then 〈h(n1), r〉 ∈ ρI , (4) if 〈n1, α, n2〉 in EJ then 〈h(n1), α, h(n2)〉 in EI , and (5)
if 〈n1, is, n2〉 ∈ NJ then h(n1) ∼=I h(n2). The set of all embeddings of J into I

is written as Emb(J, I).

3.2 The Addition

An addition is specified by giving two patterns; a base pattern J and an extension
pattern J ′ that is, except for the is edges, a super-graph2 of the base pattern
with extra nodes, edges and class names such that all basic-value nodes in J ′

that are not in J are labeled with a basic-value representation. We will write
such an addition as Add(J, J ′) where J is the base pattern and J ′ is the extension
pattern. An example of an addition is shown in Fig. 6.
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Fig. 6. An addition

The nodes, edges, and class names of the base pat-
tern are drawn with normal lines and written in a nor-
mal font, whereas the additional nodes, edges and class
names in the extension pattern are drawn with bold
lines and written in a bold font.

Informally the result of applying an addition
Add(J, J ′) to a well-formed data graph I is obtained
by extending I for each embedding of J in I with the
nodes, edges and class names that are in J ′ and it ad-
ditionally adds nodes and edges to satisfy the is edges
in J ′. More formally we define the result of apply-
ing an addition Add(J, J ′) to a well-formed data graph
I, written as [[Add(J, J ′)]](I), as the well-formed data
graph I ′ where I ′ is a minimal super-graph of I such that there is a function
η : Emb(J, I) → Emb(J ′, I ′) such that (1) η(h) equals h on NJ , (2) all distinct
nodes in NJ′ − NJ are mapped by η(h) to distinct nodes in NI′ − NI , and (3)
extensions of distinct embeddings map nodes in NJ′ − NJ to distinct nodes.

For example, the addition in Fig. 6 does for every embedding of the base
pattern with the A node, the “Blue” node and the composite-value node the
following: (1) it adds the extra nodes in the extension pattern, i.e., the C node,
the D node and the second composite-value node, (2) it adds the class name B
to the A node, and (3) it extends the new composite-value node such that it
represents the same composite-value as the old composite-value node.

It is easy to see that the result of an addition without is edges in the extension
pattern is always well-defined. However, in order for the result of an addition with
is edges in the extension pattern to be always well-defined four well-formedness
constraints are required. The first three are: (WA-CON) is edges are in J ′ only
allowed between nodes in J and nodes not in J , (WA-NEC) if a node n in J ′ is
not in J and participates in an is edge in J ′ then no attribute edge leaves from
n, and (WA-NMC) every node in J ′ that is not in J is involved in at most one is

2 The notion of sub-graph is defined as usual for labeled graphs except that nodes in a
subgraph may be labeled with a subset of the corresponding set in the super-graph.



edge in J ′. These constraints prevent that the addition has to merge composite
values in order to satisfy is edges in J ′. The reason that we want to prevent this
is that there is not always a unique minimal extension of a weak instance graph
that makes two composite-value nodes represent the same composite value.

b
b

(a) (b)

A A A

Addition Instance graph

Fig. 7. An addition and its hypotheti-
cal result

The reason for the fourth and fi-
nal well-formedness constraint is illus-
trated by the addition in Fig. 7. If we
apply the addition (a) to the instance
graph (b) as indicated by the nodes
and edges drawn with solid lines, then
we should extend it as indicated by
the edges and nodes drawn with dot-
ted lines, but this defines a composite
value that contains itself which is not
allowed.

To prevent such cycles we define
the notion of maximally merged ver-
sion of an addition Add(J, J ′) which is
constructed by merging the composite-value nodes and object nodes in J if they
have the same sort and the result is still an addition until no more nodes can be
merged. The fourth well-formedness constraint then says that (WA-NRI) in the
maximally merged version of the addition every cycle that contains at least one
attribute edge also contains at least one object node.

Summarizing, an addition that satisfies WA-CON, WA-NEC, WA-NMC and
WA-NRI is called a well-formed addition. It can be shown that the result of a
well-formed addition is always well-defined since it can be constructed by first
performing the addition without the is edges in the extension pattern, and then
extending the data graph to satisfy the is edges in the extension pattern by
copying for every is edge the sub-tree under the old node to the new node.

3.3 The Deletion
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Fig. 8. A deletion

A deletion is specified by giving two patterns;
a base pattern J and a core pattern J ′ that
is, except for the is edges, a sub-graph of the
base pattern. Both J and J ′ are patterns ex-
cept that in J ′ we allow class-free nodes that
are not reachable from a class-labeled node.
We will write such a deletion as Del(J, J ′)
where J is the base pattern and J ′ is the core
pattern. An example of an addition is shown
in Fig. 8.

The nodes, edges, and class names of the
core pattern are drawn with normal lines and
written in a normal font, whereas the nodes, edges and class names that are not
in the core pattern are drawn with dashed lines and written in an outline font.



The result of applying a deletion Del(J, J ′) to a well-formed data graph I,
written as [[Del(J, J ′)]](I), is defined as the well-formed data graph I ′ where I ′

is the maximal well-formed sub-graph of I such that for every embedding h of
J in I it holds that (1) if n ∈ NJ − NJ′ then h(n) 6∈ NJ′ , (2) if 〈n1, α, n2〉 ∈
EJ − EJ′ then 〈h(n1), α, h(n2)〉 6∈ EJ′ , and (3) if for a node n in J there is a
c ∈ λJ (n) − λJ′(n) then c 6∈ λJ′(h(n)).

Note that I ′ can be constructed by first removing from I for every embedding
h of J in I the nodes, edges and class names not in J ′ and after that removing
all class-free nodes that are no longer reachable from a class-labeled node.

3.4 The Reduction

The third and final operation of GUL is the reduction that transforms well-
formed data graphs into instance graphs. It does this by merging two basic-value
nodes if they are labeled with the same basic-value representation and merging
two composite-value nodes if they are value equivalent and labeled with the same
class name or both have an incoming edge from the same node, until no more
nodes can be merged.

4 Typing GUL

4.1 Typing Patterns
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Fig. 9. A schema graph with no
implicit object class nodes

A pattern J is said to be sound under a
schema graph S if there is a well-formed data
graph I that belongs to S and there is an
embedding of J in I. To detect such pat-
terns we introduce a syntactical notion of
well-typedness. The first case we consider is
patterns with no is edges and schema graphs
with no implicit object class nodes.

An extension relation ξ from S to I is said
to be minimal on the composed-value nodes if
there is no strict subset of ξ that is also an
extension relation from S to I but is identical
to ξ on the object nodes and the basic-value
nodes.

Definition 1. Given a schema graph S with
no implicit object class nodes a pattern J without is edges is said to be well-typed
under S if there is an extension relation from S to J that supports J , i.e., that
is minimal on the composed-value nodes and covers J .

Theorem 1. Given a schema graph S with no implicit object class nodes a
pattern J without is edges is sound under S iff it is well-typed under S.3

3 Proofs are omitted because of lack of space but are given in [21]



Theorem 2. Deciding well-typedness of a pattern with no is edges under a
schema graph with no implicit object class nodes is in PTIME.
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Fig. 10. Three patterns with is edges

The next problem we consider is
typing patterns with is edges. The
introduction of is edges in patterns
introduces extra typing problems.
Consider, for example, the schema
graph in Fig. 9 and the three pat-
terns in Fig. 10. The problem in
pattern (a) is that the is edge im-
plies that there is a c edge under
the b edge but this edge will not
be covered in the schema graph in
Fig. 9. The problem in pattern (b)
is that the implied d edge ends in a
node with the wrong sort. Finally,
the problem in pattern (c) is that the implied e edge requires the C node to be
in the class D and it should therefore be labeled with D, which may not be the
case.

To remedy this we have to check if these problems occur for all value paths
in a pattern, where a value path is defined as a path of attribute, is and isa

edges that contains only edges that start in composite-value nodes. If the list
of attribute names that consecutively appear in such paths are the same then
such paths are said to be similar. This leads to the following definition of well-
typedness.

Definition 2. Given a schema graph S with no implied object classes a pattern
J is said to be well-typed under S if there is an extension relation ξ from S

to J that supports J , i.e., it is minimal on the composite-value nodes, covers J

without the is edges and for every composite-value node n in J it holds for every
value path in J that starts in n that (TP-CVV) if the path contains at least one
attribute edge then there is a similar value path in S starting in a node m such
that ξ(m, n), (TP-CSV) for every similar value path in S that starts in a node m

such that ξ(m, n) it holds that these paths end in nodes with the same sort, and
(TP-OCV) if the path ends in an object node n′ then it holds for every similar
value path in S that begins in m such that ξ(m, n) and ends in m′ that ξ(m′, n′).

Theorem 3. Given a schema graph S with no implicit object class nodes a
pattern J is sound under S iff it is well-typed under S.

Theorem 4. Deciding well-typedness of a pattern under a schema graph with
no implied object class nodes is co-NP complete.

4.2 Typing Additions

A well-formed addition Add(J, J ′) is said to respect a schema graph S if for every
well-formed data graph I that belongs to S it holds that [[Add(J, J ′)]](I) also
belongs to S.



(a)

Schema graph

(b)

a
A B

C
A B

a

Addition Addition

(c)

A
a

Fig. 11. A schema graph and two addi-
tions that add new nodes and edges

The well typedness of a well-
formed addition Add(J, J ′) under a
schema graph S will be defined by
considering all extension relations
from S to J that support J and then
extending these minimally to J ′. Ob-
viously it should hold for this mini-
mal extension that it covers J ′ and
is sort correct.

Two more constraints that should
be checked are illustrated by Fig. 11.
The addition (b) does not respect
the schema graph (a) because the
new node should also be labeled with C. So it should also be checked if the
minimal extension places new nodes only in explicit classes that they are not
labeled with. The addition (c) also not respects the schema graph for the same
reason except here it is an old node that is placed in an extra explicit class that
it is not already labeled with.
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Fig. 12. A schema graph and
two additions that add class
names to old nodes

Two other constraints that should also be
checked for the minimal extension of the sup-
porting extension relation are illustrated by
Fig. 12. The addition (b) does not respect the
schema graph (a) because the A node might
have an a edge ending in a int node. The int
node would however conflict with the str class
node at the end of the a edge from the B class
node. The addition (c) also does not respect
the schema graph (a) because here the A node
might have an a edge ending in a class-free
node. However, after the addition of the C label
this node should be labeled with the D label,
which it is not.

In order to prevent the previous two conflicts we introduce some new notions.
A weak value path is a path of edges such that all inner nodes are composite-value
nodes. Given a well-formed data graph I, a schema graph S and an extension
relation ξ from S to I a schema path for a noden ∈ NI under ξ is a path in S

that starts in a node m such that ξ(m, n). Such a path is said to be a potential
path if for all prefixes p′ of the path there is not a path p′′ from node m′ in S such
that ξ(m′, n) and p′ and p′′ end in nodes with different sorts. It is now easy to see
that the problems demonstrated in Fig. 12 can be detected by checking for all
potential weak value paths if they cause sort problems or class-name problems
at the ends of these paths.

Definition 3. Given a schema graph S with no implied object class nodes a well-
formed addition Add(J, J ′) with no is edges in J ′ is said to be well-typed under S

if for every extension relation from S to J that supports J the minimal superset ξ′



of ξ that is an extension relation from S to J ′ is sort correct, covers IJ′ and (TA-
NCN) for every node n in J ′ that is not in J it holds that if ξ′(m, n) and λS(m)
is defined then λS(m) ∈ λJ′(n), and for every node n in J it holds that (TA-
NCO) if ξ′(m, n) and not ξ(m, n) and λS(m) is defined then λS(m) ∈ λJ′(n),
(TA-CPW) every potential weak value path in S for n under ξ is also a potential
weak value path for n under ξ′, and (TA-NPW) for every potential weak value
path in S for n under ξ and a similar path in S for n under ξ′ that ends in an
explicit class node m′

2 there is a similar path in S for n under ξ that ends in
m′

2.

Theorem 5. Given a schema graph S with no implied object class nodes a well-
formed addition Add(J, J ′) with no is edges in J ′ respects S if it is well-typed
under S.

A B
A B

a

Addition Schema graph

(a) (b)

aA

Fig. 13. A well-formed addition
that respects a schema graph but
is not well-typed

Unfortunately it is not true the well-
typedness is a necessary condition for re-
specting a schema graph as is shown in
Fig. 13.

The presence of is edges in the exten-
sion pattern makes it necessary to check ex-
tra constraints. This is illustrated in Fig. 14.
The addition (b) does not respect the schema
graph (a) because the potential a attribute is
copied to the new B node but according to
the schema graph B nodes can only have b
attributes. The addition (b) does not have
this problem but here the sort of the potential a attribute under C is different
from that of the a attribute under A. Finally the addition (c) does not respect
(a) because the potential a attribute is forced into a new explicit class E with
which it is not yet labeled.

intint intstr

(b)

Addition

A B

(a)

a b a a

A B C D

E

Schema graph Addition

(c)

A C

Addition

(d)

A D

Fig. 14. A schema graph with three additions with is edges in the extension pattern

These considerations lead to the following extension of the definition of well-
typedness.

Definition 4. Given a schema graph S with no implied object class nodes a
well-formed addition Add(J, J ′) is said to be well-typed under S if it satisfies



the conditions for an addition without is edges in J ′ and it holds for ξ and ξ′

that for every is edge 〈n1, is, n2〉 in J ′ with n1 in J it holds that (TA-CPI) for
every potential weak value path in S for n1 under ξ there is a similar potential
weak value path in S for n2 under ξ′ that ends in a node with the same sort,
and (TA-NPI) for every potential weak value path in S for n1 under ξ and a
similar path in S for n2 under ξ′ that ends in an explicit class node m′

2 there is
a similar path in S for n1 under ξ that ends in m′

2.

Theorem 6. Given a schema graph S with no implied object class nodes a well-
formed addition Add(J, J ′) respects S if it is well-typed under S.

Theorem 7. Deciding well-typedness of a well-formed addition under a schema
graph with no implied object class nodes is in PSPACE.

Theorem 8. Deciding if a well-formed addition respects a schema graph with
no implied object class nodes is PSPACE hard.

Theorem 9. Deciding well-typedness of an addition under a schema graph with
no implied object class nodes and no composite-value classes is in PTIME.

4.3 Typing Deletions

Given a schema graph S with no implied object class nodes a deletion Del(J, J ′)
is said to respect S if for all well-formed data graphs I that belong to S it holds
that [[Add(J, J ′)]](I) also belongs to S.

In order to understand what needs to be checked for well-typedness consider
the deletion (a) in Fig. 15 and schema graph (b) in the same figure. In instance
graph (a) the problem is that the class name that is deleted is required to be
there since the node is still labeled with the name C of a subclass. In instance
graph (b) the problem is that after the deletion the b edge is no longer covered
by the schema graph. Finally, in instance graph (e) has the problem that after
the deletion the c edge forces the node back into the B class.

B

str

(d)

B
A

b

“Water”

str

B
A

A

A

A

c

C

(a) (b)

b

c
A B

C

(e)(c)

Del. Schema gr. Instance gr. Instance gr. Instance gr.

Fig. 15. A deletion, a schema graph and three instance graphs that demonstrate po-
tential class name deletion problems

To deal with these problems we have to consider two sets of class nodes: the
set of nodes that an instance graph was associated with and the set of nodes



that it is no longer associated with because the class names of these nodes are
removed. For this purpose we introduce the notion of basic deletion pair which
is defined for a deletion Del(J, J ′) and a schema graph S with no implied object
class nodes, as the set of pairs 〈M1, M2〉 ∈ P(NS)×P(NS) such that there is an
extension relation ξ̄ from S to J that supports J and a node n ∈ J such that
M1 =

{

m ∈ NS | ξ̄(m, n)
}

and M2 = { m ∈ NS | λS(m) ∈ λJ(n) − λJ′ (n) }.
Because embeddings are not injective and different embeddings can embed

differently upon the same node, it is possible that what is removed from a node
is a combination of basic deletion pairs. Therefore we define the set of deletion
pairs as the smallest superset of the basic deletion pair that satisfies the rule
that if 〈M1, M2〉 and 〈M1, N3〉 are deletion pairs then 〈M1, M2 ∪ N3〉 is also a
deletion pair.

With the help of this set we can now define a notion of well-typedness that
prevents the three problems that were demonstrated in Fig. 15.

Definition 5. Given a schema graph S with no implied object class nodes a
deletion Del(J, J ′) is said to be well-typed under S if for every deletion pair
〈M1, M2〉 with no composite-value class nodes in M1 it holds that (TD-NSC)
there are not two class nodes m1 and m2 in S such that m1 ∈ M1−M2, m2 ∈ M2

and m1 isa∗

S m2, (TD-EC) there is not a potential weak value path p in S from
{m1} where m1 is an explicit class node m1 and the end node m2 of p such that
m2 ∈ M2 and for all similar weak value paths in S from m1 to m′

2 it holds that
m′

2 ∈ M1, and (TD-CPE) for every potential weak value path in S from M1

there is similar weak value path in S from M1 − M2.

Theorem 10. Given a schema graph S with no implied object class nodes a
deletion Del(J, J ′) respects S if it is well-typed under S.

Unfortunately it is not true the well-typedness is a necessary condition for
respecting a schema graph as is shown in Fig. 16.

Theorem 11. Deciding well-typedness of an addition under a schema graph
with no implied object class nodes is in PSPACE.

Theorem 12. Deciding if a deletion respects a schema graph with no implied
object class nodes is PSPACE hard.

4.4 Typing the Reduction

Typing the reduction is trivial because if a well-formed data graph belongs to
a schema graph then the reduction will also belong to that schema graph. This
can be understood if we look at one step of the reduction where two nodes are
merged. It is easy to see that the result of merging these two nodes will belong
to a schema graph iff the original well-formed instance graph belongs to it. It
follows that the result of the reduction belongs to a schema graph iff the original
well-formed instance graph does.



5 Conclusion
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Deletion
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a

A

int

B

Schema graph

(b)

a
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Fig. 16. A deletion that is not well-
typed but respects the schema graph

In this paper we introduced a graph-
based data model GDM that repre-
sents instances and schemas as labeled
graphs, and incorporates features from
object-oriented data model, ER data
models and semistructured data mod-
els. Together with this data model we
introduced a graph-based update lan-
guage GUL that is based on pattern
matching and allows the user to spec-
ify additions and deletions in a graph-
ical way.

For patterns a notion of well-
typedness was introduced that cap-
tures exactly when there is a well-
formed data graph that belongs to the
schema graph and the pattern embeds into this data graph. For patterns without
is edges this notion can be checked in PTIME and with is edges it was shown
to be co-NP complete.

For additions a notion of well-typedness was introduced that is a sufficient
condition, but not necessary condition, for an addition to respect a schema graph.
Deciding this notion of well-typedness was shown to be PSPACE complete. In the
special case where there are no composite-value nodes deciding well-typedness
can be done in PTIME.

For the deletion also a notion of well-typedness was introduced that is a suffi-
cient condition, but not a necessary condition, for a deletion to respect a schema
graph. Deciding this notion of well-typedness was also shown to be PSPACE
complete.

Finally the reduction operation that reduces all well-formed data graphs to
instance graphs, was shown to be trivially well typed.
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