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Abstract

The semantics of the standard XML query language XQuery requires
that the results of its path expressions are in document order and duplicate-
free. Many implementations of this semantics guarantee correctness by in-
serting explicit operations that sort and remove duplicates in their evaluation
plans. The sorting and duplicate-removal operations are often either inserted
after each step or only after the last step. However, both strategies have per-
formance drawbacks. In this paper we show how to create nficgeat
evaluation plans by deciding statically where such operations are required.
We present inference rules for deciding orderedness and duplicate-freeness
of the results of evaluation plans and show that these rules are sound and, for
certain evaluation plans, complete. These inference rules are implemented
by an dficient, automaton-based algorithm. Experimental results show that
the algorithm is &ective on many common path expressions.

1 Introduction

Unlike the classical relational database systems, XML databases are ordered, i.e.,
all its data collections are lists rather than sets. This creates a whole series of
challenges and opportunities in the area of query optimization. The fact that order
is so important to XML is reflected in its query languages, which usually enforce
some kind of orderedness in their results even though it essentially represents a
set. An example of this are path expressions in XQuery which are used to select
sets of nodes in document trees but whose semantics is defined such that the result



is a list of nodes that contains no duplicate nodes and orders the nodes as they
appear in the document. A naive interpretation of these semantics leads to query
evaluation plans that contain sorting operations (and also duplicate-elimination
operations) for every step in the path expression and thereby often become perfor-
mance bottlenecks and impede certain optimizations such as pipe-lined evaluation
techniques. However, simply removing them for all intermediate steps can also
cause performance problems since this will allow duplicates in intermediate re-
sults and thereby duplicate computations. In this work we propose a solution that
uses the fact that the path expressions navigate in an ordered tree and will there-
fore sometimes, after navigating in certain combinations of directions, produce a
correct result without an explicit sorting or duplicate-elimination operation. We
present an algorithm that statically decides which of these operations are redun-
dant and thereby allows us to determine a query evaluation plan that contains a
minimal number of such operations.

1.1 Introduction to XQuery

XQuery [3] is the standard query language for XML and it is currently being
standardized by the World Wide Web Consortium. The two main syntactical con-
structs of the language are FLWOR expressions and path expressions.

Path expressions are used tselectnodes from the input document tree with
UNIX-like path expressions. There are ten axes that allow navigation in a certain
direction through the XML tree. For example, the path expression

doc("input.xml")/descendant::a/child::b

opens an XML document and selects all elements labelédt are children of

the a-labeled descendants of the document root. This path expression contains
two axes, namelylescendant andchild. A single navigation operation is called

a stepand a path expression consists of an arbitrary number of steps. The label
tests (e.g.: :a) are called node tests. Additional conditions can be applied to the
nodes that are selected by a step expression by placing conditional expressions in
square brackets after the step. For instance,

doc("input.xml")/child::a[child: :b]

selects thosa-labeled children of the document root that do hiaahildren. Path
expressions return ordered sequences of items. If these items are nodes selected
from a document, then the nodes in the result sequence must occur in the same
order as they do in the document, i.e. they must be in document order.



FLWOR , pronounced “flower”, is short hand for For - Let - Where - Order By

- Return. It allows iteration over item sequences (e.g. results of path expressions)
with for-loops. let-bindings are used for additional selections. The sequences
can be reordered on some value withder by clauses and finally the result is
returned in thereturn statement. A simple example of a FLWOR expression is

for $x in doc("input.xml")/employee
let $year := $x/employeeSince
where $x/salary > 5000
order by $year
return
<entry name="{$x/name}" since="{$year}"/>

This expression selects employees and for each of them selects the year they
started working for the company. The employees with a salary greates@iean

are ordered by that year and for each of them, an element with their name and
starting year is constructed and returned.

1.2 XQuery Semantics of Path Expressions

The problem that is being tackled in this paper originates from the semantics of
path expressions, which are specified in terms of a limited subset of the XQuery
languagel[5], called the XQuery Core. Consider the afore-mentioned simple path
expression.

doc("input.xml")/descendant::a/child::b

The exact semantics of this expression is specified in terms of XQuery FLWOR
expressions as follows (simplified):

distinct-docorder/(
let $sequence :=
distinct-docorder(
let $sequence := doc("input.xml™)
return
for $dot in $sequence
return descendant::a
)
return
for $dot in $sequence
return child::b



As mentioned earlier, the XQuery semantics requires the result of every path
expression to be in document order. This is why dhgtinct-docorder opera-
tions (ddo in short) are inserted after each step. To see why this is necessary, let
us apply the above expression to the XML docurfj@nfigure/].

<?xml version="1.0"7>

<a> (1) @

<b/>

<a> e
b

<b/>

(5)
a b
</a>

(3)
<b/> e
b

</a>

Figure 1: An XML document and its corresponding tree representation. The num-
bers inside the tree nodes correspond to the document order.

We see that after the firgiescendant: :a-Sstep, we get the nodasand3, in
that order, since the axis operations always return their results in document order.
Evaluating the next step consists of iterating over these nodes, and selecting all
theb-children of every node. This results in the elemerasds (for 1) and4 (for
3), again in that order. Obviously, the sequencges, 4 is not in order and thus,

a sorting operation has to be inserted.

So for each of the step expressions, a sorting and duplicate-elimination oper-
ation is applied, even if this may not be necessary. The most important reason for
this is that path expressions can turn out to be very complex and the easiest way
to get the semantics right is to sort and remove duplicates after every step. The
explicit insertion ofddo operations causes two problems:

1. When large input documents are queried ddwecalls will have to sort very
large sets of nodes.

2. Theddo operations are pipeline breakers. Having to materialize a large
amount of nodes in memory will often slow down query evaluation and
increase memory usage [7].

Therefore we would like to get rid of as maago operations as possible without
giving in on correctness. A trivial and naive approach to solving this problem is to
postpone sorting and duplicate elimination until the end. This is what we will refer
to as thesloppyapproach. However, this comes at the risk of an exponential blow-
up of duplicates in the intermediate result, which causes a multitude of duplicate

INote that<g/> is an abbreviation fora></a>



computations in subsequent steps [9], which can have an unacceptable impact on
evaluation performance.

Another possible approach is to remove sortiluplicate-elimination opera-
tions from the query plan if the result is already sofathout duplicates. In the
following sections we show that this is possible by reasoning over certain static
properties of path expressions with the help of relatively simple inference rules.

2 Abstract Evaluation Plans

For making reasoning easier, we make some simplifying assumptions and formal-
ize some concepts. Aside from a formal notion for XML documents and document
order, we also introduce abstract evaluation plans. These are an abstraction of the
XQuery Core expressions that were mentioned earlier. Abstract evaluation plans
allow us to concisely express path expressions that solely consist of navigational
axis steps that do not have node tests.

We begin with the formalization of an XML document. To save space, we
only consider element nodel). Other types of nodes can be added easily. Since
node tests cannot appear in evaluation plans, we do not model node labels in our
formalization of an XML document.

Definition 2.1 (XML Document) An XML documentis a rooted ordered tree
(N, <, r, <) such that(N, <, r) is a rooted tree with nodes N, edges N x N that
indicate the parent-child relation and root r, andis the sibling-order relation
that is a strict partial order over N such that for each two distinct nodesne N
it holds that n < n, or np, < ny iff they are siblings.

The relations«™ and <* denote the transitive closure and the reflexive and tran-
sitive closure ok, respectively. The reverses ef <, <* and<* are denoted by
>, >, >+ and>"*, respectively. The composition of two binary relatidghandS is
Ro S = {(ny, m)l(ng, M) € S, (N2, nz) € R}
Next, we need to formalize the document order of nodes in an XML document.

Definition 2.2 (Document Order) Given an XML document & (N, <,r, <) we
define thedocument order D, <p, as the strict total order over N that orders
the nodes as encountered in a pre-order tree-walk, «g+ <* U (>*o < o<*).

Before we define abstract evaluation plans, we first defiset semanticand a
sequence semanti® each axis in terms of the above relations on nodes.

Definition 2.3 (Axes). Theset of axe® is defined a$t, |, 1%, ', T%, 17, «, —»,
«, —»} where these symbols represent the axes as given in [Table 1. The concise
notation in Tablé [l extends the notation lin [2].



AXxis AXxis Set Semantics

Name Symbol {Axis]ip
child ! <
parent T >
descendant 1 <t
ancestor T* >*
descendant-or-self 1 <
ancestor-or-self ™ >*
following - >*o < o*
preceding « >*o > o«*
following-sibling . <
preceding-sibling « >

Table 1: Axis names, symbols, and set semantics

Definition 2.4 (Axis Set Semantics)lTheset semanticsf an axis a on a document
D = (N,<,r,<) is a binary relation{allp € N x N and is defined by the third
column of Tablé]1.

For example, the semantics of th&l1lowing axis is defined such that it contains
the pair 61, n) iff ny is the descendant (or the node itself) of a node that is a following
sibling of an ancestor (or the node itself)raf

Definition 2.5 (Axis Sequence Semanticsjhe sequence semanticd an axis a on a
document D= (N, «,r, <) is a function[a] p : N — S(N) whereS(N) denotes the set of
finite sequences over N such thjaf p(n) is the sequence that is obtained by sorting the
set{n’|(n, ") € {a]}p} with <p, the document order of D.

We overload the last notation and define a functiahd : S(N) — S(N) such that it holds
that [al ({1, ..., k) = [@lo(n)-...-[a] o(nk) where- denotes sequence concatenation.

To make reasoning about evaluation plans easier, we introduce a more concise abstract
notation for them. We represent evaluation plans as lists of axis symbols fronj Jable 1 and
the symbolsr andé that represent sorting and duplicate-elimination operations, respec-
tively. To be precisey represents the operation that sorts the input sequence in document
order ands represents the duplicate-elimination operation that assumes that its input is
sorted in document order, which implies that it can do this in linear time and constant
space. The concrete functidistinct-docorder is always written in the abstract eval-
uation plan as the composition @bcorder anddistinct.

Definition 2.6 (Abstract Evaluation Plan)An abstract evaluation plais a non-empty
sequence g si;...; & Where each;ds either an axis symbod; or 6.

Now that we know what an abstract evaluation plan is, we need to define its semantics.
We also specify when two evaluation plans are equivalent and what a correct evaluation
plan is.



Definition 2.7 (Evaluation Plan Semanticsisiven a document D, theemantics of an
abstract evaluation plag= s;...; &, is a partiaﬂfunctionl[q]]D : N — S(N) such that
[alo(n) = F((m) where F=[si]po... o [sdb.

Two abstract evaluation plans are calkglivalentf they have the same semantics.
In accordance with the formal semantics of XQuery an evaluationglarss;...; s, is
calledcorrectif it is equivalent withs; . .. ; sy; 0 6.

Duptidy Evaluation Plans The purpose of our work is to avoid unnecessary sorting
andor duplicate eliminations to occur during the evaluation of a path expression. This
boils down to finding a correct abstract evaluation plan with a minimal numbetsof
ands’s. As mentioned earlier, postponing sorting and duplicate elimination until after the
last step is not a viable solution, since duplicates in the intermediate result can cause an
exponential blowup, both in memory usage and in execution time. Intermediate ordered-
ness however is something we are not interested in. Thus, a nice approach would be to
postpone sorting and duplicate elimination except when duplicates are introduced. If this
happens, the intermediate result is sorted (if necessary) and freed from duplicates. If after
the last step, the result is not sorted by document order, a final sorting operation is applied.

Such evaluation plans in which the generation of duplicates is avoided are called dup-
tidy evaluation plans, i.e., they tidily correspond to the formal semantics with respect to
duplicates in the intermediate results.

Definition 2.8 (Duptidy Evaluation Plan)A duptidy evaluation plan is a correct evalu-
ation plan gq= si;...; S, such that for each XML document D ando$ g that is an axis
step, it holds that the range of the functips;;...; s_1] o does not contain a sequence
with duplicate nodes.

Our goal will be to decide which steps in an abstract evaluation plan produce a result
which is sorted by document ordieee from duplicates, independent of the the input given
to the corresponding path expression. In this way, we will be able to construct “minimal”
duptidy evaluation plans for path expressions, i.e., a duptidy evaluation plan that contains
all the axes of the path expression in the same order and that has a minimal number of
andss.

3 Evaluation Plan Properties

For each step in the abstract evaluation plan we need to infer two static properties. The
first property isord or the orderedness property. If we can infer this property for a step,
then we know its result will always be in document order, no matter which input is used to
evaluate the path expression. The second property isdtapproperty, indicating that

the result of a step will always be free from duplicates. The inference of these properties
allows us to remove the corresponding operations from the evaluation plan.

2The semantics of an evaluation plan is a partial function, becaassumes an ordered input
sequence.



Definition 3.1 (The ord andnodupProperties) For an evaluation plan q we define the
following properties:

ord (Ordered)For every XML document D and node im D the sequencgqg] p(ni) is
sorted in the document order of D.

nodup (No Duplicates)For every XML document D and node m D the sequence
[dl o(n1) contains no duplicates.

The fact that a certain propertiyholds for an evaluation plagis denoted asg : .
For example/; | : ord denotes the fact that the result of the evaluation plans always
sorted in document order.

Unfortunately, theord andnodupproperties are indficient for a complete inference
mechanism and we will need additional properties. For example, consider the abstract
evaluation plan,; |. We always assume the input cardinality of the first step to be one.
We know that if we follow the child axis twice from one node, that the result will always
be sorted by document order and free from duplicates. However, following the child axis
does not necessarily mean that order is maintained. If the child axis is preceded by the
descendant axis, for instance, then the final result can be out of document order (see the
example of Section 1].1). So the fact that the second child stgplipreserves document
order is due to another property that holds after the first step, namelyntieéproperty,
which states that there are no ancestor-descendant related nodes in the result (see below).

Many of the additional properties aset propertiesn the sense that they only refer
to the result set of the evaluation plan and do not care about the order or the multiplicity
of the nodes in the result. It is clear that this is not true fordteeandnodu pproperties.

The set properties are dividedpositive set propertieandnegative set properties

3.1 Positive Set Properties

Positive set properties are those set properties that forbid certain combinations of nodes in
the result of the evaluation plan. For instance, the earlier mentiones property does
not allow for any two nodes in the result to be ancestor-descendant related.

Definition 3.2 (Positive Set Properties}or evaluation plans q we define the following
properties:

lin (Linear)For every XML document D and node¢ im D all the nodes iffg] o(n1) are
ancestor-descendent related.

unrel (Unrelated)or every XML document D and nodgin D all the nodes iff g] p(n1)
are notancestor-descendant related.

nolc (No Left Child) For every XML document D, nodg in D and nodes # nz in
[dlo(ny) it holds that if B has a sibling g that is an ancestor ofgthen i is not
a left sibling of n.



norc (No Right Child)For every XML document D, nodg im D and nodes # nz in
[dlo(ny) it holds that if B has a sibling i that is an ancestor ofgthen 13 is not
a right sibling of .

no2d (No 2 Distinct Nodes)or every XML document D and nodg im D there are not
two distinct nodes ifig] p(n).

3.2 Negative Set Properties

Negative properties are those set properties that require that certain combinations can
occur in the result of the evaluation plan.

Definition 3.3 (Negative Set Propertiesyor evaluation plans g we define the following
properties:

nsib (n Siblings)For any number n there is an XML document D and a nodia D such
that there are at least n distinct siblings g p(n1).

ntree (Tree of sizen) For any number n there is an XML document D and a noden
D such that there is set of nodes]ig] p(n;) that spans a tree in D of height n with
all internal nodes having n children.

nhat (Hat of n Siblings)For any number n there is an XML document D and a noge n
in D such that there is a node 1in [q] p(n1) such that there is an ancestor of n
which has at least n distinct left siblings and n distinct right siblingfdip (ny).

3.3 Indexed properties

For many properties it holds that if for an evaluation plagit holds thatq : 7 then the

same property also holds fgrextended with; T, i.e.,q; |; T : 7. For example this holds

for the ord property, but not for theodupproperty. More generally, if we extergwith

i times the| axis followed byi times thel axis, many properties that hold fqralso hold

for the extended query. Therefore, we introduce indexed versions of all the properties that
indicate that the original property is obtained if we apply trexisi times.

Definition 3.4 (Indexed Properties)All propertiesr except nodup can have indices such
as innj, < andnsi, which are defined as follows:

o (:miffq:m
e ifi >0thenq: =i iff (q; 7) : 7i-1.
e q:ngiffforall j <iitholds thatq: x;.

e q:msjiffforall j >iitholds that g: x;.



The sefl is the set of all evaluation plan properties that can have an indexJl.e. {ord,
lin, unrel nolc, norc, no2d, nsikh, ntree nhat —ord, —lin, —unrel, —=nolc, —norc, —no2d,
-nsib, —=ntreg -nhat.

For all propertiesr we user, mg andr<g as synonyms. It is easy to see that ifs a
positive (negative) set property then so ayer<; andns;. When the property is negated
andhas an index witlx or < then the negation is assumed to have the higher priority. So,
for exampleq : - means that for al] > i it holds thatq : —x;.

3.4 Negated properties

The fact that a certain property doast hold for a certain evaluation plan is also relevant
since, for example, we want to be able to derive wbesh holds and when it does not.
Therefore we introduce negated versions of all propertigsich are written aswzr. The
semantics of] : - is then assumed to be that it does not hold that. So, ifq: —ord

then it is not true that the result dfis always sorted. Note that this does not mean the
the result is always unsorted. Also note that it is easy to see that the negated version of a
positive set property becomes a negative set property and vice versa.

4 Inference Rules

We are now ready to define our inference mechanism. We will define a set of inference
rules for deriving properties for abstract evaluation plans. Our goal is to be complete for
abstract evaluation plans in the sense that we want to be able to derive for each step of
every evaluation plan that eitherd or —ord holds, and likewise fonodup In this paper
however we only consider rules that are needed to be complete for duptidy evaluation
plans. Tabl¢ 2 shows the complete set of rules for duptidy evaluation plans.

Below we discuss some of these rules in more detail. We will also show some example
proofs for a few rules. Due to spacing constraints we refer the reader to the technical report
[6] for the other proofs and the entire set inference rules that is complete for all abstract
evaluation plans.

Rule[§ The first rule we discuss tell us that if an evaluation pigimas theunrel and
nodu pproperties, following any downward axis will preserve tiaeupproperty.

q:unrelnodup  ae{l,|* |}

g;a: nodup

Proof. By definition of a tree, two unrelated nodes never have common descendants.
Therefore, unrelated nodes will never generate duplicates when one of thg, dxesr
1* are followed. O



Rule[J The next rule states that if the result of an evaluation pl@&always in docu-
ment order and) has thenorc property, then the result of 7 is also always in document
order.

g : norc, ord
g;T:ord

Proof. Letaandb be two output nodes a@fwith a <<ff]b and letc andd be their respective
parent nodes in the result of the step expression. Suppose nod that. This means
that eitherd is an ancestor af or d is a preceding node «f

e dis a preceding node oft — If this were true, then all children af, includingb,
would be preceding nodes of This however conflicts with the fact thatx b;

e dis an ancestor node of — Sincea < b, this implies that there is an ancestoicof
that has a right sibling, namely This however conflicts with the definition of the
norc property.

We conclude that any two parents of two input nodes occur in order in the result.o

Rule[35 To see the importance of therc property, we now consider the same rule,
with the diference that thaorc property doesiot hold. We show that if this is the case,
the ord property is not preserved.

g: —norc,ord
g; T : -ord

Proof. The —norc property implies that there is a document such that after following
the input sequence contains two notdesdc, which are structured as follows:

©)

Solid arrows indicate a child-parent relationship and dashed arrows indicate an ancestor-
descendant relationship. Since< b and theord property holds for the input, we know
thatc comes beford in the input sequence. Suppose the paremtisfe. Thene comes
befored (which is the parent ob) in the output sequence, but from the fact tkas

a descendant df follows thatd < e. Hence the output sequence is not in document
order. O

3 From now on we writex instead of«p when it is clear for which documeim we want to
express the document order.



Rule[768 The last rule states that if there are at least twedint nodes of the same
tree in the input, then following any of the recursive axged™*, 1%, 1+, «-, », causes the
output to have the-.ords1 property, which means that following the parent axis one or
more times from there, results in a node sequence that can be out of document order.

q: —no2d ae{ln 15117, «, >}

g;a: —ords;

Proof. [For |*, |*, -, «] After following any one of these axes, rille]41 says that the
ntreeproperty holds. The rulgs b5 aphd|57 allow us to deduceghatnorc.o. So,q; 1"
has both therd and the-norc property and thus; 1" has the-ord; property. The result
now contains two related nodes that are out of document order and it is easy to see that
this remains the case after following any number of parent axes.

[For T+, 1%] The sequences that result from following these axes from tfferdit
nodes share an arbitrarily long subsequence of nodes. The result sequence thus contains
two identical subsequences of arbitrary length, which implies that there can be two related
nodes that are not in document order, no matter how many times you follow the parent
axis. m]

g: unrel ord, nodup

) g: no2d, nodup ac A g: norg,ord 3) ae{l,l" 1"}
g;a: ord g;7T:ord g;a: ord
g: lin,ord g: no2d, nodup ac A g: nodup
4) ®) e (6) —
g; « :ord g;a: nodup g; | : nodup
g:lin,nodup g: unrel, nodup
ae (], «,»} aefl,l* 1" q: no2d n>0
7)) @) ————— ©) —
g;a: nodup g;a: nodup g: no2dn;1
: ho2d n>0 2 lin n>0 2 lin n>1
(10) (1) (T 122
q: ling q:lingg q; 7" i linp_g
:lin n>0 2 lin : holc
(13) q“— (14) q_ (15) q—
g; 1" : ling g: nolc g; - : nolc
- nolc,, lin n>0 2 nolc,, lin n>1 : no2d n>0
(16) q Cn- . .n+1 (17) q Cn - .n+1 (18) q : n
g; 17" : nolc, g; 7" : nolc, 1 g: nolcg
g: norcy, linpyg
g:lin g: norc n>0
(19) — (20) ————- @1) ——
g: norc g; « : norc g; T* : norc,
1 NOrG,, ling, n>1 s unrel ac€ {«, - :unrel
(2 T @y TIE__P T o T
q; 1" : norc,-1 g;,a: norc g;l : norc



g : no2d
g: norcso

n>0
(25)

g: unrek n>1

q:unreh q

(28)

mell q:mn
nx>1

(31)

Q7 : o1

g: -unrel
ae{l,l" 1"

34
(34) g;a: —ord

g: —unrel, ord
@7) —m
g; » : —ord

g:nsib ac {1, «, »}

(40)

g;a: —nodup

ae {1, 1"
g;a: —unrel

(43)

g: —nholc
(46) ———
g; > : —unrel

(49) ae{1,17)
g;a: ~no2dso

aell, «,»}

(52)

g;a: nsib

g: -unrel

(65) ———
g; « : =nholc

g: -unrel

(58) ————
g, > : -horc

g: -nolc

(61)

g; - : nhat

g: nsih, n>2
a7 : nhat,_»

(64)

g: nolc

(26)

g; - : unrel

g: —norc,ord

(35) q;T:-ord

g:-no2d

(38) ace f«,» 1,17

g;a: -nodup

ac (|t «,~»)

(41)
g;a: ntree
: =unrel ae{l,
(44) q {1
g;a: —unrel
: ntree
(a7y 3 1€
g: -unrel
: =no2d. aceA
(50) =0
g;a: —no2dso

g : nhat, nx=0
g: nsih,

(53)

g: —-holc
(56) ———
g; « : =nholc

g: —nhorc
(59) ————
g; -» : —horc

g: —-nhorc

(62)

g; « : nhat

g: ntree

65
(69) g: nhat

g: norc
@) ————
qg; « : unrel
mell q:m
n>0
(30)
Qi
g:-nho2d
ae {«,», 1,17

g;a: -ord

(33)

g: nsib
ac {«,»}
(36) ———

g;a: -ord
g: -unrel
ae{l" 1"

g;a: —nodup

(39)

g: ntree ac A

(42)

g;a: ntree

g: —norc
(45) ————
g; « : —unrel

g: lin,-no2d

(48)
g: -unrel

g: nsib

51) ———
( )q:—-nOZd

g : nhat, nx=0

g: —-nolg,

(54)

g; 1" : nhat_1

m € {nsih nhat,
—nolc, ~norc}

: n>1
(66) -
(0 NN NP NI}



m € {nsih nhat,

-nolc, —norc} g: ord, n>1
: n>0 :ord, lin ae {«,-
7)o (68) - (69) 2510
;1" i q: ordsg g;a: ord,
g: nsib g: -unrel g: —nodup
ac +’ *’ , ae *, +, , ae ""
(70) {17517, >, «} (71) {1517, >, «} (72) {{, «,»}
g;a: —0ordsg g: —ordsg g;a: -ord
g: —nodup g: —ord, n>1 g: —ord«y n>0
ae , ,*’ +’ *’+ ae ’*’+ ae ’*’+
(73) i PR A AN I (74) {717} (75) {1517
g;a: —ordso g;a: —ords_; g;a: —0rdens1
g: —no2d 7 is a set property
ae{l" 1511 «, : =nodu ac A : ae{o,6
(76) {1517, «, >} 77) q p (78) q:m {o, 6}
g;a: —ords; g;a: —-nodup ga:n

Table 2: All inference rules for duptidy evaluation plans

5 The Duptidy Automaton

The above inference rules allow us to construct an infinite deterministic autdfrtasin
decides whetheord andor noduphold for abstract evaluation plans. Because the au-
tomaton is rather large, it is spread over several pages. Fip|iigs| 2,3,[4 and 5 show the
entire automaton.

The initial state is the lower-left state label@uwb2d)in Figure[2. The regular states
contain a name (between brackets) and a list of properties. The smaller pseudo-states
with a single name without brackets refer to real states for which transitions are given in
another part of the drawing. For all regular states, a transition is given for each axis and
this transition is indicated as either a solid, a dashed or a dotted arrow. An edge labeled
with A — {1, |} indicates transitions for all axes excegpand|. Although not shown in
the drawing we assume that each state also containsotthepproperty. This is because
this automaton will only deal witlduptidy evaluation plans and the properties refer to
properties of intermediate results before the next axis step. For such intermediate results
thenodupproperty clearly always holds.

4The automaton can be implemented as a finite pushdown automaton, but we prefer this repre-
sentation for clearness reasons.
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5.1 Meaning of the Automaton

The automaton allows us to derive static properties of certain evaluation plans. However,
it works only correct for evaluation plans that are automaton-correct which is defined as
follows: an abstract evaluation plan asitomaton-correctf it holds for each axis step

in the plan that if the corresponding edge in the automaton is dashed or dotted then it is
followed byé or o; 6 respectively. For such evaluation plans it then holds that if we start
from the initial state and then follow the transitions that correspond to the axis steps as
they are encountered in the evaluation plan, then the properties in the state in which we
end hold for this evaluation plan. Moreover, the type of the last edge indicates whether
after the last axis stemodupandord hold or not. A solid edge indicates thabdup

holds; a dashed edge indicates thiat and—noduphold; and a dotted edge indicates that
-ord and-noduphold.



To illustrate this, consider the following abstract evaluation plgh-»; o 5; l; T; 6.
If we follow the corresponding transitions in the automaton in Figlire 2, we see that this
is indeed a automaton-correct evaluation plan sincd theansition fromno2dto ntr is
solid, the-» transition fromntr to ntr is dotted, the| transition fromntr to ntrl is solid
and finally the? transition fromntrl to ntr is dashed. We can then conclude from the
types of arrows that right after thg step,nodupholds; right after the» step, neither
ord nor nodup right after the| step,nodupholds; and finally, right after th¢ step,
ord and—-noduphold. From the labels of the states, we conclude that aftet thatep,
the propertieord andntreehold; after-»; o; § these properties again hold; aftgrthe
propertiesord;, —ord andntreehold; and finally, afterf; §, the propertie®rd andntree
hold again.

The correctness of the automaton is established by the following theorem.

Theorem 1 (Automaton correctnessfor every automaton-correct abstract evaluation
plan p it holds that p: « if the list of axis steps in p end in9®'Y in a state labeled

with 7. Moreover, if p is equal to p except that th& and o steps after the last axis
step are omitted then the following holds for the type of the corresponding edge in the
automaton: if solid then’p: nodup, if dashed then’p —nodup ord and if dotted then

p’ : =nodup-ord.

Sketch. This theorem can be proved by induction upon the lengtp ahd p’ and the
inference rules in Tablg 2. m]

As a corollary it follows that these inference rules are completefdrand nodup
in the sense that for eag#t they derive eithep’ : ord or p’-ord and eitherp’ : nodup
or p’ : =nodup Another consequence of the correctness of the automaton is that all
automaton-correct evaluation plans are duptidy evaluation plans. This holds since in an
automaton-correct evaluation plan it holds that after every axis step the intermediate result
has either th@odupproperty or we find eithes; § or § immediately after it.

5.2 Usage of the Automaton

The automaton can be used to constructfénient evaluation plan for a given list of axes
as follows:

1. Determine the corresponding automaton-correct evaluationpplamd
2. add at the end if the automaton derives that: —-ord.

We call the resulting evaluation plan taetomaton-based evaluation plaror illustration
consider the following list of axeg; |; T; 1*; |. The corresponding edges in the automa-
ton are respectively solid, solid, dashed, dotted and solid. Therefore the corresponding
automaton-correct evaluation planlis|; T;8; T%; o; 6; | and since the final state for the
initial list of axes (staté;1) contains-ord we add at the end a final operation.

The following theorem establishes the correctness of and optimality of the constructed
evaluation plan.



Theorem 2. Given a list of axes the resulting automaton-based evaluation plan is (1) a
correct and duptidy abstract evaluation plan and (2) is optimal in the sense that there is
no equivalent duptidy evaluation plan that contains the same axes in the same order but
has fewel- andé operations.

Sketch.Let p be the automaton-based evaluation plan. From the correctness of the au-
tomaton and the way is constructed it follows that right before evefystep inp the
intermediate result is always sorted in document order and hence its result is always de-
fined. Since the result of an automaton-correct evaluation plans never contains dupli-
cates andr is added if its result may become unsorted it follows that the final result of

p is always sorted and without duplicates. The duptidinesp bblds since the initial
automaton-correct evaluation plan is already duptidy.

The optimality ofp for § steps follows easily from the correctness of the automaton
since they are inserted between axes stfhey are needed to become duptidy. More-
over, o steps are only inserted right befafesteps in order to ensure that their input is
always sorted. Considering that the resulsaé always sorted (it assumes an ordered
input) it holds in every correct evaluation plphthat contains the same axes steps &nd
steps in the same order pshat between twé steps without an intermediafestep there
is at least one step {f p contains ar step before the lagtstep. O

6 Experiments

To evaluate the impact of the proposed techniques, we conducted several experiments, the
goals of which are to show that:

¢ theppo optimization is &ective on common queries, and

¢ duptidyevaluation plans perform better than those that follow the sloppy approach,
i.e., postpone all sorting and duplicate elimination until the end of the evaluation
plan.

The section is organized accordingly. All experiments have been conducted using our
GaLAX implementation and executed on an Intel Pentium 4 (2.4GHz) with 1GB main mem-
ory and a 7200 RPM disk, running Debian Linux 2.6.4.

6.1 XMark Benchmarks

We start by applying our optimization onto the XMark benchmark [15] suite, using input
documents of various sizes. XMark consists of twenty queries over a document con-
taining auctions, bidders, and items. The queries exercise most of XQuery’s features
(selection, aggregation, grouping, joins, and element construction, etc.) and all contain
at least one path expression. Tghle 3 compares the query-evaluation times for the XMark
gueries executed on a 20MB input document without the optimization (tidy) and with the
optimization applied (duptidy). The last column shows the relative speedup.



| Query [ Tidy | Duptidy | Speedup|| Query | Tidy | Duptidy | Speedup]|

Qo1 0.194 0.171 114 Q11 10.878| 10.762 1.01
Q02 0.065 0.044 1.46| Q12 7.127 7.084 1.01
Q03 0.596 0.484 1.23 | Q13 0.106 0.093 1.13
Q04 0.625 0.560 112 Q14 20.616 5.922 3.48
Q05 0.206 0.188 1.09 | Q15 0.099 0.048 2.08
Q06 14.463 2.516 5.75|| Q16 0.110 0.068 1.63
Q07 28.953 4.608 6.28 | Q17 0.217 0.165 131
Q08 0.523 0.446 1.17| Q18 0.233 0.229 1.01
Q09 0.836 0.781 1.07| Q19 6.442 3.019 2.13
Q10 6.133 5.912 1.04 | Q20 1.198 1.070 1.12

Table 3: Total query evaluation time (secs) of XMark queries on 20MB docu-
ments.

Of the 239distinct-docorder operations in all the normalized XMark queries,
only threedocorder operations remain after theo optimization. For many XMark
gueries, however, the measured improvement is modest. The reasons for this modest
improvement include:

¢ In all queries except Queries 6, 7, 14 and 19, every path expression contains only
child steps, which permits venftecient evaluation, even without the optimization.

e Many of the queries apply selections that reduce the number of intermediate results,
which in turn reduces the cost of sorting and duplicate removal.

e The axes used in the XMark benchmark suite are restricted to child and descendant-
or-self. One of the immediate consequences is that duplicate megesoccur in
the intermediate results.

Despite the simplicity the path expressions in the XMark queries, [fable 3 still shows some
interesting results. Overall, the complete XMark test suite runs nearly twice as fast under
theppo optimization. Query 6 runs 5.75 times faster with the optimization and Queries 7,
14 and 19 show speedups of 6.28, 3.48 and 2.13, respectively. All these queries use of the
descendant-or-self axis frequently, which typically yields large intermediate results that
are expensive to sort.

Figure[§ shows the increased impact of the optimization on query evaluation
times as the input document grows from 10 to 50 MB. (Note that the Y-axis on the 50MB
graph is plotted in log scale.) For instance, the speedup on Query 7 grows from 5.79
times for a 10MB document 10MB to over 6 times for 20MB to 265.33 times (!) for
50MB. This not surprising, because in Query 7, the evaluation time is dominated by the
unnecessary sorting operations. If more nodes are selected, the relative impact of these
sorting operations on the evaluation time increases.
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6.2 Comparing Sloppy and Duptidy Evaluation Plans

As we discussed earlier in this article, the sloppy approach —although simple and easy to
implement— is not always the best solution for thve problem. Since it allows duplicate
nodes in intermediate results to propagate throughout query evaluation, they may trigger
many duplicate computations for each subsequent step.

We have implemented the sloppy approachsdnax and conducted several experi-
ments. For many of the queries, including the entire XMark benchmark suite, this sloppy
approach is asfective as the duptidy approach. Figilife 6 shows the uniformity of the
two approaches. For some queries, however, we observed that the sloppy technique was
substantially slower, and in some cases, exponentially slower. Duplicate nodes in inter-
mediate results are the obvious culprits. If duplicates are not removed immediately, sub-
sequent steps of the path expression are applied redundantly to the same nodes multiple
times. Moreover, if subsequent steps also generate duplicates, then the size intermediate
results grows exponentially. To show this behavior, we evaluated path expressions of the
following form for increasing values af (example taken fromi [8]):

$input/child :: x/parent :: % ... /child :: x/parent :. *

ntimes
We applied this expression to an input document consisting of three nodes:

<?xml version="1.0"7>
<nodel><node2/><node3/></nodel>
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The left-most graph in Figufe 6.2 shows how the evaluation time doubles each time a
child-parent step sequence is added to the above path expression. This is not surprising as
the number of duplicate nodes in the intermediate result doubles every time, doubling the
time to calculate subsequent steps and the time to perform the final sorting and duplicate
removal operator.

The child-parent example is somewhat unusual, but a very common expression can
result in similarly bad behavior. The center and right-most graphs in Figure 6.2 show
the impact of multiple// steps in a path expression applied to 5.2 MB and 16.9 MB
documents, respectively. The evaluation time increases exponentially with the sloppy
approach.

The duptidy approach, in contrast, yields evaluation plans that grow gracefully with
the size of the path expressions and the size of input documents, because intermediate
results never contain duplicates. The duptidy approach permits intermediate results to be
out of document order, but as soon as duplicates are generated, one sorting operation is
left in place, if necessary, and duplicates are removed in linear. The automaton closely
guards the path-expression semantics with respect to duplicates, which is why we refer to
it asduptidy.

The left-most graph in Figuie 8.2 shows how the duptidy approach causes the eval-
uation time to remain nearly constant, independent of how many child-parent steps are
added to the path expression. In the second and third graphs, the duptidy approach scales
much better with the size of both the query and the input document.

7 Related Work and Conclusion

The importance of sorting and eliminating duplicates in XQuery is underlined by the nu-
merous papers that address this issue. The problem becomes even more prominent in
streaming evaluation strategieés [14]. Helmer ef al [12] present an evaluation technique
that avoids the generation of duplicates, which is crucial for pipelining the evaluation of



path expressions. Grust [10] proposes a similar but more holistic approach for querying
XML-enabled relational databases The preorder and postorder numbering of nodes is used
to accelerate the evaluation of several axes by using B-tree indices. In subsequent work,
Grust [11] introduces thetaircase join a tree-aware operator that can further speed up
evaluation of path expressions. These results are ported to the XML DOM datamodel in
[13] and are complementary to the approach taken in this work. The same holds for the
similar structural join algorithms [1] that also can compute step expressidiciently

and return a sorted result. Finally, there are also algorithmsibkistic twig joins[4] that
compute the result of multiple steps at once. It is important however to point out that most
of this work supports only narrow subsets of path expressions. In contrast, our techniques
apply to path expressions in the complete XQuery language.

We believe that taking care of th@o optimization is a necessary first step in any
complete implementation of XQuery path expressions. diweoptimization produces
semantically correct and simplified path expressions that can be input to further query
optimization. Aside from that, the completeness of our approach ensures optimal results
for a considerable part of the language. More precisely, it removes a maximal amount
of sorting and duplicate-eliminate operations from normalized path expressions under the
restriction that we only allow duptidy evaluation plans. Note that even under this restric-
tion the resulting evaluation plan may not be truly optimal because there can be more
than one maximal set of removable operations. For example, the abstract evaluation plans
T -»; ;o and1*; »; o; | are both duptidy evaluation plans in which a maximal number
of os andss were removed, but only the first one is returned by the algorithm. However,
determining the most optimal one requires a cost-based approach where the estimated
cost of the sorting operations depends upon the estimated sizes of the intermediate re-
sults. Summarizing, theoo optimization is a relatively simple technique that finds a
solution that is optimal in a certain theoretical sense and that is hard to improve upon
without using more involved cost-based techniques.
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