
On the Expressive Power of XQuery Fragments

Jan Hidders1, Stefania Marrara2, Jan Paredaens1, and Roel Vercammen?1

1 University of Antwerp, Dept. Math and Computer Science,
Middelheimlaan 1, BE-2020 Antwerp, Belgium

2 Universitá degli Studi di Milano, Dipartimento di Tecnologie dell’Informazione,
Via Bramante 65, I-26013 Crema (CR), Italy

Abstract. XQuery is known to be a powerful XML query language with
many bells and whistles. For many common queries we do not need all
the expressive power of XQuery. We investigate the effect of omitting
certain features of XQuery on the expressive power of the language. We
start from a simple base fragment which can be extended by several
optional features being aggregation functions such as count and sum, se-
quence generation, node construction, position information in for loops,
and recursion. In this way we obtain 64 different XQuery fragments which
can be divided into 17 different equivalence classes such that two frag-
ments can express the same functions iff they are in the same equivalence
class. Moreover, we investigate the relationships between these equiva-
lence classes.

1 Introduction

XQuery [2], the W3C standard query language for XML, is a very powerful
query language which is known to be Turing Complete [8]. As the language
in its entirety is too powerful and complex for many queries, there is a need
to investigate the different properties of frequently used fragments. Most ex-
isting theoretical work focuses on XPath, a rather limited subset of XQuery.
For example, Benedikt, Fan, and Kuper studied structural properties of XPath
fragments [1], the computational complexity of query evaluation for a number
of XPath fragments was investigated by Gottlob, Koch, and Pichler in [4], and
Marx increased the expressive power of XPath by extending it in order to be
first order complete. It was not until recently that similar efforts were made for
XQuery: Koch studies the computational complexity of nonrecursive XQuery [9],
Vansummeren looks into the well-definedness problem for XQuery fragments [13]
and the expressive power of the node construction in XQuery is studied in [10].
In this paper we will investigate the expressive power of XQuery fragments in a
similar fashion as was done for the relational algebra [12] and SQL [11]. In order
to do this, we establish some interesting properties for these fragments. We start
from a small base fragment in which we can express many commonly used fea-
tures such as some built-in functions, arithmetic, boolean operators, node and
? Roel Vercammen is supported by IWT – Institute for the Encouragement of Inno-

vation by Science and Technology Flanders, grant number 31581.

2

value comparisons, path expressions, simple for-loops and XPath set operations.
This base fragment can be extended by a number of features that are likely to
increase the expressive power such as recursion, aggregate functions, sequence
generators, node constructors, and position information. The central question
is which features of XQuery are really necessary in these fragments and which
ones are only syntactic sugar, simplifying queries that were already expressible
without this feature. Our most expressive fragment corresponds to LiXQuery [5],
which is conjectured to be as expressive as XQuery.

This paper is organized as follows. Section 2 introduces the syntax and the
semantics of the different XQuery fragments that we are going to analyze. In
Section 3 we present some expressibility results for these fragments and in Sec-
tion 4 we show some properties that hold for some of the fragments. These
results are combined in Section 5, where we partition the set of fragments into
classes of fragments with the same expressive power. Finally, Section 6 outlines
the conclusions of our work.

2 XQuery Fragments

This section formally introduces the XQuery fragments for which we study the
expressive power in this paper. We will use LiXQuery [5] as a formal foundation,
which is a light-weight sublanguage of XQuery, fully downwards compatible with
XQuery. The syntax of each of the XQuery fragments is defined in Subsection 2.1.
In Subsection 2.2 we briefly describe the semantics of a query.

2.1 Syntax

The syntax of the fragment XQ is shown in Figure 1, by rules [1-19] 3. This
syntax is an abstract syntax 4. The XQuery fragment XQ contains simple arith-
metic, path expressions, “for” clauses (without “at”), the “if” test, “let” vari-
able bindings, the existential semantics for comparison, typeswitches and some
built-in functions. Adding non-recursive function definitions to XQ would clearly
not augment the expressive power of XQ. We use 6 attributes for fragments: C,
S, at, ctr, to and R (cf. Figure 2 for the syntax of the attributed fragments).
The fragment XQR denotes XQ augmented with (recursive) functions defini-
tions, XQC is XQ plus the “count” function, XQS denotes the inclusion of the
“sum” function, XQat includes the “at” clause in a for expression, XQctr indi-
cates the inclusion of the node constructors, and finally the XQto denotes the
sequence generator “to”. The fragment XQ can be attributed by a set of these
attributes. In this way, we obtain 64 fragments of XQuery. The aim of this paper
is to investigate and to compare the expressive power of these fragments. With

3 Note that expressions which are not allowed in a fragment definition must be con-
sidered as not occurring in the right hand side of a production rule. As an example
FunCall and Count do not occur in rule [2] for XQ.

4 It assumes that extra brackets and precedence rules are added for disambiguation.

3

XQ∗ we denote the fragment XQR,to,ctr
C,S,at expressed by rules [1-26]. Following

auxiliary definitions will be used throughout the paper:

Definition 1. The language L(XF) of an XQuery fragment XF is the (infinite)
set of all expressions that can be generated by the grammar rules for this fragment
with 〈Query〉 as start symbol. The set Φ is the set of all 64 XQuery fragments
defined in Figure 2.

Similar to LiXQuery, we ignore static typing and do not consider names-
paces5, comments, processing instructions, and entities. There are some features
left out from LiXQuery in the definition of XQ∗, such as the union, the fil-
ter expression, the functions “position()” and “last()”, and the parent step
(“..”), but they can easily been simulated in XQ∗ (see the details in [6]). From
these considerations, we can claim that XQ∗ has the same expressive power as
LiXQuery.

2.2 Semantics

We will now introduce the semantics of our XQuery fragments which is the
same as that of LiXQuery and downwards compatible with the XQuery Formal
Semantics[3].

Expressions are evaluated against an XML store which contains XML frag-
ments created as intermediate results, and all the web documents6. First we need
some definitions of sets for the formal specification of the LiXQuery semantics.
The set A is the set of all atomic values, V is the set of all nodes, S ⊆ A is the
set of all strings, and N ⊆ S is the set of strings that may be used as tag names.

Definition 2. An XML Store is a 6-tuple St = (V,E, <, ν, σ, δ) where V =
V d ∪ V e ∪ V a ∪ V t is a finite countable set of nodes (V ⊆ V) consisting of the
pairwise disjoint sets of document nodes V d, element nodes V e, attribute nodes
V a, and text nodes V t; (V,E) is a forest (with nodes V and directed edges E); if
(m,n) ∈ E then we say that n is a child of m; < is the sibling order for the trees
in (V,E); ν : V e ∪ V a → N labels the element and attribute nodes with their
node name; σ : V a ∪ V t → S labels attribute and text nodes with their string
value; δ : S → V d is a partial function that associates with a URI or a file name,
a document node. It is called the document function. This function represents all
the URIs of the Web and all the names of the files, together with the documents
they contain. We suppose that all the documents are in the store.

Moreover, for each store, each document node is the root of a tree and con-
tains exactly one child, which is an element node; attribute nodes and text nodes
do not have any children; in the <-order attribute children precede the element

5 In types and built-in functions, such as “xs:integer”, the “xs:” part indicates a
namespace. Although we do not handle namespaces we use them here to be compat-
ible with XQuery

6 This assumption models correctly the formal semantics since each time a “doc”
function is called for the same document, the same document node is returned.

4

[1] 〈Query〉 → (〈FunDecl〉“;”)∗〈Expr〉
[2] 〈Expr〉 → 〈Var〉 | 〈BuiltIn〉 | 〈IfExpr〉 | 〈ForExpr〉 | 〈LetExpr〉 | 〈Concat〉 |

〈AndOr〉 | 〈ValCmp〉 | 〈NodeCmp〉 | 〈AddExpr〉 | 〈MultExpr〉 |
〈Step〉 | 〈Path〉 | 〈Literal〉 | 〈EmpSeq〉 | 〈Constr〉 | 〈TypeSw〉 |
〈FunCall〉 | 〈Count〉 | 〈Sum〉

[3] 〈Var〉 → “$”〈Name〉
[4] 〈Literal〉 → 〈String〉 | 〈Integer〉
[5] 〈EmpSeq〉 → “()”
[6] 〈BuiltIn〉 → “doc(”〈Expr〉“)” | “name(”〈Expr〉“)” | “string(”〈Expr〉“)” |

“xs:integer(”〈Expr〉“)” | “root(”〈Expr〉“)” |
“concat(”〈Expr〉, 〈Expr〉“)” | “true()” | “false()” |
“not(”〈Expr〉“)” | “distinct-values(” 〈Expr〉 “)”

[7] 〈IfExpr〉 → “if ”“(”〈Expr〉“)” “then”〈Expr〉 “else”〈Expr〉
[8] 〈ForExpr〉 → “for”〈Var〉(〈AtExpr〉)? “in”〈Expr〉 “return”〈Expr〉
[9] 〈LetExpr〉 → “let”〈Var〉“:=”〈Expr〉 “return”〈Expr〉
[10] 〈Concat〉 → 〈Expr〉“,”〈Expr〉
[11] 〈AndOr〉 → 〈Expr〉(“and” | “or”)〈Expr〉
[12] 〈ValCmp〉 → 〈Expr〉(“=” | “<”)〈Expr〉
[13] 〈NodeCmp〉 → 〈Expr〉(“is” | “<<”) 〈Expr〉
[14] 〈AddExpr〉 → 〈Expr〉 (“+” | “-”) 〈Expr〉
[15] 〈MultExpr〉 → 〈Expr〉 (“*” | “idiv”) 〈Expr〉
[16] 〈Step〉 → “.” | 〈Name〉 | “@”〈Name〉 | “*” | “@*” | “text()”
[17] 〈Path〉 → 〈Expr〉(“/” | “//”)〈Expr〉
[18] 〈TypeSw〉 → “typeswitch ”“(”〈Expr〉“)” (“case” 〈Type〉 “return”〈Expr〉)+

“default” “return”〈Expr〉
[19] 〈Type〉 → “xs:boolean” | “xs:integer” | “xs:string” | “element()” |

“attribute()” | “text()” | “document-node()”
[20] 〈Count〉 → “count(” 〈Expr〉 “)”
[21] 〈Sum〉 → “sum(” 〈Expr〉 “)”
[22] 〈AtExpr〉 → “at” 〈Var〉
[23] 〈SeqGen〉 → 〈Expr〉 “to” 〈Expr〉
[24] 〈FunCall〉 → 〈Name〉“(”(〈Expr〉(“,”〈Expr〉)∗)?“)”
[25] 〈FunDecl〉 → “declare” “function” 〈Name〉 “(” (〈Var〉 (“,” 〈Var〉)∗)? “)”

“{” 〈Expr〉 “}”
[26] 〈Constr〉 → “element”“{”〈Expr〉“}” “{”〈Expr〉“}” |

“attribute”“{”〈Expr〉“}” “{”〈Expr〉“}” |
“text”“{”〈Expr〉“}” | “document”“{”〈Expr〉“}”

Fig. 1. Syntax for XQ∗ queries and expressions

XQ [1-19]

C + [20]

S + [21]

at + [22]
to + [23]
R + [24-25]
ctr + [26]

Fig. 2. Definition of XQuery fragments

5

and text children; two sibling text nodes are separated by at least one non-text
sibling node; for all text nodes nt of V t holds σ(nt) 6= “”; all attribute children
of a common node have a different name.

The set ST is the set of all (valid) XML Stores.

ne
1

ne
2

ne
3

nt
4

ne
5

nt
6

ne
7

nt
8

Fig. 3. XML tree of Ex-
ample 1

We now give an example to illustrate this defini-
tion. In both this example and the rest of the paper,
we will use the function ξ, which maps a sequence
of items and a store to its serialization, as defined
in [7].

Example 1. Let St = (V, E, <, ν, σ, δ) be an XML store
that is shown in Figure 3.

– The set of nodes V consists of V e = {ne
1, n

e
2, n

e
3, n

e
5,

ne
7}, V t = {nt

4, n
t
6, n

t
8}, V d = V a = ∅.

– The set of edges is E = {(ne
1, n

e
2), (n

e
1, n

e
7), (n

e
2, n

e
3),

(ne
2, n

e
5), (n

e
3, n

t
4), (n

e
5, n

t
6), (ne

7, n
t
8)}.

– The order relation < is defined by ne
2 < ne

7, n
e
3 < ne

5.
– Furthermore ν(ne

1) =“a”, ν(ne
2) = ν(ne

7) =“b”,
ν(ne

3) = ν(ne
5) =“c”, and σ(nt

4) = “t1”, σ(nt
6) =

“t2”, σ(nt
8) = “t3”. 7

In this example ξ(ne
1, St) = “<a><c>t1</c><c>t2</c>t3” is the

serialization of the node ne
1.

For the evaluation of queries we do not only need an XML store, but also an
environment, which contains information about functions, variable bindings, the
context sequence, and the context item. This environment is defined as follows:

Definition 3 (Environment). An environment of an XML store St is a 4-
tuple En = (a,b,v,x) where a : N → N ∗ is a partial function that maps a
function name to its formal arguments (it is used in rule [1,24,25]); b : N →
L(XQ∗) maps a function name to the body of the function (it is also used in
rules [1,24,25]); v : N → (V ∪A)∗ maps variable names to their values; x which
is undefined or an item of St and indicates the context item (it is used in rule
[16,17]).

Let XF ∈ Φ be an XQuery fragment. The set of XF -environments(EN [XF])
is the set of all environments for which it holds that ∀f ∈ rng(b) : f ∈ L(XF).

If En is an environment, n a name, and y an item then we let En[v(n) 7→ y]
denote the environment that is equal to En except that the function v maps n
to y. We write St,En ` e ⇒ (St′, v) to denote that the evaluation of expression
e against the XML store St and environment En of St may result in the new
XML store St′ and a result sequence v, where v can only contain nodes of St′

and atomic values. The semantics of XQ∗ expressions is defined by means of
reasoning rules, following the notation detailed in [5].

7 We do not mention here the documents on the Web and on files.

6

We define the expressive power of an XQuery fragment as the set of XQuery
functions that can be expressed in this fragment. XQuery functions are defined
as partial multivalued functions that map a store and a variable assignment over
that store to a new store and a result sequence over this result store. We assume
that the result store does not contain nodes that are no longer reachable, since
such nodes can be safely garbage collected. More precisely, the garbage collection
is defined as follows:

Definition 4 (Garbage Collection). Garbage Collection (Γs) maps a store
St and a sequence s to a new store St′ by removing all trees from St for which
the root node is not in rng(δ) and for which no node of the tree is in s.

We now define the notion of XQuery function as follows:

Definition 5 (XQuery function). The XQuery function corresponding to an
expression e is {((St,v), (Γv(St′), v)) | St, (φ, φ,v,⊥) ` e ⇒ (St′, v)}. An ele-
ment of this set is called an evaluation pair. If two expressions e1 and e2 have
the same corresponding XQuery functions then they are said to be equivalent,
denoted as e1 ∼ e2.

This measure of expressive power can be justified by the XQuery Processing
Model[3]. There it is possible to set variables in an initial environment. Moreover,
the serialization of the result sequence is optional and an XQuery query can be
embedded into another processing environment.

3 Expressibility Results

Adding extra features to XQuery fragments does not always extend the set of
XQuery functions expressible in the fragment. In this section we will show how
to simulate certain features in fragments that, syntactically, do not include this
feature.

Lemma 1. The “count” operator can be expressed in XQat.

Proof. It is clear that “max(e1)” and “empty(e1)” can be expressed in XQ.
Hence the following expression is equivalent to “count(e1)”:
let $v := max(for $i at $pos in e1 return $pos)
return
if (empty($v)) then 0 else $v

Lemma 2. The “count” operator can be expressed in XQS.

Proof. Following XQS expression is equivalent to “count(e1)”:
sum(for $i in e1 return 1)

Lemma 3. The “to” operator can be expressed in XQR.

7

Proof. We can define a recursive function “to” such that “e1 to e2” is equiv-
alent to “to(e1, e2)” as follows:
declare function to($i ,$j) {
if ($j < $i) then () else (to($i, $j - 1), $j)

};

Lemma 4. The “sum” operator can be expressed in XQto
C .

Proof. Following XQto
C expression is equivalent to “sum(e1)”:

count(
for $i in e1 return
for $j in (1 to $i) return 1)

Lemma 5. The “count” operator can be expressed in XQctr,R.

Proof. We can define a recursive function “count-nodes” such that “count(e1)”
is equivalent to following XQctr,R expression:
count-nodes(
for $e in e1 return element {"e"} {()}

)
This expression generates as many new nodes as there are items in the input
e1 and then applies a newly defined function “count-nodes” to this sequence,
which counts the number of distinct nodes in a sequence. This can be done by
decreasing the input sequence of the function call to “count-nodes” by exactly
one node in each recursion step, which is possible since all items in the input
sequence of “count-nodes” have a different node identity and hence we can
remove each step the first node (in document order) of the newly created nodes.
Note that, since the count operator returns only atomic values, none of the newly
created nodes that were used to count the number of items in the sequence is
reachable after applying garbage collection.

Lemma 6. The “at” clause in a for expression can be expressed in XQctr
C .

Proof. The proof is based on the idea that it is possible to transform sequence
order into document order by creating new nodes as children of a common parent
such that the new nodes will contain all information of each item in the sequence
and they are in the same order as the items in the original sequence. It can be
shown that we can in XQctr

C express the (non-recursive) functions “pos” and
“atpos”, which respectively give the position of a node in a document-ordered
sequence and returns a node at a certain position in such sequence. If we can
define XQctr

C functions “encode” and “decode” (to make sure that we do not
lose any information in creating a new node for an item in the result sequence of
the “in” clause) then the following XQctr

C expression is equivalent to the XQctr
C,at

expression “for $x at $pos in e1 return e2” (where e1 and e2 are XQctr
C

expressions):

8

let $seq := e1 return

let $newseq := encode($seq) return

for $x in $newseq

return (

let $pos := pos($x, $newseq) return

let $x := decode($x, $seq)

return e2)

Since the result sequence of e1, $seq, is used both in the “in” clause of the
for expression and as actual parameter for the “decode” function, we have to
assign this result to a new variable, otherwise by simple substitution a node
construction that is done in e1 would be evaluated more than once. Furthermore
the expression e2 is guaranteed to have the right values for the variables “$x”
and “$pos” iff the function “decode” behaves as desired. We assume that e2 does
not use variables “$seq” and “$newseq”, since they are used in the simulation8.

We now take a closer look at how to define the functions “decode” and
“encode”. The function “encode” needs to create a new sequence in which we
simulate all items by creating a new node for each item. By adding these nodes
as children of a newly constructed element (named “newseq”) we ensure that
the original sequence order is reflected in the document order for the newly con-
structed sequence. Atomic values are simulated by putting their value as text
node in an element which denotes the type of atomic value. Encoding nodes can-
not be done by making a copy of them, since this would discard all information
we have about the node identity. Therefore we store for a node all information
we need to retrieve the node later using the function “decode”. We do this
by storing the root of the node and the position where the node is located in
the descendant-or-self list of its root node. We assume that we can define the
(non-recursive) XQctr

C functions “pos” (which we already assumed earlier in
this proof), and “atpos” (to find the nth node in a sequence of nodes ordered
by document order).

Note that none of the previous functions used recursion. Hence we do not
actually need functions since we could inline the function definitions in the ex-
pressions. Hence the simulation of the “at” clause can be written in XQctr

C .
Furthermore there is no newly created node in the result sequence of the simu-
lation, so all newly created nodes are garbage collected and hence “at” can be
expressed in XQctr

C .

4 Properties of the Fragments

The previous section provided some expressibility results. In this section we
prove that certain fragments do not have certain properties, hence they have
different degrees of expressive power. For most of the lemmas we do not have

8 This issue can of course easily be solved by choosing two unused variables to replace
these variables.

9

enough space here to present the complete proofs. We refer the reader for these
proofs to our technical report [6].

The first two properties just claim that there are fragments in which it is
not possible to distinguish between sequences with the same set or bag represen-
tation. To formalize this notion we define set-equivalence and bag-equivalence
between evironments and between sequences. In this definition Set (Bag) maps
a sequence to the set (bag) of its items.

Definition 6. Consider a store St and two environments En = (a,b,v,x) and
En′ = (a′,b′,v′,x′) over the store St. We call En and En′ set-equivalent iff it
holds that a = a′, b = b′, dom(v) = dom(v′) and ∀s ∈ dom(v) : Set(v(s)) =
Set(v′(s)), and finally x = x′.
The environments En and En′ are called bag-equivalent iff they are set-equivalent
and it holds that ∀s ∈ dom(v) :Bag(v(s)) = Bag(v′(s))

Lemma 7. Let St be a store, En,En′ ∈ EN [XQR] two set-equivalent XQR

environments, and e an expression in XQR. If the result of e is defined for both
En and En′, then for each sequence r and r′ for which it holds that St,En `
e ⇒ (St, r) and St,En′ ` e ⇒ (St, r′)9, it also holds that Set(r) = Set(r′).

Proof. (Sketch) This lemma can be proven by induction on the query syntax
tree in which each node corresponds to a construct of rules [3−18, 24] in Figure 1.

Lemma 8. The fragment XQC does not have the property of Lemma 7.

Proof. If we consider an environment En ∈ EN [XQR], then En1 = En[v(“seq”) 7→
〈1, 1〉] and En2 = En[v(“seq”) 7→ 〈1〉] are two set-equivalent XQR environ-
ments. The expression “count($seq)” returns 〈2〉 in the evaluation against En1

and 〈1〉 against En2.

Lemma 9. Let St be a store, En,En′ ∈ EN [XQR
C] two bag-equivalent XQR

C

environments and e be an expression in XQR
C . If the result of e is defined for

both En and En′, then for each sequence r and r′ for which it holds that St,En `
e ⇒ (St, r) and St,En′ ` e ⇒ (St, r′), it also holds that Bag(r) = Bag(r′).

Proof. For all XQR expressions we can show similar to the proof of Lemma 7
that evaluations against bag-equivalent environments result in bag-equivalent
result sequences.

Lemma 10. The fragment XQat does not have the property of Lemma 9.

Proof. If we consider an environment En ∈ EN [XQR
C], then En1 = En[v(“seq”) 7→

〈1, 2〉] and En2 = En[v(“seq”) 7→ 〈2, 1〉] are two bag-equivalent XQR
C environ-

ments, but the evaluation of the expression

9 Since e does not contain node constructors in its subexpressions, it is easy to see
that all subexpressions are evaluated against the same store St and that the result
store of all these subexpressions will also be St.

10

for $i at $pos in $seq
return if ($pos=1) then $i else ()

returns 〈1〉 when evaluated against environment En1 and 〈2〉 when evaluated
against En2.

The maximum size of the output for all queries in certain XQuery fragments
can be identified as being bounded by a class of functions w.r.t. the input size.
For proving the inexpressibility results related to the output size, we introduce
following notions for the maximal input and output size for both sequences and
items:

Definition 7 (Auxiliary Notations). Let St = (V,E, <, ν, σ, δ) be a store,
En = (a,b,v,x) an environment over St and s a sequence over St. The set of
atomic values in a sequence s is defined as As = Set(s) ∩ A, the set of atomic
values in a store St is ASt = (rng(ν) ∪ rng(σ)) ∩ A, while the set of atomic
values in the environment En is AEn =

⋃
s∈rng(v) As.

The size ∆forest
St is the size of the forest in St, i.e., ∆forest

St = |V | and ∆tree
St is

the size of the largest tree of the forest in St, i.e., ∆tree
St = max(

⋃
n1∈V {c|c =

|{n2|(n1, n2) ∈ E∗}|})10.
The function size maps an atomic value to the number of cells needed to repre-
sent this item on the tape of a Turing Machine.

Definition 8 (Largest Sequence/Item Sizes). Consider the evaluation pair
((St,En), (St′′, v)) of a query e, where St = (V,E, <, ν, σ, δ), En = (a,b,v,x),
and Γ (St′′, {v}) = St′ = (V ′, E′, <′, ν′, σ′, δ′). The largest input sequence size is
defined as ds

I = max({|s| |s ∈ rng(v)} ∪ {∆tree
St }). The largest input item size is

di
I = max({size(a)|a ∈ (ASt∪AEn)}∪{dlog(∆forest

St +1)e}). The largest output
sequence size is ds

O = max({|v|,∆tree
St′). Finally, the largest output item size is

di
O = max({size(a)|a ∈ (ASt′ ∪Av)} ∪ {dlog(∆forest

St′ + 1)e}).

In the definition of the largest sequence sizes we include the size of the largest
tree in the store, since one can generate such a sequence by using the descendant-
or-self axis. Note that in the definition of the largest item sizes the first set of
the union contains all sizes needed to represent the atomic values that occur
in the store (or environment) and the second set contains only one value which
indicates how much space we need to represent a pointer to a node in the store.
Furthermore, we consider in the definition the maximal size for the entire store
(including the entire web). This is a theoretical simplification, but it does not
have an influence on the input/output size results: if we have to show that the
result of a certain evaluation has an upper bound f(n) where n is the input
size, then we have to show that this upper bound holds for all input stores and
hence also for the “minimal input store”, i.e., the store that only contains these
input nodes that are actually accessed during the evaluation. Furthermore, the
inclusion of the nodes of the output store in the output size is allowed for two
10 E∗ denotes the reflexive and transitive closure of E

11

reasons. The first reason is that all upper bound functions that we use in our
lemmas are at least linear functions and the input nodes that occur in the output
store just add a linear factor to the upper bound function. The second reason
is that the nodes of the output store that do not occur in the input store have
to be reachable by nodes in the result sequence since for each fragment applied
garbage collection.
The following inexpressibility results use the observation that the maximum item
and/or sequence output size can be bounded by a certain class of functions in
terms of the input size.

Lemma 11. For each evaluation St,En ` e ⇒ (St′, v) where e ∈ L(XQctr,to)
and En ∈ EN [XQctr,to] it holds that di

O ≤ p(di
I) for some polynomial p.

Proof. (Sketch) For each polynomial p that has IN or IN2 as its domain there
always exists an increasing polynomial p′ such that p′ is an upper bound for
p. Therefore we assume all functions that are used as an upper bound in this
and following proofs to be increasing functions. We then prove the lemma by
induction on the size of the abstract syntax tree of the query q. In this tree the
nodes correspond to the 〈Expr〉 non-terminal of the XQctr,to grammar and as
a consequence each node corresponds to a construct of rules [3 − 18, 23, 26] in
Figure 1, so we prove the induction step for each of these rules.

Lemma 12. The fragment XQC does not have the property of Lemma 11.

Proof. If we consider the empty store St0, the environment En = ({}, {},
{(“$input”, 〈1, . . . , 1〉)},⊥), and the expression e = “count($input)” where the
length of the sequence bound to variable $input equals k, then the evaluation
St0, En ` e ⇒ (St′, v) has largest input item size di

I = 1 and output item size
di

O = dlog(k + 1)e.

Lemma 13. For each evaluation St,En ` e ⇒ (St′, v) where e ∈ L(XQctr
at,S)

and En ∈ EN [XQctr
at,S] it holds that ds

O ≤ p1(ds
I) and di

O ≤ p2(log(ds
I), d

i
I) for

some polynomials p1 and p2.

Proof. (Sketch) This lemma can be proven by induction on the size of the
abstract syntax tree of the query q. In this syntax tree the nodes correspond
to the 〈Expr〉 non-terminal of the XQctr

at,S grammar and as a consequence each
node corresponds to a construct of rules [3− 18, 21, 26] in Figure 1.

Lemma 14. The fragment XQto does not have the property of Lemma 13.

Proof. If we consider the empty store St0, the environment En = ({}, {},
{(“$input”, 〈k〉)},⊥), and the expression e = “1 to $input”, then the evalua-
tion St0, En ` e ⇒ (St′, v) has maximal input sequence size ds

I = O(log(k)) and
maximal output sequence size ds

O = O(k log(k)).

Lemma 15. For each evaluation St,En ` e ⇒ (St′, v) where e ∈ L(XQctr,to
at)

and En ∈ EN [XQctr,to
at] it holds that ds

O ≤ p1(ds
I , 2

di
I) and di

O ≤ p2(log(ds
I), d

i
I)

for some polynomials p1 and p2.

12

Proof. (Sketch) Similar to the proof of Lemma 13 this lemma can be proven
by induction on the query syntax tree. We already know that for all XQctr

at ex-
pressions there is a polynomial relation between the largest input sequence/item
sizes and the largest output sequence/item sizes. Furtermore, the “to” expres-
sion can construct a sequence of size, at worst, O(2di

I) with values that need
at most O(di

I) space. As a consequence is can easily be seen that all XQctr,to
at

expressions have output sizes within the bounds specified by this lemma when
evaluated against an XQctr,to

at environment.

Lemma 16. The fragment XQR does not have the property of Lemma 15.

Proof. (Sketch) Clearly there are expressions in XQR that do not have this
property. Indeed, there are expressions that can be simulated in the fragment,
such as the power function, that can potentially have largest input item size
di

I = dlog(k+1)e, largest input sequence size ds
I = 1 and largest output sequence

size O(kk).

Finally, we show that the number of possible output values is polynomially
bounded by the largest input sequence size and the size of the set of possbile
atomic values in the input store and environment.

Definition 9 (Possible Results). Consider an expression e, a (finite) alphabet
Σ ⊂ A and a number S. The set Res of possible results for evaluations of e
constrained by Σ and S is defined as the set of all pairs (St′, v) for which it
holds that there exists an evaluation St,En ` e ⇒ (St′, v) (with En in the same
fragment as e) such that for this evaluation ds

I ≤ S and ASt ∪AEn ⊆ Σ.

In other words, given an expression e, an alphabet Σ and a number S, the
set Res contains all possible outputs of the evaluations of e restricted to Σ and
S. We will now show that the number of (different) atomic values in this set is
polynomially bounded by S and the size of Σ.

Lemma 17. Consider a (finite) alphabet Σ ⊂ A and a number S. If N =
|Σ| then for each XQctr

at expression e it holds that if Res is the set of pos-
sible results for evaluations of e constrained by Σ and S, then the number
of atomic values in the possible outputs is polynomially bounded as follows:∣∣∣⋃(St′,v)∈Res(A

St′ ∪Av)
∣∣∣ ≤ p(N,S) for some polynomial p

Proof. This lemma can be proven by induction on the query syntax tree where
each expression corresponds to the 〈Expr〉 non-terminal of the XQat grammar
and as a consequence each node corresponds to a construct of rules [3− 18, 22]
of Figure 1.

Lemma 18. The fragment XQat,S does not have the property of Lemma 17.

Proof. Consider the alphabet Σ = {1, 2, 4, . . . , 2n−1} and S = n. Since “$x” can
contain any combination of elements of Σ, the result of the sum can be any
number between 1 and 2n − 1. However, there exists no polynomial p such that
for each n it holds that 2n− 1 ≤ p(n, n). Hence we know that we cannot express
the sum in XQat.

13

5 Expressive Power of the Fragments

As we have shown in the two previous sections, some LiXQuery features can be
simulated in some fragments that do not contain them and some can not. We
will now study the relationships between all 64 fragments in terms of expressive
power. In order to be able to compare fragments, we first have to define what
“equivalent” and “more expressive” means for XQuery fragments.

Definition 10 (Equivalent Fragments). Recall that Φ is the set of 64 XQuery
fragments as defined in Figure 2. Consider two XQuery fragments XF1, XF2 ∈
Φ.

– XF1 � XF2 ⇐⇒ ∀e2 ∈ L(XF2) : ∃e1 ∈ L(XF1) : e1 ∼ e2

(XF1 can simulate XF2)
– XF1 ≡ XF2 ⇐⇒ ((XF1 � XF2) ∧ (XF2 � XF1))

(XF1 is equivalent to XF2)
– XF1 � XF2 ⇐⇒ ((XF1 � XF2) ∧ (XF1 6≡ XF2))

(XF1 is more expressive than XF2)

In this definition, the relation � is a partial order on Φ, and ≡ is an equivalence
relation on Φ. We use these relations to investigate the relationships between all
XQuery fragments defined in Section 2. We show that the equivalence relation ≡
partitions Φ (containing 64 fragments) into 17 equivalence classes. In Figure 4 we
show these 17 equivalence classes and their relationships. Each node of the graph
represents an equivalence class, i.e., a class of XQuery fragments with the same
expressive power. The white and grey nodes represent classes with and without
node construction, respectively. Each edge is directed from a more expressive
class C1 to a less expressive one C2 and points out that each fragment in C1 is
more expressive than all fragments of C2 (i.e., ∀XF1 ∈ C1, XF2 ∈ C2 : XF1 �
XF2).

Theorem 1. For the graph in Figure 4 and for all fragments XF1, XF2 ∈ Φ it
holds that

– XF1 ≡ XF2 ⇐⇒ XF1 and XF2 are within the same node
– XF1 � XF2 ⇐⇒ there is a directed path from the node containing XF1 to

the node containing XF2

Proof. (Sketch) Informally, the dotted borders in Figure 4 divide the set of
fragments (Φ) in two parts: one in which the attribute that labels the border
can be expressed and one in which this attribute cannot be expressed. The arrows
that cross the borders all go in one direction, i.e., from the set of fragments where
you can express a certain construct to the the set where you cannot express it.
We call the set of fragments that can simulate the construct the right-hand side
of the border and the other set the left-hand side of the border. The correctness
of the dotted borders can be proven by showing that you can express something
in the least expressive fragment of the right-hand side that you cannot express
in the most expressive fragment of the left-hand side. In order to prove this, we
need the lemmas of Section 3 and 4. All previous results can now be combined
to complete the proof:

14

XQ

XQat

XQat,C

XQC
XQS

XQC,S

XQat,S

XQat,C,S

XQto

XQto
C

XQto
S

XQto
C,S

XQto
at. . .

XQto
at,C,S

XQR

XQR,to

XQR
C

XQR
S. . .

XQR,to
C,S

XQR
at. . .

XQR,to
at,C,S

XQctr

XQctr
C

XQctr
at

XQctr
at,C

XQctr
S. . .

XQctr
at,C,S

XQctr,to

XQctr,to
at

XQctr,to
C. . .

XQctr,to
at,C,S

XQctr,R

. . .

XQctr,R,to
at,C,S

S to R

C

at

Fig. 4. Equivalence classes of XQuery fragments

– If XF1 and XF2 are in the same node then it follows that they are equivalent:
This can easily be shown by the lemmas from Section 3.

– If XF1 and XF2 are equivalent then they occur in the same node:
Suppose that XF1 and XF2 are not in the same node. There are two pos-
sibilities: if one of the two fragments contains a node constructor (suppose
XF1) and the other (XF2) does not then you obviously cannot simulate
the node construction in XF2. Else it follows from the figure that they are
seperated by a dotted border and hence we know that there is something in
one fragment that you cannot express in the other fragment, so XF1 6≡ XF2.

– If there is a directed path from the node containing XF1 to the node con-
taining XF2 then we know that XF1 � XF2 and since XF1 and XF2 appear
in a different node they are not equivalent, so XF1 � XF2:
This follows from the fact that there is a fragment XF ′

1 equivalent to XF1

and XF ′
2 equivalent to XF2 such that L(XF ′

2) ⊆ L(XF ′
1).

– If XF1 � XF2 then there is a directed path from the node containing XF1

to the node containing XF2:
Suppose that XF1 � XF2 and there is no directed path from XF1 to XF2.
Then either there is a directed path from XF2 to XF1 such that XF2 � XF1

15

and hence XF1 6� XF2 or there is no directed path at all between the nodes
of both fragments. In this case we know by inspecting Figure 4 that there
are (at least) two borders seperating the nodes of both fragments where for
the first border XF1 is in the more expressive set of fragments and for the
second border XF2 is in the more expressive set of fragments. Hence XF1

and XF2 are incomparable so XF1 6� XF2.

6 Conclusion

We investigated the expressive power of XQuery fragments in order to outline
which features really add expressive power and which ones simplify queries al-
ready expressible. The main results of this paper outline that, using six attributes
(count, sum, to, at, ctr and recursion), we can define 64 XQuery fragments, which
can be divided into 17 equivalence classes, i.e., classes including fragments with
the same expressive power. We proved the 17 equivalence classes are really dif-
ferent and own a different degree of expressive power.

References

1. M. Benedikt, W. Fan, and G. M. Kuper. Structural properties of XPath fragments.
In ICDT 2003, pages 79–95, 2003.

2. S. Boag, D. Chamberlin, M. Fernández, D. Florescu, J. Robie, and J. Siméon.
XQuery 1.0: An XML query language. W3C Working Draft, 2005. Available at
http://www.w3.org/TR/xquery/.

3. D. Draper, P. Frankhauser, M. Fernández, A. Malhotra, K. Rose, M. Rys,
J. Siméon, and P. Wadler. XQuery 1.0 and XPath 2.0 formal semantics. W3C
Working Draft, 2005. Available at http://www.w3.org/TR/xquery-semantics/.

4. G. Gottlob, C. Koch, and R. Pichler. The complexity of XPath query evaluation.
In PODS 2003, pages 179–190, 2003.

5. J. Hidders, J. Paredaens, R. Vercammen, and S. Demeyer. A light but formal
introduction to XQuery. In XSym 2004, pages 5–20, 2004.

6. J. Hidders, J. Paredaens, R. Vercammen, and S. Marrara. Expressive power of
recursion and aggregates in XQuery. Technical Report TR2005-05, University of
Antwerp, 2005. Available at http://www.adrem.ua.ac.be/pub/TR2005-05.pdf.

7. M. Kay, N. Walsh, and H. Zongaro. XSLT 2.0 and XQuery 1.0 serial-
ization. W3C Working Draft, 2005. Available at http://www.w3.org/TR/

xslt-xquery-serialization/.

8. S. Kepser. A simple proof of the Turing-completeness of XSLT and XQuery. In
T. Usdin, editor, Extreme Markup Languages 2004. IDEAlliance, 2004. Available
at http://www.mulberrytech.com/Extreme/Proceedings/html/2004/Kepser01/

EML2%004Kepser01.html.

9. C. Koch. On the complexity of nonrecursive XQuery and functional query lan-
guages on complex values. In PODS 2005, pages 84–97, 2005.

10. W. Le Page, J. Hidders, P. Michiels, J. Paredaens, and R. Vercammen. On the
expressive power of node construction in XQuery. In WebDB 2005, pages 85–90,
2005. Available at http://webdb2005.uhasselt.be/webdb05_eproceedings.pdf.

16

11. L. Libkin. Expressive power of SQL. Theoretical Computer Science, 296(3):379–
404, 2003.

12. J. Paredaens. On the expressive power of the relational algebra. Information
Processing Letters, 7(2):107–111, 1978.

13. S. Vansummeren. Deciding well-definedness of XQuery fragments. In PODS 2005,
pages 37–48, 2005.

