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Abstract

The semantics of the standard XML query language XQuery requires
that the results of its path expressions are in document order and duplicate-
free. Many implementations of this semantics guarantee correctness by in-
serting explicit operations that sort and remove duplicates in their evaluation
plans. The sorting and duplicate-removal operations are often either inserted
after each step or only after the last step. However, both strategies have per-
formance drawbacks. In this paper we show how to create more efficient
evaluation plans by deciding statically where such operations are required.
We present inference rules for deciding orderedness and duplicate-freeness
of the results of evaluation plans and show that these rules are sound and, for
certain evaluation plans, complete. These inference rules are implemented
by an efficient, automaton-based algorithm. Experimental results show that
the algorithm is effective on many common path expressions.

1 Introduction

Unlike the classical relational database systems, XML databases are ordered, i.e.,
all its data collections are lists rather than sets. This creates a whole series of
challenges and opportunities in the area of query optimization. The fact that order
is so important to XML is reflected in its query languages, which usually enforce
some kind of orderedness in their results even though it essentially represents a
set. An example of this are path expressions in XQuery which are used to select
sets of nodes in document trees but whose semantics is defined such that the result



is a list of nodes that contains no duplicate nodes and orders the nodes as they
appear in the document. A naive interpretation of these semantics leads to query
evaluation plans that contain sorting operations (and also duplicate-elimination
operations) for every step in the path expression and thereby often become perfor-
mance bottlenecks and impede certain optimizations such as pipe-lined evaluation
techniques. However, simply removing them for all intermediate steps can also
cause performance problems since this will allow duplicates in intermediate re-
sults and thereby duplicate computations. In this work we propose a solution that
uses the fact that the path expressions navigate in an ordered tree and will there-
fore sometimes, after navigating in certain combinations of directions, produce a
correct result without an explicit sorting or duplicate-elimination operation. We
present an algorithm that statically decides which of these operations are redun-
dant and thereby allows us to determine a query evaluation plan that contains a
minimal number of such operations.

1.1 Introduction to XQuery

XQuery [3] is the standard query language for XML and it is currently being
standardized by the World Wide Web Consortium. The two main syntactical con-
structs of the language are FLWOR expressions and path expressions.

Path expressions are used toselectnodes from the input document tree with
UNIX-like path expressions. There are ten axes that allow navigation in a certain
direction through the XML tree. For example, the path expression

doc("input.xml")/descendant::a/child::b

opens an XML document and selects all elements labeledb that are children of
the a-labeled descendants of the document root. This path expression contains
two axes, namelydescendant andchild. A single navigation operation is called
a stepand a path expression consists of an arbitrary number of steps. The label
tests (e.g.::a) are called node tests. Additional conditions can be applied to the
nodes that are selected by a step expression by placing conditional expressions in
square brackets after the step. For instance,

doc("input.xml")/child::a[child::b]

selects thosea-labeled children of the document root that do haveb-children. Path
expressions return ordered sequences of items. If these items are nodes selected
from a document, then the nodes in the result sequence must occur in the same
order as they do in the document, i.e. they must be in document order.



FLWOR , pronounced “flower”, is short hand for For - Let - Where - Order By
- Return. It allows iteration over item sequences (e.g. results of path expressions)
with for-loops. let-bindings are used for additional selections. The sequences
can be reordered on some value withorder by clauses and finally the result is
returned in thereturn statement. A simple example of a FLWOR expression is

for $x in doc("input.xml")/employee
let $year := $x/employeeSince
where $x/salary > 5000
order by $year
return
<entry name="{$x/name}" since="{$year}"/>

This expression selects employees and for each of them selects the year they
started working for the company. The employees with a salary greater than5000
are ordered by that year and for each of them, an element with their name and
starting year is constructed and returned.

1.2 XQuery Semantics of Path Expressions

The problem that is being tackled in this paper originates from the semantics of
path expressions, which are specified in terms of a limited subset of the XQuery
language [5], called the XQuery Core. Consider the afore-mentioned simple path
expression.

doc("input.xml")/descendant::a/child::b

The exact semantics of this expression is specified in terms of XQuery FLWOR
expressions as follows (simplified):

distinct-docorder(
let $sequence :=
distinct-docorder(
let $sequence := doc("input.xml")
return
for $dot in $sequence
return descendant::a

)
return
for $dot in $sequence
return child::b

)



As mentioned earlier, the XQuery semantics requires the result of every path
expression to be in document order. This is why thedistinct-docorder opera-
tions (ddo in short) are inserted after each step. To see why this is necessary, let
us apply the above expression to the XML document1 in Figure 1.

<?xml version="1.0"?>
<a>
<b/>
<a>
<b/>

</a>
<b/>

</a>

1

2 3

4

5

a

b a

b

b

Figure 1: An XML document and its corresponding tree representation. The num-
bers inside the tree nodes correspond to the document order.

We see that after the firstdescendant::a-step, we get the nodes1 and3, in
that order, since the axis operations always return their results in document order.
Evaluating the next step consists of iterating over these nodes, and selecting all
theb-children of every node. This results in the elements2 and5 (for 1) and4 (for
3), again in that order. Obviously, the sequence2, 5, 4 is not in order and thus,
a sorting operation has to be inserted.

So for each of the step expressions, a sorting and duplicate-elimination oper-
ation is applied, even if this may not be necessary. The most important reason for
this is that path expressions can turn out to be very complex and the easiest way
to get the semantics right is to sort and remove duplicates after every step. The
explicit insertion ofddo operations causes two problems:

1. When large input documents are queried, theddo-calls will have to sort very
large sets of nodes.

2. Theddo operations are pipeline breakers. Having to materialize a large
amount of nodes in memory will often slow down query evaluation and
increase memory usage [7].

Therefore we would like to get rid of as manyddo operations as possible without
giving in on correctness. A trivial and naive approach to solving this problem is to
postpone sorting and duplicate elimination until the end. This is what we will refer
to as thesloppyapproach. However, this comes at the risk of an exponential blow-
up of duplicates in the intermediate result, which causes a multitude of duplicate

1Note that<a/> is an abbreviation for<a></a>



computations in subsequent steps [9], which can have an unacceptable impact on
evaluation performance.

Another possible approach is to remove sorting/duplicate-elimination opera-
tions from the query plan if the result is already sorted/without duplicates. In the
following sections we show that this is possible by reasoning over certain static
properties of path expressions with the help of relatively simple inference rules.

2 Abstract Evaluation Plans

For making reasoning easier, we make some simplifying assumptions and formal-
ize some concepts. Aside from a formal notion for XML documents and document
order, we also introduce abstract evaluation plans. These are an abstraction of the
XQuery Core expressions that were mentioned earlier. Abstract evaluation plans
allow us to concisely express path expressions that solely consist of navigational
axis steps that do not have node tests.

We begin with the formalization of an XML document. To save space, we
only consider element nodes (N). Other types of nodes can be added easily. Since
node tests cannot appear in evaluation plans, we do not model node labels in our
formalization of an XML document.

Definition 2.1 (XML Document). AnXML documentis a rooted ordered tree D=
(N,C, r,≺) such that(N,C, r) is a rooted tree with nodes N, edgesC ⊆ N × N that
indicate the parent-child relation and root r, and≺ is the sibling-order relation
that is a strict partial order over N such that for each two distinct nodes n1,n2 ∈ N
it holds that n1 ≺ n2 or n2 ≺ n1 iff they are siblings.

The relationsC+ andC∗ denote the transitive closure and the reflexive and tran-
sitive closure ofC, respectively. The reverses of≺, C, C+ andC∗ are denoted by
�, B, B+ andB∗, respectively. The composition of two binary relationsRandS is
R◦ S = {(n1,n3)|(n1,n2) ∈ S, (n2,n3) ∈ R}.

Next, we need to formalize the document order of nodes in an XML document.

Definition 2.2 (Document Order). Given an XML document D= (N,C, r,≺) we
define thedocument order inD, �D, as the strict total order over N that orders
the nodes as encountered in a pre-order tree-walk, i.e.,�D= C

+ ∪ (B∗◦ ≺ ◦C∗).

Before we define abstract evaluation plans, we first define aset semanticsand a
sequence semanticsfor each axis in terms of the above relations on nodes.

Definition 2.3 (Axes). Theset of axesA is defined as{↑, ↓, ↑+, ↓+, ↑∗, ↓∗,�,�,
�̇, �̇} where these symbols represent the axes as given in Table 1. The concise
notation in Table 1 extends the notation in [2].



Axis Axis Set Semantics
Name Symbol {[Axis]}D
child ↓ C
parent ↑ B
descendant ↓+ C+

ancestor ↑+ B+

descendant-or-self ↓∗ C∗

ancestor-or-self ↑∗ B∗

following � B∗◦ ≺ ◦C∗

preceding � B∗◦ � ◦C∗

following-sibling �̇ ≺

preceding-sibling �̇ �

Table 1: Axis names, symbols, and set semantics

Definition 2.4 (Axis Set Semantics). Theset semanticsof an axis a on a document
D = (N,C, r,≺) is a binary relation{[a]}D ⊆ N × N and is defined by the third
column of Table 1.

For example, the semantics of thefollowing axis is defined such that it contains
the pair (n1,n2) iff n2 is the descendant (or the node itself) of a node that is a following
sibling of an ancestor (or the node itself) ofn1.

Definition 2.5 (Axis Sequence Semantics). The sequence semanticsof an axis a on a
document D= (N,C, r,≺) is a function[[a]] D : N → S(N) whereS(N) denotes the set of
finite sequences over N such that[[a]] D(n) is the sequence that is obtained by sorting the
set{n′|(n,n′) ∈ {[a]}D} with�D, the document order of D.

We overload the last notation and define a function [[a]] D : S(N)→ S(N) such that it holds
that [[a]] D(〈n1, . . . ,nk〉) = [[a]] D(n1)·. . .·[[a]] D(nk) where· denotes sequence concatenation.

To make reasoning about evaluation plans easier, we introduce a more concise abstract
notation for them. We represent evaluation plans as lists of axis symbols from Table 1 and
the symbolsσ andδ that represent sorting and duplicate-elimination operations, respec-
tively. To be precise,σ represents the operation that sorts the input sequence in document
order andδ represents the duplicate-elimination operation that assumes that its input is
sorted in document order, which implies that it can do this in linear time and constant
space. The concrete functiondistinct-docorder is always written in the abstract eval-
uation plan as the composition ofdocorder anddistinct.

Definition 2.6 (Abstract Evaluation Plan). An abstract evaluation planis a non-empty
sequence q= s1; . . . ; sk where each si is either an axis symbol,σ or δ.

Now that we know what an abstract evaluation plan is, we need to define its semantics.
We also specify when two evaluation plans are equivalent and what a correct evaluation
plan is.



Definition 2.7 (Evaluation Plan Semantics). Given a document D, thesemantics of an
abstract evaluation planq = s1; . . . ; sk, is a partial2 function[[q]] D : N → S(N) such that
[[q]] D(n) = F(〈n〉) where F= [[ s1]] D ◦ . . . ◦ [[ sk]] D.

Two abstract evaluation plans are calledequivalentif they have the same semantics.
In accordance with the formal semantics of XQuery an evaluation planq = s1; . . . ; sn is
calledcorrect if it is equivalent withs1; . . . ; sn;σ; δ.

Duptidy Evaluation Plans The purpose of our work is to avoid unnecessary sorting
and/or duplicate eliminations to occur during the evaluation of a path expression. This
boils down to finding a correct abstract evaluation plan with a minimal number ofσ’s
andδ’s. As mentioned earlier, postponing sorting and duplicate elimination until after the
last step is not a viable solution, since duplicates in the intermediate result can cause an
exponential blowup, both in memory usage and in execution time. Intermediate ordered-
ness however is something we are not interested in. Thus, a nice approach would be to
postpone sorting and duplicate elimination except when duplicates are introduced. If this
happens, the intermediate result is sorted (if necessary) and freed from duplicates. If after
the last step, the result is not sorted by document order, a final sorting operation is applied.

Such evaluation plans in which the generation of duplicates is avoided are called dup-
tidy evaluation plans, i.e., they tidily correspond to the formal semantics with respect to
duplicates in the intermediate results.

Definition 2.8 (Duptidy Evaluation Plan). A duptidy evaluation plan is a correct evalu-
ation plan q= s1; . . . ; sn such that for each XML document D and si of q that is an axis
step, it holds that the range of the function[[ s1; . . . ; si−1]] D does not contain a sequence
with duplicate nodes.

Our goal will be to decide which steps in an abstract evaluation plan produce a result
which is sorted by document order/free from duplicates, independent of the the input given
to the corresponding path expression. In this way, we will be able to construct “minimal”
duptidy evaluation plans for path expressions, i.e., a duptidy evaluation plan that contains
all the axes of the path expression in the same order and that has a minimal number ofσs
andδs.

3 Evaluation Plan Properties

For each step in the abstract evaluation plan we need to infer two static properties. The
first property isord or the orderedness property. If we can infer this property for a step,
then we know its result will always be in document order, no matter which input is used to
evaluate the path expression. The second property is thenodupproperty, indicating that
the result of a step will always be free from duplicates. The inference of these properties
allows us to remove the corresponding operations from the evaluation plan.

2The semantics of an evaluation plan is a partial function, becauseδ assumes an ordered input
sequence.



Definition 3.1 (The ord andnodupProperties). For an evaluation plan q we define the
following properties:

ord (Ordered)For every XML document D and node n1 in D the sequence[[q]] D(n1) is
sorted in the document order of D.

nodup (No Duplicates)For every XML document D and node n1 in D the sequence
[[q]] D(n1) contains no duplicates.

The fact that a certain propertyπ holds for an evaluation planq is denoted asq : π.
For example,↓; ↓ : ord denotes the fact that the result of the evaluation plan↓; ↓ is always
sorted in document order.

Unfortunately, theord andnodupproperties are insufficient for a complete inference
mechanism and we will need additional properties. For example, consider the abstract
evaluation plan↓; ↓. We always assume the input cardinality of the first step to be one.
We know that if we follow the child axis twice from one node, that the result will always
be sorted by document order and free from duplicates. However, following the child axis
does not necessarily mean that order is maintained. If the child axis is preceded by the
descendant axis, for instance, then the final result can be out of document order (see the
example of Section 1.1). So the fact that the second child step in↓; ↓ preserves document
order is due to another property that holds after the first step, namely theunrel property,
which states that there are no ancestor-descendant related nodes in the result (see below).

Many of the additional properties areset propertiesin the sense that they only refer
to the result set of the evaluation plan and do not care about the order or the multiplicity
of the nodes in the result. It is clear that this is not true for theord andnodupproperties.
The set properties are divided inpositive set propertiesandnegative set properties.

3.1 Positive Set Properties

Positive set properties are those set properties that forbid certain combinations of nodes in
the result of the evaluation plan. For instance, the earlier mentionedunrel property does
not allow for any two nodes in the result to be ancestor-descendant related.

Definition 3.2 (Positive Set Properties). For evaluation plans q we define the following
properties:

lin (Linear)For every XML document D and node n1 in D all the nodes in[[q]] D(n1) are
ancestor-descendent related.

unrel (Unrelated)For every XML document D and node n1 in D all the nodes in[[q]] D(n1)
arenotancestor-descendant related.

nolc (No Left Child) For every XML document D, node n1 in D and nodes n2, n3 in
[[q]] D(n1) it holds that if n2 has a sibling n4 that is an ancestor of n3 then n2 is not
a left sibling of n4.



norc (No Right Child)For every XML document D, node n1 in D and nodes n2, n3 in
[[q]] D(n1) it holds that if n2 has a sibling n4 that is an ancestor of n3 then n2 is not
a right sibling of n4.

no2d (No 2 Distinct Nodes)For every XML document D and node n1 in D there are not
two distinct nodes in[[q]] D(n1).

3.2 Negative Set Properties

Negative properties are those set properties that require that certain combinations can
occur in the result of the evaluation plan.

Definition 3.3 (Negative Set Properties). For evaluation plans q we define the following
properties:

nsib (n Siblings)For any number n there is an XML document D and a node n1 in D such
that there are at least n distinct siblings in[[q]] D(n1).

ntree (Tree of sizen) For any number n there is an XML document D and a node n1 in
D such that there is set of nodes in[[q]] D(n1) that spans a tree in D of height n with
all internal nodes having n children.

nhat (Hat of n Siblings)For any number n there is an XML document D and a node n1

in D such that there is a node n2 in [[q]] D(n1) such that there is an ancestor of n2

which has at least n distinct left siblings and n distinct right siblings in[[q]] D(n1).

3.3 Indexed properties

For many propertiesπ it holds that if for an evaluation planq it holds thatq : π then the
same property also holds forq extended with↓; ↑, i.e.,q; ↓; ↑ : π. For example this holds
for theord property, but not for thenodupproperty. More generally, if we extendq with
i times the↓ axis followed byi times the↑ axis, many properties that hold forq also hold
for the extended query. Therefore, we introduce indexed versions of all the properties that
indicate that the original property is obtained if we apply the↑ axis i times.

Definition 3.4 (Indexed Properties). All propertiesπ except nodup can have indices such
as inπi , π≤i andπ≥i , which are defined as follows:

• q : π0 iff q : π

• if i > 0 then q: πi iff (q; ↑) : πi−1.

• q : π≤i iff for all j ≤ i it holds that q: π j .

• q : π≥i iff for all j ≥ i it holds that q: π j .



The setΠ is the set of all evaluation plan properties that can have an index, i.e.,Π = {ord,
lin, unrel, nolc, norc, no2d, nsib, ntree, nhat, ¬ord, ¬lin, ¬unrel, ¬nolc, ¬norc, ¬no2d,
¬nsib, ¬ntree, ¬nhat}.

For all propertiesπ we useπ, π0 andπ≤0 as synonyms. It is easy to see that ifπ is a
positive (negative) set property then so areπi , π≤i andπ≥i . When the property is negated
andhas an index with≥ or≤ then the negation is assumed to have the higher priority. So,
for example,q : ¬π≥i means that for allj ≥ i it holds thatq : ¬π j .

3.4 Negated properties

The fact that a certain property doesnothold for a certain evaluation plan is also relevant
since, for example, we want to be able to derive whenord holds and when it does not.
Therefore we introduce negated versions of all propertiesπ which are written as¬π. The
semantics ofq : ¬π is then assumed to be that it does not hold thatq : π. So, if q : ¬ord
then it is not true that the result ofq is always sorted. Note that this does not mean the
the result is always unsorted. Also note that it is easy to see that the negated version of a
positive set property becomes a negative set property and vice versa.

4 Inference Rules

We are now ready to define our inference mechanism. We will define a set of inference
rules for deriving properties for abstract evaluation plans. Our goal is to be complete for
abstract evaluation plans in the sense that we want to be able to derive for each step of
every evaluation plan that eitherord or ¬ord holds, and likewise fornodup. In this paper
however we only consider rules that are needed to be complete for duptidy evaluation
plans. Table 2 shows the complete set of rules for duptidy evaluation plans.

Below we discuss some of these rules in more detail. We will also show some example
proofs for a few rules. Due to spacing constraints we refer the reader to the technical report
[6] for the other proofs and the entire set inference rules that is complete for all abstract
evaluation plans.

Rule 8 The first rule we discuss tell us that if an evaluation planq has theunrel and
nodupproperties, following any downward axis will preserve thenodupproperty.

q : unrel,nodup a∈ {↓, ↓∗, ↓+}

q; a : nodup

Proof. By definition of a tree, two unrelated nodes never have common descendants.
Therefore, unrelated nodes will never generate duplicates when one of the axes↓, ↓+ or
↓∗ are followed. �



Rule 2 The next rule states that if the result of an evaluation planq is always in docu-
ment order andq has thenorc property, then the result ofq; ↑ is also always in document
order.

q : norc,ord

q; ↑ : ord

Proof. Let a andb be two output nodes ofq with a�3 b and letc andd be their respective
parent nodes in the result of the step expression. Suppose now thatd � c. This means
that eitherd is an ancestor ofc or d is a preceding node ofc.

• d is a preceding node ofc – If this were true, then all children ofd, includingb,
would be preceding nodes ofc. This however conflicts with the fact thata� b;

• d is an ancestor node ofc – Sincea� b, this implies that there is an ancestor ofc
that has a right sibling, namelyb. This however conflicts with the definition of the
norcproperty.

We conclude that any two parents of two input nodes occur in order in the result.�

Rule 35 To see the importance of thenorc property, we now consider the same rule,
with the difference that thenorc property doesnot hold. We show that if this is the case,
the ord property is not preserved.

q : ¬norc,ord

q; ↑ : ¬ord

Proof. The¬norc property implies that there is a document such that after followingq
the input sequence contains two nodesb andc, which are structured as follows:

a b

c

d

Solid arrows indicate a child-parent relationship and dashed arrows indicate an ancestor-
descendant relationship. Sincec� b and theord property holds for the input, we know
thatc comes beforeb in the input sequence. Suppose the parent ofc is e. Thene comes
befored (which is the parent ofb) in the output sequence, but from the fact thate is
a descendant ofd follows thatd � e. Hence the output sequence is not in document
order. �

3 From now on we write� instead of�D when it is clear for which documentD we want to
express the document order.



Rule 76 The last rule states that if there are at least two different nodes of the same
tree in the input, then following any of the recursive axes↓∗, ↓+, ↑∗, ↑+,�,�, causes the
output to have the¬ord≥1 property, which means that following the parent axis one or
more times from there, results in a node sequence that can be out of document order.

q : ¬no2d a ∈ {↓∗, ↓+, ↑∗, ↑+,�,�}

q; a : ¬ord≥1

Proof. [For ↓+, ↓∗, �, �] After following any one of these axes, rule 41 says that the
ntreeproperty holds. The rules 65 and 57 allow us to deduce thatq : ¬norc≥0. So,q; ↑n

has both theord and the¬norcproperty and thusq; ↑n has the¬ord1 property. The result
now contains two related nodes that are out of document order and it is easy to see that
this remains the case after following any number of parent axes.

[For ↑+, ↑∗] The sequences that result from following these axes from two different
nodes share an arbitrarily long subsequence of nodes. The result sequence thus contains
two identical subsequences of arbitrary length, which implies that there can be two related
nodes that are not in document order, no matter how many times you follow the parent
axis. �

(1)
q : no2d,nodup a∈ A

q; a : ord
(2)

q : norc,ord

q; ↑ : ord
(3)

q : unrel,ord,nodup
a ∈ {↓, ↓∗, ↓+}

q; a : ord

(4)
q : lin,ord

q; �̇ : ord
(5)

q : no2d,nodup a∈ A

q; a : nodup
(6)

q : nodup

q; ↓ : nodup

(7)

q : lin,nodup
a ∈ {↑, �̇, �̇}

q; a : nodup
(8)

q : unrel,nodup
a ∈ {↓, ↓∗, ↓+}

q; a : nodup
(9)

q : no2dn n ≥ 0

q : no2dn+1

(10)
q : no2dn n ≥ 0

q : linn
(11)

q : linn n ≥ 0

q : linn+1
(12)

q : linn n ≥ 1

q; ↑+ : linn−1

(13)
q : linn n ≥ 0

q; ↑∗ : linn
(14)

q : lin

q : nolc
(15)

q : nolc

q; �̇ : nolc

(16)
q : nolcn, linn+1 n ≥ 0

q; ↑∗ : nolcn
(17)

q : nolcn, linn+1 n ≥ 1

q; ↑+ : nolcn−1
(18)

q : no2dn n ≥ 0

q : nolc≥0

(19)
q : lin

q : norc
(20)

q : norc

q; �̇ : norc
(21)

q : norcn, linn+1

n ≥ 0

q; ↑∗ : norcn

(22)
q : norcn, linn+1 n ≥ 1

q; ↑+ : norcn−1
(23)

q : unrel1 a ∈ {�̇, �̇}

q; a : norc
(24)

q : unrel

q; ↓ : norc



(25)
q : no2dn n ≥ 0

q : norc≥0
(26)

q : nolc

q; �̇ : unrel
(27)

q : norc

q; �̇ : unrel

(28)
q : unreln n ≥ 1

q : unreln−1
(29)

q : no2dn n ≥ 0

q : unrel
(30)

π ∈ Π q : πn

n ≥ 0

q; ↓ : πn+1

(31)

π ∈ Π q : πn

n ≥ 1

q; ↑ : πn−1
(32)

π ∈ Π q : πn

a ∈ {�̇, �̇} n ≥ 1

q; a : πn
(33)

q : ¬no2d
a ∈ {�,�, ↑∗, ↑+}

q; a : ¬ord

(34)

q : ¬unrel
a ∈ {↓, ↓∗, ↓+}

q; a : ¬ord
(35)

q : ¬norc,ord

q; ↑ : ¬ord
(36)

q : nsib
a ∈ {�̇, �̇}

q; a : ¬ord

(37)
q : ¬unrel,ord

q; �̇ : ¬ord
(38)

q : ¬no2d
a ∈ {�,�, ↑∗, ↑+}

q; a : ¬nodup
(39)

q : ¬unrel
a ∈ {↓∗, ↓+}

q; a : ¬nodup

(40)
q : nsib a∈ {↑, �̇, �̇}

q; a : ¬nodup
(41)

a ∈ {↓∗, ↓+,�,�}

q; a : ntree
(42)

q : ntree a∈ A

q; a : ntree

(43)
a ∈ {↑∗, ↑+}

q; a : ¬unrel
(44)

q : ¬unrel a∈ {↓, ↑}

q; a : ¬unrel
(45)

q : ¬norc

q; �̇ : ¬unrel

(46)
q : ¬nolc

q; �̇ : ¬unrel
(47)

q : ntree

q : ¬unrel
(48)

q : lin,¬no2d

q : ¬unrel

(49)
a ∈ {↑∗, ↑+}

q; a : ¬no2d≥0
(50)

q : ¬no2d≥0 a ∈ A

q; a : ¬no2d≥0
(51)

q : nsib

q : ¬no2d

(52)
a ∈ {↓, �̇, �̇}

q; a : nsib
(53)

q : nhatn n ≥ 0

q : nsibn
(54)

q : nhatn n ≥ 0

q : ¬nolcn

(55)
q : ¬unrel

q; �̇ : ¬nolc
(56)

q : ¬nolc

q; �̇ : ¬nolc
(57)

q : nhatn n ≥ 0

q : ¬norcn

(58)
q : ¬unrel

q; �̇ : ¬norc
(59)

q : ¬norc

q; �̇ : ¬norc
(60)

q : ¬unrel

q; ↓ : nhat

(61)
q : ¬nolc

q; �̇ : nhat
(62)

q : ¬norc

q; �̇ : nhat
(63)

q : nsibn n ≥ 1

q; ↑∗ : nhatn−1

(64)
q : nsibn n ≥ 2

q; ↑+ : nhatn−2
(65)

q : ntree

q : nhat
(66)

π ∈ {nsib,nhat,
¬nolc,¬norc}
q : πn n ≥ 1

q; ↑+ : πn−1



(67)

π ∈ {nsib,nhat,
¬nolc,¬norc}
q : πn n ≥ 0

q; ↑∗ : πn
(68)

q : ord, lin

q : ord≥0
(69)

q : ordn n ≥ 1
a ∈ {�̇, �̇}

q; a : ordn

(70)

q : nsib
a ∈ {↑+, ↑∗,�,�}

q; a : ¬ord≥0
(71)

q : ¬unrel
a ∈ {↓∗, ↓+,�,�}

q : ¬ord≥0
(72)

q : ¬nodup
a ∈ {↓, �̇, �̇}

q; a : ¬ord

(73)

q : ¬nodup
a ∈ {�,�, ↓∗, ↓+, ↑∗, ↑+}

q; a : ¬ord≥0
(74)

q : ¬ordn n ≥ 1
a ∈ {↑, ↑∗, ↑+}

q; a : ¬ordn−1
(75)

q : ¬ord≤n n ≥ 0
a ∈ {↓, ↓∗, ↓+}

q; a : ¬ord≤n+1

(76)

q : ¬no2d
a ∈ {↓∗, ↓+, ↑∗, ↑+,�,�}

q; a : ¬ord≥1
(77)

q : ¬nodup a∈ A

q; a : ¬nodup
(78)

π is a set property
q : π a ∈ {σ, δ}

q; a : π

Table 2: All inference rules for duptidy evaluation plans

5 The Duptidy Automaton

The above inference rules allow us to construct an infinite deterministic automaton4 that
decides whetherord and/or noduphold for abstract evaluation plans. Because the au-
tomaton is rather large, it is spread over several pages. Figures 2,3, 4 and 5 show the
entire automaton.

The initial state is the lower-left state labeled(no2d) in Figure 2. The regular states
contain a name (between brackets) and a list of properties. The smaller pseudo-states
with a single name without brackets refer to real states for which transitions are given in
another part of the drawing. For all regular states, a transition is given for each axis and
this transition is indicated as either a solid, a dashed or a dotted arrow. An edge labeled
with A − {↑, ↓} indicates transitions for all axes except↑ and↓. Although not shown in
the drawing we assume that each state also contains thenodupproperty. This is because
this automaton will only deal withduptidyevaluation plans and the properties refer to
properties of intermediate results before the next axis step. For such intermediate results
thenodupproperty clearly always holds.

4The automaton can be implemented as a finite pushdown automaton, but we prefer this repre-
sentation for clearness reasons.
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Figure 5: The AutomatonAduptidy (Part IV)

5.1 Meaning of the Automaton

The automaton allows us to derive static properties of certain evaluation plans. However,
it works only correct for evaluation plans that are automaton-correct which is defined as
follows: an abstract evaluation plan isautomaton-correctif it holds for each axis step
in the plan that if the corresponding edge in the automaton is dashed or dotted then it is
followed byδ or σ; δ respectively. For such evaluation plans it then holds that if we start
from the initial state and then follow the transitions that correspond to the axis steps as
they are encountered in the evaluation plan, then the properties in the state in which we
end hold for this evaluation plan. Moreover, the type of the last edge indicates whether
after the last axis step,nodupandord hold or not. A solid edge indicates thatnodup
holds; a dashed edge indicates thatord and¬noduphold; and a dotted edge indicates that
¬ord and¬noduphold.



To illustrate this, consider the following abstract evaluation plan:↓+; �̇;σ; δ; ↓; ↑; δ.
If we follow the corresponding transitions in the automaton in Figure 2, we see that this
is indeed a automaton-correct evaluation plan since the↓+ transition fromno2dto ntr is
solid, the�̇ transition fromntr to ntr is dotted, the↓ transition fromntr to ntr1 is solid
and finally the↑ transition fromntr1 to ntr is dashed. We can then conclude from the
types of arrows that right after the↓+ step,nodupholds; right after the�̇ step, neither
ord nor nodup right after the↓ step,nodupholds; and finally, right after the↑ step,
ord and¬noduphold. From the labels of the states, we conclude that after the↓+ step,
the propertiesord andntreehold; after�̇;σ; δ these properties again hold; after↓, the
propertiesord1, ¬ord andntreehold; and finally, after↑; δ, the propertiesord andntree
hold again.

The correctness of the automaton is established by the following theorem.

Theorem 1 (Automaton correctness). For every automaton-correct abstract evaluation
plan p it holds that p: π if the list of axis steps in p end in Aduptidy in a state labeled
with π. Moreover, if p′ is equal to p except that theδ andσ steps after the last axis
step are omitted then the following holds for the type of the corresponding edge in the
automaton: if solid then p′ : nodup, if dashed then p′ : ¬nodup,ord and if dotted then
p′ : ¬nodup,¬ord.

Sketch.This theorem can be proved by induction upon the length ofp and p′ and the
inference rules in Table 2. �

As a corollary it follows that these inference rules are complete forord andnodup
in the sense that for eachp′ they derive eitherp′ : ord or p′¬ord and eitherp′ : nodup
or p′ : ¬nodup. Another consequence of the correctness of the automaton is that all
automaton-correct evaluation plans are duptidy evaluation plans. This holds since in an
automaton-correct evaluation plan it holds that after every axis step the intermediate result
has either thenodupproperty or we find eitherσ; δ or δ immediately after it.

5.2 Usage of the Automaton

The automaton can be used to construct an efficient evaluation plan for a given list of axes
as follows:

1. Determine the corresponding automaton-correct evaluation planp, and

2. add at the endσ if the automaton derives thatp : ¬ord.

We call the resulting evaluation plan theautomaton-based evaluation plan. For illustration
consider the following list of axes:↓; ↓; ↑; ↑+; ↓. The corresponding edges in the automa-
ton are respectively solid, solid, dashed, dotted and solid. Therefore the corresponding
automaton-correct evaluation plan is↓; ↓; ↑; δ; ↑+;σ; δ; ↓ and since the final state for the
initial list of axes (statel11) contains¬ord we add at the end a finalσ operation.

The following theorem establishes the correctness of and optimality of the constructed
evaluation plan.



Theorem 2. Given a list of axes the resulting automaton-based evaluation plan is (1) a
correct and duptidy abstract evaluation plan and (2) is optimal in the sense that there is
no equivalent duptidy evaluation plan that contains the same axes in the same order but
has fewerσ andδ operations.

Sketch.Let p be the automaton-based evaluation plan. From the correctness of the au-
tomaton and the wayp is constructed it follows that right before everyδ step in p the
intermediate result is always sorted in document order and hence its result is always de-
fined. Since the result of an automaton-correct evaluation plans never contains dupli-
cates andσ is added if its result may become unsorted it follows that the final result of
p is always sorted and without duplicates. The duptidiness ofp holds since the initial
automaton-correct evaluation plan is already duptidy.

The optimality ofp for δ steps follows easily from the correctness of the automaton
since they are inserted between axes steps iff they are needed to become duptidy. More-
over,σ steps are only inserted right beforeδ steps in order to ensure that their input is
always sorted. Considering that the result ofδ is always sorted (it assumes an ordered
input) it holds in every correct evaluation planp′ that contains the same axes steps andδ
steps in the same order asp that between twoδ steps without an intermediateδ step there
is at least oneσ step iff p contains aσ step before the lastδ step. �

6 Experiments

To evaluate the impact of the proposed techniques, we conducted several experiments, the
goals of which are to show that:

• the optimization is effective on common queries, and

• duptidyevaluation plans perform better than those that follow the sloppy approach,
i.e., postpone all sorting and duplicate elimination until the end of the evaluation
plan.

The section is organized accordingly. All experiments have been conducted using our
 implementation and executed on an Intel Pentium 4 (2.4GHz) with 1GB main mem-
ory and a 7200 RPM disk, running Debian Linux 2.6.4.

6.1 XMark Benchmarks

We start by applying our optimization onto the XMark benchmark [15] suite, using input
documents of various sizes. XMark consists of twenty queries over a document con-
taining auctions, bidders, and items. The queries exercise most of XQuery’s features
(selection, aggregation, grouping, joins, and element construction, etc.) and all contain
at least one path expression. Table 3 compares the query-evaluation times for the XMark
queries executed on a 20MB input document without the optimization (tidy) and with the
optimization applied (duptidy). The last column shows the relative speedup.



Query Tidy Duptidy Speedup Query Tidy Duptidy Speedup

Q01 0.194 0.171 1.14 Q11 10.878 10.762 1.01
Q02 0.065 0.044 1.46 Q12 7.127 7.084 1.01
Q03 0.596 0.484 1.23 Q13 0.106 0.093 1.13
Q04 0.625 0.560 1.12 Q14 20.616 5.922 3.48
Q05 0.206 0.188 1.09 Q15 0.099 0.048 2.08
Q06 14.463 2.516 5.75 Q16 0.110 0.068 1.63
Q07 28.953 4.608 6.28 Q17 0.217 0.165 1.31
Q08 0.523 0.446 1.17 Q18 0.233 0.229 1.01
Q09 0.836 0.781 1.07 Q19 6.442 3.019 2.13
Q10 6.133 5.912 1.04 Q20 1.198 1.070 1.12

Table 3: Total query evaluation time (secs) of XMark queries on 20MB docu-
ments.

Of the 239distinct-docorder operations in all the normalized XMark queries,
only threedocorder operations remain after the optimization. For many XMark
queries, however, the measured improvement is modest. The reasons for this modest
improvement include:

• In all queries except Queries 6, 7, 14 and 19, every path expression contains only
child steps, which permits very efficient evaluation, even without the optimization.

• Many of the queries apply selections that reduce the number of intermediate results,
which in turn reduces the cost of sorting and duplicate removal.

• The axes used in the XMark benchmark suite are restricted to child and descendant-
or-self. One of the immediate consequences is that duplicate nodesneveroccur in
the intermediate results.

Despite the simplicity the path expressions in the XMark queries, Table 3 still shows some
interesting results. Overall, the complete XMark test suite runs nearly twice as fast under
the optimization. Query 6 runs 5.75 times faster with the optimization and Queries 7,
14 and 19 show speedups of 6.28, 3.48 and 2.13, respectively. All these queries use of the
descendant-or-self axis frequently, which typically yields large intermediate results that
are expensive to sort.

Figure 6 shows the increased impact of the optimization on query evaluation
times as the input document grows from 10 to 50 MB. (Note that the Y-axis on the 50MB
graph is plotted in log scale.) For instance, the speedup on Query 7 grows from 5.79
times for a 10MB document 10MB to over 6 times for 20MB to 265.33 times (!) for
50MB. This not surprising, because in Query 7, the evaluation time is dominated by the
unnecessary sorting operations. If more nodes are selected, the relative impact of these
sorting operations on the evaluation time increases.
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Figure 6: The impact of the-optimization for XMark queries 6, 7, 14 and 19
and input documents of size 10MB, 20MB and 50MB.

6.2 Comparing Sloppy and Duptidy Evaluation Plans

As we discussed earlier in this article, the sloppy approach –although simple and easy to
implement– is not always the best solution for the problem. Since it allows duplicate
nodes in intermediate results to propagate throughout query evaluation, they may trigger
many duplicate computations for each subsequent step.

We have implemented the sloppy approach in and conducted several experi-
ments. For many of the queries, including the entire XMark benchmark suite, this sloppy
approach is as effective as the duptidy approach. Figure 6 shows the uniformity of the
two approaches. For some queries, however, we observed that the sloppy technique was
substantially slower, and in some cases, exponentially slower. Duplicate nodes in inter-
mediate results are the obvious culprits. If duplicates are not removed immediately, sub-
sequent steps of the path expression are applied redundantly to the same nodes multiple
times. Moreover, if subsequent steps also generate duplicates, then the size intermediate
results grows exponentially. To show this behavior, we evaluated path expressions of the
following form for increasing values ofn (example taken from [8]):

$input/child :: ∗/parent :: ∗ . . . /child :: ∗/parent :: ∗︸                                                                  ︷︷                                                                  ︸
n times

We applied this expression to an input document consisting of three nodes:

<?xml version="1.0"?>
<node1><node2/><node3/></node1>
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Figure 7: The graph compares the evaluation times for thesloppyandduptidy
approaches on two synthetic queries for increasing lengths of step sequences. The
first graph shows results forchild-parent queries, the second and third graph
show results fordescendant-or-self queries on two different sizes of input
documents.

The left-most graph in Figure 6.2 shows how the evaluation time doubles each time a
child-parent step sequence is added to the above path expression. This is not surprising as
the number of duplicate nodes in the intermediate result doubles every time, doubling the
time to calculate subsequent steps and the time to perform the final sorting and duplicate
removal operator.

The child-parent example is somewhat unusual, but a very common expression can
result in similarly bad behavior. The center and right-most graphs in Figure 6.2 show
the impact of multiple// steps in a path expression applied to 5.2 MB and 16.9 MB
documents, respectively. The evaluation time increases exponentially with the sloppy
approach.

The duptidy approach, in contrast, yields evaluation plans that grow gracefully with
the size of the path expressions and the size of input documents, because intermediate
results never contain duplicates. The duptidy approach permits intermediate results to be
out of document order, but as soon as duplicates are generated, one sorting operation is
left in place, if necessary, and duplicates are removed in linear. The automaton closely
guards the path-expression semantics with respect to duplicates, which is why we refer to
it asduptidy.

The left-most graph in Figure 6.2 shows how the duptidy approach causes the eval-
uation time to remain nearly constant, independent of how many child-parent steps are
added to the path expression. In the second and third graphs, the duptidy approach scales
much better with the size of both the query and the input document.

7 Related Work and Conclusion

The importance of sorting and eliminating duplicates in XQuery is underlined by the nu-
merous papers that address this issue. The problem becomes even more prominent in
streaming evaluation strategies [14]. Helmer et al [12] present an evaluation technique
that avoids the generation of duplicates, which is crucial for pipelining the evaluation of



path expressions. Grust [10] proposes a similar but more holistic approach for querying
XML-enabled relational databases The preorder and postorder numbering of nodes is used
to accelerate the evaluation of several axes by using B-tree indices. In subsequent work,
Grust [11] introduces thestaircase join, a tree-aware operator that can further speed up
evaluation of path expressions. These results are ported to the XML DOM datamodel in
[13] and are complementary to the approach taken in this work. The same holds for the
similar structural join algorithms [1] that also can compute step expressions efficiently
and return a sorted result. Finally, there are also algorithms likeholistic twig joins[4] that
compute the result of multiple steps at once. It is important however to point out that most
of this work supports only narrow subsets of path expressions. In contrast, our techniques
apply to path expressions in the complete XQuery language.

We believe that taking care of the optimization is a necessary first step in any
complete implementation of XQuery path expressions. The optimization produces
semantically correct and simplified path expressions that can be input to further query
optimization. Aside from that, the completeness of our approach ensures optimal results
for a considerable part of the language. More precisely, it removes a maximal amount
of sorting and duplicate-eliminate operations from normalized path expressions under the
restriction that we only allow duptidy evaluation plans. Note that even under this restric-
tion the resulting evaluation plan may not be truly optimal because there can be more
than one maximal set of removable operations. For example, the abstract evaluation plans
↑∗; �̇; ↓;σ and↑∗; �̇;σ; ↓ are both duptidy evaluation plans in which a maximal number
of σs andδs were removed, but only the first one is returned by the algorithm. However,
determining the most optimal one requires a cost-based approach where the estimated
cost of the sorting operations depends upon the estimated sizes of the intermediate re-
sults. Summarizing, the optimization is a relatively simple technique that finds a
solution that is optimal in a certain theoretical sense and that is hard to improve upon
without using more involved cost-based techniques.
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