
A Pattern Based Browsing Model

Jan Hidders and Cora Hoskens
Eindhoven University of Technology (TUE)

P.O. Box 513, 5600 MB Eindhoven

the Netherlands

e-mail:fhidders,corag@win.tue.nl Jan Paredaens
University of Antwerp (UIA)

Universiteitsplein 1, B-2610 Antwerp

Belgium

e-mail:pareda@uia.ua.ac.be

Abstract

This paper introduces a browsing model that does not
describe some new innovative browsing technique but pro-
vides a general model to describe intuitive ideas about
browsing. In this model it is assumed that the database
scheme, as well as the instance of the database are repre-
sented by graphs. The most important browsing step in this
model is the pattern step. It is based upon finding sub-
graphs in the instance matching a pattern and supplied
with a browsing condition that links it to previous steps.
This allows the user to visually specify a browsing step
based upon the results of previous steps. Other browsing
steps and operators in the model allow the user to ran-
domly select some subgraphs found by a step, replace an
old browsing step with a new one or undo some of the last
browsing steps. After presenting the model we compare its
expressive power with that of the relational algebra.

keywords: browsing, graphs, pattern-matching

1 Introduction

Browsing provides a means to investigate the contents of a
database in a special way. It adds to querying the possibil-
ity to reuse former results. It is like moving around in the
database by specifying intermediate results and using these
to get more specific ones. In a sequence of steps the user
tries to get closer to the information he wants to get.

What characterizes browsing, is that it is an interactive
and iterative process of specifying queries and investigat-
ing the results of those queries in order to be able to state
new ones. This is particularly useful when a user does not
know exactly what he is looking for, or how to access the
information he is looking for.

An example of a browsing facility is available in
Smalltalk [8]. Smalltalk provides the possibility to wan-
der around the class structure in order to find the particular
class that the user is looking for. The classes are ordered in
a tree structure and by means of browsing one can go from

one class to one of its subclasses. Without this possibility
it would be very hard to find the classes of interest.

Another way of browsing is available in hypertext docu-
ments [7]. In a hypertext, links are provided to other (parts
of) documents which in some way or another are related to
the current document. By choosing the right links, the user
tries to find the document he is interested in. World Wide
Web is a very nice example of a (world wide) hypertext [2].
Both examples show the characteristic of browsing: the use
of intermediate results in order to get the required result.

This paper does not describe some new innovative
browsing technique. It provides a general model to de-
scribe intuitive ideas about browsing [3], [4].

In this particular browsing model it is assumed that the
database scheme, as well as the instances of the database
are represented by graphs, such as in the GOOD model [1],
[5], [6]. In this model, the nodes of the graph represent
objects while the edges represent the properties of and the
relationships between the objects.

A pattern is also a graph, and can be used to select sub-
sets of an instance by the notion of pattern matching. This
means that every subgraph of an instance that matches the
pattern is selected. Such a subgraph is called anembedding.

With the pattern browsing technique, every possible ac-
tion that the user can take is called abrowsing statement.
Browsing statements can be divided intobrowsing steps
andbrowsing operators. There are two different steps in
the model and two different operators. Actually, the steps
are the elementary browsing statements. They provide the
user with all necessary actions to enable him to browse.
The operators, on the other hand, are meant to ease the
task of the user. We first discuss the two possible brows-
ing steps.

First of all, embeddings can be selected by specifying
a pattern. As such it is a pattern matching step, orpattern
stepfor short. The nodes in the pattern are labeled, and they
can also be given a condition. Such a condition is called a
node condition. By means of these node conditions, the
user can restrict the subgraphs that are selected. The node
conditions put an extra restriction on embeddings. Thus,

1

an embeddingis a subgraph that matches the pattern and
fulfills the node conditions.

However, in the context of browsing, a more general
condition can apply to a pattern step, which is therefore
called thebrowsing condition. This condition links the pat-
tern to embeddings found in previous steps, and is therefore
essential for the process of browsing. In such a way, it is
possible to combine the results of several steps by combin-
ing conditions, that refer to different steps, into one condi-
tion.

Secondly, it is possible to select a set of embeddings
amongst the ones that resulted from a previous step. Such
a step is called theselection step. That way it is possible
to select only the embeddings that seem interesting to the
user. It narrows down future searches.

Besides these two steps, there are two operators. Each
of these operators changes, in fact, a browsing program,
which is a sequence of browsing steps. The first one, the
change operatorreplaces one step in the program by a new
one. This may affect the result of the changed step and also
of later steps that refer to that step. The second operator,
on the other hand, therollback operator, rolls back one or
more of the last browsing steps.

The operators are introduced because they add to the in-
tuitive ideas about browsing. Browsing means investigat-
ing the contents of the database in an interactive manner.
The possibility to backtrack (as provided by the change and
rollback operator), and retrace steps (as with the change op-
erator) can be part of that process. Including the operators
makes it possible to have more user friendly browsings ses-
sions.

It is possible to show the results of subsequent state-
ments in a tree, as will be shown later in this paper. The
embeddings that are found in the pattern and selection steps
make up the nodes of this tree, while each edge is labeled
with the step label. Each of these steps adds one layer to
the browsing tree. The layer that contains the result of stepl is called layerl. The browsing tree is a visual aid for the
representation of the result. It not only shows the results
of each step, but also shows (by means of the edges) the
dependencies between these results.

Every node in a pattern has a unique node label. More-
over, we presume that these node labels of a pattern are lin-
early ordered and that it is therefore also possible to speak
about e.g. the third node of a pattern. Consequently, em-
beddings can be represented by unlabeled tuples.

2 An example

First an informal example is given that illustrates the no-
tion of browsing and the intended meaning of the different
statements. In this example steps as well as operators are
used.

Example 1 The example uses a small instance, given in
Figure 1. In this instance the objects have an identification
label, which makes it possible to distinguish between them.

The instance represents four persons with their name,
address and age (if those are known) together with their
parent–child relationships.

Statement 1 (pattern step):
label: l1
pattern:

PersonPerson
has child

string

number

address

age

n1 n2 n3

n4

n4� 40
condition: T

This query asks for all persons that are at least 40 years
of age, together with their address and one of their chil-
dren.

The result of this statement is a set of embeddings that
match the pattern. Every embedding can therefore be rep-
resented by a (address, person, person, age)–tuple. The
result can be represented by the following table:

n1 n2 n3 n4
Antwerp p1 p2 40
Antwerp p1 p3 40

Statement 2 (pattern step):
label: l2
pattern:

string Person string
addressname

n1 n2 n3

condition: (n2,n3)=anc[l1](n3,n1)

Node n2 of the instance (Person) has to match node n3 of
a tuple of step l1, which is the ’child’ object of that pattern.
In the same way, node n3 of the instance (Address) has to
match node n1 of the same tuple, which is the ’address of

2

Antwerp address
string

Jane

Piet

18

Antwerp

Anne

Brussels

haschild

name

address

age

address

name

has child

name
age

age
40string

string

Person number

string

PersonPerson

string

string

number number

has child

25

namestring

Person

Kees

address
string

Antwerp

p2

p1

p3

p4

Figure 1: A simple instance

the parent’ of that pattern. This means that this query asks
for all children who live at the same address of one of their
parents, for those parents that were selected in step l1, to-
gether with their name and address. The following table
will be the result:

n1 n2 n3
Piet p3 Antwerp

Statement 3 (change operator):
change:
(label: l1

pattern:

PersonPerson
has child

string

number

address

age

n1 n2 n3

n4

n4� 20
condition: T)

This operator will change the original step l1. This
adapted version of step l1 asks for all persons that are at
least 20 years of age, together with their address and one
of their children. Step l1 and l2 are executed again, which
will now result in the following tables:

Step l1:

n1 n2 n3 n4
Antwerp p1 p2 40
Antwerp p1 p3 40
Antwerp p3 p4 25

Step l2:
n1 n2 n3
Piet p3 Antwerp
Kees p4 Antwerp

Statement 4 (selection step):
label: l3
from: l2
select:

n1 n2 n3
Kees p4 Antwerp

This query can be formulated as follows: select from the
embeddings that where found in step l2, exactly the ones
given in the table.

The result of this statement is that the given embeddings
are selected. This narrows down future searches as will be
visualized when the results are presented in a browsing tree
further on in this paper. The result is given by the following
table:

n1 n2 n3
Kees p4 Antwerp

Now imagine that the user finds that he made the wrong
selection in step l3. What he can do now, is either change

3

it with a change operator, or throw away step l3 altogether
by means of a rollback operator. Imagine that he wants to
do the latter. The fifth statement would then look like:

Statement 5 (rollback operator):
rollback_to: l3

This query can be translated as: throw away the steps
including and after l3. The result of this step is that the
result of step l3 is removed, and can no longer be used in
subsequent statements.

This concludes the example. Notice that steps have a
label: but operators do not. Therefore only steps can be
changed or rolled-back to.

3 Browsing programs

Here we introduce the notion of a browsing program. This
is a sequence of browsing statements. The syntax of the
steps and operations are given by the following definitions.

Definition 1 A pattern stephas the following syntax,

(label: l, pattern: p, condition:)
consisting of a labell, a patternp and a pattern condition 2 C, whereC is defined by:C ::= (n1; : : : ; nk) = an[l0℄(m1; : : : ;mk) j(n1; : : : ; nk) = any[l0℄(m1; : : : ;mk) jNOT(C) j (C AND C) j (C OR C) j T.
wheren1; : : : ; nk andm1; : : : ;mk are node labels, andl0
is a step label.

All nodes of the pattern are labeled with a unique iden-
tifier. In the pattern, each node may have a node condition.
The syntax of the node condition of a nodeni is as follows:NC ::= ni = e j ni � e j ni < e j ni � e j ni > e jNOT(NC) j (NC ANDNC) j (NC ORNC).
where expressione is either a node label, a value, or an
numerical expression (in which the binary operators +, –,
*, / can be used) containing values and node labels. The
node labels in the expression must all be in patternp.

Definition 2 A selection stephas the following syntax,

(label: l, from: l0, select: S)
consisting of a labell, a labell0 indicating the step of which
the embeddings are to be selected and a selection setS
containing the selected embeddings.

Definition 3 A change operationhas the following syntax,

(change: s)

consisting of a steps with label l, that should replace the
preceding step in the program with labell.
Definition 4 A rollback operationhas the following syntax,

(rollback to: l)
consisting of a step labell indicating from which step on
the results are to be removed.

Not every list of browsing steps and operations is well
formed. For instance, there can not be two steps in the pro-
gram with the same label. Also, statements can only refer
to preceding steps that were not undone by a rollback op-
eration. Furthermore, it should hold that if the browsing
condition of a pattern step contains an expression of the
form (n1; : : : ; nk) = an[l0℄(m1; : : : ;mk) (or the same
with any) thenn1; : : : ; nk are node labels in the pattern of
the pattern step, andm1; : : : ;mk are node labels embedded
by the result of stepl0. The exact rules for well-formedness
are, however, beyond the scope of this paper.

The intermediate results of a browsing program are
stored in a tree; the browsing tree. Every step extends the
browsing tree with a new layer. For each node in the bot-
tom layer a (possibly empty) set of embeddings is added to
the tree. The edges from the bottom node to the embed-
dings will be labeled with the label of the step. The layer
that contains the result of stepl is called layerl.
Definition 5 A browsing treeis a labeled tree where each
edge is labeled with a step label and each node is labeled
with an embedding.

We will now present the semantics of the different
browsing steps and operations by looking at the interme-
diate results of the program in Example 1.

First, every program starts with theempty browsing tree,
i.e., the browsing tree consisting of only the root labeled
with the empty embedding. The first statement in the ex-
ample program is a pattern step. A pattern step adds to
every node in the bottom layer (here only the root node)
an edge and a node for every embedding of the pattern that
fulfills the node conditions and browsing condition (hereT
is always true). The edge is labeled with the step label and
the node is labeled with the embedding. The result of the
first statement is shown in Figure 2.

The second statement in the example is a pattern step
with a more complex browsing condition. The condition
(n2,n3)=anc[l1](n3,n1) is fulfilled for a bottom
layer node by an embedding if it maps the nodes n2 and n3
to, respectively, the same instance nodes, as n3 and n1 are
mapped to, by theancestral embeddingof step l1. The an-
cestral embedding of a stepl is the embedding in the result
of stepl that is encountered on the path from the bottom
layer node to the root of the browsing tree. For example,

4

l1 l1

(Antwerp,p1,p2,40) (Antwerp,p1,p3,40)

Figure 2: Result of the first statement

in Figure 2 the ancestral embedding of step l1 for the left
bottom layer node is (Antwerp,p1,p2,40), and for the right
bottom layer node it is (Antwerp,p1,p3,40). Notice that if a
browsing condition is evaluated for a certain bottom layer
node, the ancestral embedding of a step is unique if it ex-
ists. The result of the second statement is shown as the
solid part of Figure 3.

l1 l1

(Antwerp,p1,p2,40) (Antwerp,p1,p3,40)

l2 l2

(Piet,p3,Antwerp) (Piet,p3,Antwerp)

Figure 3: Result of the second statement

The condition(n2,n3)=any[l1](n3,n1) is ful-
filled by an embeddinge if there isanyembedding in the
result of step l1 that maps the nodes n2 and n3 to, respec-
tively, the same instance nodes that n3 and n1 are mapped
to by the embeddinge. If this condition would have been
the browsing condition of the second statement then both
bottom layer nodes would have been extended with the
same set of embeddings. The result would have been as
shown in Figure 3 including the dotted edge and node.

The third statement of the example is a change operator.
A change operator replaces an old pattern or selection step
with a new one and recalculates the resulting browsing tree.
The result of the third statement is shown in Figure 4.

The fourth statement of the example is a selection step.
It adds to every node in the bottom layer its own embedding
if the ancestral embedding of step l2 is in the selection set.
The result is shown in Figure 5 ignoring the cutting edge.

The fifth and last statement of the example is a rollback
operation. It removes the result of step l3 and the layers
below, from the browsing tree. This is demonstrated by the

l1

(Antwerp,p1,p2,40) (Antwerp,p1,p3,40) (Antwerp,p3,p4,25)

(Piet,p3,Antwerp) (Kees,p4,Antwerp)

l2

l1 l1

l2

Figure 4: Result of the third statement

l1

(Antwerp,p1,p3,40)(Antwerp,p1,p2,40) (Antwerp,p3,p4,25)

(Piet,p3,Antwerp) (Kees,p4,Antwerp)

(Kees,p4,Antwerp)

l1

l2 l2

l1

l3

Figure 5: Result of the fourth and fifth statement

cutting edge in Figure 5.

4 The expressive power of the
browsing model

In this section we discuss the theoretical expressive power
of the browsing model. With expressive power we mean
the ability to calculate certain transformations. The brows-
ing model is compared with the relational algebra in sev-
eral ways. The relevance of this comparison is to find out
whether the provided browsing steps are expressive enough
to let a user obtain all the results that he also might have
found using, for example, SQL.

We will consider only the model without operations
since these can be regarded as syntactic sugar. Also, we do
not consider arithmetic in the node conditions because this
would make the model incomparable with the relational al-
gebra.

5

There is an obvious link between the relational model
and our browsing model since the result of every step can
be regarded as a relational table. An obvious question is
therefore whether any relational algebra expression that
combines the intermediate results, can be simulated with
a browsing program. The answer to this question is given
in the following theorem.

Theorem 1 Given a browsing treebt with layersl1; : : : ; ln
and a relational algebra expressionae over the tablesl1; : : : ; ln containing the results of the layers with the same
name, there is a browsing program that extends the brows-
ing treebt such that the bottom layer contains exactly all
the embeddings that are tuples in the result ofae.
Proof: (Sketch)Every single algebra operator can be sim-
ulated by a pattern step. The complete algebra expression
can be simulated by concatenating these pattern steps.2

The expressive power of the browsing model as stated in
Theorem 1 is slightly “crude”. It says something about the
manipulation of complete layers whereas in the browsing
model every step calculates an extension forevery sepa-
rate bottom layer node. The theorem also holds, for exam-
ple, for the browsing model without theanc-conditions.
It is possible to give a more subtle definition of expressive
power by letting the algebra expressionae also be defined
over the tablesl01; : : : ; l0n containing the ancestral embed-
ding of every step. Then,ae could calculate a separate ex-
tension for every bottom layer node of the browsing tree.
(A bottom layer node is always uniquely identified by the
ancestral embeddings on the path to the root.) A browsing
program would then simulateae if it adds to every bottom
layer node a subtree that contains exactly the result ofae in
its bottom layer. The question whether the browsing model
is as expressive as the relational algebra in this way, is still
open.

Up to now we have regarded the expressive power of the
browsing model as a manipulation language for browsing
trees. Although the browsing tree is interesting to show the
intermediate results, the user might be more interested in
the final result (the set of embeddings in the bottom layer)
he can obtain when starting with a certain instance. There-
fore, it may be more interesting to see which sets of em-
beddings can be found given a certain instance and starting
with the empty browsing tree. Although the instance is de-
fined as a graph it can be straightforwardly translated to
a relational database consisting of unary and binary tables
representing, respectively, the nodes and the edges.

Theorem 2 Given an instanceI with node labelsN1; : : : ; Nk and edge labelsE1; : : : ; El and a relational
algebra expressionae defined over the unary tabelsN1; : : : ; Nk and binary tablesE1; : : : ; El, then there is a

browsing program that, starting with an empty browsing
tree, results in a browsing tree with the result ofae in its
bottom layer.

Proof: (Sketch)Every unary and binary table can be
encoded in a layer with a simple pattern step. Then we can
simulateae using Theorem 1. 2

Under the same interpretation we might also ask
whether every transformation expressed by the browsing
model can be expressed in the relational algebra.

Theorem 3 Given an instanceI with node labelsN1; : : : ; Nk and edge labelsE1; : : : ; El and browsing pro-
gram bp, there is a relational algebra expressionae de-
fined over the unary tablesN1; : : : ; Nk and binary tablesE1; : : : ; El that results in a table containing exactly those
embeddings found in the bottom layer of the browsing tree
that is the result ofbp starting with an empty browsing tree.

Proof: (Sketch)First, it is proven that any pattern step
and selection step can be simulated in the relational
algebra. Since these steps operate upon the instance
graph and the browsing tree we need to encode these into
relational tables. The encoding of the instance graph is
straightforward. The browsing tree is mapped to a table
for every layer, containing all the embeddings in that layer.
Furthermore, the entire browsing tree is mapped to a large
table that contains for every bottom layer node a tuple
consisting of the concatenation of all its ancestral embed-
dings. An example of this mapping is given in Figure 6
where the encoding of the browsing tree in Figure 4 is
shown. This encoding is not lossless but it is enough to
simulate the browsing model. It can now be shown that
given a browsing step there are algebra expressions over
the encoding of the instance and the previous browsing
tree, that result in the tables constituting the encoding of
the resulting browsing tree. Finally, the entire browsing
program can be simulated by concatenating the simulations
of individual browsing steps. 2

Theorem 2 only shows that the browsing model can ex-
press the relational algebra operating onunary and binary
relations. Relational tables of arbitrary arity can, however,
be encoded as graphs as shown in Figure 7. Here the top
node labeled withR, the name of the relation, represents
the relation itself. This node haselement-edges to zero or
more nodes representing the tuples in the relation. These
tuple nodes are labeled withT and have edges for every
field a1; a2; : : : ; ap of the tuples inR. These edges are la-
beled with the name of the field and arrive in a node repre-
senting the value of that field.

6

l1

n1 n2 n3 n4
Antwerp p1 p2 40
Antwerp p1 p3 40
Antwerp p3 p4 25

l2

n1 n2 n3
Piet p3 Antwerp
Kees p4 AntwerpBT

l1.n1 l1.n2 l1.n3 l2.n4 l2.n1 l2.n2 l2.n3
Antwerp p1 p3 40 Piet p3 Antwerp
Antwerp p3 p4 25 Kees p4 Antwerp

Figure 6: The browsing tree of step l2 encoded in tables

....

apTa2a1
element

D1 D2 Dp
n1 R
n2

n3 n4 n(2 + p)
Figure 7: Pattern for representing simulated tables in layers

Theorem 4 Given a relational database containing the re-
lationsR1; : : : ; Rn and a relational algebra expressionae
over these relations, there is a browsing programbp that,
when starting with the empty browsing tree and an instance
containing the encoding ofR1; : : : ; Rk in a graph, results
in a browsing tree with the result ofae in its bottom layer.

Proof: (Sketch)For every relation we can use a pattern
step with the pattern of Figure 7 to encode the table into
a layer. Then we can use Theorem 1 to simulate the
relational algebra expression. 2
5 Conclusions

In this paper we have introduced a browsing model that
provides a general model to describe intuitive ideas about
browsing. The model assumes that the database scheme,
as well as the instance of the database are represented by
graphs. This makes it possible to specify browsing steps
with the help of pattern matching. Together with brows-
ing conditions that can link a pattern to patterns of pre-
vious steps, this constitutes a simple and effective way of

describing browsing steps. Apart from specifying patterns
with conditions, the model also offers operations that allow
the user to select an arbitrary subset of the result, recalcu-
late the previous steps after replacing an old step with a
new step and undoing the last steps. Finally, the model was
shown to be expressive enough to simulate the relational
algebra in several ways.

References

[1] M. Andries, M. Gemis, J. Paredaens, I. Thyssens, and
J. van den Bussche. Concepts for Graph-oriented
Object Manipulation. volume 580 ofLecture Notes
in Computer Science, Berlin, March 1992. Springer–
Verlag. Proceedings of the third EDBT conference held
in Vienna, Austria.

[2] T.J. Berners-Lee, R. Cailliau, J-F Groff, and B. Poller-
mann. World-Wide Web: The Information Universe.
Electronic Networking: Research, Applications and
Policy, 2(1):52–58, 1992.

[3] A. D’Atri and L. Tarantino. From Browsing to Query-
ing. Data Engineering, 12(2):46–53, June 1989.

[4] A. D’Atri and L. Tarantino. A Browsing Theory and its
Application to Database Naviagation. In J. Paredaens
and L. Tenenbaum, editors,Advances in database
systems, implementations and applications, number
347 in CISM Courses and Lectures, pages 161–179.
Springer–Verlag, Wien, New–York, 1994.

[5] M. Gemis and J. Paredaens. An Object-Oriented Pat-
tern Matching Language. volume 742 ofLecture Notes
in Computer Science, pages 339–355, Berlin, 1993.
Springer. Proceedings of the international symposium
on Object Technologies for Advanced Software; held
in Kanazawa, Japan.

7

[6] M. Gyssens, J. Paredaens, J. Van den Bussche, and D.
Van Gucht. A Graph-Oriented Object Database Model.
IEEE Transactions on Knowledge and Data Engineer-
ing, 6(4):572–586, August 1994.

[7] J. Nielsen.Hypertext & Hypermedia. Academic Press,
Inc., Dan Diego, CA, 1990.

[8] L. J. Pinson and R. S. Wiener. An Introduc-
tion to Object-Oriented Programming and Smalltalk.
Addison-Wesley, Amsterdam, 1988.

8

