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Chapter 1

Introduction

1.1 Object-Oriented and Graph-based Data Models

Since the emergence of database management systems as the way of storing and
managing large quantities of structured data, there has been an ongoing debate about
what the data model for such a system should be. This question seemed settled when
the relational model as presented in 1970 by E.F. Codd (Codd, 1970) gained wide
acceptance under commercial database vendors and the database research community.

Although the relational model turned out to be a very simple and effective way to
represent data in a database, there was the need to incorporate more semantics into
the data model such as the distinction between entities and relationships and the isa
relationships. For this purpose P.P. Chen introduced in 1976 the Entity-Relationship
Model (Chen, 1976) followed by several extensions such as SDM (the Semantic Data
Model) (Hammer and McLeod, 1978). A little later in 1979 E.F. Codd presented
RM/T (Codd, 1979) in order to extend the relational model with more semantics.
These data models were not intended as replacements of the relational model but
rather as separate data modeling languages; the database would still represent the
data in the relational model.

Another development was the introduction of the non-first-normal-form relations
or nested relations (Jaeschke and Schek, 1982; Arisawa et al., 1983). This nested
relational model generalized the relational model by dropping the requirement for
the first normal form, i.e., it allowed that tuples contained relations in their fields.
This allows for a more natural representation of complex data that is inherently
hierarchically organized. Later this was generalized even more by allowing arbitrary
nesting of sets, tuples and tagged unions as in the Format Model (Hull and Yap,
1984).

With the introduction of semantic data models (or complex object data model)
such as LDM (the Logical Data Model) (Kuper and Vardi, 1984; Kuper and Vardi,
1993) and IFO (Abiteboul and Hull, 1987) these two developments were integrated by
representing data as collections of objects that are organized in classes and have com-

1



2 CHAPTER 1. INTRODUCTION

plex values associated with them. Eventually such data models became also known
as object-based or object-oriented data models although the exact meaning (and
meaningfulness) of these terms in the context of databases is still not widely agreed
upon. See for instance The Object-Oriented Database System Manifesto (Atkinson
et al., 1989), Third-Generation Database System Manifesto (Stonebraker et al., 1990)
and Comments on The Third-Generation Data Base System Manifesto by D. Maier
(Maier, 1991) and The Third Manifesto by H. Darwen and C.J. Date (Darwen and
Date, 1995). Since then there have been some attempts at standardization such as
in (Cattel and Barry, 1997) but these have not yet gained an acceptance as wide as
that of the relational model.

Next to extending data models with extra concepts to incorporate more mean-
ing there have also been attempts to simplify data models by basing them upon a
few simple yet effective concepts. One early attempt is FDM (the Functional Data
Model) (Shipman, 1981) which is based upon the notion of function. Another very
similar notion that was used for this purpose is the notion of graph that was used
as the fundamental concept in GOOD (the Graph-Oriented Object Database Model)
(Gyssens et al., 1990; Andries et al., 1992; Gyssens et al., 1994). As was shown in
(Andries, 1996; Gemis and Paredaens, 1993) graphs can be readily used to simulate
the usual concepts found in extended Entity-Relationship models and object-oriented
models. Another approach has been to use generalizations of graphs such as hyper-
graphs (Tompa, 1989; Watters and Shepherd, 1990; Levene and Poulovassilis, 1991;
Catarci and Tarantino, 1995) to represent complex data more faithfully. In hyper-
graphs the edges are generalized to hyperedges that hold between sets of nodes or
simply are sets of nodes. Recently the notion of hypergraph was even further general-
ized to hierarchical graphs (Hoffmann, 1999; Drewes et al., 2000) where edges can be
associated with nested subgraphs. Another generalization of graphs are hygraphs as
used in the Hy+ system (Consens and Mendelzon, 1993; Consens et al., 1994) which
are a hybrid of higraphs (Harel, 1988) and hypergraphs. Here nodes can be associated
with blobs, i.e., sets of nodes, which allows graphs to be hierarchically structured.
Finally another similar generalization of graphs is used in the hypernode model (Lev-
ene and Poulovassilis, 1990; Poulovassilis and Levene, 1994; Levene and Loizou, 1995;
Poulovassilis and Hild, 2001) where nodes are generalized to hypernodes by making
it possible to associate them with entire subgraphs which may contain nodes that
appear in the containing graph.

Of all the generalizations of graphs presented above the hypernode model and the
hierarchical graphs seem to be the most general ones. However, as will be shown in
this thesis, all these generalizations can also be straightforwardly simulated in a “flat”
graph-based model.

1.2 Graph-based Update and Query Languages

One of the tasks of a database management system is to enable users to ask ad-hoc
queries. This is usually done by allowing the user to specify a query in a textual
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language such as SQL. With the introduction of QBE (Query By Example) (Zloof,
1977) it was shown that this can be made easier by letting the user specify the query
by filling in certain forms with an example of the requested data. This resulted in a
query interface that is very intuitive for novice users and especially for those that are
not yet well-acquainted with the schema of the database they are querying. In recent
years this has lead to the development of several so-called visual query languages
that enable the user to specify queries in a graphical way. For an early overview see
(Catarci et al., 1995).

Some of these languages are form-based visual query languages like QBE, i.e., the
user can fill in certain forms with an example of the requested data, and examples of
these are G-WHIZ (Heiler and Rosenthal, 1985) based on the functional data model,
FORMAL (Shu, 1985), NFQL (Embley, 1989), the languages proposed in (Shirota
et al., 1989) and (Zhao et al., 1993), and VQL (Vadaparty et al., 1993). In other
visual query languages the user can indicate in a graphical way the operations that
specify the query. One example of this is QBD∗ (Angelaccio et al., 1990) which is
based on the ER model and allows the user to browse the schema and specify queries
in a graphical way. Some experiments with this language have indeed shown that
a graphical representation can help the user with specifying a query (Catarci and
Santucci, 1995). Another example is presented in (Czejdo et al., 1990) that is based
on an extended ER model. A final example is Gql (Papantonakis and King, 1995)
which is based on the functional data model and allows the user to specify queries in
a declarative way similar to SQL.

The visual query languages that are the most relevant for this thesis are the
pattern-based visual query languages which are based on pattern matching. In such
languages the data model is either graph-based or can be represented as graphs, and
queries are specified by a graph that has to be matched in the database instance.
One of the earliest examples of such languages are G+ (Cruz et al., 1988) (associated
with the earlier mentioned Hy+ system) and the one presented in (Mark, 1989). The
G+ language was based on a relational model and later extended to a more general
graph-based data model and renamed to Graphlog (Consens and Mendelzon, 1990).
Later on this language was adapted for the even more general hygraph data model of
the Hy+ system. A special feature of these languages is that edges can be annotated
with regular expressions that should be matched with paths in the instance graph.
The language that was introduced with GOOD1 (Gyssens et al., 1990) operates on
labeled graphs and consists of five primitive operations for the addition and deletion
of edges and nodes that can be combined into recursive methods. This enables a user
to compute a query by specifying it as an update to the instance graph. The language
Hyperlog (Levene and Poulovassilis, 1990) operates in a similar fashion but it is based
on a hypernode data model and programs are specified in the form of Horn-clauses
similar to those in IQL (Abiteboul and Kanellakis, 1989). Programs are specified in
a similar way in G-Log (Paredaens et al., 1991; Paredaens et al., 1995) but here the
data model is again flat labeled graphs. Another rule-based language is DOODLE

1The data model and the language are both referred to as GOOD.
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(Cruz, 1992) which is based on F-logic (Kifer and Lausen, 1990) and supports user-
defined data visualizations and visual queries in an integrated way. The PIM algebra
(Miura and Moriya, 1992) is based on pattern matching and operates on a semantic
data model. It is shown to be equivalent with the logic-based PIM calculus. A final
example of a language based on pattern-matching is XML-GL (Ceri et al., 1999) which
is a query language for XML documents. It uses patterns to select certain parts of
documents and also to select and construct what will be shown in the result of the
query.

The form-based and pattern-based visual query languages usually allow a very
intuitive expression of so-called select-project-join queries, i.e., queries that ask if
certain records and/or objects exist and are connected in a certain way. Typical
queries that are harder to express are queries with conditions that contain universal
quantifiers, disjunctions and negations. This can be solved in different ways:

1. By the introduction of special constructs for universal quantification as in VQL
(Vadaparty et al., 1993), its successor VISUAL (Balkir et al., 1996) and the
graphical query language GRAQULA (Sockut et al., 1993).

2. By combining the visual language with a textual language such as in HQL/EER
(Andries and Engels, 1996) which is based on an extended ER model and G2QL
(Franzke, 1996) which operates on a graph-based data model.

3. By specifying the query in the form of Horn-clauses (with negation) as in Hy-
perlog, Graphlog, G-Log and DOODLE.

4. By using nested patterns such as Charles S. Peirce’s existential graphs (Roberts,
1992) that allow the expression of first order logic conditions in one single dia-
gram.

5. By introducing some kind of iteration that allows simple pattern-based opera-
tions to be combined into a procedural program that computes the query as in
GOOD.

The GOOD language was one of the first graph-based languages that was shown
to be able to express all constructive database transformations (Van den Bussche
et al., 1997). As demonstrated in (Van den Bussche and Paredaens, 1995) this class
of database transformation is closely related to the simulation of complex values.
This allowed the introduction of languages such as PaMaL (Gemis and Paredaens,
1993; Gemis, 1996) and GOAL (Hidders and Paredaens, 1994) that reduce the set
of operations to just an addition and a deletion by letting certain nodes explicitly
represent complex values. The main differences between these two languages are
that PaMaL has an object-based data model where GOAL has a slightly extended
ER model, and PaMaL has an explicit reduction operation that merges nodes that
represent the same complex value where GOAL merges such nodes immediately after
every addition or deletion. The graph-based update language that is represented in
this thesis is a direct successor of these two languages.
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1.3 Research Questions and Motivation

The main goal of this thesis is the design of a graph-based update language such as
GOAL and PaMaL, but with a well-defined data model that is able to represent or
simulate most of the structures found in current data models. This leads to the first
research question:

• Is it possible to design a graph-based object-oriented data model?

With an object-oriented data model we mean here a data model that supports the
notions of object identity, complex values and inheritance. In order that the update
language and the associated theoretical results can also be applied to other data mod-
els, we want this data model to be a generalization of existing data models such as
the nested relational model, extended ER models and complex object data models
such as IFO. This means, for instance, that it should also support symmetric re-
lationships as found in the ER models. Moreover, the data model should also be
usable for semistructured data (Abiteboul, 1997; Suciu, 1998) and therefore instances
and schemas should be represented by similar graphs such that the schema and the
instance can be queried in similar ways, and instance and schemas should be inde-
pendent concepts such that instances can exist without a schema.

If this data model has been established then the next question is:

• Is it possible to design a simple and expressive graph-based update language
based on pattern-matching for this data model?

In order to keep the semantics of the language simple we will require it to be determin-
istic and always have a well-defined result if its operations are syntactically correct.
The language should also respect the meaning of the nodes in the data model that
represent objects and complex values. For nodes that represent objects this means
that the language should presume that these nodes are abstract, i.e., the only thing
that the user (and therefore the operations) can see is how they relate with other
nodes in the instance. For nodes that represent complex values this means that, for
instance, nodes that represent basic values cannot have attribute edges and it is not
allowed that the same complex value appears twice in the same set. In order for
the language to be usable for semistructured data it should have schema-independent
semantics, i.e., the semantics of the operations should be independent of the schema
that the instance it operates on, belongs to. Finally, we require that the language is
expressive enough to express at least all constructive transformations (Van den Buss-
che et al., 1997). As discussed in (Van den Bussche et al., 1997) this seems to be
a natural class of transformations that is the upperbound of several straightforward
object-creating languages such as GOOD and IQL (Abiteboul and Kanellakis, 1989),
and seems to cover most, if not all, practical transformations. Moreover, languages
that go beyond this class often require for this an explicit copy-elimination operator
that merges isomorphic subgraphs (Abiteboul and Kanellakis, 1989) or an unconven-
tional type of semantics (Denninghoff and Vianu, 1993). Therefore we consider this
class of transformations as an appropriate level of expressive power for GUL.
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Although the language is required to be independent of schemas, it is interesting
to see if it can be decided if certain operations respect that schema if one is available.
This leads to the following research question.

• Can the operations of the update language be typed given a certain schema such
that if a well-typed operation is applied to an instance of that schema then the
result will belong to the same schema?

This notion of well-typedness should not be more strict then necessary, i.e., it should
classify as much operations as well-typed as possible. This raises the question whether
these operations can be exactly syntactically characterized and what the compu-
tational complexity of deciding this problem or the corresponding notion of well-
typedness is.

1.4 Outline of the Thesis

The organization of this thesis is as follows. In Chapter 2 we introduce a family of
Graph-based Data Models GDM. In Chapter 3 the Graph-based Update Language
GUL is presented. In Chapter 4 we discuss the problem of typing GUL patterns under
GDM. In Chapter 5 the same is done for GUL additions. In Chapter 6 the typing
of GUL deletions is discussed. In Chapter 7 some suggestions for further research on
the subject of typing GUL are made. In Chapter 8 the expressive power of GUL is
investigated and whether the is edges are really necessary. Finally, in Chapter 9 we
give a summary of the main results and indicate some directions for further research.



Chapter 2

GDM: Graph-based Data
Models

2.1 Introduction

In this chapter we introduce a family of graph-based data models called GDM (Graph-
based Data Model) that share a number of basic principles on how data is represented.
Throughout this thesis this family of data models will be used as a platform for the
discussion of several data model topics. It is not intended as yet another data model;
its purpose is to serve as a framework for discussing several aspects of different types
of data models. In some of the following chapters extra extensions and features of the
data model are discussed whenever they are necessary or appropriate.

This chapter is organized as follows. In Section 2.2 we introduce the basic concepts
of GDM. In Section 2.3 we introduce how data is represented in GDM by introducing
the notion of instance graph. In Section 2.4 the basic data model is introduced
under the name of basic GDM. This is a simple data model that demonstrates the
basic principles and properties of GDM. In Section 2.5 the data model GDM[f ,t,i,s]
is defined which extends basic GDM with attribute constraints such as functionality,
totality, injectivity and surjectivity. In Section 2.6 we present GDM+[f ,t,i,s] which has
a slightly more complex semantics but allows more schema graphs. Finally, Section 2.7
discusses the specific properties of the presented data models and compares them to
other data models.

2.2 Basic Concepts

In this section we introduce the basic concepts and philosophy of GDM. The basic
assumption of GDM is that an instance represents a finite set of entities that have
certain attributes and belong to certain classes.

7



8 CHAPTER 2. GDM: GRAPH-BASED DATA MODELS

The term entity is used here as a generalization of concepts in other data models
such as entities and relationships in the Entity-Relationship model (Chen, 1976),
entities in FDM (Shipman, 1981), tuples and atomic values in the relational model
(Codd, 1970), objects and facts in ORM/NIAM (Halpin, 1998), and objects and
complex values in complex-object data models such as IFO (Abiteboul and Hull,
1987) and IQL (Abiteboul and Kanellakis, 1989). In all these data models these
concepts are used to refer to certain concrete or abstract things in reality. In GDM
we use this term in all these meanings, so it can refer to concrete objects such as
people, houses and cars, but also to abstract objects such as numbers, sets, tuples
and predicates.

The term attribute is used here to indicate a property of an entity. This is a
generalization of concepts such as roles and attributes in the Entity Relationship
model, functions in FDM, fields in the relational model, roles in ORM/NIAM, and
fields in complex-object data models. The attribute of an entity is presumed to have
a name that is unique for this entity and a value that is a set of zero or more entities.
We do not make a distinction between an attribute that is undefined and one that
has the empty set as its value.

As is usual in object-oriented databases we distinguish three mutually exclusive
kinds of entities (Beeri, 1990):

Objects are entities which can be identified independently of the attributes recorded
in the instance. This allows us, for example, to have an instance with two object
nodes representing two distinct apples of which the recorded attributes, e.g., kind
and weight, are precisely the same. Note that the fact that the two apples can
be distinguished implies that there must be some other attribute not recorded
in the instance that is different, e.g., their position. Since this attribute is not
recorded in the instance, the two objects cannot be identified there by their
attributes.

Composite values are identified by their attributes recorded in the instance. For
instance, two addresses are the same entity if and only if they have the same
street, number and city attribute. Another example is a contract between an
employee and a department. This contract may be identified by the attributes
employee and department. If two composite values have the same attributes with
the same values then they are the same entity.

Basic values do not have attributes but are assumed to have some kind of repre-
sentation that is visible for the user. This representation is called a basic-value
representation and represents a value which is atomic as far as the data model is
concerned. Examples of these are strings and integers but also images, movies
and sound recordings. Every basic value is identified by its representation. Note
that this is not in general true because numbers, for instance, often have mul-
tiple representations such as 1 and 1.0. The basic values are assumed to be
partitioned into disjoint sets called basic types which have a name called basic-
type name. This is again a slight simplification because, for example, the set of
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integers and the set of reals are not disjoint.

The exact kind of an entity is called its sort which is either object, composite value
or some basic type. Only objects and composed values may have attributes, but the
values of these attributes can contain entities of any sort.

A schema in GDM represents a finite set of classes. A class is a unary predicate
that is defined for entities such that all entities for which it holds have the same sort.
In the schema it is for example indicated for every class

1. which sort the entities in the class have,

2. which attributes are allowed for the entities in this class, and

3. what the classes of the entities in these attributes are.

The classes may or may not have a name in the schema. If a class has a name then
this name must be unique in the schema. It indicates that it is directly indicated in
the instance if an entity belongs to this class. Such a class is called a named class.
If a class does not have a name then the membership of this class is derived from,
for example, the fact the the entity is in the value of a certain attribute and the
schema states that such entities should belong to that class. Such a class is called an
anonymous class.

An example of a named class could be a class Person if it is explicitly indicated in
the instance which entities are persons. If it is indicated in the schema that entities in
this class can have an address attribute then the class associated with this attribute can
be anonymous because the entities that are in these attributes will be automatically
a member of this class. As will be shown later on such anonymous classes are similar
to types that describe composite values, but we will also allow anonymous object
classes and anonymous basic-value classes. An important difference between such
types and our anonymous classes is that for types the membership of entities is usually
determined by looking at the structure of the value whereas for anonymous classes
membership is determined by looking at the role that the entity plays in certain
attributes.

2.3 GDM Instance Graphs

In all GDM data models instances are represented by special labeled graphs called
instance graphs. We first give an informal description of the nodes and edges of such
graphs. Then we explain which conditions must hold and why for a valid instance
graph. Finally, we give a formal description of instance graphs.

2.3.1 Informal description of the elements of instance graphs

In GDM an instance is represented by labeled graphs such as shown in Figure 2.1
which are called instance graphs.
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Employee
Engineer Contract Department

Section Section

street number city

employee

address

department

sections sections

name

namename

str

str str str str str

“R&D”

“Development”“Research”“Chicago”“25a”“Birch Street”

“D. Johnson”

str

name

Figure 2.1: An instance graph

The nodes in the graph represent entities such as employees, contracts, integers and
departments. The square nodes represent objects, the empty round nodes represent
composite values and the round nodes containing a basic-type name are basic values.
These nodes are called object nodes, composite-value nodes and basic-value nodes,
respectively. The basic-value nodes are labeled with the representation of a basic
value that belongs to the basic type mentioned in the node.

The edges represent attributes of these entities such as the name of an employee,
the street of an address and the sections of a department. Every edge is labeled with
the name of the attribute it represents. All these edges are called attribute edges.
Note that an attribute is represented by more than one attribute edge if its value
contains more than one entity. For instance, the value of the sections attribute of the
department is the set containing the section Research and the section Development.
This attribute is therefore represented by two edges leaving from the node that rep-
resents the department and having the same name. This is also allowed for attributes
of composite-value nodes and so we can represent nested relationships such a shown
in Figure 2.2. Note that this is different from from a flat relationship between a coach
and a player because a player that is in different teams can have more than one coach.

Finally, the nodes are labeled with zero or more class names such as Engineer and
Contract to indicate which classes they belong to. In GDM we do not assume that
every class has a name, so this is only indicated in the instance graph for classes with
a name. There is no restriction on the sorts of class-labeled and class-free nodes,
i.e., all three kinds of entities can be class-labeled or class-free. For instance, there
can be class-free object nodes, class-labeled composite-value nodes and class-labeled
basic-value nodes. We can have, for example, a class named Primes that contains
exactly all prime numbers under a certain maximum1.

1We require that extensions of classes are finite so it is not possible to have a class with all primes.



2.3. GDM INSTANCE GRAPHS 11

Player

Player Player

player

player
player

coach
CoachesCoach

Figure 2.2: An example of a nested relationship

2.3.2 Informal description of the instance-graph constraints

Not every combination of the presented types of nodes and edges constitutes a legal
instance graph. We present here the seven constraints that must hold for all instance
graphs.

The first three constraints concern the basic-value nodes and follow directly from
the definition of basic values.

The no-attributes of basic-values constraint (I-BVA)
Basic-value nodes do not have attribute edges.

The basic-value representation constraint (I-BVR)
Precisely all basic-value nodes are labeled with a basic-value representation

The basic-value type constraint (I-BVT)
The basic-value representation that a basic-value node is labeled with, must be-
long to the basic type that is indicated by the basic-type name that it is labeled
with.

The fourth constraint concerns itself with the reachability of class-free nodes.

The reachability constraint (I-REA)
Every class-free node must be reachable from some class-labeled node via a di-
rected path of edges.

For example, the node representing the string “Chicago” is reachable from the En-
gineer node via an address edge and a city edge. If the address edge would not be
present then the address (and all its components) would not be reachable and, there-
fore, not be allowed in the instance graph. The reason for this constraint is that it
does not seem clear what it means if an instance graph contains nodes which do not
belong to any attribute or named class. For instance, what would be the meaning
of an address with a street, number and city attribute in the instance graph which
is nobodies address? Note that if the user wants to maintain an independent list of
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addresses then he or she can do so by introducing an explicit Address class to keep
the addresses in.

The fifth constraint for instance graphs forbids the sharing of composite-value
nodes.

The non-sharing constraint (I-NS)
Every composite-value node has either one incoming edge, or no incoming edges
and labeled with one class name.

This is called the non-sharing constraint because it prevents sharing of composite
value nodes between different attributes and/or named classes. Thus, if two entities
have the same composite value in a certain attribute then this composite value cannot
be represented by a single node but has to be represented by two nodes, one for every
attribute. An example of this is presented in Figure 2.3 where we see two employees
that have the same birthday but these birthdays are represented by two different
nodes.

One reason for this constraint is that if an update on an attribute of the birthday of
one employee, e.g., the day attribute, is made, then the birthday of the other employee
should not be updated as well. If we represent the birthdays of the two employees
as two different nodes then it is evident that we can change one birthday without
changing the other. This is very similar to how tuples are treated in the (nested)
relational model and data models with complex values, i.e., the same tuple may occur
in different relations and different (nested) attributes at once, but if one occurrence of
the tuple is updated then the other occurrences are not necessarily updated as well.
Other reasons for the non-sharing constraint are discussed in Section 2.7.

Employee Employee

birthday

year
month

day

1956
int

“Jan”
str

year

month
day

12
int

birthday

Figure 2.3: An instance graph representing the same composed value in different
attributes

Another example of sharing of composite values is shown in Figure 2.4. Here we see
a manager and a department and two relationships between them; the manager is the
manager of this department and he or she has a contract with the department. Both



2.3. GDM INSTANCE GRAPHS 13

relationships are the same composite value but have to be represented by two different
nodes. This, again, prevents update problems if, for example, new attributes such as
salary and begin-date are added to the contract. If the two relationships would have
been represented by one node then these are also added to the manager-of relationship.

Manager
Employee

employee

Contract

Department

department

departmentemployee

Manager-of

Figure 2.4: An instance graph representing the same composed value in two different
classes

Contrary to composite value nodes, object nodes and basic-value nodes can be
shared and their nodes can have any number of incoming edges and class name la-
bels. In Figure 2.3 we see, for instance, that the basic value “Jan” is shared by two
attributes. Basic values are allowed to be shared because they are assumed to be
atomic and, therefore, cannot be partially updated but only replaced as a whole. For
instance, if the number 1956 in the example is changed into the number 1955 then
this means, as far as the data model is concerned, that one number has been re-
placed by another. The data model does not “know” that the number has only been
decremented by 1. This is different from composite values where the data model does
“know” when just one attribute is changed and the others remain the same.

It is important to realize that there are semantical differences between updating
an object node, a composite-value node and a basic-value node. If an attribute of an
object node is changed then the node still represents the same object. If an attribute
of a composite value node is changed, however, then this means that it represents a
different composite value. This is because a composite value is by definition identified
by its attributes. Similarly, if the representation of a basic-value node is changed then
it represents a different basic value. These differences can be summarized by saying
that objects can be updated but values can only be replaced. This means that it is
meaningful to say that a certain attribute of a certain object has changed but that
it is not meaningful to say that a certain attribute of a certain composite value has
changed. In the latter case it would be more appropriate to say that the role that
the old value was playing in some named class or attribute is now being played by
another value.

This explains why it is more natural to let composite-value nodes not be shared.
In that case there is a different node for every role that a certain composite value plays
in some attribute or named class. An update to a node then corresponds naturally
to the replacement of the old value by the new value for that role. The sharing of
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basic-value nodes does not present similar problems because they are not allowed to
be updated.

The two final constraints for instance graphs determine how often certain entities
may be represented, i.e., duplicated, in an instance graph.

The basic-value duplication constraint (I-BVD)
Two different basic-value nodes do not have the same basic value representation

This constraint ensures that in order to see that two basic values, e.g., the names of
two employees, are the same, it is sufficient to check if they are represented by the
same node.

The composite-value duplication constraint (I-CVD)
Two different composite-value nodes that are in the same attribute of the same
node or are labeled with the same class name, do not represent the same com-
posite value

This constraint captures the intuition that the values of attributes and the extensions
of classes are always sets of entities. It follows that attributes and classes cannot
contain the same composite value more than once. If we look in Figure 2.5 we see
that the left employee seems to have two address nodes which represent the same
value. Because the value of the attribute is a set, such duplication of values within
an attribute is not allowed.

str

Employee

address

Contract

Employee

address

employee

employee

Contract

“Ash Avenue” “22”
str

“Chicago”
str

“22”
str

city numberstreet

city

number

street
department

department

Department

Figure 2.5: A weak instance graph

Another example of illegal composite-value duplication are the two contracts be-
tween the right employee and the department. The two contracts are the same value
and both members of the extension of the class Contract. The extension of the class
can, however, not contain the same value twice. Therefore, this is also not allowed in
an instance graph.

Finally, we see that in Figure 2.5 the string “22’ is represented by two nodes. So
this graph also violates the constraint for basic-value duplication.
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Note that the constraint for basic-value duplication is global where the constraint
for composite-value duplication is local because the latter forbids duplication only
within attributes and within class extensions whereas the first forbids duplication
within the complete instance graph. Therefore, we do not need an extra constraint to
ensure that attributes and classes that contain basic values are sets. For attributes
and classes that contain objects there is also no need for such a constraint because it
is assumed that different object nodes always represent different entities.

If a labeled graph fulfills all the other constraints for instance graphs but not
the constraints for basic-value duplication and composite-value duplication, then it is
called a weak instance graph2.

2.3.3 Formal definition of instance graphs

The most fundamental notion of the data model which is used for representing in-
stances, schemas and other concepts, is the labeled graph. It is defined as follows.

Definition 2.1 A labeled graph with node labels NL and edge labels EL is G =
〈N,E, λ〉 with N the set of nodes, E ⊆ N × EL × N the set of edges, and λ :
(N ∪E)→ (NL∪EL) the labeling function such that λ(n) ∈ NL for every node n ∈ N
and λ(〈n1, α, n2〉) = α for every edge 〈n1, α, n2〉 in E.

A labeled graph is said to be finite if it has a finite number of nodes and edges.
It is said to be partially labeled if λ is not defined for every node. For an edge
e = 〈n1, α, n2〉 the node n1 is called the begin node and n2 is called the end node.

Definition 2.2 We denote a list as [a1, . . . , an]. The empty list is written as [].
The list concatenation of two lists l1 and l2 is written as l1 • l2 and defined such
that [a1, . . . , an] • [b1, . . . , bm] = [a1, . . . , an, b1, . . . , bm]. The set of all finite lists of
elements of a set X is written as L(X).

A prefix of a list l is a list l′ such that there is a list l′′ with l = l′ • l′′. The length
of a list l is written as |l|.

Definition 2.3 A path in a labeled graph G = 〈N,E, λ〉 is a non-empty list p ∈ L(E)
such that if p = [e1, . . . , ek] then for all ei with 1 ≤ i < k it holds that the end node
of ei is the begin node of ei+1.

Furthermore, we need some fundamental symbols and sets which are presumed to
be predefined. The special symbols are the following.

• isa, to label isa edges3 with,

• is, to label is edges4 with,
2The notion of weak instance graph is in no way related to the notion of weak entity as used in

the Entity-Relationship model.
3See Subsection 2.4.1 for an informal discussion of isa edges in GDM.
4See Subsection 3.3.1 for a discussion of is edges.
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• com, to indicate composite-value nodes,

• obj, to indicate object nodes,

For defining the fundamental sets we introduce the following notation. The set
P(X) denotes the power set of the set X, i.e., the set of subsets of X, and Pfin(X)
denotes the set of finite subsets of X. The fundamental sets are as follows.

• A, the set of attribute names, not containing isa or is.

• B, the set of basic-type names, not containing com and obj.

• C, the set of class names.

• D, the countable set of representations of basic values.

• δ : B → P(D), the domain function that gives for every basic type a disjoint
domain.

We are now ready to define what formally constitutes a weak instance graph.

Definition 2.4 A weak instance graph is I = 〈N,E, λ, σ, ρ〉 where 〈N,E, λ〉 is a
finite labeled graph with node labels Pfin(C) and edge labels A, and with the function
σ : N → {com,obj} ∪ B that gives the sort of every node, and the partial function
ρ : N ↪→ D that gives a basic-value representation for basic-value nodes, such that

• no edge leaves from a node labeled with a basic-type sort, (I-BVA)

• ρ(n) is defined iff σ(n) ∈ B, (I-BVR)

• if ρ(n) is defined then ρ(n) ∈ δ(σ(n)), i.e., the basic-value representation of n
is in the domain of its basic type, (I-BVT)

• for every node n such that λ(n) = ∅ there is a path of edges that ends in n and
starts in a node n′ such that λ(n′) 6= ∅, and (I-REA)

• nodes with sort com have either exactly one incoming edge or are labeled with
exactly one class name, but not both. (I-NS)

Nodes with sort obj are called object nodes, node with sort com are called composite-
value nodes and nodes with a sort in B are called basic-value nodes.

If λ(n) = ∅ then n is called a class-free node and if λ(n) 6= ∅ then it is called a
class-labeled node.

If the components of I are not explicitly named then they are presumed to be NI ,
EI , λI , σI and ρI , respectively.

The combination of the reachability constraint and the non-sharing constraint
prevents recursive values. With recursive values we mean here values that, directly or
indirectly, contain themselves. We assume that composite values contain the entities
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in their attributes but objects do not. This means that a certain node in a weak
instance graph represents a recursive value iff it is in a cycle of composite value
nodes only. Such cycles, however, are not allowed in a weak instance graph by the
reachability constraint and the non-sharing constraint.

Theorem 2.1 A weak instance graph cannot contain cycles of composite-value nodes.

Proof: Assume that we have a cycle of composite-value nodes. Since all these nodes
have an incoming edge from their predecessor in the cycle, they cannot be also labeled
with a class name and are, therefore, class-free. Since all class-free nodes must be
reachable from a class-labeled node it follows that at least one node in the cycle is
reachable from a class-labeled node outside the cycle. This is, however, not possible
since this node would then have an extra incoming edge which is not allowed for
composite-value nodes. �

When we want to decide whether an instance graph is weak or not then we need
to be able to decide if two nodes represent the same value. Therefore, we introduce
the following definition which tells us when two nodes in a weak instance graph are
value equivalent, i.e., represent the same value.

Definition 2.5 Given a weak instance graph I we define the relation ∼=I⊆ NI ×NI
as the smallest reflexive relation for which it holds that

1. if σI(n1) = σI(n2) ∈ B and ρI(n1) = ρI(n2) then n1
∼=I n2, and

2. if σI(n1) = σI(n2) = com and

(a) for every edge 〈n1, α, n
′
1〉 in EI there is an edge 〈n2, α, n

′
2〉 in EI such that

n′1
∼=I n

′
2, and

(b) for every edge 〈n2, α, n
′
2〉 in EI there is an edge 〈n1, α, n

′
1〉 in EI such that

n′2
∼=I n

′
1

then n1
∼=I n2.

Two nodes n1 and n2 in NI are called value equivalent if n1
∼=I n2.

Note that this definition of value equivalence might be considered incorrect if
recursive values would have been allowed. For instance, the labeled graph in Figure 2.6
contains two nodes which represent the same value viz. the infinite tuple 〈contains :
〈contains : 〈contains : . . .〉〉〉. Yet, by our definition of value equivalence they would
not be considered value equivalent.

To show that the relation ∼=I is well-defined and computable we present an algo-
rithm that computes it5:

5This algorithm is presented only for theoretical purposes. There is a better algorithm that can
solve the problem of tree-isomorphism in linear time (Aho et al., 1974).
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contains

contains

Figure 2.6: Two nodes representing the same recursive value

Algorithm 2.1
Input: a weak instance graph I
Output: VE containing ∼=I

1 funct V alueEquivalence(I)
2 begin
3 VE := { 〈n, n〉 | n ∈ NI } ;
4 VE’ := VE ∪ { 〈n1, n2〉 | σI(n1) = σI(n2) ∈ B ∧ ρI(n1) = ρI(n2) } ;
5 while VE 6= VE’ do
6 VE := VE’;
7 for n1, n2 ∈ { n ∈ NI | σI(n) = com } do
8 if (∀〈n1, α, n

′
1〉 ∈ EI : ∃〈n2, α, n

′
2〉 ∈ EI : 〈n′1, n′2〉 ∈ VE)∧

10 (∀〈n2, α, n
′
2〉 ∈ EI : ∃〈n1, α, n

′
1〉 ∈ EI : 〈n′2, n′1〉 ∈ VE)

11 then VE’ := VE’ ∪ {〈n1, n2〉};
12 fi
13 od
14 od;
15 VE
16 end

We now have to show that the algorithm indeed computes ∼=I . For this purpose we
introduce the following definition.

Definition 2.6 The relation VEi
I ⊆ NI ×NI is defined as the value of the variable

VE’ in Algorithm 2.1 on line 5 after i iterations of the while loop.

Theorem 2.2 The value of VE that Algorithm 2.1 computes is equal to ∼=I .

Proof: It is easy to see with induction upon i that it holds that VEi
I ⊆∼=I . It is

also easy to see that if the while loop ends the value of VE is a reflexive relation
that satisfies the two constraints that also must hold for ∼=I . It follows that if the
algorithm ends the value of VE is equal to ∼=I . That the algorithm ends is easy to see
because it ends when VE no longer grows and its size has a maximum of |NI |2. �

This theorem shows not only that the relation ∼=I is well-defined but also that it
can be computed in polynomial time (in the size of I) because the steps before the
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while loop and every iteration of the while loop can be computed in polynomial time,
and the maximum number of iterations is also polynomial.

Theorem 2.3 The relation ∼=I is an equivalence relation.

Proof:

reflexive This follows directly from the definition of ∼=I .

symmetric The definition itself of ∼=I is symmetric.

transitive We prove with induction upon i that the relation VEi
I is transitive, and,

therefore, also ∼=I :

i = 0 It holds that VE0
I = { 〈n, n〉 | n ∈ NI } ∪

{ 〈n1, n2〉 | n1, n2 ∈ NI ∧ σI(n1) = σI(n2) ∈ B ∧ ρI(n1) = ρI(n2) }. It fol-
lows that if 〈n1, n2〉 ∈ VE0

I and 〈n2, n3〉 ∈ VE0
I then the nodes n1, n2 and

n3 are all the same node or they are three basic-value nodes with the same
representation. In both cases it follows that 〈n1, n3〉 ∈ VE0

I .

i + 1 Assume that 〈n1, n2〉 ∈ VEi+1
I and 〈n2, n3〉 ∈ VEi+1

I . Then let j and j′

be the smallest numbers such that 〈n1, n2〉 ∈ VEj
I and 〈n2, n3〉 ∈ VEj′

I .
If j = 0 or j′ = 0 then the nodes must be basic-value nodes or all the
same node. Because the while loop only adds composite-value nodes it
follows that j = j′ = 0 and, therefore, by induction that 〈n1, n3〉 ∈ VE0

I

and, hence, also that 〈n1, n3〉 ∈ VEi+1
I . It now remains to be proven that

this also follows if j, j′ > 0. In that case the nodes will all be composite-
value nodes. Because at iteration j the pair 〈n1, n2〉 was added to VE’
it follows that ∀〈n1, α, n

′
1〉 ∈ EI : ∃〈n2, α, n

′
2〉 ∈ EI : 〈n′1, n′2〉 ∈ VEj−1

I

and ∀〈n2, α, n
′
2〉 ∈ EI : ∃〈n1, α, n

′
1〉 ∈ EI : 〈n′2, n′1〉 ∈ VEj−1

I . Because
VEj−1

I ⊆ VEi
I it also holds that ∀〈n1, α, n

′
1〉 ∈ EI : ∃〈n2, α, n

′
2〉 ∈ EI :

〈n′1, n′2〉 ∈ VEi
I and ∀〈n2, α, n

′
2〉 ∈ EI : ∃〈n1, α, n

′
1〉 ∈ EI : 〈n′2, n′1〉 ∈ VEi

I .
Because at iteration j′ the pair 〈n2, n3〉 was added to VE’ we can conclude
in the same fashion that ∀〈n2, α, n

′
2〉 ∈ EI : ∃〈n3, α, n

′
3〉 ∈ EI : 〈n′2, n′3〉 ∈

VEi
I and ∀〈n3, α, n

′
3〉 ∈ EI : ∃〈n2, α, n

′
2〉 ∈ EI : 〈n′3, n′2〉 ∈ VEi

I . By the
induction assumption it then follows that ∀〈n1, α, n

′
1〉 ∈ EI : ∃〈n3, α, n

′
3〉 ∈

EI : 〈n′1, n′3〉 ∈ VEi
I and ∀〈n3, α, n

′
3〉 ∈ EI : ∃〈n1, α, n

′
1〉 ∈ EI : 〈n′3, n′1〉 ∈

VEi
I . It then follows by the definition of the algorithm that 〈n1, n3〉 ∈

VEi+1
I .

�
Since ∼=I is an equivalence relation we can use it to define equivalence classes over the
nodes of a weak instance graph. The equivalence class of the nodes which are value
equivalent to a node n in a weak instance graph I is denoted as [n]I .

Now that we have a precise definition of when two nodes represent the same value
we can define instance graphs.
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Definition 2.7 A weak instance graph is called an instance graph if

• all two different basic-value nodes are not value equivalent, (I-BVD)

• all two different composite-value nodes which are labeled with the same class
name are not value equivalent, and (I-CVDa)

• all two different composite-value nodes which both have an incoming edge with
the same label and from the same node are not value equivalent. (I-CVDb)

2.4 Basic GDM

In this section we introduce basic GDM. This is a simple data model that shows
the basic concepts which are used in all the GDM data models. In this data model
schemas are described by schema graphs. We first give an informal description of
schema graphs, followed by a formal description. Finally, we describe informally
which instance graphs belong to which schemas, which is also followed by a formal
definition.

2.4.1 Informal description of the elements of schema graphs

As in most data models it is possible in basic GDM to specify a schema that determines
the structure of the instances. In basic GDM we represent schemas with labeled graphs
similar to those that represent instances. A small example of a basic GDM schema
graph is given in Figure 2.7. Every node in the graph represents a certain class.
In basic GDM classes can contain only one sort of entity, and we can, therefore,
distinguish three kinds of classes:

Object classes are represented by square nodes which are called object class nodes.

Composite-value classes are represented by empty round nodes which are called
composite-value class nodes.

Basic-value classes are represented by round nodes filled with the name of the basic
type, which are called basic-value class nodes.

As with instance graphs, we associate with every node a sort which is the sort of the
entities in the class represented by the node.

Some of the nodes in the basic GDM schema graph are labeled with a class name
such as Employee, Contract and Department. These nodes are called named nodes
and represent the named classes. The other nodes are called anonymous nodes and
represent the anonymous classes. We assume that every named class has a unique
name so there cannot be two named classes with the same name. The named classes
correspond closely to what is more conventionally known as classes and relations, and
the anonymous classes are similar to types. For instance, the class of the address of an
employee corresponds to the tuple type 〈street : str, number : str, city : str〉. The main
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Figure 2.7: A basic GDM schema graph

difference in basic GDM between named and anonymous classes is that named classes
have explicit extensions, i.e., it is indicated in the instance to which named classes
entities belong, and anonymous classes have implicit extensions, i.e., their extensions
are derived from the structure of the instance.

The labeled edges in the schema graph indicate which attributes are allowed for
entities of that class and what type of value they have. These edges are called attribute
edges. For instance, an edge labeled sections leaves the node labeled Department and
arrives in the node labeled Section. This means that if an entity is a department
and has a sections attribute then this attribute must be a set of zero, one or more
entities of the class Section. In basic GDM it is not possible to indicate whether an
attribute contains at least one, at most one or exactly one entity. However, in the
next section an extension of basic GDM is presented that does provide a notation for
such constraints.

The hollow unlabeled edges between the nodes representing the classes Engineer
and Employee, and between the nodes representing the classes Manager and Employee,
indicate an isa relationship, and are called isa edges. Their meaning is that every
object in the class Engineer is also in the class Employee, and every object in the class
Manager is also in the class Employee. This can also be expressed by saying that the
classes Engineer and Manager are subclasses of the class Employee. In basic GDM
isa relationships are not restricted to object classes but are allowed between all sorts
of classes.

Note that there is a difference between what we in basic GDM consider to be the
extension of an anonymous class, and what is usually taken to be the extension of the
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type that it corresponds with. For instance, in Figure 2.7 the class represented by the
node at the end of the address-edge contains only the addresses of employees and no
other addresses, whereas the extension of the type 〈street : str, number : str, city : str〉
generally contains all values with this structure. Similarly, the class of the node at the
end of the name-edge leaving the Department class node, contains only those strings
that are names of departments.

2.4.2 Informal description of the constraints for schema graphs

Not all combinations of the nodes, labels and edges presented above constitute a
meaningful basic GDM schema graph. We present here the five constraints that must
hold for all basic GDM schema graphs.

The unique class-name constraint (S-UCN)
Named nodes have unique names.

This constraint follows directly from the assumptions that every node represents a
different class and that every named class has a unique name.

The unique attribute-name constraint (S-UAN)
Every attribute is specified only once per node.

In terms of the graph this means that from a certain node there cannot leave two
attribute edges with the same attribute name.

The no-attributes of basic-values constraint (S-NAB)
Attributes cannot be specified for basic-type nodes.

This follows directly from the fact that basic-type classes contain only basic values
which, by definition, do not have attributes.

The equal-sorts isa constraint (S-ESI)
The isa edges are only allowed between nodes of the same sort.

It is assumed in GDM that entities are of three mutually exclusive kinds (objects,
composite values and basic values) and that the basic types also are disjoint sets,
and it, therefore, holds that entities belong to only one sort at once. Suppose there
would be an isa edge from class A to class B and the sorts of these classes would be
different, say A is an object class and B is a composite value class. It would then
have to hold that every entity in the class A is also in the class B and, therefore, an
object and a composite value at the same time. Because this is not allowed it follows
that this schema contains a conflict and should not be allowed.

The reachability constraint (S-REA)
Every anonymous node is reachable from at least one named node via a directed
path of attribute and isa edges.
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Such anonymous nodes will never be assigned to any instance graph nodes. This
is explained in more detail with the definition of the relationship between instance
graphs and basic GDM schema graphs.

Although sharing of composite-value nodes is not allowed in instance graphs, in
basic GDM schema graphs it is allowed to use a composite-value class node for more
than one attribute. For instance, in Figure 2.7 the class of the begin-date and end-date
attributes of Contract is one and the same. It follows that there may be cycles in the
basic GDM schema graph that consist only of composite-value nodes, which represent
recursive types. An example of this is given in Figure 2.8. Here we see a class Train
with an attribute carriage-list that contains a list of all the carriages of the train. This
list is represented by a composite-value consisting of the first carriage and the rest
which is again a list of carriages. Note that the composite-value always represents a
non-empty list, so if there are no carriages in the train then the carriage-list attribute
must be empty. Similarly, it holds for the last element of the list that its rest attribute
must be empty.

rest

Carriage
carriage-list first

Train

Figure 2.8: A basic GDM schema graph with a recursive type

The sixth and final constraint is the following.

The unreachability constraint (S-UNR)
Edges never arrive in named composite-value nodes.

The reason for this can be explained with the help of the two illegal basic GDM schema
graphs in Figure 2.9.

In schema graph (a) we see that every address of an employee must also be in
the class Address. However, in basic GDM it is not allowed to label the node that
represents the address of the employee with the class name Address because then this
composite-value node would be shared between the address attribute and the class
Address. The same problem occurs in schema graph (b) where a composite-value
node representing a local address would also have to be labeled with the class name
Address and, therefore, be shared between two classes. This is solved if isa edges and
attribute edges are not allowed to arrive in named composite-value nodes.

2.4.3 Formal definition of schema graphs

Definition 2.8 A basic GDM schema graph is S = 〈N,E, λ, σ〉 where 〈N,E, λ〉 is a
finite partially labeled graph with node labels C and edge labels A∪{isa}, and σ : N →
{com,obj} ∪ B is a function that gives the sort of every node, such that
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Figure 2.9: Two illegal basic GDM schema graphs

• no two nodes are labeled with the same class name, (S-UCN)

• no two edges leaving the same node have the same label except edges labeled with
isa, (S-UAN)

• no edge leaves from nodes labeled with basic-type names, (S-NAB)

• isa edges are only allowed between nodes with the same sort, (S-ESI)

• for every node not labeled with a class name there is a directed path (possibly
containing edges labeled with isa) ending in that node and starting in a node
labeled with a class name, (S-REA)

• no edge arrives in a named composite-value node. (S-UNR)

Nodes with sort obj are called object class nodes, node with sort com are called
composite-value class nodes and nodes with a sort in B are called basic-value class
nodes.

If λ(n) is undefined then n is called an anonymous class node and if λ(n) is defined
then n is called a named class node.

If the components of a schema graph S are not explicitly named then they are pre-
sumed to be NS , ES , λS and σS , respectively.

Definition 2.9 For a given basic GDM schema graph S = 〈N,E, λ, σ〉 the relation
isaS ⊆ N×N such that m1 isaS m2 iff 〈m1, isa,m2〉 ∈ E is called the direct subclass
relation. The relation isa∗S ⊆ N ×N that is the reflexive transitive closure of isaS is
called the subclass relation.
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2.4.4 Informal description of the semantics of schema graphs

To determine whether an instance graph I belongs to a basic GDM schema graph S
we need to determine the so-called extension relation which indicates which nodes in
I belong to which nodes in S. The rules that should hold for an extension relation
are the following:

The class-name rule (ER-CLN)
If a node n in I and a node m in S are labeled with the same class name then
n belongs to m.

The attribute rule (ER-ATT)
If a node n in I is in the value of an attribute then it belongs to the node m in
S that is given in S for that attribute.

The isa rule (ER-ISA)
If a node n in I belongs to a node m in S then it also belongs to the nodes m′

in S to which there is an isa edge from m.

The sort rule (ER-SRT)
If a node n in I belongs to a node m in S then they have the same sort.

The first three rules determine to which schema graph nodes the instance graph
nodes at least must belong. The final rule restricts the relation so every instance
graph node can belong only to schema graph nodes of the same sort.

If we want to know which instance-graph nodes belong to which schema graph
nodes we have to look at the minimal extension relation, i.e., instance-graph nodes
should only belong to schema-graph nodes if this is required by the rules for extension
relations. This can by illustrated by the instance graph in Figure 2.10. If we try to
determine to what nodes in the schema graph in Figure 2.7 they belong, it will be
clear that the object node belongs to the Employee class node. It then follows by
the attribute rule that in every extension relation between this instance graph and
this schema graph, the composite-value node representing the address belongs to the
anonymous class node in which the address edge arrives. Since there is no reason
why this composite-value node should belong to any other class node this is the only
one it belongs to. Although it is possible to construct an extension relation that lets
this node also belong to, for example, the composite-value class node at the end of
the end-date edge that leaves from the Contract class node, we will not consider this
extension relation because it lets this node belong to too many class nodes, i.e., it is
not minimal.

The purpose of a schema graph is to indicate the structure of the instance graphs.
It is the schema graph that determines which nodes, edges and labels are allowed
in the instance graph; they must all somehow be accounted for in the schema graph.
Therefore, it is required that the minimal extension relation covers the instance graph.
This is made explicit by the following three rules.
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Figure 2.10: An instance graph not of the schema graph in Figure 2.7

The node covering rule (CV-N)
Every instance-graph node belongs to at least one node in the schema graph.

The edge covering rule (CV-E)
Every edge in the instance graph has a corresponding edge in the schema graph,
i.e., the nodes that the edge connects belong to schema-graph nodes that are
connected by an edge with the same attribute name.

The class-name covering rule (CV-C)
If an instance-graph node is labeled with a class name then it belongs to a
schema-graph node labeled with the same class name.

It is important that we only consider the minimal extension relation. As was
already indicated before, it is possible to construct an extension relation that lets the
node at the end of the address edge in Figure 2.10 belong to the node at the end of
the end-date edge in Figure 2.7. This extension relation will also cover the day edge
in Figure 2.10. However, since this is not the case for the minimal extension relation,
the day edge is not allowed.

The requirement that the extension relation must be minimal also explains the
reachability constraint for basic GDM schema graphs. For a minimal extension relation
it will hold that it will never assign any instance graph node to anonymous nodes in the
schema graph that are not reachable from some named node via a directed path. So,
these instance-graph nodes will never be covered by the minimal extension relation,
and are therefore not allowed.

Something that is not yet reflected in the rules for extension relations is that
instance-graph nodes that belong to a named class node should be explicitly labeled
as such. If this holds for a certain extension relation then it is said to be class-name
correct, which is defined as follows:

The class-name correctness constraint (CNC)
If the minimal extension relation assigns a node to a named class then this node
is labeled with the name of this class

This concludes the informal discussion of the relationship between instance graphs
and schema graphs. We will now proceed with the formal definition.
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2.4.5 Formal definition of the semantics of schema graphs

Definition 2.10 Given a weak instance graph I and a basic GDM schema graph S
an extension relation from S to I is a relation 6 ξ ⊆ NS ×NI for which it holds that

• if λS(m) is defined and λS(m) ∈ λI(n) then ξ(m,n), (ER-CLN)

• if ξ(m1, n1), 〈n1, α, n2〉 ∈ EI and 〈m1, α,m2〉 ∈ ES then ξ(m2, n2), (ER-ATT)

• if 〈m1, isa,m2〉 ∈ ES and ξ(m1, n) then ξ(m2, n), and (ER-ISA)

• if ξ(m,n) then σI(n) = σS(m). (ER-SRT)

An extension relation ξ from S to I covers I if

• for every node n ∈ NI then ξ(m,n) for some m ∈ NS, (CV-N)

• for every edge 〈n1, α, n2〉 in EI there is some edge 〈m1, α,m2〉 in ES such that
ξ(m1, n1) and ξ(m2, n2), and (CV-E)

• for every node n ∈ NI and class name c ∈ λI(n) there is some named node
m ∈ NS such that ξ(m,n) and c = λS(m). (CV-C)

An extension relation is called class-name correct if

• if λS(m) is defined and ξ(m,n) then λS(m) ∈ λI(n). (CNC)

I belongs to S if there is a minimal extension relation from S to I that covers I and
is class-name correct.

In the following we show that that if there is a minimal extension relation from a
basic GDM schema graph to a weak instance graph, then it is uniquely defined.

Definition 2.11 Given a labeled graph G = 〈N,E, λ〉 over edge labels A ∪ {isa} the
function λ̄G : L(E)→ L(A ∪ {is, isa}) is defined by the following rules:

1. λ̄G([〈n1, α, n2〉]) = [α] if α ∈ A,

2. λ̄G([〈n1, is, n2〉]) = [],

3. λ̄G([〈n1, isa, n2〉]) = [],

4. λ̄G(p1 • p2) = λ̄G(p1) • λ̄G(p2).

The result of λ̄G(p) is called the attribute-name list of p. Two paths p1 and p2 are
called similar if λ̄(p1) = λ̄(p2).

The result of λ̄G(p) can informally be described as the list of attribute names as they
are encountered in p. Note that this does not include the labels of the isa edges or is
edges in p. If it is clear from the context which labeled graph G is meant then λ̄G is
simply written as λ̄.

6We will usually abbreviate 〈m,n〉 ∈ ξ to ξ(m,n).
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Lemma 2.4 Let ξ be a minimal extension relation from a basic GDM schema graph
S to a weak instance graph I. It then holds that ξ(m,n) iff

1. for some node m′ in S it holds that m′ isa∗S m, λS(m′) is defined and λS(m′) ∈
λI(n), or

2. there is a path p in I from node n′ to n and a similar path p′ in S from m′ to
m such that λS(m′) is defined and λS(m′) ∈ λI(n′).

Proof: Let ξ′ ⊆ NS × NI be defined such that ξ′(m,n) iff at least one of the two
conditions in the lemma hold for the pair 〈m,n〉. We now show that:

1. for every extension relation ξ′′ from S to I it holds that ξ′ ⊆ ξ′′, and

2. ξ′ is an extension relation.

This can be shown as follows:

1. for every extension relation ξ′′ from S to I it holds that ξ′ ⊆ ξ′′
Assume that ξ′(m,n). Then at least one of the two conditions in the lemma
hold for the pair 〈m,n〉. We consider the two conditions:

(a) m′ isa∗S m, λS(m′) is defined and λS(m′) ∈ λI(n)
If m′ isa∗S m then either m = m′ or there is a path p′ of isa edges in S
from m′ to m. In the first case it follows immediately that ξ′′(m,n). In
the second case it is easy to see with induction upon the length of p′ and
ER-ISA that it follows that ξ′′(m,n).

(b) there is a path p in I from node n′ to n and a similar path p′ in S from
m′ to m such that λS(m′) is defined and λS(m′) ∈ λI(n′)
By the constraint ER-CLN it follows that ξ′′(m′, n′). It is easy to see with
induction upon the length of p′ and with ER-ATT and ER-ISA that it
follows that ξ′′(m,n).

2. ξ′ is an extension relation
We show that all the constraints for an extension relation hold for ξ′:

ER-CLN if λS(m) is defined and λS(m) ∈ λI(n) then ξ′(m,n)
Assume that λS(m) is defined and λS(m) ∈ λI(n). Because isa∗S is a
reflexive relation it follows that m isa∗S m. By the definition of ξ′ it then
follows that ξ′(m,n).

ER-ATT if ξ′(m1, n1), 〈n1, α, n2〉 ∈ EI and 〈m1, α,m2〉 ∈ ES then ξ′(m2, n2)
Assume that ξ′(m1, n1) and 〈n1, α, n2〉 ∈ EI and 〈m1, α,m2〉 ∈ ES . If
ξ′(m1, n1) it then holds by the definition of ξ′ that at least on of the two
conditions in the lemma hold for the pair 〈m1, n1〉:
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(a) for some node m′ in S it holds that m′ isa∗S m1, λS(m′) is defined and
λS(m′) ∈ λI(n1)
Because 〈n1, α, n2〉 ∈ EI it follows that there is path [〈n1, α, n2〉] in I.
Because 〈m1, α,m2〉 ∈ ES and m′ isa∗S m1 it follows that there is a
similar path in S from m′ to m2. By definition of ξ′ it then follows
that ξ′(m2, n2).

(b) there is a path p in I from node n′ to n1 and a similar path p′ in S
from m′ to m1 such that λS(m′) is defined and λS(m′) ∈ λI(n′)
Because 〈n1, α, n2〉 ∈ EI and 〈m1, α,m2〉 ∈ ES it holds that there
is a path p • 〈n1, α, n2〉 in I from node n′ to n2 and a similar path
p′ • 〈m1, α,m2〉 in S from m′ to m2. By definition of ξ′ it then follows
that ξ′(m2, n2).

ER-SRT if ξ′(m,n) then σI(n) = σS(m)
As was already shown in the previous point it holds for any extension
relation from S to I that it is a superset of ξ′. Since there is an extension
relation ξ from S to I it follows that if ξ′(m,n) then ξ(m,n). Since ξ is an
extension relation it follows that σI(n) = σS(m).

ER-ISA if 〈m1, isa,m2〉 ∈ ES and ξ′(m1, n) then ξ′(m2, n)
If ξ′(m1, n) it then holds by the definition of ξ′ that at least one of the two
conditions in the lemma hold for the pair 〈m1, n〉:
(a) for some node m′ in S it holds that m′ isa∗S m1, λS(m′) is defined and

λS(m′) ∈ λI(n)
Because 〈m1, isa,m2〉 ∈ ES and m′ isa∗S m1 it follows that m′ isa∗S m2.
By definition of ξ′ it then follows that ξ′(m2, n).

(b) there is a path p in I from node n′ to n and a similar path p′ in S
from m′ to m1 such that λS(m′) is defined and λS(m′) ∈ λI(n′)
Because 〈m1, isa,m2〉 ∈ ES it follows that there is also a similar path
in S from m′ to m2. By definition of ξ′ it then follows that ξ′(m2, n).

�

Lemma 2.5 Let ξ be a minimal extension relation from a basic GDM schema graph
S to a weak instance graph I. It then holds for every composite-value node n2 in I
that if there is an edge 〈n1, α, n2〉 in I and ξ(m2, n2) then there is an edge 〈m1, α,m

′
2〉

in S such that m′2 isa∗S m2 and ξ(m1, n1).

Proof: Assume that there is an edge 〈n1, α, n2〉 in I and ξ(m2, n2). By Lemma 2.4
it follows that

1. for some node m′ in S it holds that m′ isa∗S m2, λS(m′) is defined and λS(m′) ∈
λI(n2), or

2. there is a path p in I from node n′ to n2 and a similar path p′ in S from m′ to
m2 such that λS(m′) is defined and λS(m′) ∈ λI(n′).
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Because n2 has an incoming edge it follows that n2 is not labeled with any class name.
It follows that only the second of the two previous options is possible. Since n2 can
have at most one incoming edge we may assume that p = p1 • 〈n1, α, n2〉. Since p and
p′ are similar we may also assume that p′ = p′1 • p′2 where p′2 starts with the last edge
in p′ with the label α. It follows that p1 and p′1 are similar and p′2 starts with and
edge with label α follows by zero or more isa edges. We may assume that the first
edge in p′2 is 〈m1, α,m

′
2〉. Because p′2 ends in m2 it follows that m′2 isa∗S m2. Since

p1 and p′1 are similar and λS(m′) ∈ λI(n′) it follows by Lemma 2.4 that ξ(m1, n1). �

2.5 GDM[f ,t,i,s]

Basic GDM is a very basic data model that can be extended meaningfully in various
ways. One shortcoming is that we cannot indicate the minimum and maximum cardi-
nality of attributes, e.g., whether it contains at least one, at most one or exactly one
entity (as is usually possible for relationships in extended Entity-Relationship models
(Elmasri et al., 1985)). In this section we present a notation and a semantics for the
following constraints on attributes: functionality (f), totality (t), injectivity (i) and
surjectivity (s).

2.5.1 Informal description of attribute constraints

If we look at the basic GDM schema graph presented in Figure 2.7 we see that the
name of an employee is a set of strings. It is likely that every employee is known
by at most one name. Therefore, we introduce the possibility of indicating that an
attribute is functional, i.e., it contains at most one entity, by drawing it with a hollow
arrow as shown in Figure 2.11. An attribute that is not functional is said to be multi-
valued. Most attributes in the schema graph in Figure 2.7 are probably functional
but some, such as the sections attribute of the class Department, are more likely to be
multi-valued. Except that every employee has at most one name it will also be likely
that he or she will have at least one name. In that case the attribute is said to be
total and this is indicated by letting the edge start with a •, as shown in Figure 2.11.
Such an attribute is said to be total, and if it is not total it is said to be optional. It
will be clear that if an attribute such as the name attribute of the class Employee is
both functional and total then every employee will have exactly one name.

If we look at the inverse of an attribute we might want to specify similar con-
straints. For instance, it may be that every section belongs to at most one depart-
ment. In that case the attribute is said to be injective, i.e., every entity is in the
attribute of at most one entity. An attribute is indicated as injective by crossing
its edge with a small perpendicular line as shown in Figure 2.11. Note that an at-
tribute of a certain class is injective iff entities in the class can be identified by this
attribute, e.g., departments are identified by one of their sections, and if departments
are uniquely identified by their names then the name attribute of the class Department
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is also injective. It will probably also be true that every section should belong to at
least one department. Then, the attribute is said to be surjective, i.e., every entity
in the class of the attribute is in the attribute of some entity in the class that the
attribute belongs to. In a schema graph the surjectivity of an attribute is indicated
by a bullet at the end of the attribute edge, as shown in Figure 2.11.

an optional
functional

attribute

a total
multi-valued

attribute

an optional injective
multi-valued
attribute

an optional surjective
multi-valued
attribute

Figure 2.11: The notation of attribute constraints

If we indicate for all attributes in the basic GDM schema graph of Figure 2.7 the
attribute constraints then we might obtain a GDM[f ,t,i,s] schema graph such as in
Figure 2.12. Note that all the discussed constraints are indicated here. It is also
indicated in this schema graph that every Contract has a begin-date, but not always
an end-date, and that every Employee has at least one Contract with some Department.
It might be expected that the address attribute of Employee would be indicated as
surjective, but as will be explained in the next subsection, the surjectivity constraint
for attributes that contain composite values is either redundant or causes a conflict.
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Figure 2.12: A GDM[f ,t,i,s] schema graph
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To determine if an attribute constraint for a certain attribute edge in the GDM
schema graph holds, we proceed as follows. First, we determine which edges in the
instance graph are assigned to the attribute edge in the schema graph by the minimal
extension relation. These edges represent a binary relation over the entities that are
represented by these nodes. It is for this relation that the attribute constraint must
hold.

2.5.2 Informal description of the constraints for GDM[f ,t,i,s]
schema graphs

The semantics of the attribute constraints that were presented above can lead to some
unexpected consequences. Consider, for example, the schema graph in Figure 2.13.

str

str

str

int

description

name

str int

destinationpart-id part-id

numbercolor

Part Shipment

quantity

Figure 2.13: An illegal GDM[f ,t,i,s] schema graph

Here we see two composite value classes, Part and Shipment, which both have
an edge to the same anonymous composite value class for the part identifiers. The
attribute part-id for the class Part is indicated as injective. This might be interpreted
to mean that parts are identified by their part-id. In GDM, however, every part-id of
every part is represented by a different node, even if it consists of the same name and
number. The relation that belongs to this edge will, therefore, always be injective.
Moreover, this will always hold for any attribute edge that arrives in a composite
value node. Therefore, to avoid confusion, we introduce the following constraint:

The injective composite-value attribute constraint (SA-ICA)
Attribute edges that end in composite-value nodes cannot be indicated as injec-
tive.

Note that if an anonymous class has only one incoming attribute edge then the only
reason that nodes might be in that class is that they are part of the attribute denoted
by the edge. For instance, the description attribute of the class Part is surjective
because all the entities in the class of this attribute are in that class because they
are in that attribute. Indicating that an attribute that has an anonymous class, is
surjective is, therefore, redundant.

In Figure 2.13 it is also indicated that the part-id attribute of the class Part is
surjective. Again this may seem intuitive because every part-id of a shipment must
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be the part-id of some part in the class Part. In combination with the non-sharing
constraint, however, this leads to a contradiction because the same composite-value
node would belong to two attributes. A consequence of this is that the class Ship-
ment can never be populated. To avoid this contradiction we introduce the following
constraint:

The surjective composite-value attribute constraint (SA-SCA)
Attribute edges that end in composite-value nodes cannot be indicated as sur-
jective.

Note that there may be other ways in which attribute constraints may be redundant
or lead to contradictions. For instance, if an anonymous class has only one incoming
attribute edge then the only reason that nodes might be in that class is that they
are part of the attribute denoted by the edge. In that case the surjectivity constraint
would be redundant for this attribute.

The two presented constraints, however, prevent a schema graph from being mis-
understood and are, therefore, required for all GDM[f ,t,i,s] schema graphs.

2.5.3 Formal definition of GDM[f ,t,i,s]

Definition 2.12 A GDM[f ,t,i,s] schema graph is S = 〈N,E, λ, σ, κ〉 where 〈N,E, λ〉
is a finite partially labeled graph as with basic GDM schema graphs and σ as in basic
GDM schema graphs and κ : E ↪→ P({f , t, i, s}) a partial function that gives the set
of attribute constraints for exactly all attribute edges, such that

• there is no attribute edge e in G that ends in a composite-value node with i ∈
κ(e), and (SA-ICA)

• there is no attribute edge e in G that ends in a composite-value node with s ∈
κ(e). (SA-SCA)

If the components of a GDM[f ,t,i,s] schema graph S are not explicitly named then
they are presumed to be NS , ES , λS , σS and κS , respectively. It can be indicated that
only a subset of the attribute constraints is used by speaking of a GDM[f ,t] schema
graph if, for example, if only the f and t attribute constraints are used.

The set of attribute constraints for a certain attribute are given by κ and it
contains f , t, i and/or s if the attribute is total, functional, injective and/or surjective
respectively. Formally these constraints are defined as follows.

Definition 2.13 A binary relation R over A and B is called7

• functional if for every x ∈ A there is at most one y ∈ B such that R(x, y),

• total if for every x ∈ A there is at least one y ∈ B such that R(x, y),

• injective if for every y ∈ B there is at most one x ∈ A such that R(x, y),
7We will call A and B the domain and codomain of R respectively.
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• surjective if for every y ∈ B there is at least one x ∈ A such that R(x, y).

In the next definition we define the binary relation that is associated with every
attribute edge in the schema graph.

Definition 2.14 Given a schema graph S, an instance graph I, an extension relation
ξ from S to I and an attribute edge e = 〈m1, α,m2〉 in S, we define R(e) as the binary
relation over8 { n | n ∈ NI ∧ ξ(m1, n) } and { n | n ∈ NI ∧ ξ(m2, n) } such that

R(e) = { 〈n1, n2〉 | 〈n1, α, n2〉 ∈ EI ∧ ξ(m1, n1) ∧ ξ(m2, n2) }.

Finally, we establish the precise semantics of GDM[f ,t,i,s] schema graphs by defin-
ing which weak instance graphs belong to which GDM[f ,t,i,s] schema graphs.

Definition 2.15 Given a weak instance graph I and a GDM[f ,t,i,s] schema graph S.
An extension relation ξ from S to I is defined as for basic GDM schema graphs.

An extension relation ξ from S to I satisfies the attribute constraints of S if it
holds for all edges e ∈ ES that

• if f ∈ κS(e) then R(e) is functional,

• if t ∈ κS(e) then R(e) is total,

• if i ∈ κS(e) then R(e) is injective,

• if s ∈ κS(e) then R(e) is surjective.

I belongs to S if there is a minimal extension relation ξ from S to I that covers
I, is class-name correct and satisfies the attribute constraints of S.

Note that the attribute constraints are only considered for the two classes that
the attribute edge connects. Consider for example the schema graph in Figure 2.14
(a) where we see an attribute a between a class A and B that is injective. This means
that for every B there can be at most one A that has this B in its a attribute. It does
not mean that for every B there can be at most one entity that has this B in its a
attribute. The instance graph in Figure 2.14 (b), for example, belongs to the schema
graph in (a).

In the schema graph it is also indicated that the attribute a between C and A is
surjective. This means that for every B there has to be a C such that the B is in the
a attribute of this C. If there is an entity of a different class than A that contains the
B in its a attribute then the surjectivity constraint is not satisfied. An example of
this is given in Figure 2.14 (c) where we see an instance graph that does not belong
to the schema graph in (a) because of this reason.

8We define the domain and codomain of R(e) because we want to indicate if the relation is total
or surjective.
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Figure 2.14: A GDM[f ,t,i,s] schema graph, an instance graphs that belongs to this
schema graph and an instance graph that does not belong to this schema graph

2.6 GDM+[f ,t,i,s]

In basic GDM it is not allowed in a schema graph to have a named composite-value
node that has an incoming attribute edge or isa edge. In GDM[f ,t,i,s] it is also
not allowed to indicate attributes as injective or surjective if they contain composite
values. It is, however, possible to give such schema graphs a meaningful and intu-
itive interpretation by assuming that their attribute constraints do not hold for the
composite-value nodes but for the composite values they represent. In this section
we will define an extension of GDM[f ,t,i,s] called GDM+[f ,t,i,s] that gives such an
interpretation to the attribute constraints and allows the schema graphs that were
not allowed in GDM[f ,t,i,s].

2.6.1 Informal description of GDM+[f ,t,i,s]

As a first example of schema graphs that were not allowed, we present the schema
graph in Figure 2.15 which was also already presented in Figure 2.9.

The main reason that these schema graphs seem intuitive is that they make sense
if we think in terms of composite values as opposed to composite-value nodes. For a
composite value it is entirely possible to be in two named classes at once or to be in
an attribute value and a named class at once. However, by the non-sharing constraint
this is not allowed for composite-value nodes. This, in combination with the constraint
for class-name correctness that requires that every node is labeled with the names of
the classes that it belongs to, caused the contradiction in basic GDM and GDM[f ,t,i,s].
A solution is, therefore, to change the constraint for class-name correctness such that
it does not hold for composite-value nodes but for the composite values themselves.
One way of achieving this is by saying that class-name correctness should not hold for
the original instance graph but for the result that is obtained when we merge all the
value-equivalent nodes. In that result every composite value in the instance would be



36 CHAPTER 2. GDM: GRAPH-BASED DATA MODELS

Employee
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Figure 2.15: Two GDM+ schema graphs that are illegal in basic GDM

represented by exactly one node.
Another way of attaining the same effect is by redefining class-name correctness

as follows:

The generalized class-name correctness constraint (SP-CNC)
If the extension relation assigns a node to a named class then there is a value-
equivalent node in the same class that is labeled with the name of this class.

Under this definition we can allow attribute edges and isa edges to arrive in named
composite-value nodes in the schema graph.

Although this solution solves the problem of the contradictions in Figure 2.15 (a)
and (b), there can still be no inheritance between named composite value classes.
This is illustrated by the schema graph shown in Figure 2.16. Suppose there is a
composite value node in the International Address class that represents an address
with a defined country attribute. By the semantics of the isa edge this node must
also be in the Address class. Since the extension relations must be class-name correct
it follows that there is a value-equivalent node that is labeled with the class name
Address. However, as can be seen from the schema, nodes labeled with Address can
only have a street, number and city attribute. It follows that the node in the class
International Address with the country attribute cannot exist. Note that this problem
would not have occurred if the class Address would have been anonymous.

Although the schema graph in Figure 2.16 seems to have a consistent intuitive
interpretation, its conflict follows from the fundamental assumptions of basic GDM
about what a composite-value class is and what the isa-relationship is. It can, for
example, not be solved as in the previous example by redefining the isa-relationship
such that it holds for the composite-values and not for the nodes that represent
them. It can be avoided by making dramatic changes such as dropping the class-
name correctness requirement. This, however, can also be simulated as is shown in
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International Address

number

str str str str

Address

street city country

Figure 2.16: A basic GDM schema graph with an edge conflict

Figure 2.17. The only aspect that is not captured in this schema graph is that for
every composite value in the International-Address class there should be a composite
value with the same street, number and city attributes in the Address class.

str

number

str str

Address International Address

str

street city country

Figure 2.17: A basic GDM schema graph similar to Figure 2.16 without an edge
conflict

As an example of schema graphs that were not allowed because of certain attribute
constraints, we present the schema graph in Figure 2.18 which was also already pre-
sented in Figure 2.13.

str

str

str

int

description

name

str int

destinationpart-id part-id

numbercolor

Part Shipment

quantity

Figure 2.18: An illegal GDM[f ,t,i,s] schema graph that is legal in GDM+[f ,t,i,s]

As with the previous problem the contradictions only occur if we require that
the attribute constraints hold for the edges between the nodes and not if we require
that they hold for the relation over the composite values that they represent. So the
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problem here can also be solved by requiring that the attribute constraint does not
hold for the instance graph but for the result that is obtained when all the value-
equivalent nodes are merged.

The semantics of the injectivity constraint for the part-id attribute would then
mean that there are no two composite-value nodes in the Part class that have an
part-id edge to value-equivalent nodes. As opposed to the semantics of the same
constraint in GDM[f ,t,i,s] this is not a trivial constraint and coincides with what
would intuitively be expected.

The semantics of the surjectivity constraint for the part-id attribute would then
mean that for every node in the class that the attribute edge ends in, it holds that
there is a value-equivalent node in the same class such that there is a part-id edge
that ends in this node and this edge begins in a node in the Part class.

2.6.2 Formal definition of GDM+[f ,t,i,s]

Definition 2.16 A GDM+[f ,t,i,s] schema graph is equal to a GDM[f ,t,i,s] schema
graph except that

1. named composite-value nodes are allowed to have incoming edges, and

2. all attribute edges may have any attribute constraint, i.e., for any attribute edge
e the value of κ(e) may be any subset of {f , t, i, s}.

As for GDM[f ,t,i,s] we define the binary relation that is associated with every
attribute edge in the schema graph. Because in GDM+[f ,t,i,s] the constraints are
supposed to hold for the composite values represented by the nodes (and not for the
nodes themselves), we now define this binary relation over the equivalence classes of
these nodes according to the value-equivalence relation.

Definition 2.17 Given a schema graph S, an instance graph I, an extension relation
ξ from S to I and an attribute edge e = 〈m1, α,m2〉 in S, we define Ṙ(e) as a binary
relation over { [n]I | n ∈ NI ∧ ξ(m1, n) } and { [n]I | n ∈ NI ∧ ξ(m2, n) } such that

Ṙ(e) = { 〈[n1]I , [n2]I〉 | 〈n1, α, n2〉 ∈ EI ∧ ξ(m1, n1) ∧ ξ(m2, n2) }.

Finally, we establish the precise semantics of GDM+[f ,t,i,s] schema graphs by
defining which weak instance graphs belong to which GDM+[f ,t,i,s] schema graphs.

Definition 2.18 An extension relation ξ from S to I satisfies the attribute con-
straints of S if it holds for all edges e ∈ ES that

• if f ∈ κS(e) then Ṙ(e) is functional,

• if t ∈ κS(e) then Ṙ(e) is total,

• if i ∈ κS(e) then Ṙ(e) is injective,

• if s ∈ κS(e) then Ṙ(e) is surjective.
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An extension relation is called class-name correct if

• if λS(m) is defined and ξ(m,n) then there is some node n′ ∈ [n]I such that
λS(m) ∈ λI(n′). (SP-CNC)

I belongs to S if there is a minimal extension relation ξ from S to I that covers
I, is class-name correct and satisfies the attribute constraints of S.

The following lemma tells us how the attribute constraints can be verified in a
more direct way in the instance graph.

Lemma 2.6 Given a GDM+[f ,t,i,s] schema graph S, an instance graph I, an exten-
sion relation ξ from S to I and an attribute edge e = 〈m1, α,m2〉 in the schema graph,
it holds that

1. Ṙ(e) is functional iff for every node n1 in I with ξ(m1, n1) there is at most one
edge 〈n1, α, n2〉 in I,

2. Ṙ(e) is total iff for every node n1 in I with ξ(m1, n1) there is an edge 〈n1, α, n2〉
in I,

3. Ṙ(e) is injective iff for all two edges 〈n1, α, n2〉 and 〈n′1, α, n′2〉 in I such that
ξ(m1, n1) and ξ(m1, n

′
1), it holds that if n2

∼=I n
′
2 then n1

∼=I n
′
1,

4. Ṙ(e) is surjective iff for every node n2 in I with ξ(m2, n2) there is an edge
〈n1, α, n

′
2〉 in I with ξ(m1, n1) and n2

∼=I n
′
2.

Proof:

1. if Assume that Ṙ(e) is not functional. Then there are two pairs 〈[n1]I , [n2]I〉
and 〈[n1]I , [n3]I〉 in Ṙ(e) such that n2 6∼=I n3 and ξ(m1, n1). It also follows
from the existence of the two pairs that there are two edges 〈n′1, α, n′2〉 and
〈n′′1 , α, n′3〉 in I with n1

∼=I n
′
1
∼=I n

′′
1 and n′2 6∼=I n

′
3. By definition of ∼= it

follows that there are two edges 〈n1, α, n
′′
2〉 and 〈n1, α, n

′′
3〉 with n′′2 6∼=I n

′′
3 .

Because ∼=I is reflexive it follows that n′′2 6= n′′3 .

only-if Assume that for a node n1 ∈ NI with ξ(m1, n1) there are two edges
〈n1, α, n2〉 and 〈n1, α, n3〉 in I such that n2 6= n3. By the definition of ξ
it then also holds that ξ(m2, n2) and ξ(m2, n3). By definition of instance
graph it follows that n2 6∼=I n3 and, therefore, we have two different tu-
ples 〈[n1]I , [n2]I〉 and 〈[n1]I , [n3]I〉 in Ṙ(e). It follows that Ṙ(e) is not
functional.

2. if Assume that for every node n1 in I with ξ(m1, n1) there is an edge 〈n1, α, n2〉
in I. By the definition of ξ is also holds that ξ(m2, n2). By definition of the
domain of Ṙ(e) it holds that for every [n]I in this domain there is a node
n′ ∈ NI such that n ∼=I n

′ and ξ(m1, n
′). It follows by the assumption

and the definition of Ṙ that for every [n]I in the domain of Ṙ(e) there is
a tuple 〈[n]I , [n2]I〉 in Ṙ(e).
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only-if Assume that Ṙ(e) is total. It then holds by definition of Ṙ that for every
n1 ∈ NI with ξ(m1, n1) there is an edge 〈n′1, α, n′2〉 ∈ EI with n1

∼=I n
′
1.

By definition of ∼= it follows that for every n1 ∈ NI with ξ(m1, n1) there
is an edge 〈n1, α, n2〉 ∈ EI .

3. if Assume Ṙ(e) is not injective. Then there are two tuples 〈[n1]I , [n3]I〉 and
〈[n′1]I , [n3]I〉 in Ṙ(e) with n1 6∼=I n

′
1, ξ(m1, n1), ξ(m1, n

′
1) and ξ(m2, n3). By

definition of Ṙ it holds that there are two edges 〈n′′1 , α, n′′2〉 and 〈n′′′1 , α, n′′′2 〉
in I with n′′1

∼=I n1, n′′2 ∼=I n3, n′′′1 ∼=I n
′
1 and n′′′2

∼=I n3. By definition of
∼= it follows that there are two edges 〈n1, α, n2〉 and 〈n′1, α, n′2〉 in I with
n2
∼=I n

′′
2 and n′2

∼=I n
′′′
2 . Summarizing, we now have two edges 〈n1, α, n2〉

and 〈n′1, α, n′2〉 in I with ξ(m1, n1) and ξ(m1, n
′
1), and for which it holds

that n2
∼=I n

′
2 and n1 6∼=I n

′
1.

only-if Assume that we have two edges 〈n1, α, n2〉 and 〈n′1, α, n′2〉 in I with
ξ(m1, n1) and ξ(m1, n

′
1), and for which it holds that n2

∼=I n
′
2 and n1 6∼=I

n′1. By the definition of ξ it then also holds that ξ(m2, n2) and ξ(m2, n
′
2).

It then follows by the definition of Ṙ that there are two tuples 〈[n1]I , [n2]I〉
and 〈[n′1]I , [n2]I〉 in Ṙ(e) which are different. It is, therefore, not injective.

4. if Assume that for every node n2 in I with ξ(m2, n2) there is an edge 〈n1, α, n
′
2〉

in I with ξ(m1, n1) and n2
∼=I n

′
2. It follows by definition of Ṙ that for

every [n2]I in the codomain of Ṙ(e) there is a tuple 〈[n1]I , [n2]I〉 in Ṙ(e).

only-if Assume that Ṙ(e) is surjective. Also assume that there is a node n2 ∈
NI with ξ(m2, n2). By the surjectivity of Ṙ(e) it holds that there is a
tuple 〈[n1]I , [n2]I〉 in Ṙ(e) with ξ(m1, n1). By definition of Ṙ it follows
that there is an edge 〈n′1, α, n′′2〉 in I with n′1

∼=I n1 and n′′2
∼=I n2. By

the definition of ∼= it also holds that there is an edge 〈n1, α, n
′
2〉 in I with

n′2
∼=I n

′′
2 . By definition of ξ it also follows that ξ(m2, n

′
2). Summarizing,

we have found that for every node n2 ∈ NI with ξ(m2, n2) there is an edge
〈n1, α, n

′
2〉 in I with n2

∼=I n
′′
2
∼=I n

′
2 and ξ(m1, n1).

�

The previous theorem shows us in combination with the fact that object nodes
are only value equivalent to themselves that the semantics of the attribute constraints
in GDM+[f ,t,i,s] are identical to those in GDM[f ,t,i,s] except for the injectivity and
surjectivity constraint for edges that end in composite value nodes. This leads to the
following theorem that states that the semantics of GDM+[f ,t,i,s] and GDM[f ,t,i,s] is
identical for the schema graphs that are allowed by GDM[f ,t,i,s].

Theorem 2.7 For every schema graph S in GDM[f ,t,i,s] and instance graph I it
holds that I belongs to S in GDM[f ,t,i,s] iff I belongs to S in GDM+[f ,t,i,s].

Proof: By definition the minimal extension relations are identical for both data mod-
els. As shown in Lemma 2.6 the attribute constraints are satisfied in GDM[f ,t,i,s] iff
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they are satisfied in GDM+[f ,t,i,s], if there are no edges in the schema graph with
injectivity or surjectivity constraints that end in composite value nodes. And this is
exactly what is required for a GDM[f ,t,i,s] schema graph. What remains to be shown
is that class-name correctness is also identical for both data models. For object nodes
and basic value nodes in an instance graph this is easy to see because these are
only value equivalent to themselves and the definitions of class-name correctness are
therefore identical for them. For composite-value nodes it will hold that the minimal
extension relation will place them only in a named composite-value class node if they
are labeled with the name if this class node. This is because in a GDM[f ,t,i,s] schema
graph named composite-value class nodes are not allowed to have any incoming edge.
This means that for such schema graphs the class-name correctness will hold trivially
for composite-value nodes, for both data models and is, therefore, also identical for
composite-value nodes. �

2.7 Discussion

In this section we discuss several aspects of GDM. First, we give some extra reasons
for introducing the non-sharing constraint for instance graphs. Second, we discuss
some possible extensions of GDM. Finally, we compare GDM to several other data
models.

2.7.1 Justification of the non-sharing constraint

As already stated at the beginning of this chapter, GDM is not intended as yet another
data model but rather as a framework for the discussion of several aspects of different
types of data models. The basic assumptions of the data model have, therefore, been
kept as general as possible. The assumption that composite-value nodes in an instance
graph may not be shared, however, may not seem immediately obvious.

In Section 2.3 this assumption was justified by showing that if the same birthday
is shared by two people then the update of an attribute of the birthday of one person
does not necessarily imply an update of the birthday of the other person. The birthday
of the two persons should, therefore, be represented by two different nodes. This is not
in contradiction with our assumption that composite values are always identified by
exactly all their attributes. It only means that the same composite value is represented
by different nodes. For objects and basic values, however, it does hold that they are
always represented by at most one node in every instance graph.

Another reason for disallowing sharing composite-value nodes is that it makes
the data model more similar to the (nested) relational model and data models with
complex values/objects. Not only because in these data models an update to one oc-
currence of a tuple does not necessarily imply an update to all the other occurrences
of the same tuple, but also because it prevents composite values from having “unex-
pected attributes”. This is illustrated in Figure 2.19 where we see a schema graph (a)
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and a labeled graph with sharing of a composite-value node (b). In all data models
of GDM we assume that an entity is allowed to have a certain attribute if in at least
one of its classes this attribute is defined. By the definition of extension relation we
see that the composite value that is shared by the two objects is in the anonymous
class at the end of the a attribute edge and in the anonymous class at the end of the
b attribute edge. It follows that this composite value may, therefore, have a c and a
d attribute. In most complex object data models, however, the composite value in
the a attribute of the A object would only be allowed a c attribute and the composite
value in the b attribute of the B object would only be allowed a d attribute. If sharing
of composite-value nodes is not allowed and the shared composed value is forced to
be represented by two different nodes as in Figure 2.19 (c) then these “unexpected
attributes” (drawn as dashed edges here) are also not allowed because they cannot
be covered by a minimal extension relation. A similar argument can be made for the
case where a composite value is shared between two named value classes or between
an attribute and a named value class.

dc

a

A

c d

b

BBA

a b

dcd

ba

BA

(a) (b) (c)

c

Figure 2.19: A schema graph and two labeled graphs

2.7.2 Possible extensions of GDM

The GDM data models described in the previous sections are very basic and constitute
by no means complete data models. Some examples of useful features that might be
included to make it more complete, are the following:

Keys and Identification To indicate by which (sets of) attributes entities in certain
classes are identified. If we give the key for an object class this does not reduce
the objects of this class to composite values because they can still be shared.
Giving a key for a composite value class is very similar to specifying candidate
keys for a relation in the relational model. Note that if an attribute is injective
and total then it is a key, but since we have multi-valued attributes, the reverse
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does not hold. For example, if the names attribute of the class Person contains
a set of names and is a key, then this means that whole set of names identifies
a person, and not just a single name.

Exclusion and Totalness of Attributes To indicate that for all entities in a cer-
tain class it holds that certain (sets of) attributes exclude each other, i.e., only
one of them is defined but not more, or that certain (sets of) attributes are total,
i.e., at least one of them is defined. Note that totalness of a single attribute can
already be indicated in GDM[f ,t,i,s].

Exclusion and Totalness of isa Relationships To indicate that an entity can be-
long to at most one of a certain set of subclasses or that it must belong to at least
one of a certain set of subclasses. Note that in GDM entities can simultaneously
belong to any set of classes as long as there are no typing conflicts.

Disjointness of Object Classes To indicate the certain object classes cannot share
objects. This can be done by the introduction of a constraint such as the
common-subclass constraint that requires that if an object is in two classes
than it must also be in some common subclass of these classes. This latter
option is discussed more elaborately in Chapter 7.

Special Types of isa Relationships To indicate that a certain class is a gener-
alization or specialization of other classes (Abiteboul and Hull, 1987). Other
possibilities are played-by relationships such as discussed in (Wieringa and
de Jong, 1991; Wieringa and de Jong, 1995) which indicate the inheritance of
properties without the inheritance of identity.

2.7.3 Comparing GDM to other data models

Since GDM is intended to combine several aspects of different data models it is inter-
esting to see how its concepts relate to those of other data models. In the following
paragraphs we compare GDM with several well known data models.

The central idea of GDM, to use labeled graphs as the representation of instances
and schemas, was inspired by GOOD (the Graph-Oriented Object Database model)
(Andries et al., 1992; Gyssens et al., 1994). This idea enables us to think of database
queries and updates as graph transformations. Moreover, such transformations can
be expressed in a graph-oriented way by using pattern matching. This principle
can also be applied to GDM as is shown in the next chapter. The main differences
between GDM and GOOD are that GOOD allows only objects and basic values but
not composite values, it has no inheritance through isa relationships, there are no
anonymous classes, and objects always belong to exactly one class. A very similar
data model is FDM (the Functional Data Model) (Shipman, 1981) where instances
are represented as collections of named functions. In FDM there are also no composite
values and anonymous classes but there is inheritance through isa relationships, and
objects are allowed to belong to more than one class. It is, however, possible to
approximate values by explicitly specifying all the attributes of a class as a key.
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One of the most widely used data models is probably the ER model (the Entity
Relationship model) which was originally introduced in (Chen, 1976). Since its in-
troduction many extended versions have been proposed, usually called EER models
(Extended Entity Relationship models), such as, for example in (Elmasri et al., 1985;
Engels et al., 1992). An ER schema typically distinguishes entity types, relationship
types and attributes, where relationships are only allowed between entity types and
not between other relationship types. In EER data models there is usually support
for special relationships such as different kinds of isa and part-of relationships. Also
attributes are allowed to be complex values such as recursively nested sets, lists, bags
and tuples and sometimes may even contain other entities. The entity classes and
relationships in the EER model correspond roughly to the named object classes and
named value classes in GDM. The complex-valued attributes can be simulated by
class-free value classes.

GDM does not make a distinction between the attributes of a relationship and the
indication that a certain entity class plays a role in a certain relationship. Therefore,
it is possible in GDM to explicitly represent relationships between relationships as in
HERM (the Higher-order Entity-Relationship Model) (Thalheim, 2000) and (Rochfeld
and Negros, 1992). Because attributes are allowed to be multi-valued, relationships
can also become nested, i.e., entities can play a multi-valued role in a relationship.

coach

(b)

Player
player

Coach

CoachesCoaches

(a)

coach
PlayerCoach

player

Figure 2.20: Examples of relationships with and without a multi-valued attribute

For instance, in Figure 2.20 (a) we see a Coaches relationship with a functional
coach role/attribute of type Coach and a multi-valued player role/attribute of type
Player. This relationship would then hold between a coach and a set of players. For
an example of an instance graph that belongs to this schema graph see Figure 2.2.
Note that this is different from a relationship that holds between a coach and a single
player as in Figure 2.20 (b). Thus, GDM allows the direct representation of nested
relationships as can be found in the nested relational model (Jaeschke and Schek,
1982; Fischer and Thomas, 1983; Roth et al., 1988; Tansel and Garnett, 1992).

Closely related to the ER model is the NIAM (Nijssen’s Information Analysis
Method) schema technique (Nijssen and Halpin, 1989; Wintraecken, 1990) which is
also known as ORM (Object Role Model). For a formal description of the NIAM data
model the reader is referred to (van Bommel et al., 1991) and for later extensions such
as PSM (Predicator Set Model) to (ter Hofstede and van der Weide, 1993; ter Hofstede
et al., 1993; ter Hofstede, 1993). A NIAM schema distinguishes entity types, label
types and fact types. The entity types and label types correspond with the named
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object classes and basic-value classes in GDM respectively. The fact types represent
relationships between instances of the entity types and can be simulated by named
composite-value classes in GDM. (Relationships between instances of label types are
usually represented by special fact types called bridge types (Wintraecken, 1990)
or reference types (Nijssen and Halpin, 1989).) It is, however, possible in NIAM to
specify a relationship type between an entity type and another relationship type. This
is done by objectification of a relationship, i.e., the relationship is explicitly declared
to be an entity type and can, therefore, play a role in another relationship. In GDM
such explicit objectification is also necessary because named composite-value classes
cannot have incoming attribute edges. There is in NIAM no explicit value notion but,
as in FDM and ER, values can be simulated. Finally, every type in a NIAM schema
has a name, so there are no anonymous types/classes. An example of the simulation
of a NIAM schema in GDM is given in Figure 2.21.
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Figure 2.21: The simulation of a NIAM schema in GDM

Another type of data model usually found in the database research literature is the
complex-object data model. Such data models typically describe a set of classes that
are associated with complex value types. Such types consist of recursively nested
tuple types, set types, basic-value types, classes and, possibly, other types. The
classes contain objects that have a value that is of the type associated with the
class. Examples of such data models are IFO (Abiteboul and Hull, 1987), LDM (the
Logical Data Model) (Kuper and Vardi, 1993), the data model of the language IQL
(Identity Query Language) (Abiteboul and Kanellakis, 1989), the data model of the
O2 database system (Lécluse et al., 1988; Lécluse and Richard, 1989) and the data
model of the language PaMaL (Pattern Matching Language) (Gemis and Paredaens,
1993; Gemis, 1996).

The classes in complex-object data models correspond to the named object classes
in GDM and complex value types can be simulated with class-free value classes. Some
notions not supported by most of these data models are named value classes, anony-
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mous object classes and recursive value classes. An important exception is LDM
which does support recursive value classes and even recursive values but achieves this
by giving all values an identity. This, actually, turns all values into objects although
some notion of shallow value equivalence is still supported.

The data model of PaMaL is an extension of the graph-oriented GOOD data
model and, as such, has provided the foundation of GDM. An important difference is
that PaMaL allows the sharing of composite values and assumes that two composite
values with the same attributes are the same entity, even if they are contained in
different attributes or in different classes. Also, two nodes are allowed in PaMaL to
represent the same value; there is an explicit operation in the manipulation language
for merging value-equivalent nodes. Other differences are that GDM has a more strict
typing regime and that objects are allowed to belong to any set of classes as long as
this does not result in any conflicts.

This concludes the comparison of GDM with other data models. It will be clear
that GDM can be seen as some kind of generalization over the data models discussed.
Almost all the basic structural concepts of these data models can be found or easily
simulated in GDM. Moreover, due to the orthogonal approach of GDM it provides
some extra notions, such as anonymous object classes and recursive value classes,
which are rarely found elsewhere. Although the usefulness of these extra notions for
real-world data modeling remains to be seen, they pose some interesting theoretical
problems and forbidding them would make the data model less general.



Chapter 3

GUL: A Graph-based Update
Language

3.1 Introduction

In this chapter we introduce the GUL data transformation language. The purpose
of this language is to show that it is possible to construct a simple graph-based
transformation language for GDM instances that can express all constructive generic
deterministic transformations. This language is described in this chapter and its
expressive power is discussed in Chapter 8.

With the term graph-based we mean here that the operations of the language are
represented in a graph-like fashion. The basic mechanism of the language is pattern
matching; every operation contains a pattern, i.e., a prototypical part of an instance,
and everywhere in the instance where this pattern is found a certain operation is
applied. An example of a GUL pattern is given in Figure 3.1.

str

city

city

address

address

Manager

Engineer
employees

employees

Section

Figure 3.1: A pattern

This pattern looks for all pairs of engineers and managers that work for the same
section and live in the same city. Based upon such patterns we can define an addition
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and a deletion that simply add and delete certain nodes and edges wherever in the
instance graph the pattern can be matched. Such additions and deletions where in
GOOD limited to single nodes and edges, but later in PaMaL and GOAL it was
possible to add entire graphs at once. In GUL we also adopt the latter approach.

Because adding and removing nodes and edges may sometimes result in a weak
instance, this is always followed by a reduction that merges value-equivalent nodes if
they are in the same class or the same attribute.

This chapter is organized as follows. In Section 3.2 the fundamental assumptions
of GUL regarding object identity, database transformations and merging of value-
equivalent nodes, are explained. In Section 3.3 the operations of GUL are presented
and how they can be combined into programs. Finally in Section 3.4 we discuss and
evaluate the typical aspects of GUL that distinguish it from its immediate predecessors
PaMaL and GOAL.

3.2 Fundamental Assumptions of GUL

Two distinctive features of GUL are the way it treats object-node identity and the
way it deals with value-equivalent nodes. In this section we explain why and how this
is done.

3.2.1 Object identity across instances

It is assumed in GDM that distinct objects are represented by distinct object nodes.
So within an instance graph two nodes represent the same object iff they are one
and the same node. Whether two nodes represent the same object is less clear if
they are from different instance graphs. In GOOD, for instance, it is possible that
different instance graphs share nodes. For instance, after the addition of some new
nodes it is possible to distinguish between the new nodes and the old nodes. In GUL
we assume that the nodes are object identifiers and, therefore, not readable by the
user. A consequence of this is that the user can not make a distinction between new
and old nodes. For instance, in Figure 3.2 we see an instance graph before and after
a single Engineer object node is added. After the operation has been performed the
user has no way of telling which one of the two nodes is the original one. If the user
does want to make a distinction then he can achieve this by, for example, labeling the
original with a class name before he does the addition.

Engineer Engineer Engineer

Figure 3.2: An instance graph before and after an Engineer object node has been
added
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It follows that in GUL the user cannot distinguish between two instance graphs if
they are the same except for their choice of object nodes, i.e., if they are isomorphic.
Therefore, two isomorphic instance graphs will be considered as representations of the
same instance. This is related to the principle of genericity for database transforma-
tions (Hull and Yap, 1984; Chandra, 1988) that states that database transformations
should be invariant under every permutation of all possible domain values. Note,
however, that we only consider permutations of nodes and not of basic values. (See
Section 8.3 for a more elaborate treatment of genericity.) This gives the database the
freedom to transparently change the identity of the object nodes as long as the total
instance graph remains isomorphic. This can be essential if the database is to ap-
ply optimization techniques such as pointer swizzling (Kemper and Kossmann, 1993;
White and DeWitt, 1992).

The intuition that isomorphic weak instance graphs represent the same weak in-
stance can now be formally captured as follows. First we postulate N , the countably
infinite set of graph nodes. This allows us to make the following definitions.

Definition 3.1 A node permutation is a bijection a : N → N . We generalize these
functions to instance graphs by letting a(I) = 〈N ′, E′, λ′, σ′, ρ′〉 where

• N ′ = { a(n) | n ∈ NI },

• E′ = { 〈a(n1), α, a(n2)〉 | 〈n1, α, n2〉 ∈ EI },

• λ′ = { 〈a(n), C〉 | 〈n,C〉 ∈ λI } ∪ { 〈〈a(n1), α, a(n2)〉, α〉 | 〈n1, α, n2〉 ∈ EI },

• σ′ = { 〈a(n), s〉 | 〈n, s〉 ∈ σI } and

• ρ′ = { 〈a(n), r〉 | 〈n, r〉 ∈ ρI }.

Definition 3.2 An isomorphism between the weak instance graphs I and I ′ is a node
permutation a such that a(I) = I ′. If there is an isomorphism between the weak
instance graphs I and I ′ then they are called isomorphic and we write I ' I ′.

It is easy to see that ' defines an equivalence relation. With its help we can now
define what an instance is.

Definition 3.3

• I is the set of all instance graphs with only nodes from N , J is the set of all
weak instance graphs with only nodes from N ,

• I = I/ ' is the set of instances. J = J / ' is the set of weak instances.
Elements of I will be written as [I] denoting the equivalence class of all weak
instance graphs isomorphic to the weak instance graph I.

• The weak instance [J ] belongs to the GDM schema graph S if J belongs to S.
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To show that the definition of when an instance belongs to a GDM schema graph is
consistent we need to prove the following theorem.

Theorem 3.1 If I1 and I2 are two isomorphic weak instance graphs and S a schema
graph then I1 belongs to S iff I2 belongs to S.

Proof: Given a relation ξ ⊆ NS ×NI1 and the isomorphism g from I1 to I2 define ξg

such that ξg(m, g(n)) iff ξ(m,n). It then holds that ξ is an extension relation from
S to I1 iff ξg is an extension relation from S to I2. This follows easily from the facts
that if g is an isomorphism between I1 and I2 then it holds for all n1, n2 in NI1 that
λI1(n1) = λI2(g(n1)), σI1(n1) = σI2(g(n1)), ρI1(n1) = ρI2(g(n1)) (if both are defined)
and that 〈n1, α, n2〉 in EI1 iff 〈g(n1), α, g(n2)〉 in EI2 . The proofs that ξg covers I2 iff
ξ covers I1 and that ξg is class-name correct iff ξ is class-name correct are analogous.

It is now easy to see that ξ is a minimal extension relation from S to I1 iff ξg is a
minimal extension relation from S to I2. Together with the fact that ξg covers I2 iff
ξ covers I1 and that ξg is class-name correct iff ξ is class-name correct it follows that
I1 belongs to S iff I2 belongs to S. �

Having defined instances, we are now ready to define what a database transformation
is.

Definition 3.4 A weak GDM transformation is a set τ ⊆ J× J such that

1. τ is recursively enumerable1, and

2. there are two basic GDM schema graphs S1 and S2 such that for all pairs
〈[J ], [J ′]〉 ∈ τ it holds that [J ] and [J ′] belong to S1 and S2, respectively.

A weak GDM transformation τ is said to be a GDM transformation if τ ⊆ I × I. A
weak GDM transformation is said to be deterministic if for all pairs 〈[I1], [I2]〉 and
〈[I1], [I3]〉 in τ it holds that [I2] = [I3].

In GUL we will express such transformations by specifying graph manipulations
for instance graphs. This means that in order to describe how an operation changes
an instance we define how it changes a certain instance graph that represents the
instance. This is illustrated in Figure 3.3. The result of applying an operation on [I]
is determined by taking the instance graph I and manipulating it as is specified by
the operation to the weak instance graph I ′. After that, the weak instance graph is
reduced to an instance graph İ ′. Finally, the result of applying the operation to [I]
is defined as [İ ′].

Such a definition results in a function over instances if it holds for the concatena-
tion of the graph manipulation and the reduction that

• the result of this function is uniquely defined up to isomorphism and

• if the function is applied to isomorphic instance graphs then the results are also
isomorphic instance graphs.

1To be precise, a set τ ⊆ J×J is called recursively enumerable if there is a recursively enumerable
set τ ′ ⊆ J × J such that τ = { 〈[I], [I′]〉 | 〈I, I′〉 ∈ τ ′ }.
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Weak instance graphs
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Instances
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[I]
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[İ ′]

I ′

operation reduction

Figure 3.3: An overview of the definition of the semantics of a GUL operation

3.2.2 The reduction of weak instance graphs

Database transformations are defined as functions over instances which are repre-
sented by instance graphs. Such transformations are expressed in GUL by programs
containing operations that express graph manipulations. Such graph manipulations
can sometimes result in weak instance graphs. We prevent this by reducing the result
after every operation to an instance graph. This reduction is done by merging those
value-equivalent nodes that are either

1. basic-value nodes,

2. composite-value nodes labeled with the same class name or

3. composite-value nodes with an incoming edge with the same label and starting
in the same node.

This merging of nodes is continued until no more nodes are left to merge. Note that
because in a weak instance graph composite-value nodes have at most one incoming
edge or class name, this still holds after the merging. This is not true for basic-value
nodes which are always merged if they represent the same basic value.

An example of a reduction is given in Figure 3.4. Here we see in (a) a weak instance
graph with an employee with two identical addresses and two identical contracts, and
the string “New-York” in the class City. If we look at the result of the reduction in (b)
we see that the two contracts are merged, the two addresses are merged and all the
nodes representing the string “New-York” are merged. Note that the two addresses
are only merged because they belong to the same attribute of the same employee. If
some other node would have represented the same address but be in another attribute
or in the address attribute of another object, then this node would not be merged with
these two address nodes.

We will now give a formal definition of the reduction of a weak instance graph.

Definition 3.5 Given a weak instance graph I the relation .=I⊆ NI ×NI is defined
such that n1

.=I n2 if
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Figure 3.4: A weak instance graph and the result of its reduction

1. n1
∼=I n2 and

2. if n1 and n2 are composite-value nodes then they are either labeled with the same
class name or both have an incoming edge with the same label and starting in
the same node.

If n1
.=I n2 then we say that n1 and n2 are mergeable.

Note that two basic-value nodes are mergeable iff they have the same basic-value
representation.

Theorem 3.2 The relation .=I is an equivalence relation

Proof: The three properties of an equivalence relation:

reflexive This follows from the reflexivity of ∼=I and the fact that all composite-value
nodes in a weak instance graph have either one incoming edge or are labeled
with one class name.

symmetric This follows from the symmetry of ∼=I and the symmetry in the definition
of .=I .

transitive Assume that n1
.=I n2 and n2

.=I n3. It then holds by definition of ∼=I

that all three nodes are either all basic-value nodes, all composite-value nodes
or all object nodes. If they are basic-value nodes then it follows that n1

∼=I n3

and, therefore, n1
.=I n3. If they are composite-value nodes then they are either

all three labeled with the same class name or have all three an incoming edge
with the same label and starting from the same node. In both cases it follows
that n1

.=I n3. If all three nodes are object nodes then they must be the same
node and it also follows that n1

.=I n3.
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�
Nodes that are mergeable share many properties. One is that if they are composite-
value nodes then they belong to the same classes.

Lemma 3.3 Let I be a weak instance graph, S a basic GDM schema graph and ξ a
minimal extension relation from S to I. If the two composite-value nodes n1 and n2

in I are mergeable then it holds for all nodes m in S that ξ(m,n1) iff ξ(m,n2).

Proof: In a minimal extension relation nodes are assigned to a certain class for only
three reasons:

1. it is labeled with the name of a class,

2. it is at the end of a certain edge, or

3. it is in a class which is a subclass of another class.

In a weak instance graph composite-value nodes are either labeled with a class name
or have one incoming edge. If n1 and n2 are mergeable then they are either both
labeled with a class name or both have an incoming edge with the same label that
starts in the same node. If they both are labeled with a class name then they will
both belong to the class with that name and the classes that are reachable from this
class by isa edges and no other classes. This is the same for both nodes so they will
be in the same classes. If they both have only one incoming edge with the label α
that starts in the node n, then both n1 and n2 will be in a class iff it is reachable
from a class of n via an α-edge followed by zero or more isa edges. Since this is also
the same for n1 and n2 it follows that they are always in the same classes. �

Since .=I is an equivalence relation we can use it to define equivalence classes over
the nodes of a weak instance graph. These classes determine which nodes will be
merged into one single node.

Definition 3.6 A partial reduction of a weak instance graph I is obtained by taking
every .=I equivalence class and merging all nodes in that class into a single node.
Note that if nodes are merged into one node then they will have the same sort and, if
defined, a basic-value representation. The set of class names of the resulting node is
defined as the union of the sets of class names of the nodes that are merged into it.

After a partial reduction, the result is not necessarily an instance graph. This is
illustrated in Figure 3.5 where we see in (a) a weak instance graph, in (b) the result
after one partial reduction and in (c) the result after two partial reductions. Only
the weak instance graph in (c) is actually an instance graph. Therefore, we define a
reduction as the fix-point of a partial reduction.

Definition 3.7 The reduction of a weak instance graph I is written as İ and is
obtained by repeating a partial reduction until no more nodes are merged, i.e., all .=İ

equivalence classes contain only one node.
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Figure 3.5: A weak instance graph and the result after one and two partial reductions

Note that since every partial reduction decreases the number of nodes, this process is
guaranteed to end.

Since .=I is an equivalence relation the result of a (partial) reduction is uniquely
defined except for the choice of the identity of the new nodes which arise when several
nodes are merged into one. We will use the term is merged into to indicate that a
node in the weak instance graph is either directly, i.e., in one partial reduction, or
indirectly, i.e., after several partial reductions, merged into a certain node of the
reduction of the weak instance graph. We write ṅ for the node in İ that a node n in
I is merged into.

The intention of the reduction of a weak instance graph is to reduce it to an
instance graph. We, therefore, also have to show that İ is an instance graph.

Theorem 3.4 The reduction of a weak instance graph is an instance graph.

Proof: It follows directly from the definition of instance graph that the result of
the reduction is an instance graph if it is a weak instance graph. It is, therefore,
sufficient to prove that the result is a weak instance graph. This is done by showing
that if we perform a single reduction step, i.e., merge all mergeable nodes in a weak
instance graph, then we obtain again a weak instance graph. For this purpose we
show that the result satisfies the five constraints that must hold for a weak instance
graph. It is easy to see that I-BVA, I-BVR, I-BVT and I-REA will continue to
hold if value-equivalent nodes are merged. The constraint I-NS will also hold in the
result because all nodes in a set of composite-value nodes that are mergeable, will
either have an incoming edge with the same label and starting in the same node, or
will all be labeled with one and the same class name. If this set of nodes is merged
into one node then this node will, therefore, have either one incoming edge or will be
labeled with a single class name. �
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An interesting property of the reduction is that the reductions of isomorphic in-
stances will also be isomorphic.

Lemma 3.5 Let I1 and I2 be two weak instance graphs such that I1 ' I2 then İ1 ' İ2

Proof: Let g be an isomorphism from I1 to I2. The definition of ∼=I only uses the
relative identity of the nodes, i.e, the only information that is used is the equality
or inequality of nodes. It follows for all nodes n1 and n2 in I1 that n1

∼=I1 n2 iff
n1
∼=I2 n2. It is then also easy to see that it holds that n1

.=I1 n2 iff n1
.=I2 n2. It

follows that the partial reductions of I1 and I2 will be isomorphic and, therefore, also
the reductions İ1 and İ2. �

It also holds that nodes that are value equivalent will still be value equivalent after
a reduction.

Lemma 3.6 Let I be a weak instance graph and n1 and n2 two nodes in I such that
n1
∼=I n2 then ṅ1

∼=İ ṅ2.

Proof: We prove this by showing by induction that it holds for every i ∈ N that if
〈n1, n2〉 ∈ VEi

I then 〈ṅ1, ṅ2〉 ∈ VEi
İ
. (For the definition of VE see Definition 2.6.) It

then follows by Theorem 2.2 that the same holds for the relation ∼=I .

i = 0 If 〈n1, n2〉 ∈ VE0
I then n1 and n2 are either identical or basic-value nodes

labeled with the same representation. It then follows from the definition of
reduction that ṅ1 and ṅ2 are also identical or basic-value nodes with the same
representation. By the definition of VE0

İ
it then follows that 〈ṅ1, ṅ2〉 ∈ VE0

İ
.

i + 1 If 〈n1, n2〉 ∈ VEi+1
I then by the definition of VEi+1

I at least one of the following
must hold:

1. 〈n1, n2〉 ∈ VEi
I

By the induction assumption it follows that 〈ṅ1, ṅ2〉 ∈ VEi
İ
. By the defi-

nition of VEi+1

İ
it follows that 〈ṅ1, ṅ2〉 ∈ VEi+1

İ
.

2. σI(n1) = σI(n2) = com and ∀〈n1, α, n
′
1〉 ∈ EI : ∃〈n2, α, n

′
2〉 ∈ EI :

〈n′1, n′2〉 ∈ VEi
I and ∀〈n2, α, n

′
2〉 ∈ EI : ∃〈n1, α, n

′
1〉 ∈ EI : 〈n′2, n′1) ∈

VEi
I .

In the first place it is easy to see that it follows that σİ(n1) = σİ(n2) =
com.
Now assume that 〈ṅ1, α, ṅ

′
1〉 ∈ Eİ . By definition of merging and value

equivalence it follows that there is an edge 〈n1, α, n
′
3〉 in EI such that ṅ′1 =

ṅ′3. By the beginning assumption of this item it follows that there is an edge
〈n2, α, n

′
2〉 in EI such that 〈n′1, n′2〉 ∈ VEi

I . By the definition of merging it
follows there is an edge 〈ṅ2, α, ṅ

′
2〉 in Eİ . And by the induction assumption

it also follows that 〈ṅ′3, ṅ′2〉 ∈ VEi
İ

and, since ṅ′1 = ṅ′3, that 〈ṅ′1, ṅ′2〉 ∈ VEi
İ
.
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By the same reasoning it holds that for every edge 〈ṅ2, α, ṅ
′
2〉 ∈ Eİ there

is an edge 〈ṅ1, α, ṅ
′
1〉 in Eİ such that 〈ṅ′3, ṅ′4) ∈ VEi

İ
.

It then follows by the definition of VE that 〈ṅ1, ṅ2〉 ∈ VEi+1

İ
.

�

Another interesting property is that if a certain weak instance graph belongs to a
certain basic GDM schema graph, then its reduction will also belong to this schema
graph.

Lemma 3.7 If a weak instance graph I belongs to a basic GDM schema graph S then
İ also belongs to S.

Proof: If we assume that I belongs to S then there is a minimal extension relation ξ
from S to I that covers I and is class-name correct. We can then define the relation
ξ̇ ⊆ NS ×Nİ such that ξ̇(m, ṅ) iff ξ(m,n).

We now show that

1. ξ̇ is an extension relation

2. ξ̇ is a minimal extension relation,

3. ξ̇ covers İ,

4. ξ̇ is class-name correct.

These four properties are proven as follows:

1. ξ̇ is an extension relation
The following four constraints need to be satisfied:

ER-CLN if λS(m) is defined and λS(m) ∈ λİ(ṅ) then ξ̇(m, ṅ)
If λS(m) ∈ λİ(ṅ) then there was some node n′ in I such that ṅ′ = ṅ and
λS(m) ∈ λI(n′). Since ξ is an extension relation it follows that ξ(m,n′)
and, by the definition of ξ̇ that ξ̇(m, ṅ′), and, because ṅ′ = ṅ, also that
ξ̇(m, ṅ).

ER-ATT if ξ̇(m1, ṅ1), 〈ṅ1, α, ṅ2〉 ∈ Eİ and 〈m1, α,m2〉 ∈ ES then ξ̇(m2, ṅ2)
Assume that ξ̇(m1, ṅ1) and 〈ṅ1, α, ṅ2〉 ∈ Eİ and 〈m1, α,m2〉 ∈ ES . Be-
cause in an instance graph edges do not leave from basic-value nodes, it
follows that ṅ1 is either a composite value node or an object node. By
Lemma 3.3 and the fact that object nodes are only value-equivalent with
themselves, it holds that all nodes that were merged into ṅ1 belong to the
same nodes in S according to ξ. Since İ was made by merging nodes in
I it holds that if there is an edge 〈ṅ1, α, ṅ2〉 in İ then there is an edge
〈n1, α, n3〉 in I where ṅ2 = ṅ3. Since ξ̇(m, ṅ1) it follows that ξ(m1, n1)
and because ξ is an extension relation it also follows that ξ(m2, n3). By
definition of ξ̇ it then holds that ξ̇(m2, ṅ3), and since ṅ2 = ṅ3 also that
ξ̇(m2, ṅ2).
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ER-SRT if ξ̇(m, ṅ) then σİ(ṅ) = σS(m)
By definition of merging it holds that σİ(ṅ) = σI(n). If we assume that
ξ̇(m, ṅ) then it follows that ξ(m,n) and, since ξ is an extension relation,
that σI(n) = σS(m). Because σİ(ṅ) = σI(n) it follows that σİ(ṅ) =
σS(m).

ER-ISA if 〈m1, isa,m2〉 ∈ ES and ξ̇(m1, ṅ) then ξ̇(m2, ṅ)
If ξ̇(m1, ṅ) then it holds for some n′ in I such that ṅ′ = ṅ that ξ(m1, n

′).
Since ξ is an extension relation it follows that ξ(m2, n

′) and, therefore, that
ξ̇(m2, ṅ

′). Since ṅ′ = ṅ it follows that ξ̇(m2, ṅ).

2. ξ̇ is a minimal extension relation
Assume that ξ̇ is not a minimal extension relation. Then there must be some
extension relation ξ̇′ from S to İ that is strictly smaller than ξ̇. We then can
define an extension relation ξ′ from S to I as follows: ξ′(m,n) iff ξ̇′(m, ṅ).
It is easy to see that if ξ̇′ is strictly smaller than ξ̇ then ξ′ is strictly smaller
than ξ. This is, however, in contradiction with the fact that ξ is a minimal
extension relation. The assumption that ξ̇ is not minimal is, therefore, false.
What remains to be shown is that ξ′ is an extension relation from S to I if ξ̇′

is an extension relation from S to İ:

ER-CLN if λS(m) is defined and λS(m) ∈ λI(n′) then ξ′(m,n′)
If λS(m) ∈ λI(n) then λS(m) ∈ λİ(ṅ). Since ξ̇′ is an extension relation it
follows that ξ̇′(m, ṅ) and, by the definition of ξ′ that ξ′(m,n).

ER-ATT if ξ′(m1, n1), 〈n1, α, n2〉 ∈ EI and 〈m1, α,m2〉 ∈ ES then ξ′(m2, n2)
Assume that ξ′(m1, n1) and 〈n1, α, n2〉 ∈ EI and 〈m1, α,m2〉 ∈ ES . It
follows that there is an edge 〈ṅ1, α, ṅ2〉 ∈ Eİ and that ξ̇′(m1, ṅ1). Since ξ̇′

is an extension relation it follows that ξ̇′(m2, ṅ2) and, therefore, also that
ξ′(m2, n2).

ER-SRT if ξ′(m,n) then σI(n) = σS(m)
It holds that σI(n) = σİ(ṅ). If we assume that ξ′(m,n) then it follows
that ξ̇′(m, ṅ) and, since ξ̇′ is an extension relation, that σİ(ṅ) = σS(m).
Because σI(n) = σİ(ṅ) it follows that σI(n) = σS(m).

ER-ISA if 〈m1, isa,m2〉 ∈ ES and ξ′(m1, n) then ξ′(m2, n)
If ξ′(m1, n) then ξ̇′(m1, ṅ). Since ξ̇′ is an extension relation it follows that
ξ̇′(m2, ṅ) and, therefore, that ξ′(m2, n).

3. ξ̇ covers İ
The following three constraints need to be satisfied:

CV-N for every node ṅ ∈ Nİ it holds that ξ̇(m,n) for some m ∈ NS
Since ξ covers I it holds that ξ(m,n) for some m ∈ NS . It follows that
ξ̇(m, ṅ) by definition of ξ̇.
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CV-E for every edge 〈ṅ1, α, ṅ2〉 in Eİ there is some edge 〈m1, α,m2〉 in ES
such that ξ̇(m1, ṅ1) and ξ̇(m2, ṅ2)
For every edge 〈ṅ1, α, ṅ2〉 in Eİ there is an edge 〈n1, α, n3〉 in EI such that
ṅ2 = ṅ3. Since ξ covers I it holds that there is some edge 〈m1, α,m2〉 in
ES such that ξ(m1, n1) and ξ(m2, n3). If follows by definition of ξ̇ that
it also holds that ξ̇(m1, ṅ1) and ξ̇(m2, ṅ3), and because ṅ2 = ṅ3 also that
ξ̇(m2, ṅ2).

CV-C for every node ṅ ∈ Nİ and class name c ∈ λİ(ṅ) there is some named
node m ∈ NS such that ξ̇(m, ṅ) and c = λS(m)
For every node ṅ ∈ Nİ and class name c ∈ λİ(ṅ) there is at least one
node n′ such that ṅ′ = ṅ and for which it holds that c ∈ λI(n′). Since ξ
covers I it holds that there is some named node m ∈ NS such that ξ(m,n′)
and c = λS(m). By definition of ξ̇ it then also follows that ξ̇(m, ṅ′), and
because ṅ′ = ṅ also that ξ̇(m, ṅ).

4. ξ̇ is class-name correct
The following constraint must hold:

CNC if λS(m) is defined and ξ̇(m, ṅ) then λS(m) ∈ λİ(n)
If ξ̇(m, ṅ) then ξ(m,n). Because λS(m) is defined and ξ is an extension
relation it follows that λS(m) ∈ λI(n). By definition of merging it holds
that λI(n′) ⊆ λİ(ṅ′) and, therefore, that λS(m) ∈ λİ(n′).

�

3.3 The Operations of GUL

The basic mechanism of GUL is pattern matching. Based upon this principle we
define two types of operations: the addition operation and the deletion operation.
An addition operation adds certain nodes and edges wherever in the instance graph
a certain pattern is found. A deletion operation removes certain nodes and edges
wherever in the instance graph a certain pattern is found. Furthermore, we present
a fix-point operation that repeats a series of operations until no more changes occur.
Together with the addition and deletion operation this forms the complete language
of GUL which can be used to specify database transformation.

3.3.1 Patterns and embeddings

All operations in GUL are based on pattern matching, i.e., finding all occurrences in
the instance of a certain prototypical part of an instance. An example of a pattern
was already given in Figure 3.1. Another example is given in Figure 3.6 where we
see more or less the same pattern except there is a special edge between the address
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nodes of the employee and the manager. This edge is called an is edge and expresses
that these two nodes should be value equivalent. So the pattern looks for engineers
and managers working for the same department and living at the same address. Note
that if an engineer and manager live at the same address their addresses will still be
represented by two different nodes. So if the pattern had been changed such that the
two address edges would end in one and the same node then there could never be an
occurrence of this pattern in any instance graph.

address

address
Engineer

Section

Manager

employees

employees

Figure 3.6: A pattern with an is edge

For technical reasons we represent is edges with pairs of edges, one in every direc-
tion. Therefore, we introduce the following constraint for is edges:

The symmetric is edge constraint (P-SIE)
For every is edge there is a reverse is edge between the same nodes.

Such pairs of is edges in patterns are always drawn as one edge with no arrows. Note
that is edge only appear in patterns, in schema graphs there only are isa edges.

Although is edges could in principle hold between nodes of any sort they are only
meaningful for composite-value nodes. This is because in an instance graph only
two composite-value nodes can be distinct and value equivalent at the same time. A
pattern with an is edge between two object nodes or between basic-value nodes can,
therefore, always be replaced by an equivalent pattern where these nodes are merged
into one and removing the is edge. This restriction also prevents contradiction such as
an is edge between two basic-value nodes with different basic-value representations.
So we introduce the following constraint for patterns:

The composite-value is edge constraint (P-CVI)
An is edge is only allowed between composite-value nodes.

Another potential contradiction in a pattern is the specification of recursive values.
Consider, for example, the illegal pattern in Figure 3.7.

This pattern looks for a section that contains a project which contains a group
that is value equivalent to the project. This implies that the group contains itself and
is, therefore, a recursive value. As was already shown by Theorem 2.1 such values are
not allowed and the pattern can not be embedded in any instance graph. To prevent
the specification of recursive values we introduce the following constraint:
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Section

project

group

Figure 3.7: An illegal pattern specifying a recursive value

The non-recursive composite value constraint (P-NCV)
Every cycle that consists only of edges between composite-value nodes contains
only is edges.

This concludes the informal discussion of patterns, we now proceed with the formal
definition.

Definition 3.8 A pattern is J = 〈N,E, λ, σ, ρ〉 such that there is a weak instance
graph 〈N,E′, λ, σ, ρ′〉 with E′ = { 〈n1, α, n2〉 ∈ E | α 6= is } and ρ ⊆ ρ′, and it holds
that

• if 〈n1, is, n2〉 ∈ E then 〈n2, is, n1〉 ∈ E, (P-SIE)

• if 〈n1, is, n2〉 ∈ E then σ(n1) = σ(n2) = com, and (P-CVI)

• every cycle that consists only of edges between composite-value nodes contains
only is edges. (P-NCV)

Given a pattern J we will write the sub-pattern of J that is obtained when the is
edges are omitted as IJ .

Definition 3.9 Given a pattern J we write is∗J to denote the reflexive transitive
closure of { 〈n1, n2〉 | 〈n1, is, n2〉 ∈ EJ }.

The notion of a pattern occurring in an instance can be made more precise by
saying that there must be an embedding of the pattern into the instance, i.e., there
must be a function that maps the nodes of the pattern into the nodes of the instance
graph such that edges and labels (i.e., the class names, the sort and the basic-value
representation, if defined) are maintained and if there is an is edge between two nodes
then these nodes must be mapped to value-equivalent nodes.

An example of this is given in Figure 3.8. Here, the pattern of Figure 3.6 is
embedded in an instance by an embedding indicated by the dashed edges. Nodes
labeled with class names such as the Engineer node in the pattern are mapped to
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address

address
Engineer

employees

address

address
Manager
Employee

Engineer
Employee “G. Brown”

Section

employeesManager

str

str

str str

str

city

name

name

city

Section

“Product
str

name
employees

employees“Seattle”

“1010”

“40th Street” “F. Crane” Development”

Figure 3.8: An embedding of the pattern in Figure 3.6 in an instance graph

nodes that are labeled with at least the same class names. Although in the example
all nodes in the pattern are mapped to different nodes in the instance graph, it is
also allowed that different pattern nodes are mapped to the same instance graph
node. The pattern will, therefore, also find all employees that are both manager and
engineer and live at some address.

The formal definition of an embedding is as follows.

Definition 3.10 An embedding of a pattern J in a weak instance graph I is a func-
tion h : NJ → NI such that

1. for all nodes n in NJ it holds that

(a) λJ(n) ⊆ λI(h(n)),

(b) σJ(n) = σI(h(n)) and

(c) if ρJ(n) is defined then ρJ(n) = ρI(h(n)),
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2. for all edges 〈n1, α, n2〉 in EJ it holds that 〈h(n1), α, h(n2)〉 in EI , and

3. for all is edges 〈n1, is, n2〉 ∈ NJ it holds that h(n1) ∼=I h(n2).

The set of all embeddings of J into I is written as Emb(J, I).

3.3.2 The addition operation

An addition is specified by giving two patterns; a so-called base pattern and a so-called
extension pattern that is, except for the is edges, an extension of the base pattern with
extra nodes, edges and class names. The semantics of an addition without is edges
is that everywhere in the instance graph that the base pattern can be embedded, the
additional nodes, edges and labels in the extension pattern are added to the instance
graph. Often this results in a weak instance graph and therefore the result is always
reduced afterwards to an instance graph.

An example of an addition is shown in Figure 3.9. The edges and nodes of the
base pattern are drawn with normal lines and the additional edges and nodes in the
extension pattern are drawn with bold lines. When this addition is performed upon
an instance graph then for every embedding of the pattern, i.e., every department
Research with a section Product Development, an engineer G.W. Smith is added,
together with a contract between him and this department that starts on January
the 1st 1996, and his assignment to the section. After this addition the instance is
reduced such that, for instance, old nodes that represent the basic values 1, 1996 and
“G.W. Smith” are merged with the new nodes that also represent these basic values.

int

str

int int

department

Section

name

sections

“Research”

Department

yearmonth

1 1

day

Engineer

name

“G.W. Smith” “Product

Contract

employee name
str

str

1996

begin-date

employees

Development”

Figure 3.9: An example of an addition

An addition may not only add nodes and edges but also add new class names to
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already existing nodes. For instance, the addition in Figure 3.10 would add the class
name Manager to every engineer with the name “G.W. Smith”.

Manager
Engineer

name

“G.W. Smith”
str

Figure 3.10: An addition of a class name

Because the extension pattern is a pattern it holds that all nodes must be either
class labeled or reachable from some class-labeled node. This ensures that it is clear
for every new node to which attribute or classes it belongs. The extension pattern
is also allowed to have is edges. If an is edge occurs between a node in the pattern
and an additional node in the extension pattern then this means that the new node
caused by the additional node will become value equivalent to the old node that the
node in the pattern was embedded upon. This is achieved by giving the new node the
same attributes as the old node and, if necessary, adding new nodes for the composite
value nodes representing these attributes, et cetera. This enables us to make copies of
composite-value nodes without having to copy explicitly all the edges and composite-
value nodes that represent the attributes (and sub-attributes, et cetera). An example
of this is given in Figure 3.11 where the employee H. Ford is given the same address
as W. Ford. Note that if H. Ford did already have an address in the instance graph
then he or she will now have two addresses. If, however, this new address is equal to
the old address then the reduction will merge these two addresses into one node.

address

Employee

str

“W. Ford”

address

Employee

str

“H. Ford”

name name

Figure 3.11: An addition with an is edge

In general the semantics of the addition can be loosely summarized as follows:
For every time that the base pattern can be embedded in the instance graph, this
instance graph is extended with just enough extra nodes, edges and class names such
that the extended pattern can also be embedded. This is done, however, under the
two restrictions that
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1. distinct extra nodes in the extension pattern must be embedded upon distinct
new nodes and

2. for every distinct embedding the extra nodes in the extension pattern are em-
bedded upon distinct new nodes.

Consider, for example, the instance graph in Figure 3.12 (a) and the addition in (b).
The addition will add a B node for every embedding of the base pattern. Since the
two A nodes can be embedded upon two different A nodes in four ways, four new B
nodes will be added as shown in Figure 3.12 (c).

B

a a

(b)(a) (c)

a a

a

a a

aa

a

a a

A A

B

Instance graph Addition Instance graph

A A A A

B B

B
B B

Figure 3.12: An instance graph, an addition and the result of the addition

Before we proceed with the formal definition of an addition we need to define when
a weak instance graph is a sub-instance-graph of another weak instance graph, and
when a pattern is a sub-pattern of another pattern.

Definition 3.11 A weak instance graph I is a sub-instance-graph of a weak instance
graph I ′ if NI ⊆ NI′ , EI ⊆ EI′ , λI(n) ⊆ λI′(n) for all nodes n in NI , σI ⊆ σI′ and
ρI ⊆ ρI′ .

It is easy to see that this defines a partial ordering over the weak instance graphs.

Definition 3.12 A pattern J is a sub-pattern of a pattern J ′ if IJ is a sub-instance-
graph of IJ′ .

Note that in the definition of sub-pattern we ignore the is edges. We will now first
define the concept of pre-addition and its semantics, because, as will be shown later,
some extra well-formedness requirement are necessary to guarantee that the semantics
are always well-defined.



3.3. THE OPERATIONS OF GUL 65

Definition 3.13 Let J ′ be a pattern and J a sub-pattern of J ′ then Add(J, J ′) is a
pre-addition

What follows is the definition of the semantics of an addition. Note how it follows
the steps presented in Figure 3.3.

Definition 3.14 Let Add(J, J ′) be a pre-addition then the relation [[Add(J, J ′)]] ⊆ I×I
is called the semantics of Add(J, J ′) and defined such that 〈[I], [İ ′]〉 ∈ [[Add(J, J ′)]] iff
I ′ is a minimal super-instance-graph of I such that there is an embedding extension
function η : Emb(J, I)→ Emb(J ′, I ′) such that

1. η(h) equals h on NJ ,

2. all distinct nodes in NJ′−NJ are mapped by η(h) to distinct nodes in NI′−NI ,
and

3. extensions of distinct embeddings map nodes in NJ′ −NJ to distinct nodes.

Note that the embeddings of J into I are extended to embeddings of J ′ into I ′. This
means that the base pattern will also embed in the result of the addition except that
the is edges in the base pattern may no longer hold.

There are five requirements that should hold for a pre-addition to ensure that the
semantics are a total function. In what follows it is explained what they are and why
they are necessary. The first requirement is:

The well-defined new basic-value constraint (A-NBV)
The additional basic-value nodes must be labeled with a basic-value representa-
tion.

Since basic-value nodes in patterns are allowed to be without a basic-value represen-
tation it would not be clear which basic values the new basic-value nodes would have
to represent.

The second requirement is:

The copy from old to new only constraint (A-CON)
An is edge in the extension pattern is only allowed between a node in the base
pattern and a node in the extension pattern that is not in the base pattern.

This requirement prevents is edges in the extension pattern that hold between nodes
in the base pattern. If such an edge would exist then the addition would have to add
nodes and edges such that the two instance graph nodes that these pattern nodes
are embedded upon become value equivalent. The problem is that it may not be
uniquely defined which nodes and edges are required for this. Consider, for example,
the instance graph and pre-addition in Figure 3.13. The pre-addition in this figure
should extend the instance graph minimally such that the two A nodes become value
equivalent. The result of this is not well-defined because the nodes can be merged in
two different ways which are both minimal in the sense that we cannot omit nodes
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Figure 3.13: An instance graph, a pre-addition with an is edge in the between nodes
in the base pattern, and two possible results

and edges such that the result still contains the two original composite values. These
two possible results of the pre-addition are shown in Figure 3.13 as (c) and (d)

The third requirement is:

The no extension of copies constraint (A-NEC)
If a node in the extension pattern is not in the base pattern and is involved in
an is edge then there is no edge that leaves from this node.

Suppose that a node in the extension pattern would be involved in an is edge with
a node in the base pattern and also have attribute edges itself as, for example, in
Figure 3.14 (a) and (b) Then a new node caused by this node would have to have
these edges and also be value equivalent with the old node that the node in the base
pattern is embedded upon. The result would have to be that both nodes become the
composite value that is obtained when the original value of the old node is merged
with the value of the new node. As before it is possible that the minimal result of this
is not uniquely determined. In the case of Figure 3.14 the result could be again one
of the two instance graphs in Figure 3.13. Therefore, we do not allow such is edges.

The fourth requirement is:

The no merging of copies constraint (A-NMC)
A node in the extension pattern that is not in the base pattern may be involved
in at most one is edge.

The reason for this requirement is similar to the one above. Assume that an additional
node has is edges to several nodes in the base pattern as in Figure 3.14 (c) and (d).
Then this node causes a new B node for every embedding of the two A nodes, so also
for the embedding that maps them to the two different A nodes in (a). The new B
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Figure 3.14: An instance graph, a pre-addition with an is edge and an attribute edge,
another instance graph and a pre-addition with two merging is edges

node that is created for this embedding should be value equivalent to the two old A
nodes. And since the value-equivalence relation is an equivalence relation the old A
nodes should also be value equivalent in the result of the pre-addition. The result
would again involve the merging of the two composite values represented by the A
nodes and is, therefore, not uniquely defined.

The reasons for the fifth and final requirement are illustrated by the pre-additions
in Figure 3.15. If we apply pre-addition (a) to the instance graph (b) as indicated by
the nodes and edges drawn with solid lines, then we should extend it as indicated by
the edges and nodes drawn with dotted lines. Note that the semantics of the is edge
is that after the addition the old node and the new node should be value equivalent.
Since the new node at the end of the b edge should be value-equivalent to the old node
from which the edge leaves, this means that we would have to add an infinite amount
of edges and nodes, which is not possible. A similar, more complicated, example is
given by the pre-addition (c). If we apply it to the instance graph (d) as indicated by
the nodes and edges drawn with solid lines, then we should make the extensions as
indicated by the nodes and edges drawn with dotted lines. Here we see that the new
node at the end of the e edge should be value equivalent with the old node at the end
of the b edge, and the new node at the end of the d edge should be value equivalent
with the old node at the end of the a edge. As in the previous example this defines
an infinite composite value, which is not possible in our data model, and the result
of the addition is therefore not well defined.

To prevent such cycles we introduce the notion of merged version of an extension
pattern.

Definition 3.15 Given a pre-addition Add(J, J ′) the merged version of J ′ is obtained
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Figure 3.15: A pre-addition, its hypothetical result, another pre-addition, and its
hypothetical result

from J ′ by merging two nodes if they are in J and one of the following holds:

• they are both object nodes,

• they are composite-value nodes labeled with the same class name, or

• they are composite-value nodes with an incoming attribute edge with the same
label and leaving from the same node.

until no more nodes can be merged.

Note that all object nodes that are also in the base pattern will always be merged
into one node. It is easy to see that the merged version of the extension pattern is
unique up to isomorphism. This allows us to formulate the fifth requirement:

The no recursive is edges constraint (A-NRI)
The merged version of the extension pattern satisfies P-NCV, i.e., every cycle
that consists only of edges between composite-value nodes contains only is edges.

If we look at the pre-addition in Figure 3.15 then we see that the merged versions
of the extension patterns of (a) and (c) are given by (b) and (d), respectively, if we
include the nodes and edges drawn by dotted lines. It is easy to see that P-NCV
does indeed not hold for these merged versions.

This concludes the discussion for the requirements that should hold for an addition.
This leads to the following formal definition:

Definition 3.16 A pre-addition Add(J, J ′) is an addition if
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• ρJ′ is defined for all basic value nodes in NJ′ −NJ , (A-NBV)

• if 〈n1, is, n2〉 ∈ EJ′ then 〈n1, n2〉 ∈ NJ × (NJ′ −NJ) or 〈n1, n2〉 ∈ (NJ′ −NJ)×
NJ , (A-CON)

• if 〈n1, is, n2〉 ∈ EJ′ and n2 ∈ NJ′−NJ then there is no attribute edge 〈n2, α, n3〉
in J ′, (A-NEC)

• if 〈n1, is, n2〉 ∈ EJ′ , 〈n3, is, n2〉 ∈ EJ′ and n2 ∈ NJ′ − NJ then n1 = n3.
(A-NMC)

• in the merged version of J ′ P-NCV holds, i.e., every cycle that consists only
of edges between composite-value nodes contains only is edges. (A-NRI)

We now proceed with the theorem that states that the semantics of an addition
is a total function, but for its proof we need the following definition:

Definition 3.17 A value path in a weak instance graph or schema graph is a path
in which all the edges start in a composite-value node.

Note that a value path will always begin in a composite-value node but does not
necessarily end in one.

Theorem 3.8 For every addition Add(J, J ′) it holds that [[Add(J, J ′)]] is a total func-
tion from I to I.

This theorem allows us to write [[Add(J, J ′)]]([I]) for the unique result of applying
Add(J, J ′) to instance [I].
Proof: We prove this by showing how I ′ can be constructed from I if we assume
that there exists an embedding extension function η : Emb(J, I)→ Emb(J ′, I ′) that
satisfies the requirements in the semantics of the addition.

The construction of I ′ will be done in two steps. First, we extend I to I ′′ to satisfy
the requirements mentioned in the semantics, except those of the is edges. Second,
we will extend I ′′ to I ′ to satisfy the requirements of the is edges.

We begin with the first step. Because the function η exists it will hold that for
every embedding h of J into I and node n in NJ′ −NJ there is a distinct new node
η(h)(n) in I ′′. Since η(h) has to be an embedding of J ′ in I ′′ there will also have to
hold the following:

• for all nodes n in NJ′ −NJ it must hold that λJ′(n) ⊆ λI′′(η(h)(n)), σJ′(n) =
σI′′(η(h)(n)) and ρJ′(n) = ρI′′(η(h)(n)), and

• for all edges 〈n1, α, n2〉 in EJ′ −EJ it must hold that 〈η(h)(n1), α, η(h)(n2)〉 is
in EI′′ .

This determines the sorts of the new nodes and also which edges and class-name
labels should (at least) be added to make sure that η(h) is an embedding of J ′ in I ′.
Because of constraint A-NBV for an addition the basic-value representations of the
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new basic-value nodes are also determined. So, now we have defined I ′′ up to the
choice of the new nodes η(h)(n).

The second step consists of extending I ′′ such that for every embedding η(h) it
holds that if there is an is edge 〈n1, is, n2〉 in EJ′ then it must hold that η(h)(n1) ∼=I′

η(h)(n2). Note that if there is such an is edge then because of constraint A-CON
for additions one node, say n1, will be in NJ and the other node, say n2, will be in
NJ′ − NJ . Furthermore, because of constraint A-NEC for additions no attribute
edge leaves from n2 and both nodes are composite-value nodes because this holds for
all patterns. It follows that there will not leave an edge from the node η(h)(n2) in the
I ′ constructed so far. If η(h)(n1) and η(h)(n2) are value equivalent then they must
have the same attribute edges that lead to value-equivalent nodes. So, for every edge
〈η(h)(n1), α, n3〉 in I ′′ there has to be an edge 〈η(h)(n2), α, n′3〉 added to I ′ and it
must also hold that n3

∼=I′′ n
′
3. Note that if the node n′3 is a composite-value node

then it has to be new and different from other new nodes because it only may have
one incoming edge. In that case we must also add edges to n′3 for all the edges leaving
from n3 et cetera for all nodes that are reachable from η(h)(n1) via a value path. If
n3 is an object node then it must hold that n3 and n′3 are one and the same node.
If n3 is a basic-value node then n′3 will be also be a basic-value node with the same
basic-value representation. Note that if such a node already existed or is created
elsewhere as a new node then n′3 may be any one of these nodes, otherwise it will be a
new node. It is easy to see that if all nodes reachable from η(h)(n1) via a value path
are copied this way then it will hold that η(h)(n1) and η(h)(n2) are value equivalent
in I ′. And they will remain value equivalent if we also extend the weak instance graph
for other is edges. This is because by constraint A-NMC for additions the node n2

will have only one incoming is edge, and by constraint A-NRI we can choose the
is edges in such an order that the composite value represented by η(h)(n1) will not
change due to is edges that occur later in the order.

It is now easy to see that the resulting I ′ is a weak instance graph:

I-BVA Because no edge leaves from basic type nodes in the pattern J ′ this will also
hold in I ′.

I-BVR Because ρJ′ is defined for all nodes in NJ′ − NJ with a basic type sort it
follows that ρI′ is defined for exactly all nodes with a basic type sort.

I-BVT Because ρJ′(n) ∈ δ(σJ′(n)) for all nodes n in NJ′ it follows that ρI′(n) ∈
δ(σI′(n)).

I-REA In J ′ it holds that every class-free node is reachable from some class-labeled
node. If n in NJ′ causes for the embedding h a new node in I ′ then n will be
reachable in J ′ from some class-labeled node n′ in NJ′ . By the construction
of I ′ it follows that η(h)(n′) is a class-labeled node in I ′ and there is a path
to η(h)(n). If a node is copied to satisfy an is edge 〈n1, is, n2〉 then it will
be reachable from η(h)(n2) and since this node is itself reachable from some
class-labeled node this will also hold for the copied node.
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I-NS Because in J ′ composite-value nodes have either one incoming edge or are
labeled with one class name this will also hold for the new nodes in I ′. Note
that this also holds for the nodes which are copied to satisfy the is edges.

It is also easy to see that the constructed I ′ is minimal and unique up to the choice
of the identity of the new nodes and the merging of the copied basic-value nodes, i.e.,
the copied basic-value nodes may be arbitrarily merged with old and other new basic-
value nodes with the same basic-value representation. Note that this does not lead to
ambiguity in the end result because when I ′ is reduced all the basic-value nodes with
the same basic-value representation will be merged anyway. Since I ′ was constructed
by only adding to I what was absolutely necessary to satisfy the constraints, it follows
that every super-instance-graph of I that satisfies the constraints and is minimal is
equal to some I ′ constructed this way up to the choice of the identity of the new
nodes.

Because the definition of I ′ is generic w.r.t. the identity of the nodes, i.e., does
not assume anything about the identity of the nodes except that some are equal and
some are not, it follows that if two isomorphic instance graphs are extended in this
way then they can be extended in such a way that the extensions are also isomorphic.
By Lemma 3.5 it follows that their reductions will also be isomorphic. It follows that
if we take two elements I1 and I2 of the equivalence class [I] then the reductions of
their extensions İ ′1 and İ ′2 will be isomorphic. Therefore, the equivalence class [İ ′] is
uniquely determined. �

3.3.3 The deletion operation

A deletion is specified by giving a base pattern that is to be embedded into the instance
graph, and indicating which nodes, edges and class-name labels in this pattern have
to be removed whenever an embedding is found. The indication of the parts that have
to be removed is done by the core pattern which is a sub-pattern of the base pattern.
The nodes, edges and class-name labels that appear in the base pattern but not in the
core pattern are the elements that will be deleted. As with the addition operation this
may result in a weak instance graph and therefore the result is afterwards reduced to
an instance graph.

An example of a deletion is shown in Figure 3.16. Here we see a pattern of which
some nodes and edges are drawn with dashed lines and some class-name labels are
written in an outlined font. The complete pattern is the base pattern and the edges
and nodes drawn with normal edges and the class-name labels written in a normal
font constitute the core pattern. The result of this deletion is that if an employee
has a contract with a department that ends in 1996 and he works for some section of
that department, then this contract is removed and he or she works no longer for any
section of that department.

If the contract is removed from the instance then the node representing the end
date of the contract is no longer reachable from any class-labeled node. It will,
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Figure 3.16: An example of a deletion

therefore, also be removed from the instance. The same may hold for the integer
1996 but since basic-value nodes may be shared by several attributes and classes, it
may still be reachable from some other class-labeled node. It follows from this that
it would also have been sufficient to only remove the class name Contract from the
composed value in order to have it removed from the instance graph. It will in general
hold that if the class-name label or the incoming edge of a composite-value node in
the base pattern is not in the core pattern then the node that the composite-value
node is embedded upon will be removed from the instance graph.

As with the addition it is not only possible to manipulate nodes and edges but
also class names. In Figure 3.17, for instance, the class name Manager is removed
from the engineer G.W. Smith.

Manager
Engineer

name

“G.W. Smith”
str

Figure 3.17: An example of the deletion of a class name

As can be seen in Figure 3.16 the core pattern of a deletion is not really a pattern
since there may be class-free nodes which are not reachable from any class-labeled
node. An example of this is the node representing the end date. Therefore, we
introduce the notion of a weak pattern before we give the formal definition of a
deletion.

Definition 3.18 A weak pattern is a pattern where class-free nodes are allowed to
be unreachable from a class-labeled node.
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Definition 3.19 A deletion is Del(J, J ′) where J is a pattern and IJ′ is a weak
pattern that is a sub-pattern of IJ .

Informally, we can define the semantics of a deletion Del(J, J ′) as follows. Every-
where in the instance graph that an embedding of pattern J is found, the nodes, edges
and class-name labels in J but not in J ′ are removed from the instance graph. If this
results in class-free nodes that are not reachable from a class-labeled node then these
nodes are also removed. Finally, as with the addition, nodes representing the same
basic or composite value in the same class or attribute are merged into one node.

Definition 3.20 Let Del(J, J ′) be a deletion then the function [[Del(J, J ′)]] : I→ I is
called the semantics of Del(J, J ′) and defined such that [[Del(J, J ′)]]([I]) = [İ ′] where
I ′ is a maximal sub-instance-graph of I such that for every h in Emb(J, I) it holds
that:

1. if n ∈ NJ −NJ′ then h(n) 6∈ NI′ ,

2. if 〈n1, α, n2〉 ∈ EJ − EJ′ then 〈h(n1), α, h(n2)〉 6∈ EI′ , and

3. if n ∈ NJ′ , c ∈ λJ(n)− λJ′(n) and h(n) ∈ NI′ then c 6∈ λI′(h(n)).

Note that the is edges of J ′ do not influence the semantics of the deletion.

Theorem 3.9 For any instance [I] and addition Del(J, J ′) the result of the expres-
sion [[Del(J, J ′)]]([I]) is always well-defined.

Proof: As with the addition we first show how to construct I ′. We first start with I
and then for every embedding h ∈ Emb(J, I) we do the following:

• if n ∈ NJ −NJ′ then h(n) is removed from I ′

• if 〈n1, α, n2〉 ∈ EJ − EJ′ then 〈h(n1), α, h(n2)〉 is removed from I ′, and

• if n ∈ NJ′ and c ∈ λJ(n)− λJ′(n) then c is removed from λI′(h(n)).

The next step is to remove all nodes from I ′ that are class-free and not reachable
from a class-labeled node.

It is now easy to see that the resulting I ′ is a weak instance graph:

I-BVA Because no edge leaves from basic type nodes in I and no edges are added it
follows that this will also hold in I ′.

I-BVR Because ρI is defined for all nodes in NI with a basic type sort, this will also
hold in I ′.

I-BVT Because ρI(n) ∈ δ(σI(n)) for all nodes n in NI , this also holds for I ′.

I-REA Because in the last step all class-free nodes are removed which are not reach-
able from some class-labeled node, it follows that all remaining class-free nodes
will be reachable from some class-labeled node.
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I-NS Because in I composite-value nodes have either one incoming edge or are labeled
with one class name this will also hold for the new nodes in I ′. Note that if a
node has no incoming edge and no class-name label then it is a class-free node
unreachable from a class-labeled node and, therefore, not in I ′.

It is also easy to see that the constructed I ′ is the maximal sub-instance-graph
of I that satisfies the requirements. Because the definition of I ′ is generic w.r.t. the
identity of the nodes, i.e., does not assume anything about the identity of the nodes
except that some are equal and some are not, it follows that if two isomorphic in-
stance graphs are projected in this way then the results will also be isomorphic. By
Lemma 3.5 it follows that their reductions will also be isomorphic. It follows that
if we take two elements I1 and I2 of the equivalence class [I] then the reductions of
their projections İ ′1 and İ ′2 will be isomorphic. Therefore, the equivalence class [İ ′] is
uniquely determined. �

3.3.4 The fix-point operation and programs

The operations such as the addition and deletion can be combined into programs by
forming lists of operations. To have some kind of operation that introduces iteration
we introduce the fix-point operation. This operation takes a program and repeats it
until the resulting instance after the last run of the program is the same as before
this run. An example of a program is shown in Figure 3.18.

Product Part

all-parts

parts Product Part
all-parts

all-parts

subparts
Part

*

Figure 3.18: An example of a GUL program

This program operates on an instance with information about products that may
consist of parts which may consist of subparts et cetera. The program in the figure
is a list containing an addition and a fix-point operation containing a program with
a single addition. Additions and deletions are drawn inside dotted boxes to prevent
confusion. A fix-point operation is indicated with two brackets and a star. The
program computes for every product the set of all its parts (and subparts, sub-subparts
etcetera) in the attribute all-parts. The first step puts the direct parts of the product
in the all-parts attribute. The second step adds the subparts of all the parts already
in the all-part attribute, until no more are added.
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Definition 3.21 The set of GUL programs, G, is defined as the smallest set such
that every finite list of additions, deletions and fix-point operations are in G, where a
fix-point operation is Fp(p) with p a GUL program.

Definition 3.22 The semantics of a program p = [o1, . . . , on], [[p]] = [[on]] ◦ . . . ◦ [[o1]]
where [[Fp(p′)]] : I → I is defined such that [[Fp(p′)]]([I]) = [I]k for the smallest k ≥ 0
for which which it holds that [Ik] = [Ik+1] with

• [I0] = [I], and

• [Ii+1] = [[p′]]([Ii]).

The result of a fix-point operation and, therefore, the result of a program may
be undefined. For instance, in Figure 3.19 we see a program that continues to add
Product nodes because after every addition the instance will always be different from
the previous instance.

*Product

Figure 3.19: A fix-point operation with undefined result

The fix-point operation extends the expressive power of GUL in a significant way
because it makes recursive iteration possible. This can also be achieved by other
constructs such as while-loops and recursive procedure calls (van Rossum, 1992).
The choice for the fix-point operation is mainly inspired by its theoretical simplicity.
A severe drawback of this construct is that it is hard to implement efficiently because
for every iteration the complete old instance may have to be stored and compared
to the complete new instance. The while-loops and recursive procedure calls would
be far more efficient to implement. However, since we are only interested here in
theoretical aspects of the language and all these constructs are interchangeable as far
as expressive power is concerned, we will use the fix-point operator.

3.4 Discussion

In this section we evaluate several aspects of GUL. First, we discuss the automatic
reduction after every operation. Second, we discuss the way that instances are repre-
sented by instance graphs. Finally, we discuss the is edges in GUL.
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3.4.1 The automatic reduction

After every operation the result is reduced to an instance graph. An alternative
might have been to introduce a separate reduction operation that has to be explicitly
applied by the user, as in PaMaL (Gemis and Paredaens, 1993; Gemis, 1996). An
advantage of this approach is that it makes the semantics of the operations simpler.
The disadvantage is that the result of an operation is sometimes represented by a
weak instance graph. This means that the result might no longer be a GDM instance.
This can be solved by generalizing the concept of instances to equivalence classes over
weak instance graphs. This would amount to allowing that attributes and composite-
value classes contain bags of composite values instead of sets. However, because we
would like to stay close to data models such as the ER model and complex-object
data models we restrict them to sets.

3.4.2 Instances as equivalence classes of instance graphs

As explained in Section 3.2.1 the identity of the nodes is not accessible to the user.
Therefore, instances are defined as equivalence classes of isomorphic instance graphs.
The consequence of this is that the semantics of the operations becomes more com-
plicated because they are not direct manipulations of graphs as in PaMaL, GOAL or
GOOD. An advantage, however, is that the semantics of the operations are functions
and do not need to take into account that the identity of new nodes has to be different
from any node that once existed in the same instance of the database.

3.4.3 The is edges

The use of is edges allows the user to specify a pattern that requires that two nodes
are embedded upon two value-equivalent nodes. This makes it easy to

1. select value-equivalent nodes, and

2. make copies of composite values.

The reason that selecting value-equivalent nodes without is edges is a problem is
the fact that the reduction is local, i.e., only value-equivalent composite-value nodes
within the same class or attribute are merged. In PaMaL and GOAL, for instance,
the reduction is global, i.e., all value-equivalent composite-value nodes in the instance
graph are merged. So, if we want to see if two nodes are value equivalent in these
languages, we only have to check if they are merged into the same node. In GUL this
is not possible because composite-value nodes in different attributes and classes are
never merged.

The reason that making copies of composite values without is edges is difficult
and under some circumstances even impossible is a combination of the reachability
constraint and the non-sharing constraint for patterns and (weak) instance graphs.
This is discussed in more detail in subsection 8.5.
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Typing GUL Patterns

4.1 Introduction

A database schema determines which instances are allowed and which are not. If GUL
is used to specify updates then it is important to know if the resulting instance is
allowed by the schema. It is therefore interesting to investigate if GUL operations can
be typed such that the result always belongs to the schema. In this chapter and the
following two chapters we investigate this problem for several restricted versions of
GDM and GUL. The restricted version of GDM that we will consider are the following.

Definition 4.1 A GDM[com,n-obj] schema graph is a basic GDM schema graph that
contains only basic-value class nodes, composite-value class nodes (com) and named
object-class nodes (n-obj). A GDM[n-obj] schema graph is a basic GDM schema graph
that contains only basic-value class nodes and named object-class nodes (n-obj).

In this chapter we discuss the typing of patterns and in the following two chapters
we discuss the typing of the addition and the deletion, respectively. Typing patterns
means that we will present an algorithm that decides if a pattern will embed into
any of the instance graphs that belong to a certain schema graph. In Section 4.2 we
discuss why and how well-typedness for GDM[com,n-obj] is defined. In Section 4.3
we show that the definition of well-typedness is correct. In Section 4.4 we discuss
the decidability of well-typedness. Finally, in Section 4.5 we give an overview of the
obtained results for typing GUL patterns.

4.2 Definition of Well-Typedness

When we consider only GDM[n-obj] patterns the typing of a pattern is very similar
to determining if a weak instance graph belongs to a GDM[n-obj] schema graph. To
understand why there is a difference at all consider Figure 4.1.

77
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Figure 4.1: A GDM[n-obj] schema graph, instance graph and pattern

It is easy to see that the instance graph (b) in this figure belongs to the schema
graph (a) because there is a minimal extension relation from the schema graph to the
instance graph that covers the instance graph and is class-name correct. It is also
clear that this does not hold for the pattern (b). However, the pattern should be
considered as well typed under the schema graph because there is an instance graph
(b) in which it embeds and this instance graph belongs to the schema graph.

The important difference between the instance graph and the pattern is that in
the instance graph a node is labeled with all the class names of the named classes that
it is in. However, if a node of the pattern is embedded upon a node in the instance
graph then the node in the instance graph may be in many more named classes than
the node in the pattern is labeled with. This is solved by dropping the requirements
that the extension relation has to be minimal and class-name correct. This allows
that the extension relation relates the A object node to both the A and B object
class nodes in the schema graph, and the int node at the end of the b edge to the C
basic-value class node in the schema graph

It is fairly easy to see that if a pattern embeds into an instance graph that be-
longs to the schema graph then such an extension relation can be constructed for
the pattern. Moreover, if such an extension relation exists for a certain pattern then
the pattern can be turned into a weak instance graph that belongs to the schema
graph by adding the necessary basic-value representations and the class names that
are required by class-name correctness.

If we not only consider GDM[n-obj] patterns but also GDM[com,n-obj] patterns,
i.e., we also allow composite-value nodes, then this introduces new problems, even if
we disallow is edges, as is illustrated by Figure 4.2.

If we take the definition of well-typedness for GDM[n-obj] then the pattern (b)
would be well-typed under the schema graph (a). However, the extension relation
that would support this pattern relates the composite-value node in the pattern to
two class nodes in the schema graph; the one at the end of the a edge and the one at the
end of the b edge. Since extension relations have to be minimal and composite-value
nodes can have at most one incoming edge, it follows that there is not an instance
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Figure 4.2: A GDM[com,n-obj] schema graph and pattern

graph that belongs to that schema graph and has a composite-value node in both
classes at once. Note that this would not have been the case if the b edge in the
schema graph would have been an a edge.

This problem is solved by introducing the requirement that the extension relation
between the schema graph and the pattern must be minimal on the composite-value
nodes.

Definition 4.2 An extension relation ξ from a schema graph S to a weak instance
graph I is minimal on the composite-value nodes if there is not another extension
relation ξ′ ⊂ ξ from S to I that is equal to ξ on the object nodes and basic-value
nodes.

The introduction of is edges in patterns introduces extra typing problems. Con-
sider, for example, the schema graph in Figure 4.3 and the three patterns in Figure 4.4.

int
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d e D
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Figure 4.3: A GDM[com,n-obj] schema graph
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Figure 4.4: Three GDM[com,n-obj] patterns with is edges

The three patterns in Figure 4.4 demonstrate the three types of problems that
may occur.

The problem in pattern (a) is the “covering problem”. Without the is edge this
pattern is well-typed under the schema graph in Figure 4.3. The is edge requires that
every embedding maps the two nodes at the end of the a and b edges to two value-
equivalent nodes. Because from one node in the instance graph there must leave a c
edge there must also be a c edge from the value-equivalent node. However, as can be
seen from the schema graph in Figure 4.3 such an edge is not allowed for this node.
It follows that this pattern will never embed into any instance graph that belongs to
the schema graph.

The problem in pattern (b) is the “sort problem”. Also this pattern is well-typed
under the schema graph if we ignore the is edge. Although here the d edge is allowed
for the other value-equivalent node, the schema graph requires that it ends there in an
int node. Since the original edge ends in a str node there is a contradiction. It follows
also here that this pattern will never embed into any instance graph that belongs to
the schema graph.

The problem in pattern (c) is the “extra object class” problem. Also this pattern
is well-typed if we ignore the is edge. Again the two nodes that are connected by
the is edge have to be embedded upon two value-equivalent nodes. Both these value-
equivalent nodes will, therefore, have an e edge and these edges will both end in the
node that the C node is embedded upon. By the schema graph it then must hold that
the node at the end of the a edge from the C node in the instance graph is both an
int node and a str node. It follows from this contradiction that this pattern will never
embed into any instance graph that belongs to the schema graph.

To prevent these problems we introduce three rules that should hold for an exten-
sion relation that supports the pattern. We can informally describe them as follows:

The covering of value-paths rule (TP-CVV)
All value paths in the pattern (including those paths that contain is edges) that
contain at least one attribute edge are covered by a path in the schema graph
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that starts from a class node associated with the begin node of the value path in
the pattern.

This rule ensures that pattern (a) in Figure 4.4 is not well-typed because under no
extension relation that is minimal on the composite-value nodes will it hold that the
value path consisting of the is edge and the c edge is covered by a similar path from
any class node of the node at the end of the b edge.

The consistency of value-paths rule (TP-CSV)
If a value path in the pattern (including those paths that contain is edges) ends
in a node with a certain sort then all similar value paths in the schema graph
that begin from a class node associated with the begin node of the path in the
pattern, end also in a node with that sort.

This rule ensures that pattern (b) is not well-typed because under every extension
relation it will hold that the node in the pattern at the end of the b edge belongs to
the class node in the schema graph at the end of the b edge. However, the value path
in the pattern consisting of the is edge and the d edge ends in a node with sort str,
and in the schema graph a similar path consisting of just a d edge ends in a node
with sort int.

The object-class rule for value paths (TP-OCV)
If a value path in the pattern (including those paths that contain is edges) ends
in an object node and in the schema graph there is a similar path that leaves
from a class node associate with the begin node of the path in the pattern, then
the end node of the pattern path must be associated with the end node of the
path in the schema graph.

This rule ensures that pattern (c) is not well-typed. This can be explained as follows.
The node in the pattern at the end of the b edge will be associated with the node in
the schema graph at the end of the b edge there. There is a value path in the pattern
from this pattern node consisting of an is edge and an e edge and a similar path from
the schema graph node consisting of an e edge. So according to the rule the C node
in the pattern should be associated the D node in the schema graph. However, if it
were, then the a edge should, according to the schema graph, end in a str node. Since
it ends in an int node the C node in the pattern cannot be associated with the D node
in the schema graph.

Together with the usual constraints these three rules are sufficient to prevent
patterns with is edges that cannot be embedded, as is shown later on in Theorem 4.9.

The value paths that are mentioned in these rules may contain more than one is
edge. To see why this is necessary see, for example, the pattern in Figure 4.5. It is
easy to see that the node upon which the A node will be embedded will have an a
edge followed by a c edge. So, the three rules should be checked for the value path
from the A node that consists of an is edge, an a edge, another is edge and finally a
c edge.
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Figure 4.5: A GDM[com,n-obj] pattern with two is edges

We conclude with the definition of well-typedness of patterns in GDM[com,n-obj].

Definition 4.3 Given a GDM[com,n-obj] schema graph S and a pattern J , an exten-
sion relation ξ from S to IJ is said to support J if it is minimal on the composite-value
nodes, covers IJ and for every composite-value node n in J it holds for every value
path in J that starts in n that

• if the path contains at least one attribute edge then there is a similar value path
in S starting in a node m such that ξ(m,n), (TP-CVV)

• for every similar value path in S that starts in a node m such that ξ(m,n) it
holds that these paths end in nodes with the same sort, and (TP-CSV)

• if the path ends in an object node n′ then it holds for every similar value path in
S that begins in m such that ξ(m,n) and ends in m′ that ξ(m′, n′). (TP-OCV)

If such an extension relation exists then J is said to be well-typed under S.

4.3 Correctness of Well-Typedness

In this section we show that the defined notion of well-typedness is correct, i.e., a
pattern is well-typed under a schema graph iff there is an instance graph that belongs
to that schema graph and the pattern can be embedded in that instance graph.

Before we proceed with the theorem that states this we introduce a definition and
two lemmas that are needed for the proof of this theorem.

Definition 4.4 A weak value path in schema graph or a weak instance graph is a
path of edges such that all inner nodes are composite-value nodes.

Note that the notion of weak value path generalizes the notion of edge, i.e., every
edge is a weak value path.

Definition 4.5 Given a weak instance graph I the weak value path set of I is a
relation WI ⊆ NI × L(A) × NI defined such that WI(n1, ᾱ, n2) iff there is a weak
value path p in I from n1 to n2 such that λ̄(p) = ᾱ.
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The first lemma states that if a pattern embeds into a weak instance graph that it
will still embed after the weak instance graph has been reduced to an instance graph.

Lemma 4.1 Let I be a weak instance graph and J a pattern for which there is an
embedding in I then there is also an embedding of J in İ.

Proof: Let h : NJ → NI be an embedding of J in I. We define ḣ : NJ → Nİ such
that ḣ(n) = ṅ′ if h(n) = n′. Then, we prove that ḣ is embedding of J in İ:

1. for all n in NJ it holds that λJ(n) ⊆ λİ(ḣ(n))
Because h is an embedding it holds that λJ(n) ⊆ λI(h(n)). By definition of İ
it holds that if n′ = h(n) then λI(n′) ⊆ λİ(ṅ

′). Because λJ(n) ⊆ λI(n′) and
n′ = h(n) it follows that λJ(n) ⊆ λİ(ḣ(n)).

2. for all n in NJ it holds that σJ(n) = σİ(ḣ(n))
Because h is an embedding it holds that σJ(n) = σI(h(n)). From the definition
of İ it follows that for all n′ ∈ NI it holds that σİ(ṅ

′) = σI(n′). It follows by
the definition of ḣ that if n′ = h(n) then σJ(n) = σİ(ḣ(n)).

3. for all n in NJ it holds that if ρJ(n) is defined then ρJ(n) = ρİ(ḣ(n))
Because h is an embedding it holds that if ρJ(n) is defined then ρI(h(n)) is also
defined and ρJ(n) = ρI(h(n)). By definition of İ it follows that for all n′ ∈ NI
it holds that if ρI(n′) is defined then ρİ(ṅ

′) is also defined and ρI(n′) = ρİ(ṅ
′).

It follows by the definition of ḣ that if n′ = h(n) and ρJ(n) is defined then
ρJ(n) = ρİ(ḣ(n)).

4. for all edges 〈n1, α, n2〉 in EJ it holds that 〈ḣ(n1), α, ḣ(n2)〉 in Eİ .
Because h is an embedding it holds that if 〈n1, α, n2〉 in EJ then there is an
edge 〈h(n1), α, h(n2)〉 in EI . It follows by the definition of İ that if n′1 = h(n1)
and n′2 = h(n2) then there is also an edge 〈ṅ′1, α, ṅ′2〉 in Eİ which, by definition
of ḣ, is equal to the edge 〈ḣ(n1), α, ḣ(n2)〉.

5. for all is edges 〈n1, is, n2〉 in J it holds that ḣ(n1) ∼=İ ḣ(n2).
Because h is an embedding it holds for all is edges 〈n1, is, n2〉 in J that h(n1) ∼=I

h(n2). By Lemma 3.6 it follows that ḣ(n1) ∼=İ ḣ(n2).

�

Lemma 4.2 Let h be an embedding of the pattern J in I. It then holds for every
composite value node n2 in J that if there is a weak value path in I from n′1 to h(n2)
then there is a similar path in J from n1 to n2 such that h(n1) = n′1.

Proof: Let p be the weak value path in I from n′1 to h(n2). We prove this with
induction upon the length of p:
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|p| = 1 Then we may assume that p = [〈n′1, α, h(n2)〉]. Since h(n2) has an incoming
edge in I it follows that λI(h(n2)) = ∅. By definition of embedding it follows
that λJ(n2) = ∅. Because every composed value node is either labeled with a
class name or has an incoming edge it follows that the node n has an incoming
edge 〈n1, α

′, n2〉 in J . Since h is an embedding there is an edge 〈h(n1), α′, h(n2)〉
in I. Because in I the node h(n2) can have at most one incoming edge it follows
that 〈h(n1), α′, h(n2)〉 = 〈n′1, α, h(n2)〉.

|p| > 1 Then we may assume that p = p1 • p2 such that |p1| ≥ 1 and |p2| ≥ 1. If p1

ends in n′3 then it follows by the induction assumption that there is a path p′1
in J similar to p1 from n1 to n3 such that h(n1) = n′1, and there is a path p′2
in J similar to p2 from n3 to n2 such that h(n3) = n′3. It follows that there is
a path p′1 • p′2 in J similar to p from n1 to n2 such that h(n1) = n′1.

�

In order to show that the definition of well-typedness is correct we will have to
show that a well-typed pattern can be transformed into an instance graph of the
schema graph. One step in this process will be the elimination of is edges such that
the nodes between which they hold become value equivalent. For this purpose we
introduce for patterns the notion of is sets. Informally these sets can be described as
maximal sets of nodes in a pattern such that all the nodes in these sets are directly
or indirectly connected by is edges.

Definition 4.6 Given a pattern J a set of nodes N ′ ⊆ NJ is an is set if there is a
certain node n ∈ NJ such that N ′ = { n′ ∈ NJ | n is∗J n

′ }.

The removal of the is edges will be called the conversion of the is set and can be
informally described as follows. First, the is edges between the nodes in the is set
are removed. Second, every tree that is defined by the nodes that are reachable from
a certain node in the is set via a value path is copied to all other nodes in the is set.
This means that a copy is made for the composite-value nodes but the leaves of the
tree that are object nodes or basic-value nodes are not copied. Consider, for example,
pattern (a) in Figure 4.6.

In this pattern we see an is set that consists of three nodes. If this is set is
conversed we get pattern (b) in the same figure. The composite-value nodes are
copied for each node in the is set but the basic value node is not copied. After the
conversion all the nodes that were in the is set have become value equivalent.

Definition 4.7 Given a pattern J with an is set N ′ the result of the conversion of
N ′ is constructed from J by the following two steps:

Step 1 For every two distinct nodes n1 and n2 in N ′ and every composite-value node
n3 that is reachable from n1 via a value path of attribute edges add a distinct
new composite-value node nn2

n3
.
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Figure 4.6: An example of the conversion of an is set in a pattern.

Step 2 For every attribute edge 〈n1, α, n3〉 in J do:

1. if the node nn2
n3

was added and n1 ∈ N ′ then add the edge 〈n2, α,nn2
n3
〉,

2. if the nodes nn2
n1

and nn2
n3

were added then add the edge 〈nn2
n1
, α,nn2

n3
〉, and

3. if the node nn2
n1

was added and n3 is not a composite-value node then add
the edge 〈nn2

n1
, α, n3〉.

Note that the term nn2
n3

can be read as the copy of the node n3 under n2.
The purpose of the conversion of is sets is to obtain a pattern with less is edges

that is well-typed iff the original pattern is well-typed. The following three lemmas
show that this is indeed the case.

Lemma 4.3 Let J be a pattern with an is set N ′ such that all nodes that are reachable
from a node in N ′ via a value path of attribute edges are not involved in any is edges.
Furthermore, let J ′ be the result of the conversion of N ′ then J ′ is a pattern.

Proof: We show that

1. IJ′ is a weak instance graph except that ρJ′ may be undefined for some of the
basic-type nodes,

2. the is edges in J ′ are symmetrical and hold only between composite-value nodes,
and

3. there is no cycle of composite-value nodes that contains at least one attribute
edge.
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The second point is easy to see because no is edges were added and for all is edges
that were removed also the reverse is edges were removed. The third point is also easy
to see because there are no such cycles in J (and, therefore, also not in the subgraphs
of J that are copied) and the new edges all arrive either in new composite-value nodes
or old object nodes or old basic-value nodes. So, what remains to be proven are the
five properties that hold for a weak instance graph:

I-BVA no edge leaves from a node labeled with a basic-type sort
Only in step 2 edges are added and only in the first item this is done for non-
composite-value nodes. If, however, n2 is a basic-value node then n1 is also a
basic-value node and then there will be node edge 〈n1, α, n3〉.

I-BVR ρ(n) is defined only if node n has a basic-type sort
Because only composite-value nodes are added this will still hold.

I-BVT if ρ(n) is defined then ρ(n) is in δ(σ(n))
ρ(n) is only defined if n is a basic-value node, so this will also still hold.

I-REA for every class-free node there is a path of edges that ends in that node and
starts in a class-labeled node
The node nn2

n3
is added only if there is a path in J from n1 to n3. It follows that

there will also be a path in J ′ from n2 to nn2
n3

. Because n2 will be reachable
from a class-labeled node it follows that nn2

n3
can also be reached from a class-

labeled node. So all the nodes that are added in step 1 will be reachable from
class-labeled nodes after step 2.

I-NS composite-value nodes have either one incoming edge or are labeled with one
class name
Assume that the node nn2

n3
is added in the first step. It then follows that n3

has exactly one incoming attribute edge 〈n1, α, n3〉 and is, therefore, not labeled
with a class name. It will hold that either n1 ∈ N ′ or n1 6∈ N ′.

1. If n1 ∈ N ′ then no node nn2
n1

was added in step 1 because otherwise there
would be a cycle of composite-value nodes in J consisting of a path of
attribute edges from some node n4 ∈ N ′ to n1 and a path of is edges from
n4 to n1. So the only edge that arrives in nn2

n3
is the edge 〈n1, α,nn2

n3
〉 that

was added in the first item of step 2.

2. If n1 6∈ N ′ then only the second item in step 2 adds an edge that arrives in
nn2
n3

. Because there is only one attribute edge 〈n1, α, n3〉 in J that arrives
in n3 it follows that only one such edge is added.

�

Lemma 4.4 Let J be a pattern with an is set N ′ such that all nodes that are reachable
from a node in N ′ via a value path of attribute edges are not involved in any is edges.
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Furthermore, let J ′ be the result of the conversion of N ′ and S a GDM[com,n-obj]
schema graph then J is well-typed under S iff J ′ is well-typed under S.

Proof:

if If J ′ is well-typed under S then J is well-typed under S
Let ξ′ be the extension relation from S to IJ′ that is minimal on the composite-
value nodes, covers IJ′ and satisfies TP-CVV, TP-CSV and TP-OCV. Then
we define that ξ = { 〈m,n〉 ∈ ξ′ | n ∈ NJ }, i.e., we construct ξ from ξ′ by
projecting it on the nodes of J . We now show the following:

1. ξ is an extension relation from S to IJ
This follows from the fact that IJ is a sub-instance-graph of IJ′ .

2. ξ is minimal on the composite-value nodes
This follows from the fact that ξ′ is minimal on the composite-value nodes
and that the composite-value nodes in J are labeled with the same class
names and have the same incoming edges as in J ′.

3. ξ covers IJ
This follows from the fact that IJ is a sub-instance-graph of IJ′ .

4. ξ satisfies TP-CVV, TP-CSV and TP-OCV.
For every composite value node n in J we show that

TP-CVV for every value path in J that starts in n and contains at least
one attribute edge there is a similar value path in S starting in a node
m such that ξ(m,n)
Let p be a value path in J that starts in n, then p either contains no
is edge that is not in J ′ or it does.
If p contains no is edge that is not in J ′ then it is also a path in J ′

and, because this constraint was also satisfied by ξ′, there is a similar
value path in S starting in a node m such that ξ′(m,n). And since n
is also a node in J it follows that ξ(m,n).
If we assume that p contains an is edge that is not in J ′ then we may
assume that p = p1 • p2 • p3 where p1 is a possibly empty value path
with no is edges between nodes in N ′, p2 is a path of is edges between
nodes in N ′ and p3 is a possibly empty value path with no is edges
between nodes in N ′. Because nodes that are reachable from a node
in N ′ may not be involved in an is edge it follows that p3 is a path
of attribute edges. By the construction of J ′ it holds that if n′ is the
begin node of p2 then there is a value path p′3 in J ′ that is similar
to p3 and begins in n′. It follows that there is a path p1 • p′3 in J ′

that is similar to p. Because this constraints also holds for ξ′ it follows
that there is a similar value path in S starting in a node m such that
ξ′(m,n), and because n is a node in J that ξ(m,n).

TP-CSV for every value path in J that starts in n and every similar value
path in S that starts in a node m such that ξ(m,n) it holds that these
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paths end in nodes with the same sort
Let p be a value path in J that starts in n, then p either contains no
is edge that is not in J ′ or it does.
If p contains no is edge that is not in J ′ then it is also a path in J ′

and, because this constraint was also satisfied by ξ′, then every similar
value path in S starting in a node m such that ξ′(m,n) ends in a node
with the same sort as p. And since n is a node in J it holds that
ξ′(m,n) if ξ(m,n).
If we assume that p contains an is edge that is not in J ′ then we may
assume that p = p1 • p2 • p3 where p1 is a possibly empty value path
with no is edges between nodes in N ′, p2 is a path of is edges between
nodes in N ′ and p3 is a possibly empty value path with no is edges
between nodes in N ′. Because nodes that are reachable from a node
in N ′ may not be involved in an is edge it follows that p3 is a path
of attribute edges. By the construction of J ′ it holds that if n′ is the
begin node of p2 then there is a value path p′3 in J ′ that is similar to
p3 and begins in n′. It follows that there is a path p1 • p′3 in J ′ that
is similar to p. Because this constraints also holds for ξ′ it holds for
every similar value path in S starting in a node m such that ξ′(m,n)
that it ends in a node with the same sort as p. And because n is a
node in J it holds that ξ′(m,n) if ξ(m,n).

TP-OCV for every value path in J that starts in n and ends in an object
node n′ and every similar value path in S that begins in m such that
ξ(m,n) and ends in m′ it holds that ξ(m′, n′)
The value path p either contains no is edge that is not in J ′ or it does.
If p contains no is edge that is not in J ′ then it is also a path in J ′

and, because this constraint was also satisfied by ξ′, then it holds for
every similar value path in S from m to m′ that ξ′(m′, n′). Because
only composite-value nodes are added to J ′ it follows that n′ is a node
in J and, therefore, that ξ(m′, n′).
If we assume that p contains an is edge that is not in J ′ then we may
assume that p = p1 • p2 • p3 where p1 is a possibly empty value path
with no is edges between nodes in N ′, p2 is a path of is edges between
nodes in N ′ and p3 is a possibly empty value path with no is edges
between nodes in N ′. Because nodes that are reachable from a node
in N ′ may not be involved in an is edge it follows that p3 is a path
of attribute edges. By the construction of J ′ it holds that if n2 is the
begin node of p2 then there is a value path p′3 in J ′ that is similar to
p3, begins in n2 and ends in n′. It follows that there is a path p1 • p′3
in J ′ that is similar to p, begins in n and ends in n′. Because this
constraints also holds for ξ′ it holds for every similar value path in
S starting in a node m such that ξ′(m,n) and ending in a node m′

that ξ′(m,n). Because only composite-value nodes are added to J ′ it
follows that n′ is a node in J and, therefore, that ξ(m′, n′).
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only-if If J is well-typed under S then J ′ is well-typed under S
Let ξ be the extension relation from S to IJ that is minimal on the composite-
value nodes, covers IJ′ and satisfies TP-CVV, TP-CSV and TP-OCV. Then
we construct ξ′ from ξ by extending it as follows. For every node n in J ′

1. if ξ′(m,n), there is an edge 〈n, α, n′〉 in J ′ and an edge 〈m,α,m′〉 in S then
we add 〈m′, n′〉 to ξ′, and

2. if ξ′(m,n) and there is an edge 〈m, isa,m′〉 then we add 〈m′, n〉 to ξ′.

This is repeated until no more tuples are added to ξ′.

It is easy to show that ξ′ is equal to ξ on the nodes of J . Let p be some path
in J ′ from a node n in N ′ to a node n′ in J such that p consists of edges not in
J ′. By definition of J it will then hold that p is a value path and n′ is either an
object node or a basic-value node. Because of the way that J ′ is constructed it
will then hold that there is a node n′′ in N ′ from which there is a similar path
in J to n′. Since n and n′′ are both in N ′ it follows that they are connected by
a path of is edges and that, therefore, there is a similar path in J from n to n′.
Because ξ supports J it holds that if ξ(m,n) and there is a similar path in S
that begins in m and ends in m′ then it will also hold that ξ(m′, n′). Therefore,
the node n′ is not assigned to new class nodes by ξ′.

In the same fashion we can show that the new nodes in J ′ are assigned to class
nodes with the right sort, i.e., composite-value nodes. Let p be some value path
in J ′ from a node n in N ′ to a composite-value node n′ such that p consists of
edges not in J ′. Because of the way that J ′ is constructed it will then hold that
there is a node n′′ in N ′ from which there is a similar path in J that ends in a
composite-value node. Since n and n′′ are both in N ′ it follows that they are
connected by a path of is edges and that, therefore, there is a similar path in J
from n to a composite-value node. Because ξ supports J it holds that if ξ(m,n)
and there is a similar path in S that begins in m and ends in a composite-value
class then this path will also end in a composite-value node. Therefore, the
node n′ is assigned only to composite-value nodes by ξ′.

In the same way we can show that the new edges in J ′ are covered by ξ′.
Consider the new edge 〈n1, α, n2〉 in J ′. Then there will be a path p in J ′

from a node n in N ′ that ends with this edge. Because of the way that J ′ is
constructed it will then hold that there is a node n′′ in N ′ from which there
is a similar path in J that ends in a composite-value node. Since n and n′′

are both in N ′ it follows that they are connected by a path of is edges and
that, therefore, there is a similar path in J from n to a composite-value node.
Because ξ supports J it holds that there is a similar path in S that begins in
some node m such that ξ(m,n). By the definition of ξ′ it then holds that there
is some edge 〈m1, α,m2〉 in this path such that ξ′(m1, n1) and ξ′(m2, n2).

This leads to the conclusion the ξ′ is a superset of ξ that is an extension relation
from S to IJ′ that is minimal on the composite-value nodes and covers IJ′ . What
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remains to be shown is that TP-CVV, TP-CSV and TP-OCV hold for ξ′:

TP-CVV Let p be a value path in J ′ that starts in a node n and contains at
least one attribute edge.
If p contains only edges already in J then, because ξ supports J , it follows
that there is a similar value path in S starting in a node m such that
ξ(m,n).
If p contains an edge only in J ′ then we can split p in p1 and p2 such that
p = p1 • p2 where the first edge of p2 is the first edge in p that is not in J .
By the construction of J ′ it follows that p1 consists of old edges in J and
p2 consists of new edges in J ′ and starts from a node in N ′. It follows that
there is a path p′2 in J that is similar to p2 and starts from a node in N ′.
Since the begin nodes of p2 and p′2 are both in N ′ it follows that they are
either the same node or connected by a path of is edges. Therefore, there
will be a value path in J that is similar to p and consists of p1 followed
by zero or more is edges and ending with p′2. Because ξ supports J , it
follows that there is a similar value path in S starting in a node m such
that ξ(m,n).

TP-CSV Let p be a value path in J ′ that starts in a node n. Let p′ be a similar
value path in S that start in a node m such that ξ(m,n).
If p contains only edges already in J then, because ξ supports J , it follows
that p′ and p end in nodes with the same sort.
If p contains an edge only in J ′ then we can split p in p1 and p2 such that
p = p1 • p2 where the first edge of p2 is the first edge in p that is not in
J . By the construction of J ′ it follows that p1 consists of old edges in J
and p2 consists of new edges in J ′ and starts from a node in N ′. It follows
that there is a path p′2 in J that is similar to p2, starts from a node in
N ′ and ends in a node with the same sort as p2. Since the begin nodes of
p2 and p′2 are both in N ′ it follows that they are either the same node or
connected by a path of is edges. Therefore, there will be a value path in
J that is similar to p and consists of p1 followed by zero or more is edges
and ending with p′2. Because ξ supports J , it follows that there is a similar
value path in S starting in a node m such that ξ(m,n) and this path ends
in a node with the same sort as p′2 which is the same sort as the node that
p ends in.

TP-OCV Let p be a value path in J ′ that starts in a node n and ends in an
object node n′. Let p′ be a similar value path in S that start in a node m
such that ξ(m,n) and ends in a node m′.
If p contains only edges already in J then, because ξ supports J , it follows
that ξ(m′, n′) and, therefore, also that ξ′(m′, n′).
If p contains an edge only in J ′ then we can split p in p1 and p2 such that
p = p1 • p2 where the first edge of p2 is the first edge in p that is not in J .
By the construction of J ′ it follows that p1 consists of old edges in J and
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p2 consists of new edges in J ′ and starts from a node in N ′. It follows that
there is a path p′2 in J that is similar to p2, starts from a node in N ′ and
ends the same node as p2. Since the begin nodes of p2 and p′2 are both in
N ′ it follows that they are either the same node or connected by a path
of is edges. Therefore, there will be a value path in J that is similar to
p, begins in n, ends in n′ and consists of p1 followed by zero or more is
edges and ending with p′2. Because ξ supports J , it follows that for every
similar value path in S starting in a node m such that ξ(m,n) it holds that
ξ(m′, n′) and, therefore, also that ξ′(m′, n′).

�

Lemma 4.5 Let J be a pattern with an is set N ′ such that all nodes that are reachable
from a node in N ′ via a value path of attribute edges are not involved in any is edges.
Furthermore, let J ′ be the result of the conversion of N ′ then for all two nodes n1 and
n2 in N ′ it holds that n1

∼=J′ n2.

Proof: For every node n in N ′ and an attribute edge 〈n, α, n′〉 in J that leaves
this node there is a tree that consists of the nodes that are reachable from n via a
value path starting with this edge. For every node in N ′ every such tree is copied
to every other node in N ′. It follows that in J ′ all nodes in N ′ are value equivalent. �

This concludes the lemmas for conversions of is sets. Before we proceed with the
theorem that show that well-typedness is correctly defined, we first prove the following
three lemmas. The first lemma states that if a pattern embeds into an instance then
we will find for every weak value path in the instance graph a corresponding weak
value path in the pattern.

Lemma 4.6 Let J be a pattern in GDM[com,n-obj], I a weak instance graph and h
an embedding of J into I. It then holds that if there is a weak value path in J from
n1 that contains at least one attribute edge then there is a similar weak value path in
I from h(n1) that ends in a node with the same sort.

Proof: We show this with induction upon the length of path p in J :

|p| = 1 The path p will then consist of an attribute edge 〈n1, α, n2〉 because it contains
at least one attribute edge. By the definition of embedding it follows that there
is an edge 〈h(n1), α, h(n2)〉 in I and the sort of n2 is equal to the sort of h(n2).

|p| > 1 The path p will either begin with an is edge or an attribute edge:

• If p begins with an is edge then we may assume that p = [〈n1, is, n2〉] • p2.
By the induction assumption it follows that there is a weak value path p′2
in I that is similar to p2, starts in h(n2) and ends in a node with the same
sort. By the definition of embedding it follows that h(n1) and h(n2) are
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value equivalent in I. It follows that there is a weak value path p′′2 that is
similar to p′2, starts in h(n1) and ends in a node with the same sort. Since
p′2 is similar to p2 it follows that p′′2 is also similar to p2 and, therefore, also
similar to p.

• If p starts with an attribute edge we may assume that p = [〈n1, α, n2〉]•p2.
The path p2 will then either contain an attribute edge or consist entirely
of is edges:

– If p2 contains an attribute edge then it follows by the induction as-
sumption that there is a weak value path p′2 in I that is similar
to p2, starts in h(n2) and ends in a node with the same sort. Be-
cause the embedding h will embed the edge 〈n1, α, n2〉 upon the edge
〈h(n1), α, h(n2)〉 in I it follows that there is a path [〈h(n1), α, h(n2)〉]•
p′2 in I that is similar to p, begins in h(n1) and ends in a node with
the same sort.

– If p2 contains only is edges then the path 〈h(n1), α, h(n2)〉 in I is
similar to p and ends in a node with the same sort.

�

The second lemma states that if a minimal extension relation from a certain schema
graph to a weak instance graph covers the instance graph then for every weak value
path in the instance graph there is a corresponding weak value path in the schema
graph.

Lemma 4.7 Let ξ be a minimal extension relation from the GDM[com,n-obj] schema
graph to the weak instance graph I that covers I. Then it holds for every weak value
path in I from n1 to n2 that there is a similar path in S from m1 to m2 such that
ξ(m1, n1) and ξ(m2, n2).

Proof: Let p be the weak value path in I from n1 to n2. We show with induction
upon the length of p that there is a similar path in S from m1 to m2 such that
ξ(m1, n1) and ξ(m2, n2):

|p| = 1 Assume that p = [〈n1, α, n2〉]. Because ξ covers I it holds that there is an
edge 〈m1, α,m2〉 in S such that ξ(m1, n1) and ξ(m2, n2).

|p| > 1 Assume that p = [〈n1, α, n
′
2〉]•p2. By the induction assumption it follows that

there is a path p′2 in S from m′2 to m2 such that ξ(m′2, n
′
2) and ξ(m2, n2). By

Lemma 2.5 it follows that there is an edge 〈m1, α,m
′′
2〉 in S such thatm′′2 isa∗S m

′
2

and ξ(m1, n1). It follows that there is a path p′1 from m1 to m′2 such that
λ̄(p′1) = [α]. It then holds that there is a path p′ = p′1 • p′2 in S from m1 to m2

such that ξ(m1, n1) and ξ(m2, n2), and p′ is similar to p.

�
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The third and final lemma states that if a pattern embeds into an instance graph
then we will find for every weak value path that ends in an object node or basic-value
node in the instance graph a corresponding weak value path in the pattern that ends
in a node upon which the end node of the instance graph path is embedded.

Lemma 4.8 Let J be a pattern in GDM[com,n-obj], I an instance graph and h an
embedding of J into I. It then holds that if there is a weak value path in J from n1

to n2 that contains at least one attribute edge and ends in a basic-value node or an
object node then there is a similar weak value path in I from h(n1) to h(n2).

Proof: Let p be the weak value path in J from n1 to n2. We show with induction
upon the length of p that there is a similar weak value path in I from h(n1) to h(n2):

|p| = 1 We may assume that p = [〈n1, α, n2〉] with α an attribute name. Because h
embeds J into I it follows that there is an edge 〈h(n1), α, h(n2)〉 in I.

|p| > 1 The path p will either begin with an attribute edge or an is edge:

• Assume that p = [〈n1, α, n
′
2〉] • p2 with α an attribute name. It now holds

that p2 either contains an attribute edge or not:

– Assume that p2 contains an attribute edge. It then follows by the
induction assumption that there is a value path p′2 in I from h(n′2)
to h(n2) that is similar to p′2. Because h embeds J into I it holds
that there is an edge 〈h(n1), α, h(n′2)〉 in I. It follows that there is a
weak value path [〈h(n1), α, h(n′2)〉] • p′2 in I from h(n1) to h(n2) that
is similar to p.

– Assume that p2 contains no attribute edges. It follows that it consists
of only is edges. Since h embeds J into I it follows that h(n′2) and
h(n2) must be value equivalent in I. Since n2 is either an object node
or a basic-value node it follows that h(n′2) = h(n2). Because h embeds
J into I it also holds that there is an edge 〈h(n1), α, h(n′2)〉 in I. It
follows that this edge is the same as the edge 〈h(n1), α, h(n2)〉.

• Assume that p = [〈n1, is, n′2〉] • p2. By the induction assumption it follows
that there is a value path p′2 in I from h(n′2) to h(n2) that is similar to
p′2. Since h embeds J into I it follows that h(n′2) and h(n1) must be value
equivalent in I. Because h(n2) is either a basic-value node or an object
node and I is an instance graph it follows that there is a similar weak value
path from h(n1) to h(n2).

�

We now proceed with the theorem that shows that well-typedness of patterns is
correctly defined.

Theorem 4.9 In GDM[com,n-obj] a pattern J is well-typed under a schema graph S
iff there is an instance graph I that belongs to S and there is an embedding of J in I.
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Proof:

if In GDM[com,n-obj] a pattern J is well-typed under a schema graph S if there is an
instance graph I that belongs to S and there is an embedding of J in I.
Let h ∈ Emb(J, I) and ξ the minimal extension relation from S to I that also
covers I and is class-name correct. We define ξ̄ ⊆ NS × NJ such that ξ̄(m,n)
iff ξ(m,h(n)). By the definition of embedding and extension relation it follows
that ξ̄ is an extension relation from S to IJ .

Now we can show that ξ̄ covers IJ and is minimal on the composite-value nodes.
First, we show that ξ̄ covers IJ . This holds if the following three properties hold:

CV-N for every node n ∈ NJ it holds that ξ̄(m,n) for some m ∈ NS
Because ξ covers I it holds that for every node n′ ∈ NJ for some m ∈ NS
ξ(m,h(n)). By definition of ξ̄ it follows that ξ̄(m,n) for some m ∈ NS .

CV-E for every edge 〈n1, α, n2〉 in EJ there is some edge 〈m1, α,m2〉 in ES
such that ξ̄(m1, n1) and ξ̄(m2, n2)
Because ξ covers I it holds that for every edge 〈n1, α, n2〉 in EI there is
some edge 〈m1, α,m2〉 in ES such that ξ(m1, n1) and ξ(m2, n2). Because
h is an embedding it holds that for every edge 〈n1, α, n2〉 in EJ there is
an edge 〈h(n1), α, h(n2)〉 in EI . It follows that for every edge 〈n1, α, n2〉
in EJ there is some edge 〈m1, α,m2〉 in ES such that ξ(m1, h(n1)) and
ξ(m2, h(n2)) and, by definition of ξ̄, that ξ̄(m1, n1) and ξ̄(m2, n2).

CV-C for every node n ∈ NJ and class name c ∈ λJ(n) there is some named
node m ∈ NS such that ξ̄(m,n) and c = λS(m)
Because h is an embedding it holds for every node n ∈ NJ and class name
c ∈ λJ(n) that c ∈ λI(h(n)). Since ξ covers I it follows that then there is
some node m ∈ NS such that ξ(m,h(n)) and c = λS(m). It follows by the
definition of ξ̄ that ξ̄(m,n).

Next, we show that ξ̄ is minimal on the composite-value nodes. Assume that
n is a composite-value node in J and that ξ̄(m,n). By definition of ξ̄ it then
follows that ξ(m,h(n)). By Lemma 2.4 it follows that there are two possibilities:

1. There is a node m′ in S such that λS(m′) ∈ λI(h(n)) and m′ isa∗S m.
Assume that n is not labeled with a class name. Because it is a composite-
value node it follows that it has an incoming edge in J . Since h is an
embedding of J in I it follows that h(n) then also has an incoming edge
in I. However, because λS(m′) ∈ λI(h(n)) the node h(n) cannot have
an incoming edge. The assumption that n is not labeled with a class
name must, therefore, be false. Since composite-value nodes can be labeled
with at most one class name it follows that λJ(n) = λI(h(n)). Since
λS(m′) ∈ λI(h(n)) it then also follows that λS(m′) ∈ λJ(n). Since it also
holds that m′ isa∗S m it follows that every extension relation from S to IJ
will contain the pair 〈m,n〉.
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2. There is a node m′ in S such that there is a path p in I from n′ to h(n)
and a similar path p′ in S from m′ to m such that λS(m′) ∈ λI(n′)
It holds that p is either a weak value path or contains an edge that starts
in an object node but is not the first edge in the path:
(a) The path p is a weak value path.

By Lemma 4.2 it follows that there is a path p′′ in J similar to p
from n′′ to n such that h(n′′) = n′. It now holds that p starts in a
composite-value node or in an object node:
• The path p starts in a composite-value node.

As shown in the previous item it then follows that λJ(n′′) = λI(n′).
So, because there is a path p′′ in J from n′′ to n and a similar path
p′ in S from m′ to m such that λS(m′) ∈ λJ(n′′) it follows that
every extension relation from S to IJ will contain the pair 〈m,n〉.

• The path p starts in an object node.
If n′ is an object node then n′′ is also an object node. If λS(m′) ∈
λI(n′) then ξ(m′, n′). By definition of ξ̄ it follows that ξ̄(m′, n′′).
So, because there is a path p′′ in J from n′′ to n and a similar
path p′ in S from m′ to m such that ξ̄(m′, n′′) it follows that every
extension relation from S to IJ that is equal to ξ̄ on object nodes
will contain the pair 〈m,n〉.

(b) The path p contains an edge that starts in an object node but is not
the first edge in the path.
We may assume that p = p1 •p2 where p2 starts with the last edge in p
that starts in an object node. It follows that p2 is a weak value path.
We may then also assume that p′ = p′1 • p′2 such that λ̄(p1) = λ̄(p′1)
and λ̄(p2) = λ̄(p′2). If p2 starts from the node n′′ and p′2 starts from
the node m′′ then it follows that ξ(m′′, n′′). By Lemma 4.2 it follows
that there is a weak value path p′′2 in J similar to p from n′′′ to n such
that h(n′′′) = n′′. Because there is a node m′ in S such that there is
a path p1 in I from n′ to n′′ and a similar path p′ in S from m′ to m′′

such that λS(m′) ∈ λI(n′) it follows that ξ(m′′, n′′). By definition of
ξ̄ it follows that ξ̄(m′′, n′′′). So, because there is a path p′′2 in J from
n′′′ to n and a similar path p′2 in S from m′′ to m such that ξ̄(m′′, n′′′)
it follows that every extension relation from S to IJ that is equal to ξ̄
on object nodes will contain the pair 〈m,n〉.

It follows that for all composite-value nodes in J it holds that ξ̄ is minimal for
these nodes.

So what remains to be proven is that TP-CVV, TP-CSV and TP-OCV hold
for every composite-value node n in J and every value path in J that starts in
n:

TP-CVV if the path contains at least one attribute edge then there is a similar
value path in S starting in a node m such that ξ̄(m,n)
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Let p be the value path in J . By Lemma 4.6 it follows that there is a
similar value path in I that begins in h(n). By Lemma 4.7 it follows that
there is a similar value path in S starting in a node m such that ξ(m,h(n)).
It follows by the definition of ξ̄ that ξ̄(m,n).

TP-CSV for every similar value path in S that starts in a node m such that
ξ̄(m,n) it holds that these paths end in nodes with the same sort
Let p be the value path in J . By Lemma 4.6 it follows that there is a similar
value path in I that begins in h(n) and ends in node with the same sort.
By Lemma 4.7 it follows that there is a similar value path in S starting in
a node m such that ξ(m,h(n)) and ending in a node with the same sort.
It follows by the definition of ξ̄ that ξ̄(m,n).

TP-OCV if the path ends in an object node n′ then it holds for every similar
value path in S that begins in m such that ξ̄(m,n) and ends in m′ that
ξ̄(m′, n′)
Let p be the value path in J and p′ the similar value path in S. It holds
that either p contains at least one attribute edge or it does not:

• Assume that p contains at least one attribute edge. By Lemma 4.8
it follows that there is a similar path in I from h(n) to h(n′). Lets
assume that ξ̄(m,n). By definition of ξ̄ it follows that ξ(m,h(n)).
Since ξ is an extension relation and there is a path p′ m to m′ similar
to p it follows that ξ(m′, h(n′)). By definition of ξ̄ it then follows that
ξ̄(m′, n′).
• Assume that p contains no attribute edges. It follows that p contains

only is edges and that the same holds for p′. It follows that h(n) and
h(n′) are value equivalent in I. Since n′ is not a composite-value node
it follows that h(n) = h(n′). Lets assume that ξ̄(m,n). By definition
of ξ̄ it follows that ξ(m,h(n)). Since ξ is an extension relation and
there is a path p′ of isa edges from m to m′ it follows that ξ(m′, h(n)),
and because h(n) = h(n′) it also holds that ξ(m′, h(n′)). By definition
of ξ̄ it then follows that ξ̄(m′, n′).

only-if In GDM[com,n-obj] given a schema graph S and a pattern J it holds that here
is an instance graph I that belongs to S such that there is an embedding of J in
I, if J is well-typed under S.
First we remove all is-loops from the pattern. It is easy to see that this will not
change its semantics, i.e., the resulting pattern embeds upon exactly the same
instance graphs. If there is still an is edge in J then there will exist an is set N ′

in J with more than one node such that all the nodes that are reachable from a
node in N ′ via a value path of attribute edges are not involved in any is edge.
Such an is set can always be found by beginning with the is set that contains the
is edge that we first found. If there is a value path of attribute edges to another
is edge then we consider the is set that contains this is edge. If we repeat this
we will eventually either find an is set that we already found before or an is set



4.3. CORRECTNESS OF WELL-TYPEDNESS 97

that has no value path of attribute edges to an is edge. In the first case we will
have found a cycle of composite-value nodes with at least one attribute edge,
which is not allowed in a pattern. So we will always find an is set that has no
value paths of attribute edges to an is edge. We can then construct a pattern J ′

by converting this is set such that in J ′ there are no is edges between the nodes
in N ′, IJ′ is a super-instance-graph of IJ (Lemma 4.3), J ′ is well-typed under
S (Lemma 4.4) and all the nodes in N ′ are value equivalent in J ′ (Lemma 4.5).
We can repeat this until we obtain a pattern J ′ that has no is edges and is,
therefore, a weak instance graph except that ρJ may be undefined for some
basic-value nodes. Also J ′ will be a super-instance-graph of J and well-typed
under S, and all the nodes that where connected in J by is edges are value
equivalent in J ′.

We can now construct from IJ′ a weak instance graph such that there is an
embedding h of J in I ′′ and an extension relation ξ′′ from S to I ′′ that is
minimal, covers I ′′ and is class-name correct, as follows.

First, we construct a weak instance graph I ′ by taking IJ′ and replacing ρIJ′
with some ρ′I′ that is identical to ρIJ′ for all the nodes that ρIJ′ is defined
for, but maps all other basic-value nodes n in I ′ to an arbitrary basic-value
representation in δ(σJ′(n)). It is easy to see that I ′ is a weak instance graph
and that the extension relation ξ′ from S to J ′ that exists because J ′ is well-
typed under S, is an extension relation from S to I ′ that covers I ′ and is minimal
on the composite-value nodes.

If we want I ′ to be an instance of S then ξ′ has to be a minimal extension
relation on all the nodes. We can try to achieve this by extending I ′ to I ′′

through labeling all the object nodes and basic-value nodes with the class names
of the classes that they belong to according to ξ′. It is easy to see that this
ensures that ξ′ is class-name correct for the object nodes and the basic-value
nodes in I ′′. It is also easy to see that ξ′ will now also be minimal for the object
nodes since in GDM[com,n-obj] all object classes have a name. Finally, ξ′ was
already minimal on the composite-value nodes. It is, however, still possible that
ξ′ is not minimal for the basic-value nodes. Therefore, we construct ξ′′ as a
minimal subset of ξ′ that is an extension relation from S to I ′′. Since all object
classes have a name it will hold that ξ′′ is equal to ξ′ for the object nodes.
Because ξ′ was already minimal on the composite-value nodes it will also be
equal to ξ′′ on the composite-value nodes. This means that the object nodes,
the composite-value nodes, their class names and the edges between them are
still covered by ξ′′. What remains to be shown is that the basic-value nodes,
the edges that end in them and their class names are still covered by ξ′′. Every
basic-value node is either labeled with a class name or has an incoming edge:

1. Assume that the basic-value node is labeled with a class name. Then any
extension relation will assign it to the class with that name, if such a class
exists in the schema graph. Since this is was ξ′ did, apparently such a class
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existed and, therefore, ξ′′ will assign it also to that class. So the basic-value
node and its class name are covered by ξ′′.

2. Assume that there is an edge 〈n1, α, n2〉 in I ′′ from some node n1 to a
basic-value node n2 then this node was covered by ξ′. Since n1 will still
be in the same classes by ξ′′ and ξ′′ is an extension relation it follows that
the edge 〈n1, α, n2〉 and the node n2 are covered by ξ′′.

It now follows that all nodes, edges and class names of I ′′ are covered by ξ′′.

Because ξ′ was class-name correct for the object nodes and basic-value nodes in
I ′′ and ξ′′ is a subset of ξ′ it follows that ξ′′ is class-name correct for the object
nodes and the basic-value nodes in I ′′. Because in weak instance graphs a class-
labeled composite-value node cannot have an incoming edge and in a schema
graph named composite-value nodes cannot have incoming edges it holds that
any extension relation from S to J is class-name correct for the composite-value
nodes, and, therefore, also ξ′′. It, therefore, holds that ξ′′ is class-name correct.

If we let h be the identity function on NJ then h is an embedding of J in I ′′.
Note that there are no is edges in J because those were eliminated in the first
step.

Summarizing, we now have a weak instance graph I ′′, an embedding of J in
I ′′ and an extension relation ξ′′ from S to I ′′ that is minimal, covers I ′′ and is
class-name correct.

If İ ′′ is the reduction of I ′′ (and, therefore, an instance graph) then it will
be equal to I ′′ except that basic value nodes with the same representation are
merged into a single basic value node. It follows by Lemma 4.1 that there is an
embedding of J in İ ′′ and by Lemma 3.7 that İ ′′ also belongs to S.

�

4.4 Decidability of Well-Typedness

In this section we discuss the decidability of the notion of well-typedness that was
defined in Section 4.2 for GDM[com,n-obj]. We first discuss the problem for pattern
without is edges, and then for patterns with is edges.

4.4.1 Patterns without is edges

As is shown by the next theorem well-typedness under GDM[com,n-obj] of patterns
without is edges can be decided in polynomial time in the size of the schema graph
and the pattern.

Theorem 4.10 Given a GDM[com,n-obj] schema graph S and a pattern J without is
edges, the question whether J is well-typed under S can be decided in polynomial time
in the size of the schema graph and the pattern.
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Proof: We can begin with the observation that J is well-typed under S iff there is
an extension relation from S to IJ that is minimal on the composite-value nodes and
covers IJ . This is because for every such extension relation TP-CVV, TP-CSV and
TP-OCV are always satisfied. For TP-CVV this follows by Lemma 4.7, and for
TP-CSV and TP-OCV this follows from the constraints for extension relations.

The algorithm now consists of two steps:

1. Determine the maximal set Ξ ⊆ NS ×NJ that

• satisfies ER-ATT, ER-ISA and ER-SRT, and

• is minimal on the composite-value nodes.

2. Check if Ξ

• satisfies ER-CLN, and

• satisfies CV-N, CV-E and CV-C.

It is easy to see that if the Ξ from the first step does not satisfy the constraints of the
second step, then no subset of Ξ will satisfy these constraints. It follows that there
is no extension relation from S to IJ that is minimal on the composite-value nodes
and covers IJ . However, if such an extension relation exists then Ξ will be a superset
of this extension relation and therefore satisfy the constraints of the second step. So
these two steps exactly decide if there is such an extension relation.

In the following we discuss these two steps in more detail

1. The first step can be performed as follows. We start with Ξ = NS×NJ and then
remove the pairs that violate the requirements until no more pairs are removed.
This can be made more precise by the following definitions:

• A pair 〈m,n〉 violates ER-ATT if there is an attribute edge 〈n, α, n′〉 in
J , an attribute edge 〈m,α,m′〉 in S and not Ξ(m′, n′).

• A pair 〈m,n〉 violates ER-ISA if there is an an edge 〈m, isa,m′〉 in S and
not Ξ(m′, n).

• A pair 〈m,n〉 violates ER-SRT if σJ(n) 6= σS(m).

• A pair 〈m,n〉 violates minimality of composite-value nodes if n is a com-
posite value node and the pair is not required by ER-ISA, ER-ATT and
ER-CLN, i.e., not one of the following holds:

(a) there is an edge 〈m′, isa,m〉 in S and Ξ(m′, n);
(b) there is an attribute edge 〈n′, α, n〉 in J , an attribute edge 〈m′, α,m〉

in S and Ξ(m′, n′);
(c) λS(m) is defined and λS(m) ∈ λJ(n).

It is easy to see that there is a that pair violates a requirement iff Ξ violates
the corresponding requirement. It is also easy to see that if a pair violates one
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of these requirements all subsets of Ξ that contain that pair will violate that
requirement. Therefore this algorithm will indeed find the largest Ξ that satisfies
the four requirements. Moreover, all the requirements for pairs can be checked
in polynomial time in the size of S and J . Since there are only a polynomial
amount of pairs this process will terminate after a polynomial number of pairs
have been removed, and since every pair requires only a polynomial amount of
time the whole step can be performed in polynomial time.

2. The second step can be performed by simply checking the conditions ER-CLN,
CV-N, CV-E and CV-C for Ξ. This can be done in a straightforward way
in polynomial time. It is for all these conditions easy to see that if they do
not hold for Ξ then they will certainly not hold for any subset of Ξ. So if this
step fails then there is certainly not a subset of NS × NJ that satisfies all the
requirements. So Ξ satisfies the constraints in step 2 iff there is a subset of of
NS ×NJ that satisfies all the requirements in both steps.

Since both steps can be done in polynomial time the whole algorithm will also take
only polynomial time. �

4.4.2 Patterns with is edges

By Lemma 4.4 we know that we can remove the is edges such that the resulting pattern
is well-typed iff the original pattern is well-typed. Thus we can decide well-typedness
of a pattern with is edges by first converting the is sets and then determine with the
algorithm of Theorem 4.10 if the result is well-typed. However, the elimination of the
is edges may lead to an exponential blow-up of the pattern. For an example consider
the patterns in Figure 4.7.

A AA

Figure 4.7: Three GDM[com,n-obj] patterns that show exponential blow-up when the
is edges are converted

The three original patterns are drawn in solid lines and the additions caused by
converting the is edges are drawn by dashed lines. If we ignore the is edges then
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the original patterns can be thought of as a tree. If the height of this tree is called
h then we can construct for every height h a similar pattern with is edges that will
have 2h nodes. If in these patterns we convert all the is edges then the result will
have 2h + 2h−1 − 1 nodes.

The following theorem states that the problem of deciding well-typedness of pat-
tern in GDM[com,n-obj] is in co-NP.

Theorem 4.11 Given a GDM[com,n-obj] schema graph S and a pattern J , deciding
the problem whether J is well-typed under S is in co-NP where the polynomial is in
the size of the schema graph and the pattern.

Proof: We will prove this by showing that deciding non-well-typedness is in NP.
For this we will use a similar algorithm as in the proof of Theorem 4.10. The main
difference is that we now have to also take into account the constraints TP-CVV,
TP-CSV and TP-OCV.

The algorithm now also consists of two steps:

1. Guess a superset Ξ′ of Ξ where Ξ is the maximal set Ξ ⊆ NS ×NJ that

• satisfies ER-ATT, ER-ISA and ER-SRT,
• satisfies TP-CSV and TP-OCV, and
• is minimal on the composite-value nodes.

2. Show that one of the following conditions is not satisfied for Ξ′:

• ER-CLN,
• CV-N, CV-E and CV-C, and
• TP-CVV.

It is easy to see that if the superset of Ξ from the first step does not satisfy the
constraints of the second step, then no subset of this set will satisfy these constraints.
It follows that there is no extension relation from S to IJ that is minimal on the
composite-value nodes and covers IJ . However, if such an extension relation exists
then Ξ will be a superset of this extension relation and therefore its superset will
satisfy the constraints of the second step and this step will always fail. So these two
steps decide non-deterministically if there is such an extension relation.

In the following we discuss these two steps in more detail

1. The first step proceeds similar to the first step in the algorithm of Theorem 4.10.
Als here we start with Ξ = NS ×NJ and then remove the pairs that violate the
requirements. The difference is that we now also have to do this for the pairs
that violate TP-CSV or TP-OCV. This is made more precise by the following
definitions:

• A pair 〈m,n〉 violates TP-CSV if there is a value path in J from n and
a similar value path in S from m such that these paths end in nodes with
different sorts.
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• A pair 〈m,n〉 violates TP-OCV if there is a value path in J from n that
ends in an object node n′ and a similar value path in S from m that ends
in m′ and not Ξ(m′, n′).

Note that it cannot be checked in polynomial time if these constraints are vi-
olated. However, it is possible to non-deterministically guess a value path in
J that demonstrates that one of these constraints is violated. Since there can
be no cycles in value paths, even if they contain is edges, the length of these
paths is polynomial in the size of J . So, as in the previous algorithm, we can
remove pairs that violate the constraints until no more pairs are removed. If
the paths are guessed incorrectly then we will stop too soon and the result will
be a superset of Ξ. However, if the paths are guessed correctly then the result
will be Ξ itself.

Since there are only a polynomial amount of pairs, this process will terminate
after a polynomial number of pairs have been removed, and since every pair
requires only a polynomial number of steps the whole step can be performed in
a polynomial number of steps.

2. The second step can be performed by checking the conditions ER-CLN, CV-N,
CV-E, CV-C and TP-CVV for Ξ. This can be done for ER-CLN, CV-N,
CV-E and CV-C in a straightforward way in polynomial time. It can also
be non-deterministically shown that TP-CVV does not hold by guessing the
value path in the pattern that is not covered in the schema graph. As shown
before, the length of these paths is polynomial in the size of the pattern and
can therefore be guessed in a polynomial number of steps.

It is for all these conditions easy to see that if they do not hold for Ξ′ then they
will certainly not hold for any subset of Ξ′. So if it is shown that one of the
conditions does not hold then there is certainly not a subset of NS × NJ that
satisfies all the requirements.

Since both steps can be done in a polynomial number of steps the whole algorithm
will also take only a polynomial number of steps. �

The previous theorem raises the question whether deciding the well-typedness
of a pattern is co-NP hard. This can be shown by using the fact that there are
close relationships between patterns and non-deterministic finite automatas (NFAs)
without cycles and between schema graphs and NFAs with cycles.

The relationship between NFAs without cycles and patterns is established by the
following definition:

Definition 4.8 Let A be an acyclic NFA without ε-transitions, over an alphabet
Σ ⊆ A with states SA, a begin state s0, transitions TA and end states EA, then a
corresponding pattern fragment P is defined as follows:

1. For every state of A we select one of the incoming transitions as the primary
transition.
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2. For every state si of A we introduce a composite-value node mi.

3. For every character transition 〈si, α, sj〉 in A that is a primary transition we
add the edge 〈mi, isa,mj〉.

4. For every character transition 〈si, α, sj〉 in A that is not a primary transi-
tion we add a node mi,α,j and the edges 〈mi, α,mi,α,j〉, 〈mi,α,j , is,mj〉 and
〈mj , is,mi,α,j〉.

5. If si is an end state of A then mi is marked as an end node of the fragment.

The node m0 will be called the begin node of the fragment.

An example of a acyclic ε-free NFA and its corresponding schema graph fragment
is given in Figure 4.8. The nodes in the fragment (b) that correspond with the nodes
in the NFA (a) are filled with grey.

(b)(a)
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a a
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b

b
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Figure 4.8: An example of an acyclic ε-free NFA and a corresponding pattern fragment

It holds for a pattern fragment that there is a value path from the begin node
to an end node iff the attribute name list of that path is accepted by the NFA. It is
also easy to see that the size of the fragment is polynomial in the size of the original
automaton.

A similar relation exists between NFAs and schema graphs. In fact, since cycles are
allowed we can represent NFAs with cycles as fragments of schema graphs. Moreover,
we can use isa edges to represent ε-transitions. The only problem is that in schema
graphs we do not allow that more than one attribute edge with the same name leaves
from a class node. As is shown in the following definition this can be solved by adding
a few extra nodes and isa edges.

Definition 4.9 Let A be an NFA over an alphabet Σ ⊆ A with states SA, a begin
state s0, transitions TA and end states EA, then the corresponding schema graph
fragment F is defined as follows:

1. For every state si of A we introduce a composite-value node mi.
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2. For every character transition 〈si, α, sj〉 in A we introduce a node mi,j and the
edges 〈mi, isa,mi,j〉 and 〈mi,j , α,mj〉.

3. For every ε-transition 〈si, ε, sj〉 in A we introduce an edge 〈mi, isa,mj〉.

4. A special composite-value node mend is introduced and for every end state sj of
A we add the edge 〈mj , isa,mend〉.

The node m0 and mend will be called the begin node and end node, respectively, of
the fragment.

An example of a NFA and its corresponding schema graph fragment is given in
Figure 4.9. The nodes in the fragment that correspond with the nodes in the NFA
are filled with grey.

(a) (b)
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Figure 4.9: An example of an NFA and the corresponding schema graph fragment

Similar to pattern fragments it holds for a schema fragment that there is a value
path from the begin node to the end node iff the attribute name list of that path is
accepted by the NFA. It is also easy to see that also here the size of the fragment is
polynomial in the size of the original automaton.

These relationships between NFAs and patterns and schema graphs can be used
to show that deciding well-typedness of a pattern is co-NP hard.

Theorem 4.12 Deciding whether a pattern in GDM[com,n-obj] is well-typed is co-NP
hard.

Proof: We show this by reducing the problem of deciding whether an acyclic NFA A1

accepts a sublanguage of another NFA A2, which is known to be co-NP hard. First,
we make sure that all states in A1 are reachable from the begin state and that from
every state an end state can be reached. If this is not already the case then we can
remove the offending states without changing the language that is accepted by the
automaton.

If Σ is the set of attribute names that these NFAs are over, then we can construct a
pattern and a schema graph as shown in Figure 4.10 here P is a pattern fragment that
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corresponds with A1 and F is the schema graph fragments that correspond with A2, β
is an attribute name not in Σ. Since all the nodes in the pattern and the schema graph

. . .

. . .

. . .

P

β

F

β β

(a)

AA

(b)

Figure 4.10: A pattern and schema graph for showing co-NP hardness of deciding
well-typedness of patterns in GDM[com,n-obj]

are composite-value nodes, we only have to consider the minimal extension relations
between in order to decide well-typedness and the only constraint that needs to be
verified is TP-CVV. It is now easy to see that this constraint holds iff the NFA A1

accepts a sublanguage of the language accepted by A2:

if Assume that A1 accepts a sublanguage of the language accepted by A2. Consider
now some value path p2 in the the pattern from some node n. Since all states in
A1 are reachable from the begin state there will be a path p1 from the A node to
n. Since A1 accepts a sublanguage of A2 there will be a path similar to p1 • p2

in the schema graph from the A node. We may then assume that this path is
equal to p′1 • p′2 such that p′1 and p′2 are similar to p1 and p2 respectively. If m
is the end node of p′1 then it follows that the extension relation will associate m
with n.

only-if Assume that TP-CVV holds. If ᾱ is a string of attribute names that is
accepted by A1 then there is a path in the pattern with that attribute-name
list plus an extra β at the end and starting from the A node. By TP-CVV
it follows that there is a similar path in the schema graph from the A node
there. Since β did not appear in the alphabet of the automata it follows that
the penultimate node of this path is the begin node of the β edge. It follows
that A2 accepts the string ᾱ.

�
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4.5 Discussion

For GDM[com,n-obj] we have introduced for patterns a notion of well-typedness that
characterizes exactly when a certain pattern is going to embed upon at least one of
the instance graphs of a certain schema graph. Furthermore, we showed that there
exists a polynomial algorithm that decides this notion of well-typedness if the pattern
contains no is edges. For patterns with is edges the problem of deciding well-typedness
was shown to be co-NP complete.

The only difference between basic GDM and GDM[com,n-obj] is that object class
nodes have to be named. If we drop this constraint then an extra well-typedness
constraints is necessary. This is illustrated by the schema graph (a) and pattern (b)
in Figure 4.11.

intintint

int

str

A B C D

a b

a b

Schema graph

(a)

A

a b

Pattern

(b)

c c a

Figure 4.11: A basic GDM schema graph and pattern

It is easy to see that there is an extension relation between the schema graph and
the pattern that satisfies the well-typedness requirements. However, this extension
relation relates the anonymous node in the pattern with the anonymous class node
at the end of the c edge from the C class node. In order for this to hold for the
instance graph node upon which this pattern node is embedded, this instance graph
node would have to have an incoming c edge from a C node. However, then, according
to the schema graph, the b edge leaving from this instance graph node would have to
end in an str node and not a int as the pattern requires.

The consequence of this is that there should be an extra well-typedness constraint
that checks if the nodes can indeed be forced into the anonymous classes by extra
incoming paths without causing any extra relations between pattern nodes and schema
graph nodes. The exact formulation of this constraint and the complexity of checking
it is left as a matter of further research.



Chapter 5

Typing GUL Additions

5.1 Introduction

In this chapter we discuss the typing of additions. This means that we present condi-
tions for additions that are sufficient, i.e., guarantee that for a certain schema graph
the result of the addition belongs to this schema graph if the original instance also
belonged to this schema graph.

In Section 5.2 we discuss why and how well-typedness for the addition under
GDM[com,n-obj] is defined. In Section 5.3 we show that the definition of well-typedness
is correct, i.e., every well-typed addition stays within the schema. In Section 5.4
we discuss the decidability of well-typedness for several subsets of GDM[com,n-obj].
Finally, in Section 4.5 we give an overview of the obtained results for typing GUL
additions.

5.2 Definition of Well-Typedness

In this section we define a notion of well-typedness for additions in GDM[com,n-obj],
i.e., all object class nodes in schema graphs are assumed to be labeled with a class
name.

The basic idea behind our definition of well-typedness is to look at all the exten-
sion relations that support the base pattern and see what happens if we extend it
minimally.

Definition 5.1 Given two weak instance graphs I and I ′ such that the weak instance
graph I is a sub-instance-graph of I ′ and a basic GDM schema graph S and an ex-
tension relations ξ from S to I a minimal extension of ξ for J ′ is the smallest set
ξ′ ⊆ NS × NI′ that is a superset of ξ and satisfies ER-CLN, ER-ATT and ER-
ISA.

107
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It is easy to see that such a minimal extension always exists and is unique because it
is the fixpoint of extending ξ with pairs to satisfy the three mentioned constraints.

It should hold for the minimal extension that it also satisfies ER-SRT and, there-
fore, be an extension relation for the extension pattern. It is also easy to understand
that the latter extension should at least cover the extension pattern. There are, how-
ever, more constraints that should be checked. Two of these are illustrated by the
additions in Figure 5.1.

(a)

Schema graph

(b) (c)

a
A B

C
A B

a

Addition

A
a

Addition

Figure 5.1: A GDM[n-obj] schema graph and two additions

It is easy to see that it holds for the addition (b) that the minimal extension of
every extension relation that under schema graph (a) supports this base pattern is an
extension relation and it covers the pattern. However, the B object node also has to
be labeled with C if the result is to be an instance graph that belongs to the schema
graph (a). Therefore, we introduce the following extra requirement:

The named class rule for new nodes (TA-NCN)
If a node in the extension pattern that is not in the base pattern is according to
the minimal extension of the extension relation in a named class, then this node
is labeled with the name of that class.

The next problem is illustrated by addition (c) in Figure 5.1. Here the problem
is that an old A object node is forced into the class B by a new a edge. It follows
that if the result is to be a instance graph that belongs to the schema graph (a) then
the addition should also add the class names B and C. Therefore, we introduce the
following requirement:

The named class rule for old nodes (TA-NCO)
If a node in the base pattern is according to the minimal extension of the ex-
tension relation in a named class that it was not in according to the original
extension relation then this node is labeled with the name of that class in the
extension pattern.

Note that since in GDM[com,n-obj] all object class nodes are named, it follows that
object nodes are not moved to new classes at all.
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Two more constraints are necessary to check if if the new classes that nodes are
moved to, do not cause any problems for these nodes. The types of problems that
may occur are illustrated in Figure 5.2. The addition (b) causes problems under the
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Figure 5.2: A GDM[n-obj] schema graph with two additions with class-name addition

schema graph (a). The reason is that an A node may have a edge that ends in an int
node. If the class name B is also added to the A node then this edge becomes illegal
because it then should end in a str node according to the schema graph. In order to
see which paths may leave from a node in an instance graph given a certain schema
graph and an extension relation, we introduce the notion of potential path.

Definition 5.2 Given a basic GDM schema graph S and a set M ⊆ NS we say that
a path p in S from m1 to m2 is a potential path from M if for all prefixes p′ of p with
p′ ending in a node m′2 there is not a similar path p′′ in S that starts from a node in
M and ends in a node m′′2 such that σS(m′2) 6= σS(m′′2).

Definition 5.3 Given a weak instance graph I, a GDM schema graph S and an
extension relation ξ from S to I a path from m1 to m2 in S is called a path for a
node n in I under ξ if ξ(m1, n).

Such a path is called a potential path if it is a potential path from { m | ξ(m,n) }.

This definition allows us to formulate the requirement for the extension relations of
the base pattern that should prevent the problem just discussed.

The consistency rule for potential weak value paths (TA-CPW)
If a node in the base pattern has a certain potential weak value path under a
supporting extension relation of the base pattern then this path should still be a
potential path under the minimal extension of the extension relation.

By Lemma 4.7 we know that the weak value paths in the schema graph indeed describe
all the weak value paths that can be there in the instance graph. Note that we do
not check all paths but only weak value paths. The reason why this is sufficient will
be explained later on.
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The second type of problem that may occur is that nodes are indirectly moved to
new named classes without also being labeled with the name of that class. This is
illustrated by addition (c) in Figure 5.2. The problem here is that the A node that
the class name C is added to, may have an a edge that ends in a node that is not
labeled with class name D. However, if the A node is also in class C then the node at
the end of the a edge should be in class D and, therefore, labeled with D. The result
of adding only the class name C may therefore not belong to the schema graph.

The solution for this problem is checking for all potential paths whether the nodes
at the ends of these edge are not forced into new named classes that they are not
necessarily already in. The only way in which we can be sure that the node was
necessarily already in this named class is if there is a path similar to the potential
edge in the schema graph such that it starts in a class node that the begin node of the
potential path was already in and ends in a subclass of of the named class. Consider
for example the schema graph (a) and addition (b) in Figure 5.3.
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Figure 5.3: A GDM[n-obj] schema graph with an addition with class-name addition

This addition will always result in an instance graph of the schema graph (a) if it
is applied to an instance graph that already belongs to this schema graph. Although
every A node may have an a edge and the addition of the class name B forces the
node at the end of this edge in the C class, there is a similar edge in the schema graph
from the A class node that ends in a subclass of C. So the addition of the class name
B does not force any nodes other than the node itself into new named classes.

This leads us to the following rule for preventing that nodes are moved to new
named classes without also being labeled with the name of that class.

The named class rule for potential weak value paths (TA-NPW)
If a node in the base pattern has a certain potential weak value path under a
supporting extension relation of the base pattern and there is a similar path in
the schema graph from a class node that the node belongs to according to the
minimal extension of the extension relation and this path ends in a subclass of
named class node, then there is a similar path in the schema graph from a class
node that the node belongs to according to the supporting extension relation of
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the base pattern and this path ends in a subclass of the named class node.

Note that also this constraint only considers weak value paths. The reason that this
is here (and in the previous rule) sufficient is that because in GDMcom,n-obj all object
class nodes are named, this rule guarantees that object nodes at the end of a weak
value path are not implicitly moved to any new class. Therefore we do not need to
check any paths that go beyond object nodes.

The final two rules that need to be verified are introduced to prevent problems
that occur when is edges are used in the extension pattern to copy composite values.
This enables the user to specify additions that copy an entire subtree of composite-
value nodes under a certain composite-value node to another composite-value node.
This may cause problems that are very similar to those that are caused by adding
class-names to nodes. These problems are illustrated in Figure 5.4.
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Figure 5.4: A GDM[com,n-obj] schema graph with two additions with is edges in the
extension pattern

The addition (b) causes problems under the schema graph (a). The reason is that
an A node may have a edge that ends in an int node. However, a node that is only in
the B class cannot have such an edge. So if this edge is copied to the new B node it
will not be covered in the schema graph. The addition (c) also causes problems under
the schema graph (a). Although in this case the copied edge will be covered it ends
in a node with the wrong sort. Both types of problems are prevented by introducing
the following requirement.

The consistency rule for potential paths under is edges (TA-CPI)
If there is an is edge between a node in the base pattern and a node in the
extensions pattern then for every potential weak value path for the node in the
base pattern under a supporting extension relation of the base pattern there is a
similar potential weak value path for the node in the extension pattern under the
minimal extension of the extension relation and this path ends in a node with
the same sort as the first path.
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The second type of problem that may occur is that old nodes are indirectly moved
to new named classes without also being labeled with the name of that class. This is
illustrated by addition (d) in Figure 5.4. The problem here is that the A node may
have an a edge that ends in a node that is not labeled with class name D. However,
if the a edge is copied to the new B node then this edge will end in the same node as
the original node. However, according to the schema graph it should then be labeled
with class name E.

The solution for this problem is similar to the solution for the same problem that
occurs when class-names are added; we check for all potential paths whether the nodes
at the ends of these paths are not forced into new named classes that they are not
necessarily already in. Checking if they are necessarily in a certain class node can be
done by determining if there is a similar path in the schema graph that begins from
a class node that the old node belonged to and ends in a subclass of the named class
node. This leads to the following requirement.

The named class rule for potential paths under is edges (TA-NPI)
If there is an is edge between a node in the base pattern and a node in the
extensions pattern then for every potential weak value path for the node in the
base pattern under a supporting extension relation of the base pattern and a
similar path for the node in the extension pattern under the minimal extension
of the extension relation that ends in a named class node, there is a similar path
in the schema graph from a class node that the node in the base pattern belongs
to according to the supporting extension relation of the base pattern and this
path ends in a subclass of the named class node.

All these considerations result in the following formal definition of well-typedness.

Definition 5.4 In GDM[com,n-obj] an addition Add(J, J ′) is said to be well-typed
under a schema graph S if for every extension relation from S to IJ that supports J
the minimal extension ξ′ of ξ for IJ is is an extension relation from S to IJ′ and it
holds for ξ′ that

• ξ′ covers IJ′ , (TA-COV)

• for every node n in J ′ that is not in J it holds that

– if ξ′(m,n) and λS(m) is defined then λS(m) ∈ λJ′(n), (TA-NCN)

• for every node n in J it holds that

– if ξ′(m,n) and not ξ(m,n) and λS(m) is defined then λS(m) ∈ λJ′(n),
(TA-NCO)

– every potential weak value path in S for n under ξ is also a potential weak
value path for n under ξ′, and (TA-CPW)



5.3. CORRECTNESS OF WELL-TYPEDNESS 113

– for every potential weak value path in S for n under ξ and a similar path
in S for n under ξ′ that ends in a named class node m′2 there is a similar
path in S for n under ξ that ends in m′2. (TA-NPW)

• for every is edge 〈n1, is, n2〉 in J ′ with n1 in J it holds that

– for every potential weak value path in S for n1 under ξ there is a similar
potential weak value path in S for n2 under ξ′ that ends in a node with the
same sort, and (TA-CPI)

– for every potential weak value path in S for n1 under ξ and a similar path
in S for n2 under ξ′ that ends in a named class node m′2 there is a similar
path in S for n1 under ξ that ends in m′2. (TA-NPI)

Note that an addition where the base pattern is not well-typed is always well-
typed. From a formal point of view this makes sense because such an operation will
never add anything and, therefore, always result in an instance graph that belongs
to the schema graph. From an informal point of view, however, it might be useful to
inform the user that the base pattern is not well-typed.

5.3 Correctness of Well-Typedness

In this section the correctness of the definition of well-typedness is discussed. It is
first shown that well-typedness is a sufficient condition and then it is shown that it
is not a necessary condition.

We now proceed with the theorem that states that if an addition is well-typed
under a certain schema graph then the result of the addition when applied to an
instance that belongs to that schema graph will always also belong to that schema
graph. Before we present the actual theorem we present some lemmas that are used
to prove it.

The following lemma roughly states that if a pattern embeds into an instance
graph that belongs to a certain schema graph and this instance graph is extended to
another weak instance graph that also belongs to this schema graph then it defines
still a supporting extension relation for the pattern.

Lemma 5.1 Let I be an instance-graph and J a pattern such that there is an em-
bedding h ∈ Emb(J, I), and let I ′ be a super-instance-graph of I such that there is
a minimal extension relation ξ′ from a GDM[com,n-obj] schema graph S to I ′ that
covers I ′ and is class-name correct. Furthermore, let ξ̄′ ⊆ NS × NJ be defined such
that ξ̄′(m,n) iff ξ′(m,h(n)), then it follows that ξ̄′ supports J .

Proof: (This proof is very similar to the proof of the if-part of Theorem 4.9.) Because
I is a sub-instance-graph of I ′ it follows that every embedding of J into I is also an
embedding of IJ (J without the is edges) into I ′. As was shown in the if-part of the
proof of Theorem 4.9 it follows that ξ̄′ is an extension relation from S to IJ , covers
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IJ and is minimal on the composite-value nodes. So what remains to be proven is
that TP-CVV, TP-CSV and TP-OCV hold for every composite-value node n in
J and every value path in J that starts in n:

TP-CVV if the path contains at least one attribute edge then there is a similar value
path in S starting in a node m such that ξ̄(m,n)
Let p be the value path in J . By Lemma 4.6 it follows that there is a similar
value path in I that begins in h(n). Since I ′ is a super-instance-graph of I it
follows that there is a similar value path in I ′ that begins in h(n). By Lemma 4.7
it follows that there is a similar value path in S starting in a node m such that
ξ′(m,h(n)). It follows by the definition of ξ̄′ that ξ̄′(m,n).

TP-CSV for every similar value path in S that starts in a node m such that ξ̄(m,n)
it holds that these paths end in nodes with the same sort
Let p be the value path in J . By Lemma 4.6 it follows that there is a similar
value path in I that begins in h(n) and ends in a node with the same sort. Since
I ′ is a super-instance-graph of I it follows that there is a similar value path in
I ′ that begins in h(n) and ends in a node with the same sort. By Lemma 4.7
it follows that there is a similar value path in S starting in a node m such that
ξ′(m,h(n)) and ending in a node with the same sort. It follows by the definition
of ξ̄′ that ξ̄′(m,n).

TP-OCV if the path ends in an object node n′ then it holds for every similar value
path in S that begins in m such that ξ̄′(m,n) and ends in m′ that ξ̄′(m′, n′)
Let p be the value path in J and p′ the similar value path in S. It holds that
either p contains at least one attribute edge or it does not:

• Assume that p contains at least one attribute edge. By Lemma 4.8 it
follows that there is a similar path in I from h(n) to h(n′). Since I ′ is a
super-instance-graph of I it follows that there is a similar path in I ′ from
h(n) to h(n′). Lets assume that ξ̄′(m,n). By definition of ξ̄′ it follows that
ξ′(m,h(n)). Since ξ′ is an extension relation and there is a path p′ in S
from m to m′ similar to p it follows that ξ′(m′, h(n′)). By definition of ξ̄′
it then follows that ξ̄′(m′, n′).

• Assume that p contains no attribute edges. It follows that p contains only
is edges and that the same holds for p′. It follows that h(n) and h(n′) are
value equivalent in I. Since n′ is an object it follows that h(n) = h(n′).
Lets assume that ξ̄′(m,n). By definition of ξ̄′ it follows that ξ′(m,h(n)).
Since ξ is an extension relation and there is a path p′ in S of isa edges
from m to m′ it follows that ξ′(m′, h(n)), and because h(n) = h(n′) it also
holds that ξ′(m′, h(n′)). By definition of ξ̄′ it then follows that ξ̄′(m′, n′).

�

The following three lemmas have to do with the steps with which we will shown
that the result of the addition belongs again to the schema graph. These steps are
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(1) adding the class names to the old nodes, (2) adding the new nodes and their class
names, and the new edges, (3) adding the new edges and nodes required by the is
edges, and (4) reducing the resulting weak instance graph to an instance graph. The
following lemma states that if we perform the first step, then the result will again
belong to the schema graph.

Lemma 5.2 Let I be an instance graph, I ′ a weak instance graph that is a super-
instance-graph of I, S a GDM[com,n-obj] schema graph such that I ′ belongs to S. Let
Add(J, J ′) be a well-typed addition under S and h ∈ Emb(J, I). If we extend I ′ to I ′′

by adding for every node n in J the class names in λJ′(n) to those of λI′(h(n)) then
I ′′ belongs to S.

Proof: Let ξ′ be the minimal extension relation from S to I ′ that covers I ′ and is
class-name correct. If we then define ξ̄′ ⊆ NS ×NJ such that ξ̄′(m,n) iff ξ′(m,h(n))
then it follows that ξ̄′ supports J as is shown in Lemma 5.1. By the well-typedness of
Add(J, J ′) it then follows that the minimal extension ξ̄′′ of ξ̄′ for IJ′ is an extension
relation and satisfies the constraints in Definition 5.4.

We then define an extension relation ξ′′ from S to I ′′ as follows: ξ′′ = ξ′ ∪ ξ2 ∪ ξ3
where

ξ2 = { 〈m,h(n)〉 | λS(m) ∈ λJ′(n)− λJ(n) }
ξ3 = { 〈m2, n2〉 | ξ2(m1, n1) ∧ 〈n1, ᾱ, n2〉 ∈WIi ∧ 〈m1, ᾱ,m2〉 ∈WS }

We now show that ξ′′ is a minimal extension relation from S to I ′′ that covers I ′′ and
is class-name correct:

1. ξ′′ is a minimal extension relation from S to I ′′

We start by showing that ξ′′ is an extension relation. We do this by proving
the properties that should hold for an extension relation:

ER-CLN if λS(m) is defined and λS(m) ∈ λI′′(n) then ξ′′(m,n)
If the node n is labeled with a class name then there are two possibilities:

(a) The node n was already labeled with this class name in Ii. Then it
will hold that ξ′(m,n) if m is labeled with this class name in S and,
by definition of ξ′′, also that ξ′′(m,n).

(b) The class name was added because of the embedding h. Then there is
a node n′ in J that is labeled in J ′ with this class name and h(n′) = n.
It follows that ξ2(m,n) and, by definition of ξ′′ that ξ′′(m,n).

ER-ATT if ξ′′(m1, n1) and 〈n1, α, n2〉 ∈ EI′′ and 〈m1, α,m2〉 ∈ ES then
ξ′′(m2, n2)
Because only class names were added to I ′ it follows that if 〈n1, α, n2〉 ∈
EI′′ then 〈n1, α, n2〉 ∈ EI′ . If ξ′′(m1, n1) then it holds that ξ′(m1, n1),
ξ2(m1, n1) or ξ3(m1, n1).

(a) If ξ′(m1, n1) then it follows that ξ′(m2, n2) because ξ′ is an extension
relation from S to I ′. By definition of ξ′′ it follows that ξ′′(m2, n2).
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(b) If ξ2(m1, n1) then it follows by the definition of ξ3 and the reflexivity
of isa∗S that ξ3(m2, n2). By definition of ξ′′ it follows that ξ′′(m2, n2).

(c) If ξ3(m1, n1) then there is some node m′1 in S and some node n′1
in I ′ such that ξ2(m′1, n

′
1), 〈n′1, ᾱ′, n1〉 ∈ EI′ , 〈m′1, ᾱ′,m1〉 ∈ ES . If

ξ2(m′1, n
′
1) then it follows that λS(m′1) ∈ λJ′(n′′1) − λJ(n′′1) for some

node n′′1 in J such that h(n′′1) = n′1. If λS(m′1) ∈ λJ′(n′′1) − λJ(n′′1)
then it will hold that ξ̄′′(m′1, n

′′
1). Because 〈n′1, ᾱ′, n1〉 ∈WI′ and I ′ is

covered by ξ′ it holds by Lemma 4.7 that there is some path p in S
from m3 to m4 with λ̄S(p) = ᾱ′ that is a potential edge for n′1 under
ξ′. By constraint TA-NPW it holds that if there is a path p′ in S
from m′1 to m′′1 such that λ̄(p′) = ᾱ′ and m′′1 is a named node, then
there is a path p′′ in S from m′3 to m′4 with λ̄(p′′) = ᾱ′ for n′1 under
ξ′. Because ξ′ is an extension relation from S to I ′ it follows that
ξ′(m1, n1). For the same reason it then also follows that ξ′(m2, n2)
and, by definition of ξ′′, that ξ′′(m2, n2).

ER-SRT if ξ′′(m1, n1) then σI′′(n1) = σS(m1)
If ξ′′(m1, n1) then it holds that ξ′(m1, n1), ξ2(m1, n1) or ξ3(m1, n1).

(a) If ξ′(m1, n1) then it follows that σI′(n1) = σS(m1) because ξ′ is an
extension relation from S to I ′. Because I ′′ is equal to I ′ except for
the class names it follows that σI′′(n1) = σS(m1).

(b) If ξ2(m1, n1) then there is a node n′1 in J such that n1 = h(n′1) and
λS(m1) ∈ λJ′(n′1)− λJ(n′1). Because ξ̄′′ is an extension relation from
S to J ′ it follows that σJ′(n′1) = σS(m1). Because h is an embedding
of IJ into I ′ it follows that σJ′(n′1) = σI′(n1). Because I ′′ is equal
to I ′ except for the class names it follows that σJ′(n′1) = σI′′(n1). It
then follows that σI′′(n1) = σS(m1).

(c) If ξ3(m1, n1) then there is some node m′1 in S and some node n′1 in
I ′ such that ξ2(m′1, n

′
1), 〈n′1, ᾱ′, n1〉 ∈ WI′ , 〈m′1, ᾱ′,m1〉 ∈ WS . If

ξ2(m′1, n
′
1) then it follows that λS(m′1) ∈ λJ′(n′′1) − λJ(n′′1) for some

node n′′1 in J such that h(n′′1) = n′1. If λS(m′1) ∈ λJ′(n′′1) − λJ(n′′1)
then it will hold that ξ̄′′(m′1, n

′′
1). Because 〈n′1, ᾱ′, n1〉 ∈WI′ and I ′ is

covered by ξ′ it holds by Lemma 4.7 that there is some path p in S
from m3 to m4 with λ̄S(p) = ᾱ′ that is a potential edge for n′1 under
ξ′. Because ξ′ is an extension relation it follows that ξ′(m4, n1) and,
therefore, also that σS(m4) = σI′(n1). By constraint TA-CPW it
follows that σS(m4) = σS(m1). From this it follows that σI′(n1) =
σS(m1). Because I ′′ is equal to I ′ except for the class names it follows
that σI′′(n1) = σS(m1).

ER-ISA if 〈m1, isa,m2〉 ∈ ES and ξ′′(m1, n1) then ξ′′(m2, n1)
If ξ′′(m1, n1) then it holds that ξ′(m1, n1), ξ2(m1, n1) or ξ3(m1, n1).

(a) If ξ′(m1, n1) then it follows that ξ′(m2, n1) because ξ′ is an extension
relation. It follows by the definition of ξ′′ that ξ′′(m2, n1).
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(b) If ξ2(m1, n1) then there is a node n′1 in J such that n1 = h(n′1)
and λS(m1) ∈ λJ′(n′1) − λJ(n′1). Because ξ̄′′ covers J ′ it follows
that ξ̄′′(m1, n

′
1). Because ξ̄′′ is an extension relation it follows that

ξ̄′′(m2, n
′
1). By constraint TA-NCO it follows that either ξ̄′(m2, n

′
1)

or not ξ̄′(m2, n
′
1) and λS(m2) ∈ λJ′(n′1).

i. If ξ̄′(m2, n
′
1) then ξ′(m2, n1) and, by definition of ξ′′ also that

ξ′′(m2, n1).
ii. If not ξ̄′(m2, n

′
1) and λS(m2) ∈ λJ′(n′1) then λS(m2) ∈ λJ′(n′1) −

λJ(n′1). It follows that ξ2(m2, n1) and, by definition of ξ′′, that
ξ′′(m2, n1)

(c) If ξ3(m1, n1) then there is some node m′1 in S and some node n′1 in
I ′ such that ξ2(m′1, n

′
1), 〈n′1, ᾱ′, n1〉 ∈ WI′ and 〈m′1, ᾱ′,m1〉 ∈ WS . If

〈m1, isa,m2〉 ∈ ES then it follows that 〈m′1, ᾱ′,m2〉 ∈ WS . It then
follows by definition of ξ3 that ξ2(m2, n1) and, by definition of ξ′′ that
ξ′′(m2, n1).

Next, we show that ξ′′ is a minimal extension relation. We do this by showing
that for every extension relation ξ′ from S to I ′′ it holds that ξ′′ ⊆ ξ′. For this
we show the following three points:

(a) ξ ⊆ ξ′
This is easy to see because I ′ is a sub-instance-graph of Ii+1.

(b) ξ2 ⊆ ξ′
If ξ2(m,n′) then there is a node n in J such that n′ = h(n) and λS(m) ∈
λJ′(n) − λJ(n). By the definition of I ′′ it follows that λS(m) ∈ λI′′(n′).
Since ξ′ is an extension relation from S to I ′′ it follows that ξ′(m,n′).

(c) ξ3 ⊆ ξ′
Assume that ξ3(m2, n2). It then holds for some m1,m

′
2 ∈ NS and n1 ∈ NI′

that ξ2(m1, n1) and 〈n1, ᾱ, n2〉 ∈ WI′ and 〈m1, ᾱ,m2〉 ∈ WS . From the
previous point it then follows that ξ′(m1, n1). Because 〈n1, ᾱ, n2〉 ∈ WI′

and 〈m1, ᾱ,m2〉 ∈ WS and ξ′ is an extension relation it then follows that
ξ′(m2, n2).

Since ξ′′ = ξ ∪ ξ2 ∪ ξ3 it follows from the three points that ξ′′ ⊆ ξ′. Because we
already know that ξ′′ is an extension relation from S to I ′′ it follows that ξ′′ is
a minimal extension relation.

2. ξ′′ covers I ′′

We show the following three properties:

CV-N for every node n ∈ NI′′ then ξ′′(m,n) for some m ∈ NS
All the old nodes in I ′ were already covered by ξ′ and there are no new
nodes in I ′′.
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CV-E for every edge 〈n1, α, n2〉 in EI′′ there is some edge 〈m1, α,m2〉 in ES
such that ξ′′(m1, n1) and ξ′′(m2, n2)
All the old edges in I ′ were already covered by ξ′ and there are no new
edges in I ′′.

CV-C for every node n ∈ NI′′ and class name c ∈ λI′′(n) there is some named
node m ∈ NS such that ξ′′(m,n) and c = λS(m)
If the node n was already labeled with class name c in I ′ then this class-
name label is already covered by ξ′. If n was not already labeled with c in
I ′ then there is a node n′ in J such that n = h(n′) and this node will be
labeled with c in J ′. Since ξ̄′′ covers J ′ it follows that there is a node m in
S labeled with the class name c. It follows that ξ2(m,n) and, by definition
of ξ′′ that ξ′′(m,n).

3. ξ′′ is class-name correct
We have to show that if λS(m) is defined and ξ′′(m,n) then λS(m) ∈ λI′′(n).
If ξ′′(m,n) then ξ′(m,n), ξ2(m,n) or ξ3(m,n). We consider these three cases:

(a) Since ξ′ is class-name correct it holds that λS(m) ∈ λI′(n). Because I ′′ is
an extension of I ′ it follows that λS(m) ∈ λI′′(n).

(b) If ξ2(m,n) then for some node n′ in J it holds that n = h(n′) and λS(m) ∈
λJ′(n′)− λJ(n′). By the definition of I ′′ it follows that λS(m) ∈ λI′′(n).

(c) If ξ3(m,n) then it holds for somem1,m
′ ∈ NS and n1 ∈ NI′ that ξ2(m1, n1)

and 〈n1, ᾱ, n〉 ∈ WI′ and 〈m1, ᾱ,m〉 ∈ WS . If ξ2(m1, n1) then for some
node n′1 in J it holds that n1 = h(n′1) and λS(m1) ∈ λJ′(n′1) − λJ(n′1).
Because ξ̄′′ covers J ′ it follows that ξ̄′′(m1, n

′
1). Because 〈n1, ᾱ, n〉 ∈ WI′

and ξ′ is an extension relation, there is a potential path p with λ̄(p) = ᾱ
in S for n1 under ξ′. It follows by the definition of ξ̄′ that the same path
is also a potential path for n′1 under ξ̄′. Due to constraint TA-NPW it
follows that there is a similar path in S from m′′1 to m for n′1 under ξ̄′. By
definition of ξ̄′ it follows that the same path is also a path for n1 under
ξ′. Because ξ′ is an extension relation it follows that ξ′(m,n). Because ξ′

is class-name correct it then holds that λS(m) ∈ λI′(n). Because I ′′ is an
extension of I ′ it follows that λS(m) ∈ λI′′(n).

�

The following Lemma is concerned with the second step where the new nodes and
edges are added as directly required by the extension pattern. It roughly states that
the result will again belong to the schema graph, but in order to prove it we first
present the following lemma.

Lemma 5.3 Let Add(J, J ′) be an addition, S a GDM[com,n-obj] schema graph, ξ an
extension relation from S to J and ξ′ the minimal extension of ξ for J ′ such that for
all n in J if λS(m) is defined and ξ′(m,n) then ξ(m,n), then ξ′ is equal to ξ on the
object nodes and the composite-value nodes in J .
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Proof: The minimal extension of an extension relation can be computed by applying
the constraints ER-CLN, ER-ATT and ER-ISA until no more pairs are added
to the extension relation. It is easy to see that at every step the object nodes and
composite-value nodes in J are not associated with new class nodes if the extension
relation is equal to ξ on the object nodes and the composite-value nodes in J :

ER-CLN If λS(m) is defined and λS(m) ∈ λJ′(n) then 〈m,n〉 is added, but because
we assume that for all n in J if λS(m) is defined and ξ′(m,n) then ξ(m,n), it
follows that 〈m,n〉 is already in ξ.

ER-ATT If ξ′(m1, n1), 〈n1, α, n2〉 ∈ EJ′ and 〈m1, α,m2〉 then 〈m2, n2〉 is added.

• If n2 is an object node in J then m2 is an object class node and there-
fore λS(m2) is defined. Because we assume that if λS(m2) is defined and
ξ′(m2, n2) then ξ(m2, n2), it follows that 〈m2, n2〉 is already in ξ.

• If n2 is a composite-value node in J then n1 is an object node or composite-
value node in J because of I-REA and I-NS. Since we assume that ξ′ is
equal to ξ on those nodes and ξ is an extension relation it follows that
〈m,n〉 is already in ξ.

ER-ISA If 〈m1, isa,m2〉 ∈ ES and ξ′(m1, n) then 〈m2, n〉 is added. If n is an object
node or composite-value node in J then it already holds that ξ(m1, n) and since
ξ also satisfies ER-ISA that 〈m2, n〉 is already in ξ.

�

Lemma 5.4 Let I be an instance graph, I ′ a weak instance graph that is a super-
instance-graph of I, S a GDM[com,n-obj] schema graph such that I ′ belongs to S
with the extension relation ξ′. Let Add(J, J ′) be a well-typed addition under S and
h ∈ Emb(J, I). We assume that if λS(m) is defined and λS(m) ∈ λJ′(n) for some
node n in J then ξ′(m,h(n)).

If we extend I ′ to I ′′ by extending I ′ for h as in Definition 3.14 except that we
do not satisfy the is edges, then there is a minimal extension relation ξ′′ from S to
I ′′ that covers I ′′ and is class-name correct, and ξ′′ is equal to ξ′ on the object nodes
and composite-value nodes in I ′.

Proof: Since I ′ belongs to S with the extension relations ξ′ it is the minimal extension
relation from S to I ′ that covers I ′ and is class-name correct. If we then define
ξ̄′ ⊆ NS ×NJ such that ξ̄′(m,n) iff ξ′(m,h(n)) then it follows that ξ̄′ supports J as
is shown in Lemma 5.1. By the well-typedness of Add(J, J ′) it then follows that the
minimal extension ξ̄′′ of ξ̄′ for J ′ is an extension relation from S to I ′′ and satisfies
the constraints in Definition 5.4.

Then we can construct the minimal extension relation for I ′′ as follows:

ξ′′ = ξ′ ∪
{
〈m, η(h)(n)〉 | ξ̄′′(m,n)

}
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We can show for every node n in J that if λS(m) is defined and ξ̄′′(m,n) then ξ̄′(m,n),
as follows. By TA-NCN it holds that ξ̄′(m,n) or λS(m) ∈ λJ′(n). However, if
λS(m) ∈ λJ′(n) then it follows by the assumption in the theorem that ξ′(m,h(n))
and, therefore, also that ξ̄′(m,n).

Because for every node n in J it holds that if λS(m) is defined and ξ̄′′(m,n) then
ξ̄′(m,n), it follows by Lemma 5.3 that ξ̄′′ is equal to ξ̄′ on the object nodes and
composite-value nodes in J . It then follows that ξ′′ is equal to ξ′ on the object nodes
and composite-value nodes in I ′.

We now show that ξ′′ is a minimal extension relation from S to I ′′ that covers I ′′

and is class-name correct:

1. ξ′′ is a minimal extension relation from S to I ′′

We start by showing that ξ′′ is an extension relation. We do this by proving
the properties that should hold for an extension relation:

ER-CLN if λS(m) is defined and λS(m) ∈ λI′′(n) then ξ′′(m,n)
If the node n is labeled with a class name then there are three possibilities:

(a) The node n is a node in I and was already labeled with this class
name in I. Then it will hold that ξ′(m,n) if m is labeled with this
class name in S and, by definition of ξ′′, also that ξ′′(m,n).

(b) The node n is a node in I and the class name was added because of
the embedding h of J in I. Then there is a node n′ in J that is labeled
in J ′ with this class name and η(h)(n′) = n. It follows that ξ̄′′(m,n′)
if m is labeled with this class name in S. By definition of ξ′′ it then
follows that ξ′′(m,n).

(c) The node n is a node not in I. Then there is a node n′ in J ′ that is
labeled in J ′ with this class name and η(h)(n′) = n. It follows that
ξ̄′′(m,n′) if m is labeled with this class name in S. By definition of ξ′′

it then follows that ξ′′(m,n).

ER-ATT if ξ′′(m1, n1) and 〈n1, α, n2〉 ∈ EI′′ and 〈m1, α,m2〉 ∈ ES then
ξ′′(m2, n2)
There are two possibilities:

(a) The edge 〈n1, α, n2〉 is in I. If ξ′′(m1, n1) then it holds that ξ′(m1, n1)
or ξ̄′′(m1, n

′
1) for some node n′1 in J ′ such that n1 = η(h)(n′1). In the

first case it follows that ξ′(m2, n2) and, therefore, also that ξ′′(m2, n2).
In the second case it holds that n1 is an object node or a composite-
value node (otherwise the edge would not exist). Since I ′′ adds no class
names to nodes in I ′ and ξ̄′′ is equal to ξ̄′ on the object nodes and
composite-value nodes in J it then follows that if ξ̄′′(m1, n

′
1) then also

ξ̄′(m1, n
′
1). By definition of ξ̄′ it then follows that ξ′(m1, n1). Because

ξ′ is an extension relation it then follows that if 〈m1, α,m2〉 ∈ ES then
ξ′(m2, n2). By definition of ξ′′ it then follows that ξ′′(m2, n2).
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(b) The edge 〈n1, α, n2〉 is not in I. Because this edge was added for
the embedding h there will in J ′ be an edge 〈n′1, α, n′2〉 such that
n1 = η(h)(n′1) and n2 = η(h)(n′2). The node n′1 is an object node or
a composite-value node, otherwise this edge would not exist. Further-
more, the node n′1 is either in J or it is not.

i. If n′1 is in J then because ξ̄′′ is equal to ξ̄′ on the object nodes and
composite-value nodes in J it follows that ξ̄′(m1, n

′
1) iff ξ̄′′(m1, n

′
1).

Because this holds for every object node and composite-value node
in J it follows that if ξ′′(m1, n1) then ξ̄′′(m1, n

′
1).

ii. If n′1 is not in J then it will be the only node in J ′ that is mapped
to n1 by η(h). It then follows that if ξ′′(m1, n1) then ξ̄′′(m1, n

′
1).

So in both cases it holds that if ξ′′(m1, n1) then ξ̄′′(m1, n
′
1). Because ξ̄′′

is an extension relation it will follow that ξ̄′′(m2, n
′
2) and, by definition

of ξ′′, that ξ′′(m2, n2).

ER-SRT if ξ′′(m,n) then σI′′(n) = σS(m)
If ξ′′(m,n) then ξ′(m,n) or ξ̄′′(m,n′) for some node n′ in J ′ such that n =
η(h)(n′). In the first case it holds that because ξ′ is an extension relation
that σI(n) = σS(m). Because I ′′ is a super-instance-graph of I it follows
that σI′′(n) = σS(m). In the second case it follows that σJ′(n′) = σS(m).
Because η(h) is an embedding of J ′ into I ′′ it follows that σI′′(n) = σJ′(n′).
Therefore, it holds that σI′′(n) = σS(m).

ER-ISA if 〈m1, isa,m2〉 ∈ ES and ξ′′(m1, n) then ξ′′(m2, n)
If ξ′′(m1, n) then ξ′(m1, n) or ξ̄′′(m1, n

′) for some node n′ in J ′ such that
n = η(h)(n′). In the first case it holds that because ξ′ is an extension
relation that ξ′(m2, n). It follows that it also holds that ξ′′(m2, n). In the
second case it holds that because ξ̄′′ is an extension relation that ξ̄′′(m2, n

′).
It follows that it also holds that ξ′′(m2, n).

Next, we show that ξ′′ is a minimal extension relation. We do this by showing
that for every extension relation Ξ from S to I ′′ it holds that ξ′′ ⊆ Ξ. For this
we show that

(a) ξ′ ⊆ Ξ and

(b)
{
〈m, η(h)(n)〉 | ξ̄′′(m,n)

}
⊆ Ξ.

The first point is easy to see because I is a sub-instance-graph of I ′′. The second
point is proven by defining the relation Ξ̄ ⊆ NS × NJ′ such that Ξ̄(m,n′) iff
Ξ(m, η(h)(n′)). We can show that this relation is an extension relation from S
to J ′:

ER-CLN if λS(m) is defined and λS(m) ∈ λJ′(n) then Ξ̄(m,n)
Assume that λS(m) is defined and λS(m) ∈ λJ′(n). Since η(h) is an
embedding of J ′ into I ′′ it follows that λS(m) ∈ λI′′(η(h)(n)). Since Ξ is
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an extension relation from S to I ′′ it follows that Ξ(m, η(h)(n)). By the
definition of Ξ̄ it then follows that Ξ̄(m,n).

ER-ATT if Ξ̄(m1, n1), 〈n1, α, n2〉 ∈ EJ′ and 〈m1, α,m2〉 ∈ ES then Ξ̄(m2, n2)
If Ξ̄(m1, n1) then it holds that Ξ(m1, η(h)(n1)). Since η(h) is an embedding
of J ′ in I ′′ there is an edge 〈η(h)(n1), α, η(h)(n2)〉 ∈ EI′′ . Since Ξ is
an extension relation from S to I ′′ it follows that Ξ(m2, η(h)(n2)) and,
therefore, that Ξ̄(m2, n2).

ER-SRT if Ξ̄(m,n) then σJ′(n) = σS(m)
If Ξ̄(m,n) then it follows that Ξ(m, η(h)(n)). Since Ξ is an extension
relation from S to I ′′ it follows that σI′′(η(h)(n)) = σS(m). Because η(h)
is an embedding of J ′ in I ′′ it follows that σJ′(n) = σS(m).

ER-ISA if 〈m1, isa,m2〉 ∈ ES and Ξ̄(m1, n) then Ξ̄(m2, n)
If Ξ̄(m1, n) then Ξ(m1, η(h)(n)). Since Ξ is an extension relation from S
to I ′′ it follows that Ξ(m2, η(h)(n)). It then follows, by the definition of Ξ̄
that Ξ̄(m2, n).

Because ξ′ ⊆ Ξ it follows that ξ̄′ ⊆ Ξ̄. Since ξ̄′′ is the minimal extension of ξ̄′ for
IJ′ it follows that ξ̄′′ ⊆ Ξ̄. From this it follows that

{
〈m, η(h)(n)〉 | ξ̄′′(m,n)

}
⊆{

〈m, η(h)(n)〉 | Ξ̄(m,n)
}

. Because
{
〈m, η(h)(n)〉 | Ξ̄(m,n)

}
⊆ Ξ by defini-

tion of Ξ̄, it follows that
{
〈m, η(h)(n)〉 | ξ̄′′(m,n)

}
⊆ Ξ.

2. ξ′′ covers I ′′

We show the following three properties:

CV-N for every node n ∈ NI′′ then ξ′′(m,n) for some m ∈ NS
All the old nodes in I were already covered by ξ′. For every new node n
there will be a node n′ in J ′ such that n = η(h)(n′). Since ξ̄′′ covers J ′ it
follows that ξ′′ will cover these nodes.

CV-E for every edge 〈n1, α, n2〉 in EI′′ there is some edge 〈m1, α,m2〉 in ES
such that ξ′′(m1, n1) and ξ′′(m2, n2)
All the old edges in I were already covered by ξ′. For every new edge
〈n1, α, n2〉 there is an edge 〈n′1, α, n′2〉 in J ′ such that n1 = η(h)(n′1) and
n2 = η(h)(n′2). Since ξ̄′′ covers J ′ it follows that ξ′′ will cover these edges.

CV-C for every node n ∈ NI′′ and class name c ∈ λI′′(n) there is some named
node m ∈ NS such that ξ′′(m,n) and c = λS(m)
If the node n was already labeled with class name c in I then this class-
name label is already covered by ξ′. If n was not already labeled with c in
I then there is a node n′ in J ′ such that n = η(h)(n′) and this node will be
labeled with c in J ′. Since ξ̄′′ covers J ′ it follows that ξ′′ will cover these
class-name labels.

3. ξ′′ is class-name correct
We show that if λS(m) is defined and ξ′′(m,n) then λS(m) ∈ λI′′(n′). If
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ξ′′(m,n) then ξ′(m,n) or there is some node n′ in J ′ such that n = η(h)(n′)
and ξ̄′′(m,n′). If ξ′(m,n) then it follows that λS(m) ∈ λI(n′) because ξ′ is
class-name correct. Because I is a sub-instance-graph of I ′′ it then holds that
λS(m) ∈ λI′′(n′). In the second case the node n′ is either in J or not in in J :

(a) If n′ is in J then ξ̄′(m,n′) or not ξ̄′(m,n′). In the first case it follows
that ξ′(m,n). Since ξ′ is class-name correct it follows that if λS(m) is
defined then λS(m) ∈ λI(n) and because I ′′ is a super-instance-graph of
I it follows that λS(m) ∈ λI′′(n). In the second case it will follow by
constraint TA-NCO that λS(m) is undefined. It follows that if λS(m) is
defined then λS(m) ∈ λI′′(n).

(b) If n′ is not in J then it follows by constraint TA-NCN that if λS(m) is
defined then λS(m) ∈ λJ′(n′). By definition of I ′′ it follows that λS(m) ∈
λI′′(n).

�

The following lemma is concerned with the third step where the weak instance is
extended to satisfy the is edge in the extension pattern. It roughly states the result
will again belong to the schema graph.

Lemma 5.5 Let I be an instance graph, I ′ a weak instance graph that is a super-
instance-graph of I, S a GDM[com,n-obj] schema graph such that I ′ belongs to S by
the extension relation ξ′, Add(J, J ′) a well-typed addition under S. Furthermore, let h
be in Emb(J, I) and η(h) ∈ Emb(J ′, I ′) such that η(h) equal h on NJ and if we define
ξ̄′ ⊆ NS × NJ by ξ̄′(m,n) iff ξ′(m,h(n)), and ξ̄′′ as the minimal extension of ξ̄′ for
IJ′ , then it holds that if n′ is not a basic-value node then ξ̄′′(m,n′) iff ξ′(m, η(h)(n′)).
We assume also that for the edge 〈n̄1, is, n̄2〉 in J ′ with n2 ∈ NJ′ −NJ it holds that
in I ′ no edge leaves from η(h)(n̄2).

If we extend I ′ to I ′′ by extending I ′ for η(h) to satisfy the is edge 〈n̄1, is, n̄2〉 in J ′

with n̄2 ∈ NJ′ −NJ as in Definition 3.14, then there is a minimal extension relation
ξ′′ from S to I ′′ that covers I ′′ and is class-name correct, and ξ′′ is equal to ξ′ on the
object nodes and composite-value nodes in I ′.

Proof: Since I ′ belongs to S by ξ′ it is the minimal extension relation from S to
I ′ that covers I ′ and is class-name correct. By Lemma 5.1 it holds that ξ̄′ supports
J . By the well-typedness of Add(J, J ′) it then follows that ξ̄′′ is an extension relation
from S to J ′ that is the minimal extension of ξ̄′ for IJ′ and satisfies the constraints
in Definition 5.4.

We define the new extension relation as follows: ξ′′ = ξ′ ∪ ξ2 where

ξ2 = { 〈m3, n3〉 | ξ′(m2, η(h)(n̄2)) ∧ 〈η(h)(n̄2), ᾱ, n3〉 ∈WI′′ ∧ 〈m2, ᾱ,m3〉 ∈WS } .

It can be shown that ξ′′ is equal to ξ′ on the object nodes and composite-value nodes
in I ′ as follows. Let 〈m3, n3〉 be a pair in ξ2 then there is a weak value path in I ′′ from
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η(h)(n2) to n3. Since in I ′ no edge leaves from η(h)(n2) and by the way that the new
edges under η(h)(n2) are constructed it follows that if n3 is a composite-value node
then it is a new node. If n3 is an object node then by TA-CPI m3 is an object-class
node and because such nodes are named it follows by TA-NPI that there is a similar
path in S for the node h(n1) that ends in m3, and because ξ′ is an extension relation
it follows that ξ′(m3, n3).

We now show that ξ′ is a minimal extension relation from S to I ′′ that covers I ′′

and is class-name correct.

1. ξ′′ is a minimal extension relation from S to I ′′

We start by showing that ξ′′ is an extension relation. We do this by proving
the properties that should hold for an extension relation:

ER-CLN if λS(m) is defined and λS(m) ∈ λI′′(n) then ξ′′(m,n)
This was already true for ξ′ and since we copy only composite-value nodes
with incoming edges (and, therefore, no class-name labels) this will also
hold for ξ′′.

ER-ATT if ξ′′(m1, n1) and 〈n1, α, n2〉 ∈ EI′′ and 〈m1, α,m2〉 ∈ ES then
ξ′′(m2, n2)
Assume that ξ′′(m1, n1) and 〈n1, α, n2〉 ∈ EI′′ and 〈m1, α,m2〉 ∈ ES . If
ξ′′(m1, n1) then either ξ′(m1, n1) or ξ2(m1, n1).

• Assume that ξ′(m1, n1). Since ξ′ is an extension relation it follows
that ξ′(m2, n2) and, by definition of ξ′′, that ξ′′(m2, n2).
• Assume that ξ2(m1, n1). By the definition of ξ2 we may then assume

that ξ′(m2, η(h)(n̄2)), 〈η(h)(n̄2), ᾱ, n1〉 ∈ WI′′ and 〈m2, ᾱ,m1〉 ∈ WS .
It furthermore holds that n1 is either a composite-value node, a basic-
value node or an object node.
(a) Assume that n1 is a composite-value node. Since 〈n1, α, n2〉 ∈ EI′

and 〈m1, α,m2〉 ∈ ES it follows that 〈η(h)(n̄2), ᾱ • [α], n2〉 ∈ WI′′

and 〈m2, ᾱ• [α],m2〉 ∈WS . By definition of ξ2 it then follows that
ξ2(m2, n2) and by definition of ξ′′ that ξ′′(m2, n2).

(b) Assume that n1 is a basic-value node. In that case there can be
no edge 〈n1, α, n2〉 ∈ EI′ so the implication trivially holds.

(c) Assume that n1 is an object node. By the construction of I ′′ it
then follows that n1 is a node in I ′ and it was already shown that
for object nodes in I ′ no new pairs are added in ξ′′. It also follows
from the construction of I ′′ that no new edge are added to object
nodes, so 〈n1, α, n2〉 ∈ EI′ . Since ξ′ is an extension relation it
follows that ξ′(m2, n2), and by definition of ξ′′ therefore also that
ξ′′(m2, n2).

ER-SRT if ξ′′(m1, n1) then σI′(n1) = σS(m1)
If ξ′′(m1, n1) then either ξ′(m1, n1) or ξ2(m1, n1).
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• Assume that ξ′(m1, n1). Since ξ′ is an extension relation it follows
that σI′(n1) = σS(m1).

• Assume that ξ2(m1, n1). By the definition of ξ2 we may then as-
sume that ξ′(m2, η(h)(n̄2)), 〈η(h)(n̄2), ᾱ, n1〉 ∈WI′ and 〈m2, ᾱ,m1〉 ∈
WS . If 〈η(h)(n̄2), ᾱ, n1〉 ∈ WI′ then there is a weak value path with
attribute-name list ᾱ in I ′′ starting from h(n̄1) and ending in a node
with the same sort as n1. By Lemma 4.7 it follows that there is a
similar potential weak value path in S for n̄1 under ξ̄′h that ends in a
node with the same sort as n1. It follows by constraint TA-CPI that
there is a similar potential path in S for n̄2 under ξ̄′′ that ends in a
node with the same sort as n1, and because we assume that ξ̄′′(m, n̄2)
iff ξ′(m, η(h)(n̄2)), also a similar potential path in S for η(h)(n̄2) un-
der ξ′ that ends in a node with the same sort as n1. Since this path is
a potential path and there is a similar path from m2 to m1 it follows
that m1 has the same sort as n1.

ER-ISA if 〈m1, isa,m2〉 ∈ ES and ξ′′(m1, n1) then ξ′′(m2, n1)
If ξ′′(m1, n1) then it holds that ξ′(m1, n1) or ξ2(m1, n1).

(a) Assume that ξ′(m1, n1). Then it follows that ξ′(m2, n1) because ξ′ is
an extension relation. It follows by the definition of ξ′′ that ξ′′(m2, n1).

(b) Assume that ξ2(m1, n1). By the definition of ξ2 we may then assume
that ξ′(m′2, η(h)(n̄2)), 〈η(h)(n̄2), ᾱ, n1〉 ∈ WI′′ and 〈m′2, ᾱ,m1〉 ∈ WS .
Since 〈m1, isa,m2〉 ∈ ES it follows that 〈m′2, ᾱ,m2〉 ∈ WS . By defini-
tion of ξ2 it then follows that ξ2(m2, n2) and by definition of ξ′′ that
ξ′′(m2, n2).

Next, we show that ξ′′ is a minimal extension relation. We do this by showing
that for every extension relation Ξ from S to I ′′ it holds that ξ′′ ⊆ Ξ. For this
we show the following two points:

(a) ξ′ ⊆ Ξ
This is easy to see because I ′ is a sub-instance-graph of I ′′.

(b) ξ2 ⊆ Ξ
If ξ2(m1, n1) then we may assume that ξ′(m2, η(h)(n̄2)), 〈η(h)(n̄2), ᾱ, n1〉 ∈
WI′′ and 〈m2, ᾱ,m1〉 ∈WS . Since ξ′ is a subset of Ξ and Ξ is an extension
relation from S to I ′′ it follows that Ξ(m1, n1).

Since ξ′′ = ξ′ ∪ ξ2 it follows from the two points that ξ′′ ⊆ Ξ. Because we
already know that ξ′′ is an extension relation from S to I ′′ it follows that ξ′′ is
a minimal extension relation.

2. ξ′′ covers I ′

We show the following three properties:

CV-N for every node n ∈ NI′′ then ξ′′(m,n) for some m ∈ NS
The node n is either already in I ′ or was added to satisfy the is edge.
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• Assume that n was already present in NI′ . Since ξ′ already covered I ′′

it follows that ξ′(m,n) for some m ∈ NS . By definition of ξ′′ it follows
that ξ′′(m,n) for some m ∈ NS .

• Assume that n is a copy of n′ in I ′ to satisfy the is edge 〈n̄1, is, n̄2〉.
Because in I ′′ there is a weak value path from h(n̄1) to n′ it follows
by Lemma 4.7 that there is a potential weak value path in S for h(n1)
under ξ′. It follows by constraint TA-CPI that there is a similar
potential weak value path in S for n2 under ξ̄′′ and, because we assume
that ξ̄′′(m, n̄2) iff ξ′(m, η(h)(n̄2)), also a similar weak value path for
η(h)(n̄2) under ξ′. If m is the last node of this path then it follows
from the fact that ξ′′ is an extension relation that ξ′′(m,n).

CV-E for every edge 〈n1, α, n2〉 in EI′ there is some edge 〈m1, α,m2〉 in ES
such that ξ′′(m1, n1) and ξ′′(m2, n2)
The edge 〈n1, α, n2〉 is either already in I ′′ or was added to satisfy the is
edges.

• Assume that 〈n1, α, n2〉 was already present in EI′′ . Since ξ′ already
covered I ′′ it follows that here is some edge 〈m1, α,m2〉 in ES such
that ξ′(m1, n1) and ξ′(m2, n2). By the definition of ξ′′ it follows that
ξ′′(m1, n1) and ξ′′(m2, n2).

• Assume that 〈n1, α, n2〉 is a copy of 〈n′1, α, n′2〉 in I ′′ to satisfy the is
edge 〈n̄1, is, n̄2〉. Because in I ′′ there is a weak value path from h(n̄1)
to n′2 with 〈n′1, α, n′2〉 as the last edge, it follows by Lemma 4.7 that
there is a similar potential weak value path in S for h(n̄1) under ξ′. It
follows by constraint TA-CPI that there is a similar potential weak
value path in S for n̄2 under ξ̄′′ and, because we assume that ξ̄′′(m, n̄2)
iff ξ′(m, η(h)(n̄2)), also a similar weak value path for η(h)(n̄2) under
ξ′. If 〈m1, α,m2〉 is the last edge of this path then it follows from the
fact that ξ′′ is an extension relation that ξ′′(m1, n1) and ξ′′(m2, n2)

CV-C for every node n ∈ NI′ and class name c ∈ λI′(n) there is some named
node m ∈ NS such that ξ′′(m,n) and c = λS(m)
Only composite-value nodes with incoming edges are copied to satisfy the
is edges. It follows that the new nodes have no class-name labels and old
nodes are not labeled with new class names. Since all the class names were
already covered ξ′ it follows that they are also covered by ξ′′.

3. ξ′′ is class-name correct
We have to show that if λS(m) is defined and ξ′′(m,n) then λS(m) ∈ λI′(n). If
ξ′′(m,n) then ξ′(m,n) or ξ2(m,n).

(a) Assume that ξ′(m,n). Since ξ′ is class-name correct it holds that λS(m) ∈
λI′(n). Because I ′′ is an extension of I ′ it follows that λS(m) ∈ λI′′(n).

(b) Assume that ξ2(m,n). Then we may also assume that ξ′(m′, η(h)(n̄2)),
〈η(h)(n̄2), ᾱ, n〉 ∈ WI′ and 〈m′, ᾱ,m〉 ∈ WS . If λS(m) is defined then m
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must be an object-class node because the path from m′ to m with attribute-
name list ᾱ is a weak-value path and in a schema graph named composite-
value class nodes cannot have incoming edges. If 〈η(h)(n̄2), ᾱ, n〉 ∈ WI′

then there is a weak value path with attribute-name list ᾱ in I ′′ starting
from h(n̄1) and ending in n. It follows by Lemma 4.7 that there is a similar
potential weak value path in S for n̄1 under ξ̄′. Since all object-class nodes
in S are named it follows by constraint TA-NPI that there is a similar
path in S for n̄1 under ξ̄′ that ends in m, and, because we assume that
ξ̄′′(m, n̄2) iff ξ′(m, η(h)(n̄2)), also a similar path in S for h(n′1) under ξ′

that ends in m. Since ξ′ is an extension relation it follows that ξ′(m,n).
Because ξ′ is class-name correct it follows that λS(m) ∈ λI′(n)

We now have shown that ξ′ is a minimal extension relation from S to I ′′ that
covers I ′′ and is class-name correct. It therefore follows that I ′′ belongs to S. �

This concludes the lemmas for the different steps in the proof. What follows
are two small lemmas that are also needed to prove the theorem. The first lemma
states roughly that if we take an extension relation that supports a pattern then the
extension relation will still be a supporting extension relation if it associates some
basic-value nodes with extra class nodes.

Lemma 5.6 Let J be a pattern, S a GDM[com,n-obj] schema graph and ξ an exten-
sion relation from S to IJ that supports J then if ξ′ is an extensions relation from S
to IJ that is a superset of ξ that is equal to ξ except that it associates some basic-value
nodes with some extra class nodes, then ξ′ also supports J .

Proof: It is easy to see that if ξ is minimal on the composite-value nodes and covers
J , then this also holds for ξ′. It is also easy to see that the conditions TP-CVV,
TP-CSV and TP-OCV will still hold for ξ′ if they hold for ξ. �
The second lemma states that if we have two supporting extension relations such that
one associates some basic-value nodes with some extra class nodes, then their minimal
extensions for the extension pattern of the addition will be the same except for those
nodes.

Lemma 5.7 Let Add(J, J ′) be an addition, ξ1 and ξ2 extension relations from a
GDM[com,n-obj] schema graph S to J that support J , and ξ2 equal to ξ1 except that it
associates some basic-value nodes some extra class nodes. Then if ξ′1 and ξ′2 are the
minimal extensions of ξ1 and ξ2, respectively, for J ′ then ξ′2 − ξ′1 = ξ2 − ξ1.

Proof: The minimal extension of an extension relation can be computed by applying
the constraints ER-CLN, ER-ATT and ER-ISA until no more pairs are added to
the extension relation. It is easy to see that if a rule adds a pair to ξ1 then this rule
will add the same pair to ξ2, and vice versa. �
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This concludes all the lemmas, and we now proceed with the actual theorem that
states that the definition of well-typedness is a sufficient condition for checking if the
result of the addition will again belong to the schema graph.

Theorem 5.8 If in GDM[com,n-obj] the addition Add(J, J ′) is well-typed under the
schema graph S then for every instance [I] that belongs to S it holds that the result
of [[Add(J, J ′)]]([I]) also belongs to S.

Proof: The proof is done by constructing the result of the addition in 4 steps;

1. We add for all the embeddings of the base pattern the new class names for the
old nodes as required by the extension pattern.

2. We add for all the embeddings the new edges and nodes as required by the
extension pattern.

3. We add for for all embeddings and is edges in the extension pattern the extra
composite-value nodes and corresponding edges to satisfy the is edge.

4. We reduce the resulting weak instance graph to an instance graph.

Since these steps are similar to those in Theorem 3.8 it is easy to see that the final
result of these steps is indeed the result of the addition. Note that the order in which
the is edges are satisfied per embedding has to be such that a later is edge extends a
composite-value tree that is copied by an earlier is edge.

It can also be shown that the result after every step is a weak instance graph that
belongs to S:

Adding new class names to old nodes It follows from Lemma 5.2 that after ex-
tending the instance graph with the class names in J ′ for the nodes in J for
every embedding h ∈ Emb(J, I), the result again belongs to S.

Adding new nodes, their class names and new edges By Lemma 5.4 it holds
that after adding these nodes, class names and edges for an embedding h ∈
Emb(J, I) , the result again belongs to S. However, it has to be shown for this
that it holds that if for a node m in S λS(m) is defined and λS(m) ∈ λJ′(n)
for some node n in J then ξ′(m,h(n)), where I ′ is a super-instance-graph of the
result of the previous step and ξ′ the minimal extension relation from S to I ′.
This holds because if λS(m) is defined and λS(m) ∈ λJ′(n) for some node n in
J , then in the first step the class name λS(m) is added to the node h(n). Since
ξ′ is an extension relation it follows that ξ′(m,h(n)).

Satisfying the is edges It follows from Lemma 5.5 that after copying a tree of
composed-value nodes to satisfy a certain is edge the result again belongs to S.
However, we have to show the following two things:
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• For the embedding h there has to an embedding η(h) ∈ Emb(J ′, I) such
that η(h) is equal to h on the nodes in J , and it holds that ξ̄′′(m,n′) iff
ξ′(m, η(h)(n′)) where I ′′ is the weak instance graph that is being extended,
ξ′ is the minimal extension relation from S to I ′, ξ̄′ ⊆ NS ×NJ is defined
by ξ̄′(m,n) iff xi′(m,h(n)), ξ̄′′ is the minimal extension of ξ̄′ for IJ′ .
By Lemma 5.4 and Lemma 5.5 it holds that ξ′ is equal to the ξ′ after
the first step except on the new nodes and the basic-value nodes. This
means that ξ̄′ is equal to the ξ̄′ for the same embedding h in step 2 on
the old object and composite-value nodes. By Lemma 5.6 it follows that
ξ̄′ supports J . Since the addition is well-typed it follows that ξ̄′′ is an
extension relation from S to IJ′ and by Lemma 5.7 ξ̄′′ is equal to the ξ̄′′

for the same embedding h in step 2. Because the object and composite-
value nodes that were added then in step 2 were not associated with any
new class nodes since then, it follows that ξ̄′′(m,n′) iff ξ′(m, η(h)(n′)).

• For the is edge 〈n̄1, is, n̄2〉 in J ′ that is going to be satisfied there is no edge
in I ′ that leaves from η(h)(n̄2.
By the constraint A-NEC it follows that in step 2 no edge leaves from
η(h)(n̄2) when it is created, and in all following extensions in step 2 new
edges are only added to nodes already in I or nodes that are created in that
extension. After that in step 3 the only time when an edge is added to a
node that already existed at the beginning of that step is when the is edge
〈n̄1, is, n̄2〉 is satisfied and η(h)(n̄2) is that node. So in all the previous
steps no edge was added to η(h)(n̄2).

Reducing the weak instance graph It follows directly from Lemma 3.7 that if
the result of the previous step belongs to S then its reduction belongs to S.

�

Although the proof shows that well-typedness is a sufficient condition, it is unfor-
tunately not a necessary condition. This is, for example, illustrated by the addition
in Figure 5.5. This addition is not well-typed because the added a edge requires the
A node to always also be a B node, which does not hold for every extension relation
that supports the base pattern. However, this addition will always add a B class name
to every A node, so the resulting instance graph will always satisfy this requirement
and, therefore, belong to schema graph (b).

5.4 Decidability of Well-Typedness

In this section we discuss the decidability of the notion of well-typedness that was
defined in Section 5.2. We first discuss it for GDM[com,n-obj] and then for GDM[n-obj].
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Figure 5.5: An addition that is not well-typed but keeps every instance graph within
the schema graph

5.4.1 GDM[com,n-obj]

When we try to straightforwardly convert the characterization in Definition 5.4 to a
finite algorithm, there is the problem that constraints TA-CPW, TA-NPW, TA-
CPW and TA-NPI quantify over the possibly infinite set of potential weak value
paths in S for a node n ∈ NJ under the extension relation ξ. However these paths
can be described by using non-deterministic finite automata (NFAs) that describe all
all weak value paths for a node n in J under ξ that end in a nodes with a specific
sort s:

Definition 5.5 Given a basic schema graph S and the sets M1,M2 ⊆ NS then the
weak value path NFA WVP[S,M1,M2] is constructed as follows:

1. We start with the automaton A: The set of states consists of a special dis-
tinct state m0 and all nodes { m′ ∈ NS | m ∈M1 ∧ 〈m,α,m′〉 ∈ ES }, the be-
gin state m0, the transitions are { 〈m0, ε,m

′〉 | m ∈M1 ∧ 〈m, isa,m′〉 ∈ ES }
and { 〈m0, α,m

′〉 | m ∈M1 ∧ 〈m,α,m′〉 ∈ ES ∧ α ∈ A}.

2. We extend A as follows until no more new states or transitions are added:

• For every state m′ in A that is a composite-value node in S and for which
there is an edge 〈m′, isa,m′′〉 in S add the state m′′ and a transition
〈m′, ε,m′′〉.
• For every state m′ in A that is a composite-value node in S and for which

there is an attribute edge 〈m′, α,m′′〉 in S add the state m′′ and a transition
〈m′, α,m′′〉.

3. The end states are all states of A that are in M2.

We will simply write WVP[S,M1, com] if M2 is the set of composite-value nodes in
S, WVP[S,M1,¬com] if the end set is all nodes in S that are not composite value
nodes, and WVP[S,M1, c] with c a class name if M2 is all nodes that are subclasses
of the class node named c. Some examples are given in Figure 5.6. Here (b) is
WVP[S, {m1}, int] for the schema graph S in (a), and (c) is WVP[S, {m2}, com] and
(d) is WVP[S, {m1,m3}, com].
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The language that is accepted by a NFA WVP[S,M1,M2] is written as LS,M1,M2

or simply LM1,M2 if it is clear from the context which S is meant. It is easy to see
that LS,M1,M2 contains a list of attribute names iff there is a weak value path with
that attribute-name list in S from a node in M1 to a node in M2. We also introduce a
special automaton NWVP[S,M1] that consists of WVP[S,M1,¬com] concatenated
with an automaton that accepts any non-empty list of attribute names in S. The
language accepted by this automation is denoted as L̄S,M1 or L̄M1 . This automaton
can be used to describe the language of attribute-name lists of all potential weak value
paths from M1 that end in a certain sort s: LM1,s − (L̄M1 ∪ LM1,¬s)

(d)(c)(b)(a)
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Figure 5.6: A schema graph S, the NFA WVP[S, {m1}, int], the NFA
WVP[S, {m2}, com] and the NFA WVP[S, {m1,m2}, com]

We can use these automata to show that in GDM[com,n-obj] well-typedness of an
addition in can be decided in polynomial space.

Theorem 5.9 Given a GDM[com,n-obj] schema graph S and an addition Add(J, J ′,
the question whether Add(J, J ′) is well-typed under S can be decided in polynomial
space in the size of S, J and J ′.

Proof: The algorithm follows the definition of well-typedness and iterates over all
extension relations ξ from S to J that support J , and determines the minimal exten-
sion ξ′ of ξ for J ′. We now have to check for ξ′ the conditions ER-SRT, TA-COV,
TA-NCN, TA-NCO, TA-CPW, TA-NPW, TA-CPI and TA-NPI. For the first
four condition it is easy to see how they can be checked in polynomial time since the
quantify only over elements of S, J , J ′, ξ and ξ′. This leaves the following conditions:

TA-CPW We can decide this by verifying that for every node n in J and sort s in S
that if M = { m | ξ(m,n) } and M ′ = { m | ξ′(m,n) } then for every potential
weak value path from M there has to be a similar path from M ′ and for every
potential weak value path from M there is not a conflicting path from M ′.
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The first can be checked by verifying if LM,s − (L̄M ∪ LM,¬s) ⊆ LM ′,s which is
equivalent with LM,s ⊆ L̄M ) ∪ LM,¬s ∪ LM ′,s. Since M ⊆ M ′ it follows that
LM,s ⊆ LM ′,s, so this will always hold.

The second can be checked by verifying if (LM,s− (L̄M ∪LM,¬s))∩LM ′,¬s ⊆ ∅,
which is equivalent with LM,s ∩ LM ′,¬s ⊆ ((L̄M ∪ LM,¬s)) ∩ LM ′,¬s. This can
be checked in polynomial space by constructing the corresponding NFAs.

TA-NPW We can decide this by verifying that for every node n in J , sort s in S and
class name c in S that if M = { m | ξ(m,n) } and M ′ = { m | ξ′(m,n) } then
(LM,s−(L̄M ∪LM,¬s))∩L′M ′,c ⊆ LM,c. This is equivalent with (LM,s∩L′M ′,c) ⊆
((L̄M ∪ LM,¬s) ∩ L′M ′,c) ∪ LM,c which can be checked in polynomial space by
constructing the corresponding NFAs.

TA-CPI We decide this by verifying for every is edge 〈n1, is, n2〉 in J ′ with n1 in J
and every sort s in S that if M = { m | ξ(m,n1) } and M ′ = { m | ξ′(m,n2) }
then for every potential weak value path from M there has to be a similar
path from M ′ and for every potential weak value path from M there is not a
conflicting path from M ′.

The first can be checked by verifying if LM,s− (L̄M )∪LM,¬s) ⊆ LM ′,s which is
equivalent with LM,s ⊆ L̄M )∪LM,¬s∪LM ′,s. This can be checked in polynomial
space by constructing the corresponding NFAs.

The second can be checked by verifying if (LM,s− (L̄M ∪LM,¬s))∩LM ′,¬s ⊆ ∅,
which is equivalent with LM,s ∩ LM ′,¬s ⊆ ((L̄M ∪ LM,¬s)) ∩ LM ′,¬s. This can
also be checked in polynomial space by constructing the corresponding NFAs.

TA-NPI We can decide this by verifying for every isa edge 〈n1, is, n2〉 in J ′ with
n1 in J that if M = { m | ξ(m,n1) } and M ′ = { m | ξ′(m,n2) } then (LM,s −
(L̄M ∪ LM,¬s)) ∩ L′M ′,c ⊆ LM,c. This is equivalent with (LM,s ∩ L′M ′,c) ⊆
((L̄M ∪ LM,¬s) ∩ L′M ′,c) ∪ LM,c which can be checked in polynomial space by
constructing the corresponding NFAs.

�

The class PSPACE is not considered a very practical class, so this raises the ques-
tion whether deciding well-typedness is PSPACE hard. In the proof of Theorem 5.9
it was already shown that there is a close link between schema graphs and NFAs
that accept lists of attribute names because we can use NFA algorithms to decide
well-typedness. Moreover, as was shown in Definition 4.9 we can define schema graph
fragments that correspond with a certain NFA. This allows us to show the following.

Theorem 5.10 Deciding well-typedness of additions in GDM[com,n-obj] is PSPACE
hard.

Proof: We show this by reducing the problem of deciding whether an NFA A1 ac-
cepts a sublanguage of another NFA A2. If Σ is the set of attribute names that these
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NFAs are over, then we can construct a schema graph as shown in Figure 5.7 (a)
where F1 and F2 are the schema graph fragments that correspond with A1 and A2,
β is an attribute name not in Σ and the loop labeled with α ∈ Σ denotes a set of
loops such that there is a loop for every α in Σ. Furthermore, consider the addition

β

F1

βα ∈ Σ

F2

β

F1

β

ββ

ββ

β

β

F2F1

C D

BA

(b)

B

(a)

C

A

Figure 5.7: Two schema graphs for showing PSPACE hardness of deciding well-
typedness of additions in GDM[com,n-obj]

in Figure 5.8 (a). The only supporting extension relation that needs to be checked is
the one that puts the pattern node only in the class node labeled with A. It is easy to
see that the constraints TA-COV, TA-NCN, TA-NCO are satisfied, and TA-CPI
and TA-NPI hold trivially because there are no is edges. This leaves the constraints
TA-CPW and TA-NPW. Since there is no weak value path from the B node it also
follows that TA-NPW holds. So what remains to be checked is that all potential
weak value paths from the A node remain potential paths if B is added. This is the
case iff the set of attribute name lists of the weak value paths in F1 is a subset of the
set of attribute name lists of the weak value paths in F2. So the addition is well-typed
iff A1 accepts a subset of A2. �

Note that for this proof we also might have used the schema graph in Figure 5.7
(b), in which case the constraint TA-NPW would have been the only constraint that
needed to be checked. The proof also proceeds if class-name additions are not allowed
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Figure 5.8: Two additions showing PSPACE hardness of deciding well-typedness of
additions in GDM[com,n-obj]

but is edge are. In that case the addition in Figure 5.8 can be shown to be well-typed
iff A1 accepts a subset of A2.

The previous proof seems to indicate that the addition of class names, i.e., the
fact that extra class names can be added to object nodes, and the is edges are what
makes well-typedness hard to decide. This is confirmed by the following theorem.

Theorem 5.11 Given a GDM[com,n-obj] schema graph S and an addition Add(J, J ′)
such that λJ′(n) = λJ(n) for all n in J and no is edges in J ′, then the question
whether Add(J, J ′) is well-typed under S can be decided in polynomial time in the size
of S, J and J ′.

Proof: The algorithm has to decide if for every supporting extension relation ξ for J
it their minimal extension ξ′ for IJ′ satisfies ER-SRT, TA-COV, TA-NCN, TA-
NCO, TA-CPW and TA-CPW. (The rules TA-CPI and TA-NPI hold trivially
because there are no is edges.) The algorithm now consists of the following steps:

1. In this step we check if J is a well-typed pattern. If this is not the case then
there is no supporting extension relation for J , so the addition will be trivially
well-typed and we return true. In the following steps we may now assume
that at least one supporting extension relation for J exists. As is shown in
Theorem 4.10 this can be done in polynomial time of S and J .

2. In this step we check if ER-SRT holds for the minimal extension of every
supporting extension relation of J . This can be decided as follows:

(a) Determine the largest set Ξ ⊆ NS ×NJ that satisfies ER-ATT, ER-ISA
and ER-SRT for J and is minimal on the composite-value nodes.

(b) Determine the largest set Ξ′ ⊆ NS×NJ′ that satisfies ER-ATT, ER-ISA
and ER-SRT for J ′ and is minimal on the composite-value nodes. If Ξ′

does not satisfy ER-CLN then return false.

(c) If Ξ 6⊆ Ξ′ then return false.
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If in step 2b Ξ′ does not satisfy ER-CLN then this will also hold for any subset
of Ξ′, so there will be no extension relation from S to J ′, and, therefore, no
minimal extension of any supporting extension relation will satisfy ER-SRT,
and since we may assume that there is at least one supporting extension relation
it follows that the addition is not well-typed. After this step we may assume
that Ξ′ satisfies ER-SRT.

In step 2c, if Ξ ⊆ Ξ′ then because every supporting extension relation ξ of J is a
subset of Ξ and Ξ′ is an extension relation it follows that the minimal extension
ξ′ of ξ for IJ′ will be a subset of Ξ′. Since ER-SRT holds for Ξ′ it also holds
for ξ′. If it does not hold that Ξ ⊆ Ξ′ then the minimal extension of Ξ for IJ′
will not be a subset of Ξ′ and, therefore, not satisfy ER-SRT.

The steps 2a and 2b can be computed in polynomial time by removing pairs
from the extension relation when they violate one of the rules, until no more
pairs violate the rules. The step 2c can also be computed in polynomial time.

3. In this step we check if TA-COV holds for the minimal extension of every
supporting extension relation of J . This is done separately for COV-E, COV-
C and COV-N:

(a) COV-E: Since every extension relation that supports J covers the edges
in J , we only have to check if the extra edges in J ′ are covered. For every
new edge 〈n1, α, n2〉 in IJ′ do the following:

i. Let Ξ be NS × NJ′ minus all the pairs 〈m,n〉 for which there is an
edge 〈m,α,m′〉 in S, i.e., an edge that might cover 〈n1, α, n2〉.

ii. Determine the largest set Ξ′ ⊆ Ξ that satisfies ER-ATT, ER-ISA
and ER-SRT for J ′ and is minimal on the composite-value nodes.

iii. If Ξ′ satisfies ER-CLN for J ′ and covers J then return false.

If step 3(a)iii returns false, then it is easy to see that Ξ′ limited to the nodes
of J is a supporting extension relation of J and the minimal extension for
IJ′ of this supporting extension relation will be a subset of Ξ′ and therefore
the edge 〈n1, α, n2〉 will not be covered.
If we assume that there is an extension relation ξ that supports J and its
minimal extension ξ′ for IJ′ does not cover 〈n1, α, n2〉 then we know by
step 2 that ξ′ satisfies ER-SRT and, therefore is a subset of Ξ′. Since
ξ′ satisfies ER-CLN for J ′ by definition it follows that Ξ′ also satisfies
ER-CLN for J ′. It also follows that ξ′ covers J because it is a superset
of ξ, and since Ξ′ is a superset of ξ′, Ξ′ also covers J .
It is easy to see that all three substeps can be computed in polynomial time,
and since there are only a polynomial number of edges in J ′ it follows that
the whole step for COV-E can be computed in polynomial time.

(b) COV-C: For every class name c in J ′ we have to check if there is a cor-
responding class in S. Since the class names in J ′ are equal to those in
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J ′ this will always hold. It follows that every minimal extension will cover
this class name.

(c) COV-N: Since every extension relation that supports J will cover all the
nodes in J , this only has to be checked for the extra nodes in J ′. For these
nodes it holds that they have either an incoming edge or are labeled with
a class name. In the first case the covering follows from the covering of the
incoming edge, and in the second case it follows from the covering of the
class name.

Since all the three checks above can be done in polynomial time, it follows that
the whole check for TA-COV can be done in polynomial time.

4. In this step we check if TA-NCO holds for the minimal extension of every
supporting extension relation of J . We do this by doing for every class node m
labeled with c in S and node n in J that is not labeled with c in J ′:

(a) Determine the maximal set Ξ′ ⊆ NS × NJ′ − {〈m,n〉} that satisfies ER-
ATT, ER-ISA and ER-SRT for J ′ and is minimal on the composite-value
nodes.

(b) Determine the maximal set Ξ ⊆ NS × NJ − {〈m,n〉} that satisfies ER-
ATT, ER-ISA and ER-SRT for J and is minimal on the composite-value
nodes.

(c) If Ξ satisfies ER-CLN, covers J and Ξ 6⊆ Ξ′ then return false.

If step 4c returns false, then Ξ is a supporting extension relation for J that
does not contain 〈m,n〉. Then it also holds that Ξ is not a subset of Ξ′. From
this it follows that the minimal extension of Ξ for IJ′ contains 〈m,n〉. This is
because if it did not then it would have to be a subset of Ξ′ and, therefore, Ξ
would be a subset of Ξ′.

Assume that there is an extension relation ξ that supports J and does not
contain 〈m,n〉 and the minimal extension ξ′ of ξ to IJ′ does contain 〈m,n〉. It
follows that Ξ is a superset of ξ, and therefore Ξ will satisfy ER-CLN and cover
J . It then follows that Ξ is not a subset of Ξ′ because if it was then ξ would
be a subset of Ξ′ and and ξ′ would be a subset of the minimal extension of Ξ′

for J ′. But the Since the minimal extension of Ξ′ is equal to Ξ′, it would follow
that ξ′ is a subset of Ξ′, but that contradicts the assumption that ξ′ contains
〈m,n〉 which is not in Ξ′. So, it follows that in step 4c we do not return false.

All three substeps can be done in polynomial time, and they are repeated for
every named class node and node in the base pattern, so the whole step can be
done in polynomial time.

5. In this step we check if TA-NCN holds for the minimal extension of every
supporting extension relation of J . We do this by doing for every class node m
labeled with c in S and node n in J ′, but not in J , that is not labeled with c in
J ′:
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(a) Determine the maximal set Ξ ⊆ NS×NJ that satisfies ER-ATT, ER-ISA
and ER-SRT for J and is minimal on the composite-value nodes.

(b) Let Ξ′ be the minimal extension of Ξ to J ′. If Ξ′ contains 〈m,n〉 then
return false.

If step 5b returns false, then there is an extension relation ξ that supports J
and the minimal extension of ξ′ for J ′ contains 〈m,n〉. Note that we know that
ξ satisfies ER-CLN because J is well-typed.

Assume that there is an extension relation ξ that supports J and the mini-
mal extension ξ′ of ξ for J ′ contains 〈m,n〉. Since Ξ is the maximal relation
that satisfies ER-ATT, ER-ISA and ER-SRT for J and is minimal on the
composite-value nodes, it follows that ξ is a subset of Ξ and, therefore, that ξ′ is
a subset of Ξ′. It follows that Ξ′ contains 〈m,n〉 and step 5b will return false.

All two substeps can be done in polynomial time, and they are repeated for
every named class node and node in the extension pattern, so the whole step
can be done in polynomial time.

6. In this step we check if TA-CPW holds for the minimal extension ξ′ of every
supporting extension relation ξ of J . Since we already may assume that TA-
NCO holds and it holds for every node n in J that λJ(n) = λJ′(n), it follows
that if λS(m) is defined and ξ′(m,n) then ξ(m,n). It then follows by Lemma 5.3
that ξ′ is equal to ξ on the object nodes and the composite-value nodes. Since
weak-value paths can only leave from these nodes it follows that TA-CPW
always holds.

7. In this step we check if TA-NPW holds for the minimal extension ξ′ of every
supporting extension relation ξ of J . As was already shown in the previous step
it holds that ξ′ is equal to ξ on the object nodes and the composite-value nodes,
and, therefore, TA-NPW will always hold.

This concludes all the steps of the algorithm. It was shown that all the steps check a
certain constraint that should hold if the addition is to be well-typed while presum-
ing that all the preceding steps did not fail. If none of the checks fail then all the
constraints hold and the addition is well-typed.

It was also shown the every step can be computed in polynomial time of the size
of the addition and the schema graph, and therefore the whole algorithm can decide
well-typedness in polynomial time of the size of the addition and the schema graph. �

5.4.2 GDM[n-obj]

In GDM[n-obj] there are no composite-value nodes, which simplifies the task of type
checking for patterns and additions. For patterns, for example, there can then be no
value paths, so it holds that an extension relation from S to J supports J iff it covers
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J . Another consequence is that for the well-typedness of the addition the constraints
TA-CPI and TA-NPI are trivially satisfied because there are no is edges, and all
weak value paths will consist of just one edge. Although this simplifies the definition
of well-typedness of an addition, the simplified definition still quantifies over all the
supporting extension relations of the base pattern, so a straightforward translation
to an algorithm will still be at least exponential in time.

This problem cannot be simply solved by only looking at the maximal or the
minimal supporting extension relations. This is illustrated by Figure 5.9.
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Figure 5.9: An addition with no class-name addition, a schema graph and an instance
graph

Here we see an addition with no class-name addition (a). If we look at the maxi-
mal and the minimal extension relation between the schema graph (b) and the base
pattern, we can see that it satisfies all the requirements as stated in the definition of
well-typedness. However, if the addition is applied to the instance graph (c) it will
result in an instance graph that does not belong to the schema graph.

However, as the following theorem shows, the well-typedness of an addition can
in GDM[n-obj] be decided in polynomial time.

Theorem 5.12 The well-typedness of an addition Add(J, J ′) under a GDM[n-obj]
schema graph S can be decided in polynomial time in the size of J , J ′ and S.

Proof: The algorithm has to decide if for every supporting extension relation ξ for J
it their minimal extension ξ′ for IJ′ satisfies ER-SRT, TA-COV, TA-NCN, TA-
NCO, TA-CPW and TA-CPW. (The rules TA-CPI and TA-NPI hold trivially
because there are no is edges.) As in the proof of Theorem 5.11 this is done separately
for every constraint:

1. As in the proof of Theorem 5.11 we first check if J is well-typed, and in exactly
the same way.
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2. In the followings 4 steps we check ER-SRT, TA-COV, TA-NCN, TA-NCO
as in the proof of Theorem 5.11 with two exceptions:

• Since there are not composite-value node the constraint that relations have
to be minimal on the composite-value nodes are trivially satisfied.

• To check COV-C we have to verify for every class name c in J ′ if there is
a corresponding class in S. If this is not the case then we return false.
It is easy to see that if there is not corresponding class then the class name
will not be covered by any minimal extension, and if it exists then the class
name will be covered by any minimal extension. It is also easy to see that
this can be checked in polynomial time in the number of nodes in J ′ and
S.

3. In this step we check if TA-CPW holds for the minimal extension of every
supporting extension relation of J . We do this by doing for every node n in
J , class node m1 labeled with c such that c ∈ λJ′(n) − λJ(n), attribute edge
〈m1, α,m2〉 in S, and sort s in S such that s 6= σS(m2):

(a) Let M be the set of class nodes in S from which there is an edge with label
α that not ends in a node sort s.

(b) Determine the maximal set Ξ ⊆ (NS × NJ) − (M × {n}) that satisfies
ER-ATT, ER-ISA and ER-SRT for J .

(c) If Ξ satisfies ER-CLN, covers J and there is a weak value path of the
form [〈m′1, α,m′2〉] in S for n under Ξ then return false.

Assume that step 3c returns false. Then Ξ is an extension relation that supports
J . Since 〈m′1, n〉 ∈ Ξ with an edge 〈m′1, α,m′2〉 in S with σS(m′2) = s and all
edges in S that conflict with 〈m′1, α,m′2〉 start from a node in M , it follows that
[〈m′1, α,m′2〉] is a potential path for n under Ξ. Since c ∈ λJ′(n) − λJ(n) and
m1 is labeled with c it follows that if Ξ′ is the minimal extension of Ξ for J ′

then 〈m1, n〉 ∈ Ξ′. Because 〈m1, α,m2〉 ends not in a node with sort s it follows
that under Ξ′ the path [〈m′1, α,m′2〉] is no longer a potential path.

Assume that there is an extension relation ξ that supports J , that ξ′ is the
minimal extension of ξ for J ′, and a potential path [〈m′1, α,m′2〉] for a node n
under ξ such that it is not a potential path for n under ξ′. It follows that there
is a weak value path [〈m1, α,m2〉] for n under ξ′ such that σS(m2) 6= σS(m′2).
It follows that 〈m1, n〉 6∈ ξ and since we may assume by the previous steps that
TA-NCO holds and the fact that all object class nodes are named it follows
that λS(m1) ∈ λJ′(n) − λJ(n). Because [〈m′1, α,m′2〉] is a potential path for n
under ξ it follows that if M is the set of class nodes with an α edge that ends
in another sort than that of m′2 then ξ is a subset of (NS ×NJ)− (M × {n}).
It follows that ξ is a subset of Ξ and, therefore, that Ξ satisfies ER-CLN for J
and covers J .
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All three substeps can be computed in polynomial time, and they are repeated
for all nodes in J , nodes in S, edges in S and sorts in S, so the whole step can
be done in polynomial time

4. In this step we check if TA-NPW holds for the minimal extension of every
supporting extension relation of J . We do this by doing for every node n in
J , class node m1 labeled with c such that c ∈ λJ′(n) − λJ(n), attribute edge
〈m1, α,m2〉 in S, labeled class node m3 such that m2 isa

∗
S m3 and sort s in S:

(a) Let M1 be the set of class nodes in S from which there is an edge with
label α that not ends in a node sort s. Let M2 be the set of class nodes
in S from which there is an edge with label α that ends in subclass of m3.
Let M = M1 ∪M2.

(b) Determine the maximal set Ξ ⊆ (NS × NJ) − (M × {n}) that satisfies
ER-ATT, ER-ISA and ER-SRT for J .

(c) If Ξ satisfies ER-CLN, covers J and there is a weak value path of the
form [〈m′1, α,m′2〉] in S for n under Ξ then return false.

Assume that step 4c returns false. Then Ξ is an extension relation that supports
J . Since 〈m′1, n〉 ∈ Ξ with an edge 〈m′1, α,m′2〉 in S with σS(m′2) = s and since
all edges in S that conflict with 〈m′1, α,m′2〉 start from a node in M , it follows
that [〈m′1, α,m′2〉] is a potential path for n under Ξ. Since all edges in S that
end in a subclass of m3 also begin in M it also follows that there is not a similar
path for n under ξ that ends in m3. Since c ∈ λJ′(n)−λJ(n) and m1 is labeled
with c it follows that if Ξ′ is the minimal extension of Ξ for J ′ then 〈m1, n〉 ∈ Ξ′.
Thus, there is a potential weak value path [〈m′1, α,m′2〉] in S for n under Ξ and a
similar path [〈m1, α,m2〉, 〈m2, isa∗,m3〉] in S for n under Ξ′ that ends a named
class node m′3, but there is not a similar path for n under Ξ that ends in m′3.

Assume that there is an extension relation ξ that supports J , that ξ′ is the
minimal extension of ξ for J ′, that there is a potential path [〈m′1, α,m′2〉] for a
node n under ξ, that there is a similar path [〈m1, α,m2〉] for n under ξ′ such
that m2 is a subclass of a named class node m3, but that there is not a similar
path for n under ξ that ends in a subclass of m3. It follows that 〈m1, n〉 6∈ ξ
and because we may assume that TA-NCO and the fact that all object class
nodes are named it follows that λS(m1) ∈ λJ′(n)−λJ(n). Since [〈m′1, α,m′2〉] is
a potential path for n under ξ it holds that there is no similar potential path for
n under ξ that ends in a node with another sort than that of m′2. Since there is
also not a similar path for n under ξ that ends in a subclass of m3 it holds that
ξ is a subset of Ξ. Since ξ supports J it follows that Ξ satisfies ER-CLN and
covers J .

All three substeps can be computed in polynomial time, and they are repeated
for all nodes in J , nodes in S, edges in S and sorts in S, so the whole step can
be done in polynomial time
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This concludes all the steps of the algorithm. It was shown that all the steps check a
certain constraint that should hold if the addition is to be well-typed while presum-
ing that all the preceding steps did not fail. If none of the checks fail then all the
constraints hold and the addition is well-typed.

It was also shown the every step can be computed in polynomial time of the size
of the addition and the schema graph, and therefore the whole algorithm can decide
well-typedness in polynomial time of the size of the addition and the schema graph. �

5.5 Discussion

For additions under GDM[com,n-obj] we have defined a notion of well-typedness that
ensures for a certain schema graph that if the addition is applied to an instance of
that schema graph then the result also belongs to that schema graph. However, we
have also shown that well-typedness is not a necessary condition, i.e., an addition
may have the property of staying within a schema graph yet not be well-typed.

The problem of deciding well-typedness was shown to be PSPACE complete. De-
ciding well-typedness for additions with no class-name additions and no is edges was
shown to be in PTIME. Deciding the same notion for GDM[n-obj] was shown also to
be in PTIME.

In order to prove the PSPACE hardness of deciding well-typedness we used the
fact that is edges between composite-value class nodes are allowed, and that cycles
that only contain composite-value class nodes are allowed, to simulate NFAs. We
conjecture that if cycles of composite-value nodes are not allowed then the algorithm
for GDM[n-obj] can be generalized to a polynomial algorithm for GDM[com,n-obj].
This is because if such cycles are not allowed then there are only a polynomial number
of weak value paths in a certain schema graph. It follows that where the algorithm
for GDM[n-obj] iterates over potential weak value paths (in that case always one
edge) this can be replaced with an iteration over all weak value paths, and still the
algorithm will remain a polynomial. What happens if we no longer allow is edges
between composite-value nodes is left as a matter of further research.
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Chapter 6

Typing GUL Deletions

6.1 Introduction

In this chapter we discuss the typing of deletions. This means that we present condi-
tions for deletions that are sufficient, i.e., guarantee that for a certain schema graph
the result of the deletion belongs to this schema graph if the original instance also
belonged to this schema graph.

In Section 6.2 we discuss why and how well-typedness for the deletion under
GDM[com,n-obj] is defined. In Section 6.3 we show that the definition of well-typedness
is correct, i.e., every well-typed deletion stays within the schema. In Section 6.4 we dis-
cuss the decidability of well-typedness for several subsets of GDMcom,n-obj. Finally,
in Section 6.5 we give an overview of the obtained results for typing GUL deletions.

6.2 Definition of Well-Typedness

In this section we define a notion of well-typedness for deletions in GDM[com,n-obj],
i.e., all object class nodes in schema graphs are assumed to be labeled with a class
name.

As in the previous chapter we will first look at what can go wrong, i.e., what may
cause an instance graph to no longer belong to a schema graph after a deletion has
been applied.

The first observation we can make is that if a deletion only removes nodes and
edges and no class names, then the result will always belong to the same schema
graph as the original instance. We do not even have to check if the base pattern of
the deletion is well-typed or not. This can be easily understood if we realize that the
base pattern will not embed if it is not well-typed and, therefore, the instance will not
be changed by the deletion. If, on the other hand, the base pattern is well-typed then
it will not change the class names of the nodes. Since object nodes are always labeled
with exactly all the names of the class nodes they belong to, it follows that after the
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deletion the remaining object nodes will still belong to exactly the same class nodes
as before. The some holds for the composite-value nodes, as is shown by the following
lemma.

Lemma 6.1 Let J and J ′ be two weak instance graphs such that J is a sub-instance
graph of J ’ such that for all nodes n in J it holds that λJ(n) = λJ′(n) and ξ′ is
class-name correct for J ′, then it holds for the minimal extension relation ξ from a
GDM[com,n-obj] schema graph S to J and the minimal extension relation from ξ′ from
S to J ′ that if n is an object node or a composite-value node then ξ(m,n) iff ξ′(m,n),
and if n is a basic-value node then if ξ(m,n) then ξ′(m,n).

Proof: The minimal extension relation can be computed by starting with the minimal
relation that satisfies ER-CLN and then computing the minimal fixpoint for the rules
ER-ATT and ER-ISA. It is easy to show with induction upon the number of steps
that the theorem holds after every step:

ER-ATT Let 〈n1, α, n2〉 be an attribute edge in J ′ and 〈m1, α,m2〉 and edge in S.

• If n2 is a composite-value node then this is the only incoming edge so it
must also be present in J . Thus, if the pair 〈m,n2〉 is added by this rule
to ξ′ then it is also added to ξ and vice versa.

• If n2 is an object node and the rule adds the pair 〈m2, n2〉 to ξ′ then,
since ξ′ is class-name correct and all object class nodes are labeled in
GDM[com,n-obj], it follows that λS(m2) ∈ λJ′(n2), and therefore also that
λS(m2) ∈ λJ(n2). So ξ will already contain this pair. If the rule adds
the pair 〈m2, n2〉 to ξ because ξ(m1, n1), then it follows by the induction
assumption and the fact that n1 must be an object node or a composite-
value node, that ξ′(m1, n1), and so the rule will also add the pair 〈m2, n2〉
to ξ′.

• If n2 is a basic-value node and the rule adds the pair 〈m2, n2〉 to ξ because
ξ(m1, n1), then because n1 must be a composite-value node or an object
node it follows that ξ′(m1, n), so so the rule will also add the pair 〈m2, n2〉
to ξ′.

ER-ISA Let 〈m1, isa,m2〉 be an edge in S. If n is an object node or a composite-
value node then the rule adds the pair 〈m2, n〉 to ξ then it also adds it to ξ′

and vice versa. If n is a basic-value node and if the pair 〈m2, n〉 is added by
this rule to ξ because ξ(m1, n), then it follows by the induction assumption that
ξ′(m1, n) and, therefore, the rule will also add the pair 〈m2, n〉 to ξ′.

Since the theorem holds after every step it will also hold for the fixpoint, and therefore
for the minimal extension relations from S to J and from S to J ′. �

From this it follows that the minimal extension relation for the sub-instance graph
will be class-name correct and cover the weak instance graph. This leads to the
following theorem.
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Theorem 6.2 For a schema graph S in GDM[com,n-obj] and a deletion Del(J, J ′)
such that for every node n in J ′ it holds that λJ(n) = λJ′(n) it holds for every instance
[I] that belongs to S that [[Del(J, J ′)]]([I]) also belongs to S.

Proof: We construct the resulting instance graph I ′ as in the proof of Theorem 3.9.
Since I is an instance graph that belongs to S there is a minimal extension relation
from S to I that covers I and is class-name correct. We define a relation ξ′ ⊆ NS×NI′
as the minimal set ξ′ ⊆ NS ×NJ′ that satisfies ER-ATT, ER-ISA and ER-CLN.

By Lemma 6.1 it follows that if ξ′(m,n) then ξ(m,n). So, since ξ satisfied ER-
SRT it follows that ξ′ also satisfies it, and therefore is an extension relation.

By the same lemma it also holds that if ξ′(m,n) then ξ(m,n). So if ξ′(m,n)
and λS(m) is defined then it follows that ξ(m,n) and since ξ is class-name correct it
follows that λS(m) ∈ λJ(n). Because λJ(n) = λJ′(n) it follows that λS(m) ∈ λJ′(n).
So, if ξ(m,n) and λS(m) is defined then λS(m) ∈ λJ′(n), which means that ξ′ is
class-name correct.

It now remains to be shown that ξ′ covers I ′:

CV-N Since ξ′ is equal to ξ on the object nodes and the composite-value nodes in
I ′, it follows that all the object nodes and composite-value nodes are covered.
Assume that n is a basic-value node in I ′. Since I ′ is a weak instance graph
it holds that n is labeled with a class name or has an incoming edge. If n is
labeled with a class name then it will also be labeled with that class name in I,
so since ξ covers I it follows that there is a class node with that class name in
S. It follows that ξ′ will associate n with that class node.

CV-E Let 〈n1, α, n2〉 be an edge in I ′. Since ξ covers I, there will be an edge
〈m1, α,m2〉 in S and ξ(m1, n1) and ξ(m2, n2). By Lemma 6.1 that ξ′(m1, n1).
Because ξ′ satisfies ER-ATT it follows that ξ′(m2, n2), and therefore the edge
〈n1, α, n2〉 is covered by ξ′.

CV-C Let n be a node in I ′ labeled with class name c. It follows that n is also
labeled with c in I ′. Since ξ covers I it holds that there is a class node m in S
labeled with C. Since ξ′ satisfies ER-CLN it follows that ξ′(m,n).

Summarizing, it holds that ξ′ is a minimal extension relation from S to I ′ that covers
I ′ and is class-name correct. It therefore follows that I ′ belongs to S. It then follows
by Lemma 3.7 that İ ′ also belongs to S, and, therefore, also [İ ′] belongs to S. �

If class names are deleted, however, there are three types of problems that may
occur. These are illustrated by Figure 6.1.

Here we see a deletion (a) and a schema graph (b) and three instance graphs (c),
(d) and (e) that belong to the schema graph. If the deletion is applied to instance
graph (c) then the result will not belong to the schema graph. The reason is that
the object node will still be labeled with class name C and should therefore also be
labeled with C. To prevent this type of problem we have to check that if the name
of a class is removed from a node then this node is not labeled with the name of a
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Figure 6.1: A deletion, a schema graph and two instance graphs that demonstrate
potential class name deletion problems

subclass. We will check this by looking at all the deletion pairs for every node in
the pattern. A deletion pair consist of two sets of nodes of the schema graph. The
first set is the set of class nodes that the instance graph node that the pattern node
embeds upon, may belong to. The second set contains the class nodes whose class
names are removed by the deletion. To prevent the problem explained above we need
to check the following requirement:

The named superclass rule (TD-NSC)
For every deletion pair 〈M1,M2〉 it holds that for every class node in M2 there
is not a subclass in M1 −M2.

If the deletion (a) is applied to to instance graph (d) then the result also here will
not belong to the schema graph. The reason is that the c edge forces the node at its
end into the B class. To prevent this we have to check if it is possible that the node
is forced back into the deleted classes. To check this we have to consider weak value
paths in the schema graph that start from a named class node. These paths, however,
have to be without conflicts in order to be usable for this. This leads to the following
requirement:

The enforceable class rule (TD-EC)
For every deletion pair 〈M1,M2〉 there is not a potential weak value path in S
from a named class node such the end node of that path is in M2 and all similar
weak value paths in S that start from the same node end in a node in M1.

The instance graph (e) also results after the deletion in an instance graph that
does not belong to the schema graph. The reason is that the b edge is not covered by
the minimal extension relation. To prevent this type of problem we have to check if
all edges that may leave from a node in the instance graph are still covered after the
class name deletion. This is prevented by the following requirement:
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The covering rule for potential edges (TD-CPE)
For every deletion pair 〈M1,M2〉 and every potential weak value path from M1

there is a similar path from a node in M1 −M2.

A question that still remains to be answered is how exactly all the deletion pairs
are determined given a GDM[com,n-obj] schema graph S and a pattern J . A first
approximation is given by the following definition.

Definition 6.1 Given a deletion Del(J, J ′) and a GDM[com,n-obj] schema graph S,
the set of basic deletion pairs is the set of pairs 〈M1,M2〉 ∈ P(NS)×P(NS) such that
there is an extension relation ξ̄ from S to IJ that supports J and a node n ∈ J such
that M1 =

{
m ∈ NS | ξ̄(m,n)

}
and M2 = { m ∈ NS | λS(m) ∈ λJ(n)− λJ′(n) }.

A basic deletion pair 〈M1,M2〉 is said to be a maximal basic deletion pair if it is
generated by a maximal extension relation.

The problem with this definition is that it does not take into account that embed-
dings may not be injective. Take, for example, the deletion in Figure 6.2.
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Figure 6.2: A deletion and a schema graph under which it should not be allowed

As can be seen all three requirements hold for the basic deletion pairs. However,
since an embedding may be non-injective the instance graph in (c) will be only left
with the class name C and, therefore, not belong to schema graph (c). To solve this
problem we introduce the following definition.

Definition 6.2 Given a deletion Del(J, J ′) and a GDM[com,n-obj] schema graph, the
set of deletion pairs is the smallest set of pairs 〈M1,M2〉 ∈ P(NS)×P(NS) that is a
superset of the set of basic deletion pairs and satisfies the following rule:

• if 〈M1,M2〉 and 〈M1, N3〉 are deletion pairs then 〈M1,M2∪N3〉 is also a deletion
pair.

A deletion pair 〈M1,M2〉 is said to be a maximally combined deletion pair if there is
no other deletion pair 〈M1, N3〉 such that M2 ⊂ N3.
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Note that pairs from different supporting extension relations are combined. This
is because different embeddings of the same base pattern may overlap for a certain
instance graph node n, so if one causes the basic deletion pair 〈M1,M2〉 and the other
〈M1, N3〉 then the combined deletion pair 〈M1,M2 ∪N3〉 should also be checked.

All these considerations lead to the following definition of well-typedness.

Definition 6.3 In GDM[com,n-obj] a deletion Del(J, J ′) is said to be well-typed un-
der a schema graph S if for every deletion pair 〈M1,M2〉 with no composite-value
class nodes in M1 it holds that

1. there are not two class nodes m1 and m2 in S such that m1 ∈M1−M2, m2 ∈M2

and m1 isa∗S m2, (TD-NSC)

2. there is not a potential weak value path p in S from {m1} where m1 is a named
class node m1 and the end node m2 of p such that m2 ∈M2 and for all similar
weak value paths in S from m1 to m′2 it holds that m′2 ∈M1, and (TD-EC)

3. for every potential weak value path in S from M1 there is similar weak value
path in S from M1 −M2. (TD-CPE)

It is easy to see that the constraints TD-NSC and TD-EC only need to be checked
for maximal basic deletion pairs and TD-CPE only for maximally combined deletion
pairs.

6.3 Correctness of Well-Typedness

In this section the correctness of the definition of well-typedness is discussed. It is
first shown that well-typedness is a sufficient condition and then it is shown that it
is not a necessary condition.

Theorem 6.3 If in GDM[com,n-obj] the deletion Del(J, J ′) is well-typed under the
schema graph S then for every instance [I] that belongs to S it holds that the result
of [[Del(J, J ′)]]([I]) also belongs to S.

Proof: We first construct the weak instance graph I ′ as in the proof of Theorem 3.9.
Since I is an instance graph that belongs to S we may assume that there is a minimal
extension relation from S to I that covers I and is class-name correct. We define a
relation ξ′ ⊆ NS ×NI′ such that ξ′(m,n) iff

• for some node m′ in S it holds that m′ isa∗S m, λS(m′) is defined and λS(m′) ∈
λI′(n), or

• there is a path p in I ′ from node n′ to n and a similar path p′ in S from m′ to
m such that λS(m′) is defined and λS(m′) ∈ λI′(n′).
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By Lemma 2.4 it holds that if ξ′ is an extension relation it is a minimal extension
relation. It also follows that since I ′ is a sub-instance-graph of I that ξ′ is a subset
of ξ. We now proceed with showing that

• ξ′ is an extension relation,

• ξ′ covers I ′, and

• ξ′ is class-name correct.

The proof that ξ′ is an extension relation is identical to that in the proof of Theo-
rem 6.2.

The next step is to show that ξ′ covers I ′:

CV-N for every node n ∈ NI′ then ξ′(m,n) for some m ∈ NS
It holds that in I ′ the node n is either labeled with more than one class names
or not.

• Assume that n is labeled in I ′ with more than one class name. Because I ′

is a sub-instance-graph of I it follows that n is also labeled with this class
name in I. Since ξ is an extension relation from S to I that is class-name
correct it follows that there is a node m in S that is labeled with that class
name. By the definition of ξ′ it then follows ξ′(m,n).
• Assume that n is not labeled with any class name in I ′. Since I ′ is a

weak instance graph there will be a path in I ′ from a named node to n. If
〈n′, α, n〉 is the last edge of that path, then it follows (as will be shown in
the next point) that there is an edge 〈m1, α,m2〉 in S such that ξ′(m1, n

′)
and ξ′(m2, n).

CV-E for every edge 〈n1, α, n2〉 in EI′ there is some edge 〈m1, α,m2〉 in ES such
that ξ′(m1, n1) and ξ′(m2, n2)
Assume that there is an edge 〈n1, α, n2〉 in EI′ . Because I ′ is a sub-instance-
graph of I it follows that the same edge is also in I. Because in weak instance
graphs edges leave only from composite-value nodes and object nodes it holds
that n1 is either a composite-value node or an object node.

• Assume that n1 is a composite-value node. Since I ′ is a weak instance
graph at least one of the following assumptions must hold:

1. Assume that the node n1 is labeled with a class name c in I ′. Since I ′

is a sub-instance-graph of I it follows that λI(n1) = {c} and n1 has no
incoming edges in I. Since ξ is a minimal extension relation it follows
by Lemma 2.4 that ξ(m,n1) iff m′ isa∗S m where m′ is the unique class
node in S such that λS(m′) = c. By the definition of ξ′ it then follows
that if ξ(m,n1) then ξ′(m,n1). Because ξ covers 〈n1, α, n2〉 it holds
that there is an edge 〈m1, α,m2〉 in S such that ξ(m1, n1). As we
just saw it then follows that ξ′(m1, n1), and because ξ′ is an extension
relation, also that ξ′(m1, n2).
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2. Assume that there is a weak value path p in I ′ from a composite-value
node that is labeled with a class name c, to a node n1. Since I ′ is
a sub-instance-graph of I it follows for the begin node n of p that
λI(n) = {c} and n has no incoming edges in I. Since ξ is a minimal
extension relation it follows by Lemma 2.4 that ξ(m,n) iff m′ isa∗S m
where m′ is the unique class node in S such that λS(m′) = c. By the
definition of ξ′ it then follows that if ξ(m,n) then ξ′(m,n). Because ξ
covers I and, therefore, also the weak value path p • [〈n1, α, n2〉] from
n to n2 it follows by Lemma 4.7 that there is a similar path p′ in S
from m1 to m2 such that ξ(m1, n). As we just saw this implies that
ξ′(m1, n). Let 〈m′1, α,m′2〉 be the last attribute edge in p′. Because ξ′

is an extension relation it then follows that ξ′(m′1, n1) and ξ′(m′2, n2).
3. Assume that there is a weak value path p in I ′ that starts in an object

node n and ends in n1. Since I ′ is a sub-instance-graph it follows that
the same path is also in I. Since ξ covers I and, therefore, also the path
p•[〈n1, α, n2〉] from n to n2 it follows by Lemma 4.7 that there is a sim-
ilar path p′ in S from m1 to m2 such that ξ(m1, n). Assume that M1 =
{ m ∈ NS | ξ(m,n) } and M2 = { m ∈ NS | λS(m) ∈ λI(n)− λI′(n) }.
By the way that I ′ was constructed it follows that 〈M1,M2〉 is a dele-
tion pair with no composite-value class nodes in M1. Since p′ is a
potential weak value path in S from M1 it follows by constraint TD-
CPE that there is a similar weak value path fromM1−M2. If this path
begins in m′ then it follows by definition of M2 that λS(m′) ∈ λI′(n).
Let 〈m′1, α,m′2〉 be the last attribute edge in p′. Because ξ′ is an ex-
tension relation it then follows that ξ′(m′1, n1) and ξ′(m′2, n2).

• Assume that n1 is an object node. Because ξ covers I there is some edge
〈m1, α,m2〉 in ES such that ξ(m1, n1) and ξ(m2, n2). Assume that M1 =
{ m ∈ NS | ξ(m,n1) } and M2 = { m ∈ NS | λI′(m) ∈ λI(n1)− λI′(n1) }.
By the way that I ′ was constructed it follows that 〈M1,M2〉 is a deletion
pair with no composite-value class nodes in M1. Since 〈m1, α,m2〉 in ES
such that ξ(m1, n1) and there is an edge 〈n1, α, n2〉 in I it follows that
〈m1, α,m2〉 is a potential attribute edge in S from M1. It follows by
constraint TD-CPE that there is a path p′ in S in S from M1 −M2 with
λ̄(p′) = [α]. Let 〈m′1, α,m′2〉 be the unique edge in p′ with label α. Because
ξ is an extension relation it follows that m′1 ∈ M1. Because m′1 ∈ M1 it
will be an object-class node and therefore labeled with a class name in S.
Because m′1 ∈M1 −M2 it follows that m′1 is labeled with that class name
in I ′. By the definition of ξ′ it then follows that ξ′(m′1, n1). Since ξ′ is an
extension relation it also follows that ξ′(m′2, n2).

CV-C for every node n ∈ NI′ and class name c ∈ λI′(n) there is some named node
m ∈ NS such that ξ′(m,n) and c = λS(m)
Assume that there is a node n ∈ NI′ and class name c ∈ λI′(n). Since I ′

is a sub-instance-graph of I it follows that there is a node n ∈ NI and class
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name c ∈ λI(n). Because ξ covers I it follows that there is some named node
m ∈ NS such that ξ(m,n) and c = λS(m). By definition of ξ′ it then follows
that ξ′(m,n).

The final step is to show that ξ′ is class-name correct, i.e., if λS(m) is defined and
ξ′(m,n) then λS(m) ∈ λI′(n). Assume that λS(m) is defined and ξ′(m,n). By the
definition of ξ′ there at least one of the following must hold:

• For some node m′ in S it holds that m′ isa∗S m, λS(m′) is defined and λS(m′) ∈
λI′(n). It holds that n is either a composite-value node or not:

– Assume that n is a composite-value node. Because m′ isa∗S m and named
composite-value class cannot have incoming isa edges, it follows that m =
m′, and, therefore, that λS(m) ∈ λI′(n).

– Assume that n is not a composite-value node. Since I ′ is a sub-instance-
graph of I it follows that λS(m′) ∈ λI(n) and since ξ is an extension relation
it follows that ξ(m,n). Because ξ is class-name correct is follows that
λS(m) ∈ lambdaI(n). Assume that M1 = { m ∈ NS | ξ(m,n) } and M2 =
{ m ∈ NS | λI′(m) ∈ λI(n)− λI′(n) }. By the way that I ′ was constructed
it follows that 〈M1,M2〉 is a deletion pair with no composite-value class
nodes in M1. It follows by constraint TD-NSC that m 6∈ M1 −M2. By
the definition of M1 and M2 it follows that λS(m) ∈ λI′(n).

• There is a path p in I ′ from node n′ to n and a similar path p′ in S from m′ to
m such that λS(m′) is defined and λS(m′) ∈ λI′(n′). It follows that m is not a
composite-value class node because named composite-value class nodes cannot
have incoming edges. It now holds that p is either a weak value path or it is
not.

– Assume that p is a weak value path. Since ξ′ is an extension relation it
follows that p′ is also a weak value path. Let M1 = { m ∈ NS | ξ(m,n) }
and M2 = { m ∈ NS | λI′(m) ∈ λI(n)− λI′(n) }. By the way that I ′ was
constructed it follows that 〈M1,M2〉 is a deletion pair with no composite-
value class nodes in M1. Since ξ is an extension relation it follows that
m ∈ M1. For the same reason it holds for all paths in S that start in m′,
end in m′2, and are similar to p′ that m′2 ∈ M1. By constraint TD-EC it
follows that m 6∈M2. Since ξ is an extension relation and I ′ a sub-instance-
graph of I it holds that ξ(m,n). Since ξ is class-name correct it follows
that λS(m) ∈ λI(n). Because m 6∈M2 it follows that λS(m) ∈ λI′(n).

– Assume that p is not a weak value path. Then we may assume that p =
p1 • p2 and p′ = p′1 • p′2 where p2 is a weak value path that starts in an
object node, p1 and p′1 are similar, and p2 and p′2 are similar.Since ξ′ is an
extension relation it follows that p′ is also a weak value path and p′2 starts
in a named object class node m′′. Assume that M1 = { m ∈ NS | ξ(m,n) }
and M2 = { m ∈ NS | λI′(m) ∈ λI(n)− λI′(n) }. By the way that I ′ was
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constructed it follows that 〈M1,M2〉 is a deletion pair with no composite-
value class nodes in M1. Since ξ is an extension relation it follows that
m ∈M1. For the same reason it holds for all paths in S that start in m′′,
end in m′2, and are similar to p′2 that m′2 ∈M1. By constraint TD-EC it
follows that m 6∈M2. Since ξ is an extension relation and I ′ a sub-instance-
graph of I it holds that ξ(m,n). Since ξ is class-name correct it follows
that λS(m) ∈ λI(n). Because m 6∈M2 it follows that λS(m) ∈ λI′(n).

Summarizing, it holds that ξ′ is a minimal extension relation from S to I ′ that covers
I ′ and is class-name correct. It therefore follows that I ′ belongs to S. It then follows
by Lemma 3.7 that İ ′ also belongs to S, and, therefore, also [İ ′] belongs to S. �

Although the proof shows that well-typedness is a sufficient condition, it is unfor-
tunately not a necessary condition. This is, for example, illustrated by the deletion
in Figure 6.3. This deletion is not well-typed because the deletion pair 〈{A,B}, {B}〉
fails the third requirement that says that all potential edges should remain potential
edges. However, this deletion will always delete the edges that are no longer covered
and therefore result in an instance graph that belongs to the schema graph (b).

int
int

B

Deletion Schema graph

(a) (b)

a

A

a

A B

Figure 6.3: A deletion that is not well-typed but keeps every instance graph within
the schema graph

6.4 Decidability of Well-Typedness

In this section we discuss the decidability of the notion of well-typedness that was
defined in Section 6.2. We first show that it is decidable in polynomial space, and
then that it is PSPACE hard.

Theorem 6.4 The well-typedness of a deletion Del(J, J ′) under a GDM[com,n-obj]
schema graph S can be decided in polynomial space in the size of J , J ′ and S.
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Proof: The algorithm iterates over all deletion pairs. We can do this by iterating
over all sets N ⊆ NJ′ that are the pattern nodes corresponding to the combined basic
deletion pairs and sets M1 ⊆ NS that correspond to the first set of the deletion pair
and doing the following:

1. Check for all n ∈ N if there is an extension relation Ξ that supports J and for
which it holds that M1 = { m | Ξ(m,n) }. This can be done by determining the
largest ξ ⊆ (NS ×NJ)− ((NS −M1)× {n}) that satisfies ER-ATT, ER-SRT
and ER-ISA for J and is minimal on the composite-value nodes, and then
verifying that Ξ satisfies ER-CLN, covers J and M1 = { m | Ξ(m,n) }. If this
is indeed the case for all n ∈ N then we know that we can combine all the basic
deletion pairs for the nodes in N to a basic deletion pair and proceed to the
following step.

2. Let M2 = { m ∈ NS | 〈m, c〉 ∈ λS(m) ∧ n ∈ N ∧ 〈n, c〉 ∈ λJ′ − λJ } and check
the three constraints for the deletion pair 〈M1,M2〉:

TD-NSC If there is a class node m1 ∈ M1 − M2 and m2 ∈ M2 such that
m1 isa∗S m2, then return false.

TD-EC For every named class node m1 in S we have to check if (L{m1},M2 −
L̄{m1}) − L{m1},(NS−M1) = ∅. This is equivalent with checking if it holds
that L{m1},M2 ⊆ L̄{m1} ∪L{m1},(NS−M1), which can be checked in polyno-
mial space by constructing the corresponding NFAs. If the check fails then
return false.

TD-CPE For every sort s in S we have to check if LM1,s − (L̄M1 ∪ LM1,¬s) ⊆
L(M1−M2),s. This is equivalent with checking that LM1,s ⊆ L̄M1 ∪LM1,¬s∪
L(M1−M2),s, which can be checked in polynomial space by constructing the
corresponding NFAs. If the check fails then return false.

�

Theorem 6.5 Deciding whether a GUL deletion is well-typed under a GDM[com,n-
obj] schema graph is PSPACE hard.

Proof: This can be shown by reducing the problem of deciding whether a NFA A2 ac-
cepts a subset of another NFA A1, which is known to be PSPACE hard. As was shown
before with the PSPACE hardness proofs for the addition we can straightforwardly
translate these automata in to schema graph fragments F1 and F2 and construct the
schema graph in Figure 6.4 (a) where β is an attribute name that is not used in the
fragment.

It is easy to see that TD-NSC and TD-ED hold for every deletion pair and TD-
CPE holds for the deletion pair 〈{A,B}, {B}〉 iff A2 accepts a subset of A1. It follows
that the deletion (a) is well-typed iff M2 accepts a subset of M1. The problem of
deciding well-typedness in GDM[com,n-obj] is therefore PSPACE hard. �
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Schema graph Deletion

β

β
F1

F2

β

β

A B

(b)(a)

B

A

Figure 6.4: A GDM[com,n-obj] schema graph and a deletion that shows PSPACE
hardness of deciding well-typedness of a deletion

6.5 Discussion

For deletions under GDM[com,n-obj] that do not delete class-names it was shown that
the notion of well-typedness is trivial, i.e., if a deletion is applied to an instance of a
certain schema graph then the result will also belong to this schema graph.

For deletions under GDM[com,n-obj] a notion of well-typedness is defined that
ensured that for a certain schema graph it holds that if the deletion is applied to an
instance of that schema graph then the result also belongs to this schema graph. It
was also shown that this notion of well-typedness is not a necessary condition and
is, therefore, in some sense too strict. The algorithm that was presented for deciding
well-typedness requires polynomial space in the size of the schema graph and the
addition, but the problem was also shown to be PSPACE hard.



Chapter 7

Suggestions for Further
Research on Typing

In this chapter we present possible directions for further research on the subject of
typing GUL in GDM.

7.1 Schema-Dependent GUL Operations

Until now all the presented GUL operations were schema-independent. This means
that their semantics are independent of the schema graph. This has the advantage that
it keeps the semantics simple and allows the language to be used in situations where a
schema graph is not available. However, it has the disadvantage that some operations
are not well-typed although that, given the schema graph, there is a straightforward
interpretation of the operation that always results in an instance that belongs to that
schema graph. The notion of “straightforward interpretation given a certain schema
graph” can be made more precise by saying that we extend the semantics of, for
example, the addition with the requirement that the result of the addition should
belong to the schema graph. This leads to the following definition.

Definition 7.1 The semantics of an addition Add(J, J ′) under a schema graph S,
[[Add(J, J ′)]]S : I → I, is defined such that [[Add(J, J ′)]]S([I]) = [İ ′] where I ′ is a
minimal super-instance-graph of I that belongs to S such that there is an embedding
extension function η : Emb(J, I)→ Emb(J ′, I ′) such that

1. η(h) equals h on NJ ,

2. all distinct nodes in NJ′−NJ are mapped by η(h) to distinct nodes in NI′−NI ,
and

3. extensions of distinct embeddings map nodes in NJ′ −NJ to distinct nodes.

155
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In order to understand the difference with the schema-independent semantics con-
sider the addition in Figure 7.1 (a).

int

BA

Schema graph

A B C

D E
a ab

Instance graph

A

D
a

Addition

(a) (b) (c)

Figure 7.1: An addition, a schema graph and an instance graph

If the schema-independent addition is applied to the instance graph (c) then the
only thing that happens is that the label B is added to the A node. However, under
the schema-dependent semantics the instance graph is extended further so it belongs
to the schema graph in (b). This means that

1. the label C should also be added to the A node, and

2. the label E should also be added to the D node.

In fact, the result of a schema-dependent addition can be constructed by taking the
result of the schema-independent addition and adding class names until the minimal
extension relation between the schema graph and this instance graph is class-name
correct. The result of a schema-dependent addition is well-defined iff it holds for the
result of the same schema-dependent addition that the minimal extension relation
covers it.

If an addition is well-typed then the schema-dependent and schema-independent
semantics are the same. If an addition is not well-typed then its semantics may still be
defined for all instances of the schema graph. Therefore we can relax the constraints
for well-typedness. It is, for instance, no longer necessary to check if nodes are
indirectly moved to extra named classes. For GDM[com,n-obj] this means that the
constraints TA-NCN, TA-NCO, TA-NCP and TA-NPW no longer need to be
checked. However, the constraints TA-CPE and TA-CPW are no longer sufficient to
guarantee that the extension relation for the original instance graph can be extended
to an instance graph for the result of the addition. The reason is that we now also
have to check if potential weak value paths are lost for nodes that are indirectly moved
to new classes. The exact formulation of this constraint is left as a matter of further
research.

As with the addition we can also define a schema-dependent semantics for the
deletion by extending the requirement that the result should belong to a certain



7.1. SCHEMA-DEPENDENT GUL OPERATIONS 157

scheme graph.

Definition 7.2 The semantics of deletion Del(J, J ′) under a basic GDM schema
graph S, [[Del(J, J ′)]] : I → I, is defined such that [[Del(J, J ′)]]([I]) = [İ ′] where
I ′ is a maximal sub-instance-graph of I that belongs to S such that for every h in
Emb(J, I) it holds that:

1. if n ∈ NJ −NJ′ then h(n) 6∈ NI′ ,

2. if 〈n1, α, n2〉 ∈ EJ − EJ′ then 〈h(n1), α, h(n2)〉 6∈ EI′ , and

3. if n ∈ NJ′ and c ∈ λJ(n)− λJ′(n) then c 6∈ λI′(h(n)).

In order to understand the difference with the schema-independent semantics con-
sider the deletion in Figure 7.2 (a).

7
int

A

b

BC

Deletion

BA

(a)

Instance graph

(b)

Figure 7.2: A deletion and an instance graph

If the schema-independent addition is applied to the instance graph (b) then the
only thing that happens is that the label B is removed from the object node labeled
with A and B . However, under the schema-dependent semantics with the schema
graph in Figure 7.1 (b) more is removed in order to obtain an instance graph that
belongs to the schema graph. This means that

1. the label C is removed, and

2. the b edge is removed.

In fact, the result of a schema-dependent deletion can be constructed by taking the
result of the schema-independent deletion and

1. removing class names from a node if the node is not labeled with all the names
of the named subclasses, and

2. removing edges and nodes that are not covered by the minimal extension rela-
tion,
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until the minimal extension relation between the schema graph and this instance
graph covers the instance graph and is class-name correct.

If a deletion is well-typed then the schema-dependent and schema-independent
semantics are the same. If a deletion is not well-typed then it it still possible that
its semantics is defined for all instances of the schema graph. Therefore we can also
here relax the constraints for well-typedness. It is, for instance, no longer necessary
to check if names of super-classes are removed without removing the names of the
subclasses, or if all potential paths from a node are still covered after the deletion. For
GDM[com,n-obj] this means that the constraints TD-NSC and TD-CPE no longer
need to be checked. How condition TD-EC should be adapted in order to ensure
that the result of a well-typed deletion is always well-defined is left as a matter of
further research. An alternative could be to enforce well-definedness by changing the
semantics of the deletion such that every edge that causes constraint TD-EC to fail
is removed.

7.2 Well-Typedness as a Necessary Condition

An important question is if the introduced notions of well-typedness are also neces-
sary conditions. For the well-typedness of patterns it was shown that this holds, but
for additions and deletions it was shown that these are certainly not necessary condi-
tions. Finding sufficient well-typedness constraints that are sufficient and necessary
conditions might be an interesting direction for further research.

7.3 Disjointness of Classes

In the presented version of GUL it is not possible to explicitly indicate that a certain
node does not belong to a certain named class. However, this can to some extent be
simulated because we can in a pattern require that certain attributes exist that are
not possible for certain classes. Moreover, the feature can be added without making
most of the algorithms more complex because for example the determination of the
maximal supporting extension relation can be preceded by a step that removes pairs
that relate pattern nodes to class nodes that are explicitly forbidden by the pattern.

In GDM an object can belong to any set of classes as long as its attributes are of
the right type. In many data models this is restricted by the following constraint.

The common subclass constraint (CSC)
An object can only belong to two classes if it also belongs to a common subclass
of these two classes.

Consider, for example, the two schema graphs in Figure 7.3. The common subclass
constraint implies here that in schema graph (a) there cannot be an object that is
both in Boat and Vehicle, but in schema graph (b) there can be, as long as this object
is also in the class Amphibian. The constraint is equivalent to the requirement that for
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Amphibian

(a) (b)

Vehicle Boat VehicleBoat

Figure 7.3: Two schema graphs demonstrating the common-subclass constraint

every object there is a class such that the object belongs to exactly this class and all
its super-classes. This makes clear that the introduction of this constraint reduces the
number of supporting extension relations for a certain pattern because these will now
also have to satisfy this constraint. However, typing patterns may become harder
because there may no longer be a unique maximal supporting extension relation.
Another problem is that a well-typed addition should now also guarantee that the
result satisfies the common-subclass constraint. It is certainly not enough to check this
for the object nodes and the minimal extension of the supporting extension relation.
This is because embeddings may be non-injective so although for the individual nodes
in the base pattern the common-subclass assumption is satisfied, it may still be that
in the resulting instance graph the additions for two nodes are combined and result in
a node that does not satisfy this constraint. The further investigation of the problem
of typing GUL under GDM with the common-subclass constraint is a matter of further
research.

7.4 Changing Schema Graphs

In the previous chapters we assumed that the schema graph was fixed, i.e., the schema
graph of the input instance graph and the output instance graph are the same. This
means that the user should be able to extend the schema graph if needed. Since the
schema graph is similar to an instance graph it might be interesting to see if GUL can
also be used to manipulate the schema graph. It should then be checked, for instance,
if a certain addition to the schema graph does not invalidate the current instance of
the schema graph. Another option is to let the schema graph automatically adapt
to whatever is added by a certain addition. Deciding if this is possible for a certain
addition and a certain input schema graph is left as a matter of further research.
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Chapter 8

The Expressive Power of GUL

8.1 Introduction

In this chapter we discuss the question which functions can and cannot be expressed
in GUL. This is done by comparing it with GOOD (Andries et al., 1992; Gyssens
et al., 1994) which is also a graph manipulation language. This language is known to
express exactly all deterministic transformations that are generic and constructive.
These notions are explained in Section 8.2. In Section 8.3 we show that GUL can
express only C-constructive C-generic transformations. In Section 8.4 we show that
GUL can express all C-constructive C-generic deterministic transformations. Finally,
in Section 8.5 we show that in general GUL with is edges can express more transforma-
tions than GUL without is edges, but that the is edges are not necessary if the input
schema graph and the output schema graph are without cycles of composite-value
nodes.

8.2 Genericity and Constructiveness

The notion of genericity (Hull and Yap, 1984; Chandra, 1988) is generally regarded as
a fundamental property of database transformations. It can be formulated as saying
that a transformation must be invariant under every permutation of all possible basic
values (Chandra and Harel, 1980). This principle originates from the data indepen-
dence principle that says that a transformation can only use information provided at
the conceptual level. Another way of saying this is that the transformation language is
not allowed to “interpret” atomic elements such as basic values and object identifiers,
i.e., it should treat them as abstract entities. What this means is illustrated by the
two instances in Figure 8.1. In instance (a) there is no information in the structure of
the instance that distinguishes the numbers 5 and 6 from each other. This does not
hold, for example, for the numbers 4 and 5 which can be distinguished because they
are labeled with different class names. So if a deterministic transformation transforms
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(b)(a)
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Figure 8.1: Two instances that illustrate a non-generic transformation

instance (a) into instance (b) by adding the class name C to the number 5 then it
is apparently using information that is not in the structure of the instance, i.e., it
is interpreting these basic values. We can check if a transformation is using extra
information by looking at how it behaves if the basic values in the input instance
are replaced with other basic values. For this purpose we introduce the notion of
basic-value permutation.

Definition 8.1 A basic-value permutation is a bijection a : D → D. We generalize
these functions to instance graphs by letting a(I) be equal to I except that ρI is replaced
with a ◦ ρI .

If a transformation does not interpret the basic values then it will not notice that
they have been replaced with other basic values by a basic-value permutation, i.e., it is
invariant under all basic-value permutations. This means that if it maps an instance
[I] to [I ′] and a is some basic-value permutation then it should map [a(I)] to [a(I ′)].
The transformation of Figure 8.1, for example, cannot be generic if it is deterministic.
This is because the basic-value permutation (5, 6), i.e., the permutation that swaps
5 and 6, maps instance (a) to itself but instance (b) not. So if it is generic then it
is not deterministic because instance (a) should be mapped to both instance (b) and
the result of applying (5, 6) to instance (b).

All this leads to the following formal definition of genericity.

Definition 8.2 A weak GDM transformation is said to be generic if for every basic-
value permutation a it holds that if 〈[I1], [I2]〉 ∈ τ then 〈[a(I1)], [a(I2)]〉 ∈ τ .

There are several reasons why the class of generic database transformation is
interesting. One reason is that it allows us to concentrate upon the operations that
are involved in restructuring data and ignore the operations involved with domain-
specific computations upon the basic values. Another reason is that treating basic
values as abstract values corresponds with treating them as abstract object identifiers.
For abstract object identifiers it only makes sense to check if they are equal or not,
but it does not make sense to perform domain-specific operations upon them such as
adding them or checking if one is smaller than the other, and that is precisely what
genericity does not allow.

A more liberal form of genericity is C-genericity (Hull, 1986) where an exception
is made for a finite set C of basic values, i.e., the elements in C are allowed to be
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interpreted. In terms of operations this means that a C-generic transformation is
allowed to check if a basic value is equal to a specific basic value in C. For instance, if
a transformation is allowed to interpret the number 5 in the instance (a) of Figure 8.1
then it can distinguish 5 from 6 and, therefore, transform it to instance (b) and still
be deterministic.

As before we can reformulate this with the help of basic-value permutations; a
transformation is C-generic if it will not notice that the basic values that are not
allowed to be interpreted, i.e., those that are not in C, are replaced with other basic
values by a basic-value permutation. This leads to the following formal definition.

Definition 8.3 Given a finite set C ⊆ D a weak GDM transformation is said to be
C-generic if for every basic-value permutation a that fixes all elements in C it holds
that if 〈[I1], [I2]〉 ∈ τ then 〈[a(I1)], [a(I2)]〉 ∈ τ .

Another property of database transformations that we consider is constructiveness
(Van den Bussche et al., 1997). This is a property that limits the way in which new
object identifiers can be added to a database instance. It can informally be described
as saying that new object identifiers can be interpreted as hereditarily finite sets
(Dahlhaus and Makowsky, 1992; Hull and Su, 1993), i.e., finite recursively nested
sets, constructed of basic values and object identifiers already present in the database
instance. To understand what this means consider in Figure 8.2 the instances (a) and
(b).

(a) (b) (c)

n1 n2 {n1} {n2}

{{{n1}}}

{{n2}} {{n1}}

{{{n2}}} {{{n1}}} {{{n2}}}

{{n2}} {{n1}}

{n1} {n2}
str

A
str

A

x y

str

A
str

A
a a

a a

x y

B B

B B

str

A
str

A
a a

a a

x y

b

b

B B

B B
b b

Figure 8.2: Three instances that illustrate a constructive and a non-constructive
transformation

Consider the deterministic transformation that transforms instances of the form
(a) (with x and y arbitrary strings) to an instance of the the form (b). If we assume
that the nodes in (a) are n1 and n2 then we can think of the nodes in (b) as finite
nested sets constructed (hence the name) from nodes as indicated in the figure. This
means that we see the transformation of instances as a transformation of instance
graphs that maps the instance graph in (a) with nodes n1 and n2 to an instance
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graph as in (b) with nodes {n1}, {n2}, {{n1}}, {{n2}}, {{{n1}}} and {{{n2}}}.
There are two requirements that should hold for the sets that replace the nodes:

1. they are unique for every node they replace, and

2. the corresponding transformation on instance graphs should be deterministic
and

3. the corresponding transformation on instance graphs should be generic with
respect to both the basic values and the nodes.

The last requirement implies that the transformation should be invariant under per-
mutations of basic values and nodes. These permutations are called full permutations
and defined as follows.

Definition 8.4 A full permutation is a function a : (D ∪N )→ (D ∪N ) such that1

a|N is a node permutation (see Definition 3.1 on page 49) and a|D is a basic-value
permutation.

We generalize these functions to instance graphs by letting a(I) = a|N (a|D(I)).

It is easy to see that the requirements for the replacement of the nodes with sets
are fulfilled by the transformation and replacement defined by the instance (a) in
Figure 8.2. Instance (c) illustrates a transformation for which such a replacement is
not possible. Consider, for example, the replacement that is suggested in (c). If we
apply the permutation (x, y)(n1, n2) to the instance graph representing instance (a)
we obtain the same instance graph. However, if we apply the same permutation to
the basic values and the nodes (and map the node {{n1}} to {{n2}}, for example)
then then the result is a different instance. For example, there will in the result be a
b edge from the node {{{n2}}} to the node {{{n1}}} where there first was a b edge
in the reverse direction. The transformation on the instance graphs is therefore either
not deterministic or not generic on the basic values and the nodes.

Evidently this only shows that the suggested replacement is not good, so the
question remains whether there might be another replacement that does satisfy the
requirements. We can decide this with the help of the following observation: if such
a replacement exists then every full permutation that maps the input instance graph
to itself will also map the output instance graph (with the nodes replaced with the
sets) to itself. We will call such full permutations automorphisms.

Definition 8.5 An automorphism of an instance graph I is a full permutation a such
that I = a(I). The set of all automorphisms of I that fix all elements in some finite
set C ⊆ D is written as AutC(I). If C = ∅ then we simply write Aut(I).

Since the output instance graph with the nodes replaced with sets is isomorphic
to the original output instance graph it follows that for every automorphism a of

1Given a binary relation or function a and a set V we let a|V denote the restriction of a to V ,
i.e., the set { 〈x, y〉 | 〈x, y〉 ∈ a ∧ x ∈ V }.
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the input instance graph there is a corresponding automorphism h(a) of the output
instance graph that is identical to the original automorphism on the basic values.
Moreover, it will hold that for two automorphisms a1 and a2 of the input instance
graph it holds that h(a1◦a2) is equal to h(a1)◦h(a2), i.e., h is a group homomorphism.
We will call such a mapping h a basic-value-extension homomorphism because it is a
group homomorphism that extends the automorphisms such that the corresponding
automorphism is the same for the basic values.

Definition 8.6 Given two automorphism groups AutC(I) and AutC(I ′) a basic-
value-extension homomorphism is a function h : AutC(I) → AutC(I ′) such that for
all a1 and a2 in AutC(I) it holds that

• h(a1 ◦ a2) = h(a1) ◦ h(a2), and

• h(a1)|D = a1|D.

As is shown in (Van den Bussche et al., 1997) the existence of such an extension
homomorphism is not only a necessary condition but also a sufficient condition for
the existence of a replacement that satisfies the requirement. Therefore, we will use
this as the definition of constructiveness.

Definition 8.7 Given a finite set C ⊆ D a weak GDM transformation τ is called C-
constructive if for every 〈[I], [I ′]〉 ∈ τ there is a basic-value-extension homomorphism
from AutC(I) to AutC(I ′). If C = ∅ then τ is simply called constructive.

With the help of this definition we can now show that the transformation defined
by the instance graphs (a) and (c) in Figure 8.2 is not constructive. Consider the auto-
morphism a = (n1, n2)(x, y) for instance graph (a). The corresponding automorphism
h(a) on the instance graph (c) should swap x and y and rotate the B nodes, either
clockwise or counter clockwise. Since a ◦ a is the identity of the automorphism group
of instance graph (a) the associated automorphism h(a ◦ a) = h(a) ◦ h(a) should also
be the identity of the automorphism group of instance (b), but in both cases (clock-
wise and counter clockwise rotation) this does not hold, so no basic-value-extension
homomorphism is possible.

8.3 GUL can express only Constructive Transforma-
tions

In this section we show that GUL can express only C-generic C-constructive trans-
formations. We do this by first showing that the reduction defines a constructive
generic transformation. Then we show that the addition and the deletion define C-
constructive C-generic transformations, and finally we show that it follows that all
GUL programs define C-generic C-constructive transformations.

Although the reduction of weak instance graphs is not an explicit operation in
GUL it can be regarded as weak GDM transformation. As such it is well-behaved in
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the sense that it defines a generic and constructive transformation, as is stated by the
following lemma.

Lemma 8.1 Let τ be the weak GDM transformation that is defined by the reduction,
i.e., τ =

{
〈[I], [İ]〉

∣∣∣ I ∈ I }, then τ is generic and constructive.

Proof: First we show that τ is generic. Assume that a is a basic-value permutation
and that there is a pair 〈[I], [İ]〉 in τ . It is easy to see that n1

∼=I n2 iff n1
∼=a(I) n2.

It then follows that n1
.=I n2 iff n1

.=a(I) n2. It follows that the reduction of a(I) is
equal to a(İ) and, therefore, the pair 〈[a(I)], [a(İ)]〉 will also be in τ .

Second, we show that τ is constructive. For this we define h : Aut(I) → Aut(İ)
such that h(a) = { 〈ṅ1, ṅ2〉 | 〈n1, n2〉 ∈ a|N } ∪ a|D. It is easy with induction upon
the number of partial reductions that are needed to compute the reduction that h(a)
is a function and that if a ∈ Aut(I) the h(a) ∈ Aut(İ). What remains to be shown is
the following.

• h(a1 ◦ a2) = h(a1) ◦ h(a2)
We can show this as follows. By definition of h it holds that h(a1 ◦ a2) =
{ 〈ṅ1, ṅ2〉 | 〈n1, n2〉 ∈ (a1 ◦ a2)|N } ∪ (a1 ◦ a2)|D.
Because N and D are distinct it follows that h(a1 ◦ a2) =
{ 〈ṅ1, ṅ2〉 | 〈n1, n2〉 ∈ (a1|N ◦ a2|N ) } ∪ (a1|D ◦ a2|D).
It then follows that h(a1 ◦ a2) =
{ 〈ṅ1, ṅ3〉 | 〈n1, n2〉 ∈ a1|N ∧ 〈n2, n3〉 ∈ a2|N ) } ∪ (a1|D ◦ a2|D).
Because h(a1) is a function it follows that h(a1 ◦ a2) =
({ 〈ṅ1, ṅ2〉 | 〈n1, n2〉 ∈ a1|N } ◦ { 〈ṅ3, ṅ4〉 | 〈n3, n4〉 ∈ a2|N }) ∪ (a1|D ◦ a2|D).
Since N and D are distinct it follows that h(a1 ◦ a2) =
({ 〈ṅ1, ṅ2〉 | 〈n1, n2〉 ∈ a1|N } ∪ a1|D) ◦ ({ 〈ṅ3, ṅ4〉 | 〈n3, n4〉 ∈ a2|N } ∪ a2|D).
By definition of h it then follows that h(a1 ◦ a2) = h(a1) ◦ h(a2).

• h(a1)|D = a1|D
This follows directly from the definition of h and the fact that a1|D is a basic-
value permutation.

�

The next two lemmas show that the addition and the deletion in GUL are C-generic
and C-constructive.

Lemma 8.2 Let Add(J, J ′) be an addition such that all the basic-value representations
in J and J ′ are in C then the function [[Add(J, J ′)]] is C-generic and C-constructive.

Proof: First, we show that [[Add(J, J ′)]] is C-generic. Assume that a is a basic-value
permutation that fixes all the elements in C and that there is a pair 〈[I1], [I2]〉 in
[[Add(J, J ′)]]. As in the proof of Theorem 3.8 we can first extend I1 to I ′′ to satisfy
the requirements mentioned in the semantics of the addition, except those of the is



8.3. GUL CAN EXPRESS ONLY CONSTRUCTIVE TRANSFORMATIONS 167

edges. Second, we can extend I ′′ to I ′ to satisfy the requirements of the is edges.
Finally, we compute İ ′ which will be isomorphic to I2. Note that since a fixes all
basic-value representations in J it holds that Emb(J, I1) = Emb(J, a(I1)). Because
a also fixes the basic-value representations in J ′ it follows that if we apply the same
steps to a(I1) we obtain a(I ′′), a(I ′) and a(İ ′), respectively. Since İ ′ is isomorphic to
I2 it follows that a(İ ′ is isomorphic to a(I2).

Second, we show that [[Add(J, J ′)]] is C-constructive. We begin with showing that
there is a basic-value-extension homomorphism h1 : AutC(I1)→ AutC(I ′). We define
h1 : AutC(I1)→ AutC(I ′) such that:

• h1(a) is equal to a on nodes in I1 and basic-value representations.

• For new nodes η(g)(n′) that are caused by a certain embedding g ∈ Emb(J, I1)
and a node n′ ∈ NJ′ −NJ we define that h1(a)(η(g)(n′)) = η(a ◦ g)(n′).

• Let n̄n
′
1,n
′
2

g,n3 be the new node in I ′′ that was added when the node n3 was copied
during the construction of I ′′ to satisfy the is edge from the node n′1 in J to n′2
in J ′. We define that h1(a)(n̄n

′
1,n
′
2

g,n3 ) = n̄
n′1,n

′
2

a◦g,a(n3)).

Because a fixes the basic-value representations in J and J ′ it follows that h(a) ∈
AutC(I ′) if a ∈ AutC(I1). We now have to show the following:

1. h1(a1 ◦ a2) = h1(a1) ◦ h1(a2)
We consider the two function for basic-value representations, the old nodes in
I1 and the new nodes in I ′′:

(a) Let r be a basic-value representation. Since h1(a)|D = a|D it follows that
h1(a1 ◦ a2)(r) = (a1 ◦ a2)(r) = a1(a2(r)) = h(a1)(h(a2)(r)) =
(h1(a1) ◦ h1(a2))(r).

(b) Let n be a node in I1. Since h1(a)|NI1 = a|NI1 it follows that
h1(a1 ◦ a2)(n) = (a1 ◦ a2)(n) = a1(a2(n)) = h(a1)(h(a2)(n)) =
(h1(a1) ◦ h1(a2))(n).

(c) Let η(g)(n′) be a new node in I ′′. Then h1(a1 ◦ a2)(η(g)(n′)) =
η(a1 ◦ a2 ◦ g)(n′)) = h(a1)(η(a2 ◦ g)(n′)) = h(a1)(h(a2)(η(g)(n′))) =
(h1(a1) ◦ h1(a2))(η(g)(n′)).

(d) Let n̄n
′
1,n
′
2

g,n3 be a new node in I ′. Then
h1(a1 ◦ a2)(n̄n

′
1,n
′
2

g,n3 ) = n̄
n′1,n

′
2

(a1◦a2)◦g,(a1◦a2)(n3) = n̄
n′1,n

′
2

a1◦a2◦g,a1(a2(n3)) =

h(a1)(n̄n
′
1,n
′
2

a2◦g,a2(n3)) = h(a1)(h(a2)(n̄n
′
1,n
′
2

g,n3 )) = (h1(a1) ◦ h1(a2))(n̄n
′
1,n
′
2

g,n3 ).

2. h1(a1)|D = a1|D.
This follows directly from the definition of h1.

We have shown that there is a basic-value-extension homomorphism h1 : AutC(I1)→
AutC(I ′). If there is a pair 〈[I1], [I2]〉 in [[Add(J, J ′)]] then I2 will be isomorphic
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to İ ′. By Lemma 8.1 it follows that there is an extension homomorphism h2 :
Aut(İ ′) → Aut(I2). Because extension homomorphisms do not change the behavior
of an automorphism on basic-value representations it follows that there is a basic-
value-extension homomorphism h2 ◦ h1 : AutC(I1)→ AutC(I2). �

Lemma 8.3 Let Del(J, J ′) be an deletion such that all the basic-value representations
in J and J ′ are in C then the function [[Del(J, J ′)]] is C-generic and C-constructive.

Proof: First, we show that [[Del(J, J ′)]] is C-generic. Assume that a is a basic-value
permutation that fixes all the elements in C and that there is a pair 〈[I1], [I2]〉 in
[[Del(J, J ′)]]. As in the proof of Theorem 3.9 we can first construct I ′ from I1 by
removing all the class names, edges and nodes as required by by J and J ′, and then
compute İ ′ which will be isomorphic to I2. Note that since a fixes all basic-value
representations in J it holds that Emb(J, I1) = Emb(J, a(I1)). It follows that if we
apply the same steps to a(I1) we obtain a(I ′) and a(İ ′), respectively. Since İ ′ is
isomorphic to I2 it follows that a(İ ′ is isomorphic to a(I2).

Second, we show that [[Del(J, J ′)]] is C-constructive. We begin with showing
that there is a basic-value-extension homomorphism h1 : AutC(I1) → AutC(I ′). We
define h1 : AutC(I1) → AutC(I ′) as the identity function, i.e., h1(a) = a. Be-
cause a fixes the basic-value representations in J it follows that g ∈ Emb(J, I1)
iff a ◦ c ∈ Emb(J, I1). From the way that I ′ is constructed it then follows that
a ∈ AutC(I ′) if a ∈ AutC(I1). Because h1 is the identity function it follows trivially
that it is an extension homomorphism. If there is a pair 〈[I1], [I2]〉 in [[Add(J, J ′)]]
then I2 will be isomorphic to İ ′. By Lemma 8.1 it follows that there is an extension
homomorphism h2 : Aut(İ ′) → Aut(I2). Because extension homomorphisms do not
change the behavior of an automorphism on basic-value representations it follows that
there is an extension homomorphism h2 ◦ h1 : AutC(I1)→ AutC(I2). �

Finally we show with the help of the previous lemmas that every GUL program
defines a C-generic and C-constructive GDM transformation.

Theorem 8.4 If p is a GUL program then there is a finite set C ⊆ D such that [[p]]
is C-generic and C-constructive.

Proof: We can show this with induction upon the structure of p:

1. If p is an addition or a deletion then this follows from Lemma 8.2 and Lemma 8.3,
respectively.

2. Assume that p is a finite list of GUL programs, i.e., p = [o1, . . . , on]. Then we may
assume by the induction hypothesis that o1 is C1-generic and C1-constructive,
. . . , on is Cn-generic and Cn-constructive. It then follows that [[p]] is C-generic
and C-constructive if C =

⋃
i∈{1,...,n} Ci.
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3. Assume that p is a fix-point program Fp(o). By the induction hypothesis we
may assume that o is C-generic and C-constructive. We can then show that
[[Fp(o)]] is also C-generic and C-constructive:

• [[Fp(o)]] is C-generic.
Assume that 〈[I1], [I2]〉 ∈ [[Fp(o)]]. By the semantics of Fp(o) it holds
that there is a number n such that [[o]]n([I1]) = [I2] where [[o]]n denotes
[[o]] ◦ . . . ◦ [[o]] (n times), for all numbers m < n it holds that [[o]]m([I1]) 6=
[[o]]m+1([I1]). If a is basic-value permutation that fixes all the elements in C
then it follows from the induction assumption that [[o]]n([a(I1)]) = [a(I2)]
and for all numbers m < n it holds that [[o]]m([a(I1)]) 6= [[o]]m+1([a(I1)]).
It follows that [[Fp(o)]]([a(I1)]) = [a(I2)].

• [[Fp(o)]] is C-constructive.
Assume that 〈[I1], [I2]〉 ∈ [[Fp(o)]]. By the semantics of Fp(o) it holds
that there is a number n such that [[o]]n([I1]) = [I2]. By the induction
assumption it follows that there is a basic-value-extension homomorphism
hn : AutC(I1)→ AutC(I2) where hn = h ◦ . . . ◦ h (n times).

�

8.4 GUL can express all Constructive Transforma-
tions

In this section we show that GUL can express all C-constructive C-generic determin-
istic GDM transformations. We do this by comparing GUL with the GOOD language
(Gyssens et al., 1994). As is shown in (Van den Bussche et al., 1997) this language
can express all generic constructive deterministic transformations on instance graphs
that contain no basic values. In order to be able to use this result for GUL there are
three important differences with GUL that we need to consider:

1. GDM instances contain basic values,

2. GDM instances have extra constructs such as more than one class name per
node and composite-value nodes, and

3. GUL operates on equivalence classes of instance graphs where GOOD operates
directly on instance graphs.

These problems are addressed in the following subsections. In Subsection 8.4.1 we
introduce GOOD− which is GOOD restricted to instance graphs and operations that
contain no basic-value representations. The completeness result for GOOD− that
is discussed in (Van den Bussche et al., 1997) is extended to GOOD+ which allows
basic-value representations in instances and operations and has a special printable-
addition operation. In Subsection 8.4.2 we show that all the extra constructs in GDM
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can be represented in GOOD+ instances, and that this mapping can be expressed
in GUL. Finally in Subsection 8.4.3 we show that GUL can express all C-generic
C-constructive deterministic GDM transformations on GOOD+ instances by showing
that GUL can simulate GOOD+. Together with the result that the the transformation
that represents GDM instances as GOOD+ instances and the reverse transformation
can be expressed in GUL this shows that GUL can express all C-constructive C-generic
deterministic GDM transformations.

8.4.1 Extending GOOD− to GOOD+

We start with the definition of the data model of GOOD−, i.e., GOOD without print-
ables, and the corresponding definitions of genericity and constructiveness. These
are very similar to those for GUL transformations with the exceptions that we now
consider transformations of instance graphs in place of instances, genericity is defined
with respect to node permutations in place of basic-value permutations and for con-
structiveness we require the existence of a node-extension homomorphism in place of
a basic-value-extension homomorphism.

Definition 8.8 A GOOD− instance graph is a GUL instance graph with only object
nodes and these nodes are always labeled with exactly one class name. A GOOD−

schema graph is a basic GUL schema graph with only object-class nodes and no isa
edges.

Definition 8.9 A GOOD− transformation is a relation τ ⊆ I × I such that

1. τ is recursively enumerable,

2. all pairs in τ consist of two GOOD− instance graphs, and

3. there are two GOOD− schema graphs S1 and S2 such that for all pairs 〈I, I ′〉 ∈ τ
it holds that I and I ′ belong to S1 and S2, respectively. The schema graphs
S1 and S2 are called the input schema graph and output schema graph of τ ,
respectively.

Such a transformation is said to be determinate if for all 〈I1, I2〉 ∈ τ and 〈I1, I3〉 ∈ τ
there is an isomorphism between I2 and I3 that fixes the nodes in I1.

Definition 8.10 A GOOD− transformation τ is called generic if for every node per-
mutation a it holds that if 〈I1, I2〉 ∈ τ then 〈a(I1), a(I2)〉 ∈ τ .

Definition 8.11 Given two automorphism groups AutC(I) and AutC(I ′) a node-
extension homomorphism from AutC(I) to AutC(I ′) is a function h : Aut(I) →
Aut(I ′) such that for all a1 and a2 in AutC(I) it holds that

• h(a1 ◦ a2) = h(a1) ◦ h(a2), and
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• h(a1)|NI = a1|NI .

Definition 8.12 A GOOD− transformation τ is called constructive if for every pair
〈I, I ′〉 ∈ τ there is a node-extension homomorphism from Aut(I) to Aut(I ′).

These definitions allow us to formulate in which sense GOOD is complete. This
is done by the following lemma.

Lemma 8.5 The GOOD language as defined in (Gyssens et al., 1994) can express
all generic constructive determinate GOOD− transformations.

Proof: This is shown in (Van den Bussche et al., 1997). �

The next step is now to extend this result for instance graphs with basic-value
nodes. For this purpose we extend GOOD− to GOOD+ with the following definitions.

Definition 8.13 A GOOD+ instance graph is a GUL instance graph with only object
nodes labeled with one class name, and basic-value nodes with no class name2. A
GOOD+ schema graph is a basic GUL schema graph with only named object-class
nodes, anonymous basic-value class nodes and no isa edges.

Definition 8.14 A GOOD+ transformation is identical to a GOOD− transformation
except that it consists of pairs of GOOD+ instance graphs and the input and output
schema graph are GOOD+ schema graphs.

As with GOOD− we need to define genericity and constructiveness. Since we
now have basic values we have to introduce the more general notions of C-genericity
and C-constructiveness. The definition of C-genericity for GOOD+ is similar to
the definition of genericity for GOOD− except that instead of considering all node
permutations we consider all full permutations that fix all basic values in a finite set
C.

Definition 8.15 Given a finite set C ⊆ D a GOOD+ transformation is said to be
C-generic if for every pair 〈I1, I2〉 ∈ τ and full permutation a that fixes all basic values
in C then 〈a(I1), a(I2)〉 ∈ τ . If C = ∅ then τ is simply called generic.

The definition of C-constructiveness for GOOD+ is also similar to the definition
of constructiveness for GOOD− except that we now require a node-extension homo-
morphism on the automorphisms that fix the basic values in a finite set C.

Definition 8.16 Given a finite set C ⊆ D a GOOD+ transformation τ is called C-
constructive if for every 〈I, I ′〉 ∈ τ there is a node-extension homomorphism from
AutC(I) to AutC(I ′).

2A small difference between this definition and the original definition in (Gyssens et al., 1994) is
that we do not allow basic-value nodes that have no incoming edge.
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It is easy to see that the notions of C-genericity and C-constructiveness for GOOD+

generalize the notions of genericity and constructiveness of GOOD−.
In order to generalize the completeness result for GOOD− to GOOD+ we can first

make the observation that for every generic GOOD+ transformation there is a cor-
responding GOOD− transformation that is the same except that in all the instance
graphs the basic-value nodes are replaced with object nodes. If a GOOD+ transforma-
tion is C-generic then there is also a corresponding generic GOOD− transformation
but the the nodes that represent basic-value nodes with representations in C must
be somehow identifiable by the transformation. We can achieve this by giving all
these nodes a distinctive loop such as shown in Figure 8.3. This leads to the following
definitions.

65

int

A B

int

A B

(a) (b)

Aint Aint

α5

b ba a

Figure 8.3: A GOOD+ instance graph and its basic-value reduction under {5}.

Definition 8.17 Given a finite subset C ⊆ D and a GOOD+ instance graph I the
basic-value reduction under C of I is I−C where I−C is equal to I except that for every
basic-value node n in I

1. the sort of n is changed to obj,

2. the basic-value representation of n becomes undefined,

3. the node is labeled with a class name Aσ(n) where As is a new class name that
is different from all class names in I and distinct for every basic-value sort s,
and

4. if ρI(n) ∈ C then an edge 〈n, αρI(n), n〉 is added, where αr is a new attribute
name that is different from from all attribute names in I and distinct for every
basic-value representation r.

Given a GOOD+ transformation τ we define the GOOD− transformation τ−C as fol-
lows τ−C =

{
〈(I1)−C , (I2)−C〉

∣∣ 〈I1, I2〉 ∈ τ }.

Lemma 8.6 If a GOOD+ transformation τ is C-generic and C-constructive then τ−C
is generic and constructive.



8.4. GUL CAN EXPRESS ALL CONSTRUCTIVE TRANSFORMATIONS 173

Proof: We first show that τ−C is generic. Assume that a is a node permutation and
the pair 〈I ′1, I ′2〉 in τ−C . It follows by the definition of τ−C that there is a pair 〈I1, I2〉
in τ such that I ′1 = (I1)−C and I ′2 = (I2)−C . Since τ is C-generic it holds that if
a′ = a ∪ idD (where idD is the identity function on D) then also 〈a′(I1), a′(I2)〉 in τ .
It then follows by the definition of τ−C that also 〈(a′(I1))−C , (a

′(I2))−C〉 in τ−C . Since a′

does not change any basic-value representations, it follows that (a′(I1))−C = a(I ′1) and
(a′(I2))−C = a(I ′2) and, therefore, that 〈a(I ′1), a(I ′2)〉 in τ−C

We now show that τ−C is constructive. Since τ is C-constructive there is for every
pair 〈I1, I2〉 ∈ τ an node-extension homomorphism h : AutC(I1)→ AutC(I2). We can
define a function h− : Aut((I1)−C) → Aut((I2)−C) such that h−(a|N ) = h(a)|N . This
indeed defines a function because for every a ∈ Aut(I−C ) there is a unique a′ ∈ AutC(I)
such that a = a′|N . We now need to show the following:

1. h−(a1 ◦ a2) = h−(a1) ◦ h−(a2)
For a1 and a2 there exist a unique a′1 and a′2 in AutC(I1) such that a1 =
a′1|N and a2 = a′2|N . It follows that h−(a1 ◦ a2) = h−(a′1|N ◦ a′2|N ). By
the definition of full permutation and h− it then follows that h−(a1 ◦ a2) =
h−((a′1 ◦ a′2)|N ) = h(a′1 ◦ a′2)|N . Since h is an extension homomorphism it then
follows that h−(a1◦a2) = (h(a′1)◦h(a′2))|N = (h(a′1)|N ◦h(a′2)|N ). By definition
of h− it then follows that h−(a1 ◦ a2) = h−(a1) ◦ h−(a2).

2. h−(a)|NI1 = a|NI1
For a there exists a unique a′ ∈ AutC(I1) such that a = a′|N . It follows that
h−(a)|NI1 = h−(a′|N )|NI1 . By definition of h− it follows that h−(a)|NI1 =
(h(a′)|N )|NI1 = h(a′)|NI1 . Since h is a node-extension homomorphism and
a = a′|N it follows that h−(a)|NI1 = a′|NI1 = a|NI1 .

�

We now would like to show that GOOD can express all C-generic C-constructive
determinate GOOD+ transformations. There are however two reasons why this can-
not be true. First, GOOD cannot introduce basic values that are not already in the
instance graph. Second, GOOD cannot replace a certain basic-value node with an-
other basic-value node with the same basic-value representation. However, we can
show that apart from these limitations, GOOD is complete.

Lemma 8.7 For every finite set C ⊆ D the GOOD language3 as defined in (Gyssens
et al., 1994) can express all C-generic C-constructive determinate GOOD+ transfor-
mations that introduce no new basic values and leave old basic-value nodes the same,
i.e., for every pair 〈I, I ′〉 in the transformation it holds that ρI′ ⊆ ρI .

Proof: Let τ be a C-generic and C-constructive GOOD+ transformation such that
for every pair 〈I, I ′〉 in τ it holds that ρI′ ⊆ ρI . By Lemma 8.6 it follows that τ−C

3Because we do not allow basic-value nodes with no incoming edges, the semantics of the edge
deletion is slightly altered; when the last incoming edge of a basic-value node is removed, then this
basic-value node is also removed.
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is generic and constructive. It follows that there is a program pτ in GOOD that
expresses this transformation.

It is also possible to construct a GOOD program ppre that replaces basic-value
nodes with object nodes that have an edge to the old basic-value node it replaces,
as is shown, for example, in Figure 8.4. Here the Aint and α5 are defined as for the
construction of τ−C and the attribute name γ is some new attribute name not in the
input schema graph of τ . The program ppre consists of the four operations shown in
Figure 8.5:

• Operation (a) is a node addition that adds an object node for every basic-value
node with sort s. This operation is performed for every basic-value sort s in the
input schema graph.

• Operation (b) is an edge addition that adds a loop for a basic-value representa-
tion r. This operation is performed for every r ∈ C.

• Operation (c) is an edge addition that adds a β edge from an old object node
to an object node that replaces a basic-value if there was a β edge from the
old object node to the original basic-value node. This operation is performed
for every class name B, attribute name β and basic-value sort s in the input
schema graph of τ .

• Operation (d) is an edge deletion that removes the edges between the old object
nodes and the basic-value nodes. It is performed for very class name B, attribute
name β and basic-value sort s in the input schema graph of τ .

It is easy to see that there is is also a GOOD program ppost that performs the inverse
operation. The operations of ppost are shown in Figure 8.6.

It follows that the GOOD program [ppre, pτ , ppost] computes the transformation
τ . �

The limitation that GOOD cannot introduce new basic values can be removed by
introducing a special operator that allows the addition of a certain basic-value node.

Definition 8.18 The GOOD+ language is defined as the GOOD language plus a spe-
cial printable addition which is defined as follows. Given a class name4 K, attribute
name α, basic-value sort s and basic-value representation r, the printable addition
PA[K,α, s, r] results, when applied to a GOOD+ instance graph I, in the minimal
super-instance-graph I ′ of I such that there is an edge 〈n1, α, n2〉 in I ′ with n1 6∈ NI ,
λI′(n1) = {K}, σI′(n1) = obj, σI′(n2) = s and ρI′(n2) = r.

Theorem 8.8 For every finite set C ⊆ D the GOOD+ language can express all
C-generic C-constructive determinate GOOD+ transformations that leave old basic-
value nodes the same, i.e., for every pair 〈I, I ′〉 in the transformation it holds that if
〈n, r〉 ∈ ρI′ and 〈n′, r〉 ∈ ρI then n = n′.

4In the original definition of the GOOD language this operation could have simply added a basic-
value node. However, in our definition of GOOD+ instance graphs we do not allow basic-value nodes
without incoming edges.
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Figure 8.4: The result of replacing basic-value nodes with object nodes
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Figure 8.5: GOOD operations that replace basic-value nodes with As nodes

Proof: With the printable addition in GOOD+ we can begin with adding the new
basic-value nodes with the printable addition. Because the transformation is deter-
minate it holds that all new basic-value representations are in C. This can be shown
as follows. Assume there is a pair 〈I1, I2〉 in the transformation and I2 contains the
basic-value representation r that does not occur in I1. Then there will be a full per-
mutation a that is the identity on N ∪D except that it swaps r with some other other
basic-value representation r′ not in I1 and not in I2 and not in C. If r 6∈ C then it
follows from the C-genericity of the transformation that 〈a(I1), a(I2)〉 must also be
a pair in the transformation. However, since r and r′ are both not in I1 it follows
that I1 = a(I1). Because the transformation is also determinate it follows that I2
and a(I2) are isomorphic. This is however impossible because a(I2) will contain the
basic-value representation r′ which is not in I2. The assumption that r 6∈ C must,
therefore, be false.
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Figure 8.6: GOOD operations that replace object nodes with basic-value nodes

Since all new basic-value representations are a subset of C and C is a finite set
we can simply start with adding all the basic-value representations in C with print-
able additions. What then remains to be done is a C-generic and C-constructive
determinate transformation that introduces no new basic-value nodes and leaves old
basic-value nodes the same. It follows by Lemma 8.7 that this transformation can be
expressed in GOOD. �

8.4.2 Mapping GDM to GOOD+ with GUL

In order to apply the GOOD+ completeness result to GUL we have to show that GDM
instances can somehow be mapped to GOOD+ instance graphs. For GDM instances
[I] where I is a GOOD+ instance graph this is obvious.

Definition 8.19 A GOOD+ instance is a GDM instance [I] such that I is a GOOD+

instance graph.

It follows that we now only have to find a mapping that maps all GDM instances
to GOOD+ instances. The following definition gives such a mapping.

Definition 8.20 Given a GDM instance [I] the GOOD version of [I] is G([I]) where
G([I]) is constructed from [I] as follows.

1. Object nodes are represented by an object node with a special class name Aobj

that is assumed to be distinct from all other class names in I.

2. composite-value nodes are represent by an object node with a special class name
Acom that is assumed to be distinct from all other class names in I.

3. Basic-value nodes are represented by an object node with a special class name
As (assumed to be distinct from all other class names in I) where s is the basic-
value sort, a basic-value node with the same sort and basic-value representation
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as the original node, and an attribute edge with a special γ label from the object
node to the basic-value node.

4. Attribute edges are represented as attribute edges with the same label between
the object nodes that represent the original nodes.

5. The class names of a node are represented as loops with a special label αc where
c is the class name.

An example of a GDM instance graph and its GOOD version is shown in Figure 8.7.
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Figure 8.7: A GDM instance graph and its GOOD version

A nice feature of this mapping is that it can be computed in GUL and that the
same holds for the reverse mapping. This is shown in the following two lemmas.

Lemma 8.9 Given a basic schema graph S there is a GUL program that transforms
every instance [I] that belongs to S, to G([I]).

Proof: The basic idea is to make a copy of every node and let the copy point to the
original node with a γ edge. The total program consists of three phases:

1. In the first phase a copy of every class-labeled node is made.

2. In the second phase copies are made of edges between copied nodes and of
class-free nodes that have incoming edges from nodes that were already copied.

3. In the final phase the original nodes are removed.

We start by making copies of class-labeled nodes as shown in Figure 8.8. The
program in (a) adds a copy for every composite-value node. It must be performed for
every class name B in S. The γ edge does not point to the original composite-value
node but to a value equivalent copy of this node. Since every composite-value node is
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labeled with at most one class name only one copy of every class-labeled composite-
value node is made. In program (b) a copy is added for every class-labeled object
node. It must be performed for every class name B in S. In the first step a special
new class name Anc is added and removed in the second step if a copy already exists.
This is to prevent that multiple copies of the same object node are made. In the third
step a copy is made. Note that it is only made if such a copy did not already exist
due to the Nnc label of the original node. In the fourth step the copy is extended
with loops that indicate the class names of the original node. In program (c) a copy
is added for every class-labeled basic-value node. It must also be performed for every
class name B in S. Its result is similar to that of program (b).

Acom

γ

(a)

B αB

ssss

B AobjBAobj B AobjBAnc Anc
γ γ γ

(b)

B AsBAs B AsBAnc Anc
γ γ γ

(c)

αB

αB

Anc

Anc

Figure 8.8: GUL operations to copy class-labeled nodes for a GOOD version

In the second phase we make copies of edges between copied nodes and of class-free
nodes that have incoming edge from from nodes that were already copied. This is
done in three steps. In the first step the edges between copied nodes are copied. In
the second step we copy the nodes under copied object nodes, and then in the third
step we copy all the nodes under copied composite-value nodes. These steps are done
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as follows.

1. This can be done with the operations in Figure 8.9. These operations must be
performed for all attribute names β and basic-value sorts s in S.
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Figure 8.9: GUL operations to copy edges between already copied nodes for a GOOD
version

2. In Figure 8.10 and Figure 8.11 the programs are presented that do this for nodes
under copied object nodes. The program in Figure 8.10 (a) adds a copy for
every composite value node under a copied object node. It must be performed
for every attribute name β in S. In the first step the copy is added and labeled
with class name Acom. Note that the added γ edge does not point to the
original composite-value node but to a value equivalent copy. In the second
step the original β edge is removed to prevent that more than one copy is made.
The program in Figure 8.11 (b) adds a copy for every object node under a copied
object node. It must be performed for every attribute name β and class name
B in S. In the first and second step it is determined if a copy does not already
exist by adding a special class name Anc if a copy does not exist. If not, then
a copy is made in the third step. Finally, in the last step the copy is extended
with a αB loop is the original is labeled with the class name B. The program
in Figure 8.11 (c) adds a copy for every basic-value node under a copied object
node. It must also be performed for every attribute name β, basic-value sort s
and class name B in S. Its result is similar to that of the program (b).

3. In Figure 8.12 and Figure 8.13 the programs are presented that copy all the
nodes under copied composite-value nodes. The operations and their effect are
similar to those in the previous step.

The presented programs only copy the the nodes directly under already copied nodes.
To copy all the nodes that are reachable via some path from a class-labeled node, we
can simply apply the fix-point operation to the programs above so that we continue
to copy nodes until no more nodes are copied. Since all nodes in an instance graph are
reachable from a class-labeled node it follows that after this all nodes will be copied.
Note that the first of the three programs always ensures that the edges between
already copied nodes are also copied.

In the final phase we remove all the object nodes, composite-value nodes, class
names of the basic-value nodes and the γ edges for object nodes and composite-value
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Figure 8.10: GUL operations to copy composite-value nodes under already copied
object nodes for a GOOD version

nodes. This can be done with the deletions shown in Figure 8.14. This must be
performed for all class names B and basic-value sorts s in S. The original class-free
nodes will also be automatically deleted because they will no longer be reachable from
a class-labeled node.

�

Lemma 8.10 Given a basic schema graph S there is a GUL program that transforms
G([I]) to [I] for every instance [I] that belongs to S.

Proof: The basic idea is to make a copy of every node in G([I]) that is equal to its
original in [I] and let the node in G([I]) point to its copy with a γ edge. The total
program consists of five phases:

1. In the first phase a copy of every Aobj node is made. Note that copies of As
nodes already exist in G([I]).

2. In the second phase copies are of Acom nodes and the edges from them are
made.

3. In the third phase edges from Aobj nodes are copied.

4. In the fourth phase class names are added.

5. In the final phase the original nodes in G([I]) are removed.

The first phase is done by applying the addition in Figure 8.15.
The second phase is done by repeating two steps with a fix-point operation. In

the first step it is determined which Acom nodes are ready to be copied, i.e., all
outgoing edges end in nodes that are already copied, and then they are copied. The
second step consists of copying all the edges that leave from the original Acom node.
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Figure 8.11: GUL operations to copy object nodes and basic-value nodes under already
copied object nodes for a GOOD version

The program for the first step is shown in Figure 8.16. The first two operations
determine which Acom nodes have not been copied yet. The next two operations
determine which Acom nodes are ready to be copied, i.e., all the Acom nodes under
this nodes are already copied. Note that the fourth operation has to be performed for
all attribute names β in the schema graph S. Finally, in the last addition the copy of
the Acom node is made. The program for the second step is shown in Figure 8.17. All
the operations in this program should be performed for every attribute name β and
basic-value sort s in S. Note that the first operation has to make a value equivalent
copy of the composite-value node because these can have at most one incoming edge.
With the help of a fix-point operation these two steps can be repeated until no more
new copies are made. Since I contains no cycles through only composite-value nodes,
it follows that after the fix-point operation all Acom nodes and the edges that leave
from them are copied.

In the third phase the edges from Aobj nodes are copied. The operations for this
are shown in Figure 8.18 and similar to those in Figure 8.17. Note that also here we
need to make a value equivalent copy of a composite-value node if we want to add an
incoming edge.

In the fourth phase we add the class names that are indicated with αB loops. The
operations for this are shown in Figure 8.19. These operations have to be performed
for every basic-value sort s and class name B in S.
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Figure 8.12: GUL operations to copy composite-value nodes under already copied
composite-value nodes for a GOOD version

In the fifth and final phase we remove all the original Aobj, Acom and As nodes
from G([I]). This can be done with the operations shown in Figure 8.20. �

8.4.3 Simulating GOOD+ in GUL

In this subsection we show that GUL is complete in the sense that it can express all C-
generic C-constructive deterministic GDM transformations. This will be done in two
steps. First, we show that GUL can emulate the GOOD+ language. This means that
GUL can express all C-generic C-constructive deterministic GDM transformations on
GOOD+ instances. Then we show that together with the results from the previous
section that say that GUL can express the mappings from and to GOOD+ instances,
the completeness of GUL follows.

Lemma 8.11 If τ is a C-generic C-constructive deterministic GDM transformation
on GOOD+ instances then there is a GUL program that expresses τ .

Proof: It is easy to see that for every such τ there is a C-generic, C-constructive
determinate GOOD+ transformation τ ′ that leaves the old basic-value nodes the
same, such that τ = { 〈[I], [I ′]〉 | 〈I, I ′〉 ∈ τ ′ }. It follows by Theorem 8.8 that τ ′

can be expressed by the GOOD+ language. It is, therefore, sufficient to show that
for every GOOD+ program there is a corresponding GUL program that computes
the corresponding transformation on instances. For this we first show that the basic
operations in the GOOD+ languages can be simulated in GUL, i.e., there is a GUL
program that expresses the corresponding transformation on instances.

1. A node addition NA[J,K, {(α1,m1), . . . , (αk,mk)}].
The simulation of the node addition is shown in Figure 8.21. The first operation
is an addition that adds a composite-value node with a new label K ′ when the
pattern J embeds. Note that since these new nodes are all in the same class K ′
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Figure 8.13: GUL operations to copy object nodes and basic-value nodes under already
copied composite-value nodes for a GOOD version

the value-equivalent nodes will be merged. In the second operation those K ′

nodes are deleted for which a corresponding K object node already existed. In
the third operation we create for the remaining K ′ nodes a new K object node.
In the last operations all the K ′ nodes are deleted.

2. An edge addition EA[J, {(m1, α1,m
′
1), . . . , (mk, αk,m

′
k)}].

The simulation is shown in Figure 8.22 (a).

3. A node deletion ND[J,m].
The simulation is shown in Figure 8.22 (b).

4. An edge deletion ED[J,K, {(m1, α1,m
′
1), . . . , (mk, αk,m

′
k)}].

The simulation is shown in Figure 8.22 (c).

5. An abstraction AB[J, n,K, α, β].
For the simulation of the abstraction we need to be able to determine if two
attributes α and β of A nodes and B nodes, respectively, describe the same set.
This is determined by the GUL program in Figure 8.23. First a C node for all
pairs of A and B nodes is made. Then the α and β attributes are copied to the
C node. In the fourth operation the common elements are deleted. In the final
two operations the C node is deleted if there are any elements left. So there will
be a C node between exactly those A and B nodes for which the α and β edges
describe the same set. We will write this operation as Aα = Bβ .
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Figure 8.14: GUL operations to remove the original nodes that were copied for a
GOOD version
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Figure 8.15: A GUL operation to copy Aobj nodes

The first phase of the actual simulation of the abstraction is shown in Fig-
ure 8.24. In the first operations the pattern J is matched and to every node
that n is embedded upon the label A is added and a distinct composite value
node with label S is created. The second operation copies the β edges from the
A node to the the S node. The third operation removes the link between the
S node and the A node. This means that all S nodes for which the β attribute
represents the same set are merged. So now every S node corresponds exactly
with a set described by the β edges of a node that the node n in J was embed-
ded upon. In the fourth operation a S’ object node is created for every S node.
These nodes will ultimately become the new K nodes. In the final operation
the β edges of the S node are copied to the S’ node.

The second phase is shown in Figure 8.25. In the first operation we use the
program in Figure 8.23 to determine for which A and S’ nodes the β edges
describe the same set. In the second operation these nodes are linked with an α
edge. The GOOD abstraction does not add a K nodes if there is already a node
equal to the one that is to be added. Therefore we have to check if the S’ node
is not equal to some already existing K node. For this purpose we again use the
program in Figure 8.23 to determine if this is the case. In the fourth operation
we remove those S’ for which there is already a similar K node. In the final
two steps the remaining S’ nodes are renamed to K nodes and the intermediate
results are removed.

6. A printable addition PA[K,α, s, r].
The GOOD+ printable addition is simulated by the addition in Figure 8.26.

In the next step of this proof we show that if a list of GOOD+ programs expresses
a certain transformation on GOOD+ instance graphs, then the corresponding list of
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simulations in GUL expresses the corresponding transformation on instances. If we
denote the simulation of a GOOD+ transformation τ in GUL as τ̂ then we have to
show that τ̂1 ◦ τ2 = τ̂1 ◦ τ̂2 if τ1 and τ2 are C-generic GOOD+ transformations:

1. τ̂1 ◦ τ2 ⊆ τ̂1 ◦ τ̂2
Assume that 〈[I1], [I2]〉 ∈ τ̂1 ◦ τ2. It then holds that there are two instance
graphs I ′1 and I ′2 such that I ′1 ' I1 and I ′2 ' I2 and 〈I ′1, I ′2〉 ∈ τ1 ◦ τ2. It follows
that there is an instance graph I ′3 such that 〈I ′1, I ′3〉 ∈ τ1 and 〈I ′3, I ′2〉 ∈ τ2.
By definition of τ̂ it then holds that 〈[I ′1], [I ′3]〉 ∈ τ̂1 and 〈[I ′3], [I ′2]〉 ∈ τ̂2 and,
therefore, also that 〈[I ′1], [I ′2]〉 ∈ τ̂1 ◦ τ̂2. Because I ′1 ' I1 and I ′2 ' I2 it follows
that 〈[I1], [I2]〉 ∈ τ̂1 ◦ τ̂2.

2. τ̂1 ◦ τ̂2 ⊆ τ̂1 ◦ τ2
Assume that 〈[I1], [I2]〉 ∈ τ̂1 ◦ τ̂2. It then follows that there is an instance graph
I3 such that 〈[I1], [I3]〉 ∈ τ̂1 and 〈[I3], [I2]〉 ∈ τ̂2. It follows that there are instance
graph I ′1, I ′2, I ′3 and I ′′3 such that I ′1 ' I1, I ′2 ' I2, I ′3 ' I3, I ′′3 ' I3, 〈I ′1, I ′3〉 ∈ τ1
and 〈I ′′3 , I ′2〉 ∈ τ2. Since ' is an equivalence relation it follows I ′3 ' I ′′3 and,
therefore, there is a node permutation a such that a(I ′3) = I ′′3 . Since τ1 is C-
generic it follows from 〈I ′1, I ′3〉 ∈ τ1 that 〈a(I ′1), a(I ′3)〉 = 〈a(I ′1), I ′′3 〉 ∈ τ1. It
then follows that 〈a(I ′1), I ′2〉 ∈ τ1 ◦ τ2. By definition of τ̂ it then follows that
〈[a(I ′1)], [I ′2]〉 ∈ τ̂1 ◦ τ2. Since I ′1 ' a(I ′1), and I ′1 ' I1 and I ′2 ' I2 it follows that
〈[I1], [I2]〉 ∈ τ̂1 ◦ τ2.

Finally, we have to show that we can simulate the method construct as defined for
GOOD in (Gyssens et al., 1994). As was shown in (van Rossum, 1992) the expressive
power of GOOD stays the same if this construct is replaced with a fix-point operator.
It is therefore sufficient to show that we can simulate this fix-point operator in GUL.
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Figure 8.18: GUL operations for copying edges from Aobj nodes
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Figure 8.19: GUL operations for adding the class names indicated by αB loops

We let FpG denote the GOOD fix-point operator. Note that it is not true that in
general FpG(p) = Fp(p̂) with p̂ the simulation of the GOOD program p in GDM. This
is because the GUL fix-point operator already halts when after an iteration of p the
resulting instance graph is isomorphic to the one before the iteration, whereas the
GOOD fix-point operation halts only when after an iteration the resulting instance
graph is identical to the one before the iteration. This can be remedied with the help
of the three GUL programs shown in Figure 8.27. In (a) we see the program mo (mark
old) that can be used to mark nodes with a special new O label. This enables us to
see at the end of an iteration which nodes are new. The operations in mo have to
be performed for every class name A, attribute name α and basic-value sort s in the
original GOOD+ instance graph. In (b) we see the program an (add new) that uses
the special new labels N and M . It labels all the new nodes with N and then adds a
new M node for every one of them. Also here all operations containing A, α or s have
to be performed for every class name A, attribute name α and basic-value sort s in
the original GOOD+ instance graph. Finally, in (c) we see the program rm (remove
marking) that removes all the special class names and nodes that were added by the
previous two programs. Here also all operations that contain s must be performed
for every basic-value sort in the original GOOD+ instance graph. It is now easy to
see that the GDM program [mo, Fp([p̂, na,mo]), rm] simulates the GOOD program
FpG(p). �

Theorem 8.12 If τ is a C-generic C-constructive deterministic GDM transformation
then there is a GUL program that expresses τ .

Proof: Every GDM instance [I] can be represented as a GOOD+ instance G([I]).
It is easy to see that if we define that τG = { 〈G([I]), G([I ′])〉 | 〈[I], [I ′]〉 ∈ τ } then
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Figure 8.20: GUL operations for removing the Aobj, Acom and As nodes
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Figure 8.21: Simulation of the GOOD node addition in GUL

it follows that τG is a C-generic, C-constructive, deterministic GDM transformation.
It follows by Lemma 8.11 that there is a program pτ that expresses τG. By the
Lemma 8.9 there is a program tg that transforms instances [I] into their GOOD ver-
sion G([I]). By Lemma 8.10 it holds that there is a program fg that does the reverse
transformation. It follows that the GUL program [tg, pτ , fg] expresses τ . �

8.5 The Necessity of is Edges

The is edges in GUL can be used for two purposes. The first is two express that
in a base pattern two composite-value nodes must be embedded upon two value-
equivalent nodes. The second is to copy entire trees of composite-value nodes with a
single addition. As can be seen from the proof of Theorem 8.12 we can express all
C-generic C-constructive deterministic GDM transformation without using is edges in
the base pattern of any addition or deletion. This raises the question whether we can
also express all these transformations without any is edges in the extension patterns.

In this section we first show that under the restriction that the input and output
schema graphs of a transformation do not contain cycles of composite-value nodes
all transformations that GUL can express can also be expressed by GUL without is
edges. However, it is also shown that in general there are transformation that can be
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Figure 8.22: Simulation of the GOOD edge addition, node deletion and edge deletion
in GUL
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Figure 8.23: A GUL program for set equality

expressed by GUL but cannot be expressed by GUL without is edges.

Theorem 8.13 If τ is a C-generic C-constructive deterministic GDM transformation
and in the input schema graph and the output schema graph there are no cycles of
composite-value nodes then there is a GUL program that expresses τ such that this
program does not use is edges.

Proof: As was shown in the proof of Lemma 8.11 the transformation τG can be
expressed in GUL without using is edges. It is, therefore, sufficient to show that the
transformation to and from GOOD versions can also be expressed without using is
edges.

The transformation to GOOD versions can be expressed by a program that is
similar to the program discussed in the proof of Lemma 8.9 and consists of four
phases:

1. The first is similar to the first phase of the program in the proof of Lemma 8.9
except that the operation in Figure 8.8 (a) is not executed. This means that
only copies for class-labeled object nodes and class-labeled basic-value nodes
will be made.
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Figure 8.24: First phase of the simulation in GUL of the GOOD abstraction

2. The second phase is also similar to the second phase of the program in the proof
of Lemma 8.9 except that

(a) of the operations in Figure 8.9 only the first two are executed,

(b) of the operations in Figure 8.10 and Figure 8.11 only those in Figure 8.11
are executed and

(c) of the operations in Figure 8.12 and Figure 8.13 no operation is executed.

The consequence is that composite-value nodes are not copied at all.

3. The third phase copies the composite-value nodes and the edges that start or
end in them. This can be done with the operations in Figure 8.28 where (a)
copies the composite-value nodes under a class-labeled composite-value node
and (b) copies the composite-value nodes under an object node.

In the first operation of (a) a copy is made of every class-labeled composite-value
node. This operation must be performed for every class name B in the input
schema graph. Note that the link between copy and original is indicated with a
γ′ edge that is the reverse of the γ edges in the proof of Lemma 8.9. This is nec-
essary because class-labeled composite-value nodes cannot have also incoming
edges. The second operation adds a copy of a composite-value that is reachable
from a class-labeled composite-value node via a path with the attribute-name
list β1, . . . , βn. This operation must be performed for every class name in the
input schema graph and every list of attribute names [β1, . . . , βn] with attribute
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Figure 8.26: Simulation of the GOOD+ printable addition in GUL

names from the input schema graph such that n is less than or equal to the length
of the longest weak-value path (not counting the isa edges) in the input schema
graph. The operation for the shorter list should precede the operation for the
longer list. The final two operations in (a) should be performed in the same
fashion and copy the edges the leave from copied composite-value nodes and
arrive in object nodes or basic-value nodes. Since any tree of composite-value
nodes in the instance graph will not be higher then the length of the longest
weak-value path (not counting the isa edges) in the input schema graph, it
follows that this program copies the complete tree of composite-value nodes.

In the first operation of (b) a copy is made of every composite-value node directly
under an object node. The other three operations should be performed in a
similar fashion as those in (a). Also here the result will be that the whole tree
of composite-value nodes.

4. The fourth phase is again equal to the third phase in the proof of Lemma 8.9.
Note that we do not need to delete the extra γ′ edges because these all leave from
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Figure 8.27: The programs mo, an and rm for simulating the GOOD fix-point oper-
ator

composite-value nodes that are already deleted by the deletions in Figure 8.14.

The transformation from GOOD version to full GDM instance can be done by a
program similar to to the program discussed in the proof of Lemma 8.10 and consists
of five phases:

1. The first phase is equal to the first phase of the program in the proof of
Lemma 8.10. It makes a copy of every Aobj node.

2. The second phase copies the edges between Aobj nodes and between Aobj and
As nodes. This is similar to the third phase of the program of Lemma 8.10 and
can be done with the final two operations in Figure 8.18. Note that since we
skipped the second phase of the program in Lemma 8.10 we have not copied the
Acom nodes.

3. The third phase adds the class names for object nodes and basic-value nodes.
This is similar to phase four in the program in Lemma 8.10 and can be done
with the final two operations in Figure 8.19.

4. The fourth phase makes copies of the Acom nodes and the edges that arrive
in them or leave from them. This can be done by the operations shown in
Figure 8.29. Program (a) copies the nodes under an Acom node with an αB loop,
and program (b) copies the Acom nodes under an Aobj node. The operations
are similar to those in Figure 8.28 and must be performed in a similar fashion.
A difference is that here the operations should be performed for every class
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Figure 8.28: GUL programs for copying composite-value nodes above a certain nesting
depth for a GOOD version

name B, basic-value sort s and list of attribute names [β1, . . . , βn] in the output
schema graph. Evidently the maximum length of the list is determined here by
the length of the longest weak-value path (not counting the isa edges) in the
output schema graph.

5. The fifth phase and final phase all the original Aobj, Acom and As node are
removed. This is similar to the final phase of the program of Lemma 8.10 and
can be done with the operations in Figure 8.20.

�

The reason that cycles of composite-value nodes are important is that they al-
low composite-values of arbitrary nesting depth. Consider, for example, the schema
graphs in Figure 8.30. The schema graph (a) allows a chain of composite-value nodes
connected by b edges. The length of this chain is not limited by the schema graph.
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Figure 8.29: GUL programs for copying Acom nodes above a certain nesting depth

The schema graph (b) also allows such chains but with a maximum length of 2.
If, for example, we would like to make a copy of such a chain then it is easy to see

how this might be done with an addition with an is edge in the extension pattern.
However, if such is edges are not allowed then we have to copy the chain node by
node. As was shown in the previous proof this is easy if we know the maximum length
of the chain, but becomes a problem if it is not known.

The cause of this problem can be informally described as the combination of the
reachability constraint and non-sharing constraint which both hold for patterns. The
first constraint limits the depth that a pattern can “see”, i.e., no node of the pattern
will be embedded upon a composite-value node that is nested beyond a certain depth.
The non-sharing constraint prevents that the nesting depth of a node is decreased by
adding a new shorter incoming path. A consequence is that all GUL programs cannot
change or copy composite-value nodes beyond a certain nesting depth.

Definition 8.21 The nesting level of a weak instance graph I (written as ν(I)) is
the length of the longest value path in I. The nesting level of an instance [I] (written
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Figure 8.30: A basic GDM schema graph with a cycle of composite-value nodes and
one without

as ν([I])) is equal to the nesting level of I.

In the following lemmas we show that there are limitations to what the addition
and the deletion in GUL can do to the nesting level of an instance if is edges are not
allowed.

Lemma 8.14 If Add(J, J ′) is an addition that contains no is edges then there is
a number k ∈ N such that if k ≤ ν([I]) then ν([[Add(J, J ′)]]([I])) = ν([I]), and if
ν([I]) ≤ k then ν([[Add(J, J ′)]]([I])) ≤ k.

Proof: Let I ′ be the weak instance graph that is constructed form I as in the proof
of Theorem 3.8. Since only things are added it follows that ν(I) ≤ ν(I ′).

We let k = ν(J ′). Suppose that p is a value path in I ′. The begin edge of p is
either a new edge or an old edge:

• Assume that the begin edge of p is a new edge. Because no new incoming edges
can be added to old composite-value nodes it follows that all the composite-
value nodes in the path except the first node and last node are new. Since all
the nodes in p are connected by edges they must have been added for the same
embedding of J . Therefore there must be a similar value path in J ′. Since
k = ν(J ′) it follows that |p| ≤ k and if k ≤ ν(I) then |p| ≤ ν(I).

• Assume that the begin edge of p is an old edge. If all edges in p are old edges
then p is an old path and, therefore, |p| ≤ ν(I) and if ν(I) ≤ k then |p| ≤ k.
If not all edges in p are old then we may assume that p = p1 • p2 such that p1

is a value path of old edges and p2 is a value path of new edges. Because in J ′

composite-value nodes must be class-labeled or reachable from a class-labeled
node and composite-value nodes can have at most one incoming edge it follows
that there is a similar path p′ = p′1 • p′2 in J ′ such that p′1 is similar to p1 and
p′2 is similar to p2. Since |p′| ≤ ν(J ′), |p′| = |p| and k = ν(J ′) it follows that
|p| ≤ k and if k ≤ ν(I) then |p| ≤ ν(I).

We may now conclude that for all value paths p in I ′ it holds that if k ≤ ν([I])
then |p| ≤ ν([I]) and if ν([I]) ≤ k then |p| ≤ k. It follows that if k ≤ ν([I]) then
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ν(I ′) ≤ ν([I]) and if ν([I]) ≤ k then ν([I ′]) ≤ k. Since we already concluded that
ν(I) ≤ ν(I ′) it follows that if k ≤ ν([I]) then ν(I ′) = ν([I]).

The final result of the addition is determined by applying the reduction to I ′.
Since the reduction only merges value-equivalent nodes it will not add any new value
paths, i.e., for every value path in the reduction there will be a similar value path
in the original weak instance graph. It follows that the reduction of a weak instance
graph does not change its nesting depth. �

Lemma 8.15 If Del(J, J ′) is a deletion that contains no is edges then it holds that
ν([[Del(J, J ′)]]([I])) ≤ ν([I]).

Proof: Let I ′ be the weak instance graph that is constructed form I as in the proof
of Theorem 3.9. Since only things are deleted it follows that ν(I ′) ≤ ν(I). Because
the reduction of a weak instance graph does not change its nesting level it follows
that ν(İ ′) ≤ ν(I). �

With these lemmas we can now show that there are similar limitations for trans-
formations for entire GUL programs without is edges.

Theorem 8.16 For any GUL program p there is a certain k ∈ N such that if k ≤
ν([I]) it holds that ν([[p]]([I])) ≤ ν([I]) and if ν([I]) ≤ k then ν([[p]]([I])) ≤ k.

Proof: We show this with induction upon the structure of p:

• If p is a single addition then this follows by Lemma 8.14.

• If p is a single deletion then this follows by Lemma 8.15.

• If p = [o1, . . . , on] then it follows by the induction assumption that there is a
number ki for every oi such that if ki ≤ ν([I]) then ν([[oi]]([I])) ≤ ν([I]) and if
ν([I]) ≤ ki then ν([[oi]]([I])) ≤ ki. If k̂ is the maximum of all these ki then it
holds for all oi that if k̂ ≤ ν([I]) then ν([[oi]]([I])) ≤ ν([I]) and if ν([I]) ≤ k̂ then
ν([[oi]]([I])) ≤ k̂. We can show that if this holds for oi and oj then it also holds
for oi ◦ oj :

– Assume that k̂ ≤ ν([I]). It then follows that ν([[oi]]([I])) ≤ ν([I]). It holds
that ν([[oi]]([I])) ≤ k̂ or ν([[oi]]([I])) ≤ k̂ :

∗ Assume that ν([[oi]]([I])) ≤ k̂. It follows that ν([[oj ]]([[oi]]([I]))) =
ν([[oj ◦ oi]]([I])) ≤ k̂. Since we assumed that k̂ ≤ ν([I]) it follows
that ν([[oj ◦ oi]]([I])) ≤ ν([I]).

∗ Assume that k̂ ≤ ν([[oi]]([I])). It follows that ν([[oj ]]([[oi]]([I]))) =
ν([[oj ◦ oi]]([I])) ≤ ν([[oi]]([I])). Since we already concluded that it
holds that ν([[oi]]([I])) ≤ ν([I]) it follows that ν([[oj ◦ oi]]([I])) ≤ ν([I]).
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– Assume that ν([I]) ≤ k̂. It then follows that ν([[oi]]([I])) ≤ k̂. It follows
that ν([[oj ]]([[oi]]([I]))) = ν([[oj ◦ oi]]([I])) ≤ k̂.

We can then show with induction upon the length of p that this also holds for
p.

• If p = Fp(o) then if [[Fp(o)]]([I]) is defined then there is a n ∈ N such that
[[Fp(o)]]([I]) = [[o]]n([I]) where [[o]]n is defined as [[o]] ◦ . . . ◦ [[o]] (n times). By the
induction assumption it holds that there is a number k such that if k ≤ ν([I])
then ν([[o]]([I])) ≤ ν([I]) and if ν([I]) ≤ k then ν([[o]]([I])) ≤ k. As was shown
in the previous item it can then be shown with induction upon n that the same
holds for Fp(o).

�

It is easy to see that there are C-generic C-constructive deterministic GDM trans-
formations that do not satisfy the constraint in Theorem 8.16. An example is the
transformation on instances of the schema graph in Figure 8.30 (a) that doubles ev-
ery chain of composite-value nodes. This transformation always doubles the nesting
level of the instance and it follows by Theorem 8.16 that it cannot be expressed by
a GUL program without is edges. Since it is clearly a C-generic C-constructive de-
terministic transformation it follows by Theorem 8.12 that it can be expressed by a
GUL program.

8.6 Discussion

In this chapter we have discussed the expressive power of GUL. We have shown that
GUL can express only C-generic C-constructive deterministic GDM transformations
(Theorem 8.4) and that all C-generic C-constructive deterministic GDM transforma-
tion can be expressed by some GUL program (Theorem 8.12). It follows that GUL can
express exactly all C-generic C-constructive deterministic GDM transformations.

We have also discussed the necessity of is edges in GUL programs. For any GDM
transformation that can be expressed by GUL and has an input schema graph and
output schema graph without cycles of composite-value nodes, it was shown that this
transformation can be expressed by a GUL program without is edges (Theorem 8.13).
However, it was also shown that there are limitations to the transformations that can
be expressed by GUL without is edges (Theorem 8.16) such that there are transfor-
mations that can be expressed by GUL but not by GUL without is edges.



Chapter 9

Conclusions and Further
Research

In this chapter we summarize the results of the previous chapters and present some
conclusions and pointers for further research. In Section 9.1 we discuss GDM. In
Section 9.2 we discuss GUL, and, finally, in Section 9.3 we discuss the typing of GUL.

9.1 GDM

Summary

In GDM instances and schemas are described by instance graphs and schema graphs.
In both graphs we distinguish three types of nodes: object nodes, composite-value
nodes and basic-value nodes. In an instance graph these nodes represent objects,
composite values and basic values, respectively, and in a schema graph they represent
classes that contain such entities. In an instance graph the attributes of objects and
composite values are indicated with attribute edges that are labeled with the name of
the attribute. In a schema graph similar edges are used to indicate that entities of
a certain class may have a certain attribute and the entities in that attribute should
belong to a certain class. Special isa edges may be used in a schema graph to indicate
that a certain class is a subclass of another class. Finally, nodes may be labeled with
class names. In an instance graph a node is labeled with a set of class names to
indicate to which named classes the entity it represents belongs. In a schema graph
a node is labeled with zero or one class name to indicate the name of the class it
represents if it has one.

An instance graph must respect the meaning of its nodes which means that there
may not be two basic-value nodes that represent the same basic value and there may
not be two composite-value nodes in the same attribute or labeled with the same class
name that represent the same composite value. Graphs that are instance graphs ex-

197



198 CHAPTER 9. CONCLUSIONS AND FURTHER RESEARCH

cept that they do not satisfy this constraint are called weak instance graphs. Another
important constraint is the non-sharing constraint which states that composite-value
nodes cannot be shared by more than one attribute or class. This is shown to be a fun-
damental property if the data model has to be a generalization of existing relational
and complex-object data models.

The relationship between instance graphs and schema graphs is defined in terms
of extension relations that represent a many-to-many relationship between nodes of
the schema graph and nodes of the instance graph. This relationship must respect
the class names, the types of the nodes, the attribute edges and the isa edges in the
schema graph. An instance graph is said to belong to a certain schema graph if it
holds for the minimal extension relation that all edges, nodes and class-names in the
instance graph are covered in the schema graph and the nodes in the instance graph
are labeled with all the necessary class names as required by the schema graph.

Conclusions

• GDM is a graph-based data model that supports the notions of object iden-
tity (by object nodes), complex values (by composite-value nodes), symmetric
relationships (by named composite-value class nodes) and inheritance (by isa
edges).

• As shown in Section 2.7 it generalizes many existing data models. Note, by the
way, that we explicitly do not claim that this means it is a “better” data model.
However, this property ensures that theoretical results that are obtained for
GDM can also be applied to other data models.

• Schemas and instances are defined independently in GDM and instances can
exist without a schema.

• As shown in Section 2.5 and Section 2.6 the data model can be extended with
attribute constraints such as functionality, totality, injectivity and surjectivity
but if we want to allow all these constraints for all attributes and let them
respect the meaning of composite-value nodes then this slightly complicates the
semantics of the data model.

Further research

As suggested in Section 2.7 it may be interesting to see if the data model can be
extended with ways to express other constraints such as keys, class disjointness et
cetera.
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9.2 GUL

Summary

GUL is a language based on pattern matching. Every basic operation contains a
pattern, i.e., a prototypical instance graph fragment, that is matched in the instance
graph. Wherever a matching is found a certain operation is performed. There are
only two basic operations; the addition operation and the deletion operation.

The addition operation is specified by a base pattern that has to be matched and an
extension pattern that contains the base pattern and indicates what nodes, edges and
class names should be added when the base pattern can be matched. The base pattern
and the extension may contain special edges called is edges between composite-value
nodes. In the base pattern such an edge indicates that the nodes it connects will only
match with nodes that represent the composite value. In the extension pattern an is
edge indicates that the addition should add as much edges and nodes as is necessary
to make these two nodes represent the same composite value.

The deletion operation consists also of a base pattern and this pattern contains
a core pattern. The nodes, edges and class names that are not in core pattern are
deleted for every matching of the base pattern.

If these operations are performed as described above then they may result in weak
instance graphs. To prevent this every operation is always immediately followed by
a reduction which merges nodes that represent the same value such that an instance
graph is obtained.

It is a fundamental assumption of GUL that object identifiers are opaque to the
user. A consequence of this is that the user is unable to see the difference between
isomorphic instance graphs. The semantics of the operations are therefore not defined
as relations over instance graphs but as relations over equivalence classes of isomorphic
instance graphs. Although this makes the semantics slightly harder to understand it
also enables us to define the semantics of the basic operations as functions that can
be straightforwardly concatenated.

From the basic operations of GUL we can build larger programs by

1. combining programs into lists such that they are concatenated,

2. applying a fix-point operation to a program such that it is repeated until the
instance is no longer changed by it, and

3. repeating the steps above a finite number of times.

Conclusions

• GDM is a simple graph-based update language based on pattern-matching.

• The semantics of GDM are schema independent, assume that object identifiers
are opaque, are deterministic, are always well-defined and respect the meaning
of the composite-value nodes and basic-value nodes.
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• In Chapter 8 it is shown that GUL can express exactly all generic constructive
deterministic GDM transformations.

• It is also shown in that chapter that the is edges cannot be omitted without
losing expressive power.

Further research

Because of its procedural nature GUL is not very well suited for querying a database.
It may be interesting to see of a similar more declarative query language can be
designed that is based on existential graphs and has some notation for grouping and
aggregation and allows some recursion by, for example, labeling edges with regular
expressions.

9.3 Typing GUL

Summary

The goal of typing is to introduce a syntactical notion of well-typedness such that all
well-typed operations have a certain property. In this case the property is that for
a certain schema graph it holds that if the operation is applied to instances of that
schema graph then the result will also belong to that schema graph. As a sub-problem
we also defined a notion of well-typedness for patterns such that if a pattern is well-
typed then there is an instance graph of the schema graph in which the pattern can
be matched.

In order to distinguish some easy sub-problems we introduced subsets of GDM
called GDM[com,n-obj], which requires that all object-class nodes are labeled with a
class name, and GDM[n-obj], which requires this also and allows no composite-value
class nodes.

Conclusions

Patterns We introduced a notion of well-typedness for GDM[com,n-obj] that is both
a necessary and sufficient condition. Moreover, it was shown that there exists a
polynomial algorithm for checking well-typedness if the pattern contains no is
edges. For patterns with is edge the problem was shown to be co-NP complete.

Additions We introduced a notion of well-typedness for GDM[com,n-obj] that was
a sufficient but not necessary condition. The problem of deciding this notion
of well-typedness was shown to be PSPACE complete. For additions with no
class-name additions and additions under GDM[n-obj] the problem was shown
to be in PTIME.

Deletions We introduced a notion of well-typedness for GDM[com,n-obj] that was
a sufficient but not necessary condition. The problem of deciding this notion
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of well-typedness was shown to be PSPACE complete. For additions with no
class-name deletions the problem was shown to be trivial.

Further research

Deciding well-typedness of additions under GDM[com,n-obj] was shown to be PSPACE
hard, but the proofs for PSPACE hardness use a somewhat “exotic” feature of
GDM, viz., isa edges between composite-value class nodes and cycles that consist
of composite-value nodes only. We conjecture that if such cycles are not allowed then
well-typedness can be solved in polynomial time. It may also be interesting to inves-
tigate if the computational complexity decreases if no isa edges are allowed in the
schema graph.

For the deletion the complexity of deciding well-typedness for GDM[n-obj] is still
open. For additions in GDM[n-obj] this was shown to be in PTIME so this might also
be expected for deletions, but we were not able to show this.

The notion of well-typedness that is given for the additions and the deletions where
shown to be not necessary conditions. Whether such a notion of well-typedness exists
at all is an open question.

As shown in Chapter 7 it is possible to define a straightforward schema-dependent
semantics for GUL operations such that more operations stay within the schema graph.
What the appropriate notion of well-typedness then would be and the computational
complexity of deciding it are open questions.

In most data models objects cannot belong to arbitrary sets of classes. Either
the user can specify explicitly which classes are disjoint or there is a constraint such
as the common-subclass constraint. How patterns and operations can be typed with
such additions to the data model is an open problem.

The notions of well-typedness that we presented assume that the input schema
graph and the output schema graph are identical. This implies that before a program
is executed the schema is extended to accommodate for all the intermediate results
that the program needs to create. Since schema graphs are similar to instance graphs
such an extension might in fact be expressed with something like a GUL addition. It
must then be checked which schema extensions are possible without compromising
the current contents of the database. Another strategy might be to let the schema
adapt itself to whatever is added by an operation. Since this is not possible for every
operation a new notion of well-typedness should be introduced that prevents additions
that are inconsistent with the current schema graph.
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Samenvatting

Het onderzoek dat beschreven is in dit proefschrift richt zich op het representeren
en manipuleren van complexe datastructuren met behulp van gelabelde grafen. De
resultaten bestaan onder andere uit een datamodel waarin zowel de data zelf als de
structuur van de data als gelabelde grafen worden gerepresenteerd. Verder wordt er
een taal beschreven waarmee dergelijke grafen gemanipuleerd kunnen worden. De
operaties van deze taal bestaan eveneens uit gelabelde grafen die lijken op de grafen
waarmee de data worden gerepresenteerd. Tenslotte is onderzocht of operaties van
deze taal getypeerd kunnen worden zodanig dat hun resultaat tot dezelfde datastruc-
tuur blijft behoren.

In hoofdstuk 2 wordt GDM gëıntroduceerd. Dit is een familie van graafgeba-
seerde datamodellen die gelabelde grafen gebruiken om zowel instanties als schema’s
van databases te representeren. Deze datamodellen zijn zodanig gedefinieerd dat
ze equivalente noties bevatten voor de belangrijkste concepten in de meeste andere
datamodellen. Zo kunnen in GDM geneste relaties weergegeven zoals in het geneste
relationele model, symmetrische verbanden zoals in het Entity-Relationship model, en
object identiteit, complexe waardes en overerving zoals in object-georiënteerde data-
modellen. Bovendien zijn in GDM instanties onafhankelijk gedefinieerd van schema’s,
waardoor ze ook gebruikt kunnen worden om zogenaamde semi-gestructureerde gege-
vens weer te geven.

In hoofdstuk 3 wordt GUL gëıntroduceerd. Dit is een graafmanipulatietaal die
het mogelijk maakt om gegevens zoals deze in GDM gerepresenteerd worden te ma-
nipuleren. De taal is gebaseerd op patroonherkenning waarbij een patroon een gela-
belde graaf is die mogelijkerwijs overeenkomt met een deel van de gelabelde grafen
die database-instanties representeren. Elke instructie bevat een dergelijk patroon en
overal in de database-instantie waar een overeenkomend stuk graaf wordt aangetroffen
wordt, zal de instructie uitgevoerd worden. De taal bestaat uit slechts twee basis-
operaties; de toevoeging en de verwijdering. De toevoeging bestaat uit het gezochte
patroon en een uitbreiding daarvan die aangeeft welke knopen, pijlen en labels toege-
voegd moeten worden. De verwijdering bestaat ook uit een patroon plus een indicatie
van welke pijlen, knopen en labels in dit patronen weggenomen moeten worden.

In hoofdstuk 4 wordt het typeren van patronen besproken. Er wordt een notie
van welgetypeerdheid gedefinieerd zodanig dat gegeven een bepaald database-schema
een patroon precies welgetypeerd is als er een instantie van dat schema is waarvan
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een deelgraaf overeenkomt met het patroon. Vervolgens wordt onderzocht wat de
complexiteit van het bepalen van welgetypeerdheid is.

In hoofdstuk 5 en hoofdstuk 6 wordt het typeren van respectievelijk de toevoe-
gingsoperatie en de verwijderingsoperatie besproken. Er wordt een notie van wel-
getypeerdheid gedefinieerd zodanig dat gegeven een bepaald database-schema een
welgetypeerde operatie altijd resulteert in een instantie die weer tot hetzelfde schema
behoort. Ook voor deze notie van welgetypeerdheid is onderzocht wat de complexiteit
van het bepalen ervan is.

In hoofdstuk 8 wordt tenslotte de expressieve kracht van GUL besproken. Het blijkt
dat de twee basisoperaties gecombineerd met een zogenaamde fixpoint-operator in
staat zijn exact alle constructieve generische deterministische database-transformaties
uit te drukken.
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