
On the Expressive Power of Node Construction in XQuery

Wim Le Page Jan Hidders Philippe Michiels
∗

Jan Paredaens Roel Vercammen
∗

University of Antwerp
Middelheimlaan 1

B-2020 Antwerp, Belgium

{wim.lepage, jan.hidders, philippe.michiels, jan.paredaens, roel.vercammen}@ua.ac.be

ABSTRACT
In the relational model it has been shown that the flat rela-
tional algebra has the same expressive power as the nested
relational algebra, as far as queries over flat relations and
with flat results are concerned [6]. Hence, for each query
that uses the nested relational model and that, with a flat
table as input always has a flat table as output, there exists
an equivalent flat query that only uses the flat relational
model. In analogy, we study a related flat-flat problem for
XQuery: for each expression containing operations that con-
struct new nodes and whose XML result contains only orig-
inal nodes, there exists an equivalent “flat” expression in
XQuery that does not construct new nodes.

Categories and Subject Descriptors
H.2 [Information Systems]: Database Management; H.2.3
[Database Management]: Languages—Query languages

Keywords
XQuery,XML,Expressive power

1. INTRODUCTION
As XQuery [1] is becoming the standard language for query-
ing XML documents, it is important to study the properties
of this powerful query language. In XQuery, a query can
have a result containing nodes not occurring in the input.
These new nodes are constructed during the evaluation of
the expression. Nevertheless, it is still possible that only
original nodes occur in the final result. We call such expres-
sions node-conservative. For example, the query in Exam-
ple 1.1 creates new nodes not occuring in the result. In this
example we perform a join and a projection of two XML
documents in XQuery.

In this paper we show that for each deterministic node-
conservative expression there exists an expression without
node construction that essentially always returns the same
store and result sequence. For example, the query in Ex-
ample 1.1 can be rewritten to the query shown in Exam-
ple 1.2. In this work we will show how to generate auto-
matically equivalent constructor-free expressions for node-

∗Philippe Michiels and Roel Vercammen are supported by
IWT – Institute for the Encouragement of Innovation by
Science and Technology Flanders, grant numbers 31016 and
31581.

Copyright is held by the author/owner. Eighth International Workshop
on the Web and Databases (WebDB 2005), June 16-17, 2005, Baltimore,
Maryland.

Example 1.1 Node-Conservative Expression

The following XQuery expression

let $jointtable :=
element {"table"}{

for $b1 in doc("table.xml")/table/row
for $b2 in doc("table2.xml")/table/row
where $b1/a = $b2/a
return element{"row"}{$b1/*,$b2/*} }

return
for $b in $jointtable/row/b return string($b)

has the result sequence "one","two"when given the input
documents table.xml and table2.xml which look as follows
<table> <table>
<row><a>1one</row> <row><a>1<c>red</c></row>
<row><a>2two</row> <row><a>2<c>blue</c></row>
<row><a>3three</row> </table>
</table>

conservative expressions. This result gives an indication of
the expressive power of the node construction. Furthermore
it can be interesting for query optimization, since optimizing
node construction can be hard. For example, in [3] a trans-
lation fom a subset if XQuery to SQL is given, where the
construction of new elements yields SQL statements with
special numbering operations which are relatively hard to
optimize.

Example 1.2 Constructor-Free Expression

The following XQuery expression

for $b1 in doc("table.xml")/table/row
for $b2 in doc("table2.xml")/table/row
where $b1/a = $b2/a
return

for $b in ($b1/*, $b2/*)/b return string($b)

is equivalent to the query of Example 1.1 and does not con-
tain node constructors.

The work in this paper was inspired by simular results for
the nested relational algebra [6, 7]. In [6] it is shown that
each nested algebra expression that has a flat relation as
output when applied to a flat relation, is equivalent to a flat
algebra expression. In [7] a very direct proof is given of this
fact using a simulation technique. Other work studied the
effect of adding object creation to query languages on the
expressive power of these languages. For example, in [2] the
effect of object identity on the power of query languages is
studied and a notion of determinate transformations is intro-

duced as a generalization of the standard domain-preserving
transformations. However, obvious extensions of complete
database programming languages with object creation are
not complete for determinate transformations. In [8] this
mismatch is solved by introducing the notion of constructive
transformations, a special kind of determinate transforma-
tions which are precisely the transformations that can be
expressed by these obvious extensions.

This paper is structured as follows. In Section 2 we discuss
LiXQuery, which we will use as a formal model for XQuery
and for proving our theorems. Section 3 contains the the-
orem and proof for the elimination of node construction in
expressions that do not contain newly constructed nodes in
their results. Finally, the conclusion of this work is presented
in Section 4.

2. LIXQUERY
We use LiXQuery [4, 5] as a basis for studying the expres-
sive power of node construction in XQuery. LiXQuery is a
sublanguage of XQuery that has a semantics that is consis-
tent with that of XQuery, has the same expressive power
as XQuery and has a compact and well defined syntax and
semantics. The LiXQuery language was designed with the
audience of researchers investigating the expressive power of
XQuery in mind. The XQuery features that are omitted in
LiXQuery are only those that are not essential from a theo-
retical perspective. We claim that the results that we show
for LiXQuery also hold for XQuery.

LiXQuery has only a few built-in functions and no prim-
itive data-types, order by clause, namespaces, comments,
programming instructions and entities. Furthermore it ig-
nores typing and only provides descendant-or-self and
child as navigational axes. The other navigational axes
can be simulated using these 2 axes. Although the features
that LiXQuery lacks, are important for practical purposes,
they are not relevant to our problem. Note that LiXQuery
does support recursive functions, positional predicates and
atomic values, which are essential in our approach.

We define LQE as the set of LiXQuery expressions. In LiX-
Query, expressions are evaluated against an XML store and
an evaluation environment. The XML store contains the
fragments that are created as intermediate results, as well
as the entire web. The store that only contains the entire
web is called the initial XML store. The evaluation envi-
ronment essentially contains mapping information for func-
tion names, variable names and the context item (includ-
ing context position in the context sequence and the con-
text sequence size). Formally, the XML store is a 6-tuple1

St = (V, E,�, ν, σ, δ) where: V is the set of available nodes;
(V, E) forms an acyclic directed graph to represent the tree-
structures; � defines a total order over the nodes in V ; ν
labels element and attribute nodes with their node name; σ
labels the attribute and text nodes with their string value;
δ is a partial function that uniquely associates with an URI
or a file name, a document node.

The environment in LiXQuery is denoted by a tuple Env =

1This tuple is the same as in [5] except that the sibling order
< is replaced by the document order �.

(a, b, v, x, k, m) where a is a partial function that maps a
function name to its formal argument; b is a partial function
that maps a function name to the body of the function;
v is a partial function that maps variable names to their
values; x is an item of St and indicates the context item or
x is undefined; k is an integer denoting the position of the
context item in the context sequence or k is undefined; m is
an integer denoting the size of the context sequence, or m
is undefined.

The result of an expression evaluated against an XML store
and environment is a (possibly expanded) XML store (re-
sult store) and a sequence of one or more items over the
result store (result sequence). Items in the result sequence
can either be atomic values or nodes. The semantics of a
LiXQuery expression is defined by statements of the form
St, Env ` e ⇒ St′, v, which state that when e is evalu-
ated against a store St and an environment Env then St′

is the result store and v is the result sequence over St. We
derive such statement by using inference rules, which are
given in [5].

We denote the empty sequence by 〈〉, non-empty sequences
by, for example, 〈1, 2, 3〉 and the concatenation of two se-
quences l1 and l2 by l1 ◦ l2. Last but not least, each node
has a unique identity. It is important to note that atomic
values do not have an identity.

3. ELIMINATING NODE CONSTRUCTION
We will show that some XQuery expressions that contain
node constructors can be simulated by another XQuery ex-
pression that does not use node construction.

3.1 Node Conservative Expressions
Clearly an expression cannot be simulated by an expression
without constructors if it returns newly created nodes, so
we introduce the notion of node conservative expressions.

Definition 1. A node-conservative expression (NCE) is an
expression e ∈ LQE such that for all stores St and environ-
ments Env it holds that if St, Env ` e ⇒ St′, v then all
nodes in v are nodes in St.

In Example 1.1 we considered a join and a projection of
two XML documents in LiXQuery. This expression is an
example of a NCE.

Another restriction we make is that we only consider de-
terministic expressions. Node creation is a source of non-
determinism in LiXQuery (and XQuery) because the frag-
ment that is created by a constructor is placed at an arbi-
trary position in document order between the already exist-
ing trees in the store. Since node construction is the only
source of non-determinism in LiXQuery, it is clear that we
cannot simulate that there are many possible results with-
out it. This is however not a fundamental feature of XQuery
so we ignore non-deterministic expressions.

Definition 2. An expression e ∈ LQE is said to be deter-
ministic if for every store St and environment Env it holds
that if St, Env ` e ⇒ St′, v and St, Env ` e ⇒ St′′, w then
v = w.

Note that this is a very strict definition of determinism
which, in fact, only allows node-conservative expressions.
We could have allowed multiple results that were equiva-
lent up to isomorphism over the nodes, but this would make
things unnecessarily complex.

Next to restricting the types of expressions we consider we
also allow a simulation to differ in its semantics from the
the original in two ways. The first is that a simulation may
have a defined result where the original does not. Note that
we still require that whenever an expression has a defined
result then the simulation has the same defined result, but
not necessarily the reverse. We conjecture that the theorem
also holds when we also require the reverse but proving this
would add a lot of overhead to this paper without adding
much extra insight in the expressive power of node construc-
tion.

The second way in which the semantics of a simulation dif-
fers from that of the original is that resulting stores only
have to be the same up to garbage collection, i.e., after re-
moving the trees that are not reachable by the δ function
(the fn:doc() function) or contain nodes from the result
sequence. If we denote the store that results from garbage
collection on a store St and a result sequence v as [St]v then
this leads to the following definition:

Definition 3. Given two expression e, e′ ∈ LQE we say
that e′ is a simulation of e if for all stores St and envi-
ronments Env with undefined x, k and m it holds that if
St, Env ` e ⇒ St′, v then there exists a store St′′ such that
St, Env ` e′ ⇒ St′′, v and [St′′]v = [St′]v.

We use this definition for the following theorem, which is
the main result of this paper:

Theorem 1. For every deterministic node-conservative2

expression e ∈ LQE there exists a simulation e′ ∈ LQE that
does not contain constructors.

3.2 Outline of the Simulation
Our goal is to transform an expression into a semi-equivalent
expression which does not use node constructions. We are
going to eliminate the construction by simulating it. To
simulate construction we will need to simulate the store, be-
cause it is there that the information concerning the newly
constructed nodes will reside. In short, the simulation per-
forms the following steps:

1. We use a few special variables in the environment to
encode a part of the store. This part will contain the
newly created nodes but also parts of the old store that
are retrieved with the doc() function;

2. Whenever a doc() call occurs in the original expres-
sion, the simulation will add the encoding of the docu-
ment tree to the simulated store on the condition that
it is not already there;

3. Accessing nodes in the store is simulated by accessing
the encoded store;

2Since every deterministic expression is also node-
conservative we can strictly speaking drop the second re-
quirement.

4. Nodes are simulated by node identifiers which are num-
bers that refer to the encoded nodes in the store;

5. In order to be able to distinguish encoded atomic val-
ues from node identifiers within sequences, we let the
normal atomic values be preceded by a 0 and the node
identifiers by a 1. Note that this means that in the
simulation, a sequence will be twice as long and every
item that was at position i will now be at position 2i;

6. Finally, the simulation replaces the node identifiers
with the corresponding nodes from the store. If the
original expression is indeed a deterministic node con-
servative expression, the result – and thus also the
result of the simulation – will contain no newly con-
structed nodes. Consequently, this last step is always
possible if the original expression is node conservative.

The transformation of an expression to a constructor-free
expression that simulates it, is expressed by a transforma-
tion function. A transformation function is a function ε :
LQE → LQE. The commuting diagram in Figure 1 illus-
trates what should hold for such a transformation function
ε for it to be correct. We show this by induction on the
subexpressions e′′ of an expression e.

(St, Env)
τ−−−−−→ (cSt, dEnv)

e′′
??y ε(e′′)

??y
(St′, v)

τ ′
−−−−−→ (cSt, bv)

Figure 1: This diagram depicts the relations be-
tween the several components in the translation.

On the left-hand side we see that starting from a store St
and an environment Env, the evaluation of the expression
e′′, which may add new nodes to St, will result in a new
store St′ ⊇ St and a result v. On the right-hand side we

see that starting from a store cSt and an environment dEnv,
the evaluation of the transformed constructor-free expres-

sion ε(e′′), which will not add new nodes to cSt, will result

in the same store cSt and a result bv.

At the top of the diagram we see the encoding τ which
encodes a store St dEnv ⊆ St into sequences of atomic values

that are bound to special variables in the environment dEnv.
Moreover, τ replaces the values of all variables in Env with
sequences of atomic values and the bodies of all functions
are transformed by ε to constructor-free expressions. At the
bottom of the diagram we see the encoding τ ′ which encodes
a store Stbv ⊆ St′ and the value v as a sequence of atomic
values bv.

When we use this schema to show by induction that we
can correctly translate an expression e to a constructor-free
expression ε(e) it will hold for the evaluation of the subex-

pression e′′ that cSt is the store against which e is evaluated.
Moreover, if during the evaluation of e nodes where cre-
ated before the evaluation of e′′ then (1) these nodes have
been added to St and (2) in the evaluation of ε(e) they were

added to the encoded store in dEnv. So it will hold that

St = cSt ∪ St dEnv. Obviously it has to be shown by induc-
tion that this remains true after the evaluation of e′′ so it
has to be shown that St′ = cSt ∪ Stbv. An overview of all
these relationships between the involved stores is illustrated
in Figure 2.

St

StEnv

St St '

St v

Figure 2: The stores cSt, St dEnv, St, Stbv and St′

3.3 Encoding the Store and Environment
Before we describe how to translate LiXQuery expressions
into their constructor-less simulations, we first have to look
into the encodings of the store and environment based on
their formal semantics.

We first describe how to encode a store in sequences of
atomic values. We will define this given an injective func-
tion id : V → N that provides the unique node identifier for
each node and which will be used to represent the nodes in
the encoding.

Definition 4. Given an XML store St = (V, E,�, ν, σ, δ)
and an injective function id : V → N then we call a tuple of
XML values (V̂ , Ê, δ̂) a store encoding of St under id if

– V̂ = 〈id(v1), t1, n1, s1〉 ◦ . . . ◦ 〈id(vk), tk, nk, sk〉
where (1) {v1, . . . , vk} = V , (2) v1 � . . . � vk, (3) ti

equals "text", "doc", "attr" or "elem" if vi is a text
node, a document node, an attribute node or an ele-
ment node, respectively, (4) nk is ν(vk) if it is defined
and "" otherwise, and (5) sk is σ(vk) if it is defined
and "" otherwise,

– Ê = 〈id(v1), id(v′
1)〉 ◦ . . . ◦ 〈id(vm), id(v′

m)〉
where {(v1, v

′
1), . . . , (vm, v′

m)} = E,

– δ̂ = 〈s1, id(v1)〉 ◦ . . . ◦ 〈sp, id(vp)〉
where δ = {(s1, v1), . . . , (sp, vp)}.

Note that a store encoding is not uniquely determined given
St and id because we can choose the order in Ê and δ̂.

We have to encode sequences of atomic values and nodes
as sequences of atomic values. When we directly replace
each node v with id(v) we cannot always tell if a number
represents itself or encodes a node identifer. Therefore we
let atomic values that encode themselves be preceded by 0

and atomic values that are node identifiers be preceded by
1. For illustration consider the examples in Example 3.1.

Definition 5. Given an XML value v = 〈x1, . . . , xk〉 over
a store St = (V, E,�, ν, σ, δ) and an injective function id :

Example 3.1 Encoded values

Given a function id = {(v1, 5), (v2, 3)}:

value value encoding

〈5〉 〈0, 5〉
〈v1〉 〈1, 5〉
〈5, v1, "string", v2〉 〈0, 5, 1, 5, 0, "string", 1, 3〉

V → N, we call an XML value ṽ the value encoding of v
under id if ṽ = 〈m1, x̂1〉 ◦ . . . ◦ 〈mk, x̂k〉 where mi = 1 and
x̂i = id(xk) if xk is a node and mi = 0 and x̂i = xi otherwise.

Note that the encoding of value v is written as ṽ and not as
v̂ to distinguish it from the v̂ in the commuting diagram in
Figure 1 which encodes both a store and a value.

We now proceed with formalizing the the τ relationship in
Figure 1. Recall that the relations in this diagram hold by
induction on the subexpressions e′′ of a simulated expres-

sion e. The resulting store cSt is the store against which e
is evaluated, because all nodes that are created by e′′ are

in ε(e′′) encoded in dEnv. We will refer to the part of St

encoded in dEnv as St dEnv. Since St dEnv describes the part
of St that is retrieved or created by preceding evaluations

it holds that St = cSt ∪ St dEnv where cSt ∩ St dEnv contains
the documents that were retrieved with the doc() function
before e′′ was evaluated (see Figure 2).

Definition 6. Given a store St = (V, E,�, ν, σ, δ), an en-
vironment Env = (a, b, v, x, k, m) over this store and a trans-

formation function ε we call a pair (cSt, dEnv) with store cSt

and environment dEnv = (â, b̂, v̂, x̂, k̂, m̂) a store-environment
encoding of St and Env under tr if there is a store St dEnv

and an injective function id : V dEnv → N such that

– St = cSt ∪ St dEnv,

– all nodes in values of variables in Env are in St dEnv

– â = a,

– b̂ = {(s, tr(y))|(s, y) ∈ b},
– in v̂ (1) all variable names s bound by v are bound

to the value encoding of v(s) under id, (2) the vari-

ables tau:E, tau:V and tau:delta contain V̂ , Ê and
δ̂, respectively, where (V̂ , Ê, δ̂) is the store encoding
of St dEnv under id and (3) the variables tau:x, tau:k
and tau:m contain value encodings of x, k and m, re-
spectively, under id, and

– x̂, k̂ and m̂ are all undefined.

In turn, we now define the τ ′ encoding in Figure 1. Here
we refer to the part of the store that is encoded in the en-
vironment as Stbv. Since Stbv describes the part of St that is
retrieved or created by preceding evaluations it must hold

that St′ = cSt∪Stbv where cSt′ ∩Stbv contains the documents
that were retrieved with the doc() function before or during
e′′ was evaluated (see Figure 2).

Definition 7. Given a store St′ = (V, E,�, ν, σ, δ) and a

value v over this store then a pair (cSt, bv) with a store cSt and

an XML value bv is called a store-value encoding of St and v
if there is a store Stbv and an injective function id : Vbv → N
such that (1) St′ = cSt∪Stbv, (2) all nodes in v are in Stbv and

(3) v̂ = 〈|V |〉◦ V̂ ◦〈|E|〉◦ Ê ◦〈|δ|〉◦ δ̂ ◦ ṽ where (V̂ , Ê, δ̂) is the
store encoding of Stbv under id, and ṽ is the value encoding
of v under id.

Based on this input/output encoding we can give the for-
mal meaning of the diagram in Figure 1 and define when a
transformation function defines a correct simulation.

Definition 8. A transformation function ε is said to be
a correct transformation if it holds for every store St and

environment Env that if St, Env ` e ⇒ St′, v and (cSt, dEnv)
is store-environment encoding of St and Env under tr then

it holds that cSt, dEnv ` ε(e) ⇒ cSt, bv where (cSt, bv) is a store-
value encoding of St′ and v.

3.4 A Correct Transformation Function
In this section we construct a transformation function ε :
LQE → LQE and show that the following theorem holds.

Theorem 2. The transformation function ε is a correct
transformation function.

The result of ε(e) is defined by induction upon the structure
of e. Because of space limitations we will only show some
typical translations for some types of LiXQuery expressions.
Helper functions will be defined in the eps namespace which
is assumed to be distinct from all the used namespaces in e.

We begin with the translation of the name() function. Here
and in the following we will assume the existence of the func-
tions eps:V(), eps:E(), eps:delta() and eps:val() which

respectively extract bV , bE, bδ, and ev from a store-value encod-
ing. For computing the store-value encoding give V̂ , Ê, δ̂
and ṽ we assume the existence of a function eps:stValEnc()

with formal arguments $V, $E, $delta and $val. We also
introduce the shorthand

let $eps:V, E, delta, val := getStVal($eps:res)

to denote

let $eps:V := eps:V($eps:res)
let $eps:E := eps:E($eps:res)
let $eps:delta := eps:delta($eps:res)
let $eps:val := eps:val($eps:res)

The translation of the name() function is defined as follows:

ε(name(e′)) =
let $eps:res := ε(e′)
let $eps:V, E, delta, val := getStVal($eps:res)
return eps:epsStValEnc($eps:V, $eps:E, $eps:delta,

eps:nu($eps:val[2], $eps:V))

The function eps:nu() returns the name of the specified

node using the information encoded in bV .

The doc() function loads new documents into our encoded
store.

ε(doc(e)) = let $eps:res := ε(e)
return eps:doc($eps:res)

Here the function eps:doc() checks if the document is al-
ready in the encoded store by comparing the URI’s tot the

URI’s already present in bδ. If this is the case it just re-

turns the associated simulated node id as found in bδ, else
the eps:doc() function compares the real document node
obtained with the given URI, to the real documents ob-

tained via the URI’s that are already present in bδ. If this

is the case, only a new entry is added to bδ linking the new
URI to the node identifier of the encoded document. If
the document is not present in bδ the document is encoded.
First a document node is added to the encoded store and
with the resulting node identifier a new entry is added in bδ.
Then, also using this identifier, the nodes of the document

are encoded and added after this document node in bV . The
eps:doc() function finally returns a store-value encoding
containing the (new) node identifier as the result sequence
and the (updated) store, environment and delta.

The for-expression is the most fundamental type of expres-
sion in LiXQuery. In it’s translation we assume a number x
that is unique for each for-expression that has to be trans-
lated. This is used to define for every for-expression a unique
function eps:forx(). The parameter varsx represent all
free variables in e′. Recursion is used here to simulate the
iteration over a sequence where the resulting store of the
previous step is passed on to the following step. The trans-
lation of the for-expression is then defined as follows.
ε(for $s at $s′ in e return e′) =

let $eps:res := ε(e)
let $eps:V,E,delta,val := getStVal($eps:res)
return eps:forx(1, $eps:val, $eps:V, $eps:E,

$eps:delta, varsx)

with eps:forx() defined as follows:
declare function eps:forx($eps:pos, $eps:seq,

$tau:V, $tau:E, $tau:delta, varsx) {
let $s := $eps:seq[$eps:pos*2-1], $eps:seq[$eps:pos*2]
let $s’ := $eps:pos
let $eps:res1 := ε(e′)
let $eps:V1,E1,delta1,val1 := getStVal($eps:res1)
let $eps:res2 := eps:forx($eps:pos+1, $eps:seq,

$eps:V1, $eps:E1, $eps:delta1, varsx)
let $eps:V2,E2,delta2,val2 := getStVal($eps:res2)
return $eps:stValEnc($eps:V2, $eps:E2, $eps:delta2,

($eps:val1, $eps:val2))
}
The translation of node comparison expressions is done by
extracting the information of identity and position contained
in the store-value encoding.
ε(e’ is e’’) =

let $eps:res := ε(e’)
let $tau:V,E,delta,val1 := getStVal($eps:res1)
let $eps:res2 := ε(e’’)
let $tau:V2,E2,delta2,val2 := getStVal($eps:res2)
return $eps:stValEnc($tau:V2, $tau:E2, $tau:delta2,

(0, $tau:val1[2] = $tau:val2[2]))

The translation of a construction operator extends the en-
coded store which is a crucial part of the simulation. To
illustrate this we give the translation the element construc-
tion.
ε(element {e′}{e′′}) =

let $eps:res := ε(e′)
let $tau:V,E,delta,val1 := getStVal($eps:res)
let $eps:res2 := ε(e′′)
let $V2,E2,delta2,val2 := getStVal($eps:res2)
return eps:addElem(V2, E2, delta2, $tau:val1, val2)

with eps:addElem() declared as follows.

declare function eps:addElem($V $E, $delta,
$nameEnc, $chEnc) {

let $res1 := eps:addElemNode($nameEnc[2], $V, $E)
let $V1,E1,delta1,val1 := getStVal($res1)
let $res2 := eps:addChl($val1, $chEnc, V1, E1)
let $V2,E2,delta2,val2 := getStVal($res2)
return $eps:stValEnc($V2, $E2, $delta, $val1)

}

Here the function eps:addElemNode($name, $V, $E) adds
a new element node with name $name and returns a store-
value encoding with the new store and the new node identi-
fier. The function eps:addChl($parEnc, $chEnc, $V, $E)

makes deep copies for all the nodes encoded in chEnc, adds
these under the node encoded in $parEnc and returns a
store-value encoding with the new store and the parent node.
The function uses recursion in the same way as the transla-
tion of the for-expression, in order to be able to iterate with
side-effects on the store.

3.5 Creating a Constructor-Free Expression
We now sketch how to create constructor-free semi-equivalent
expressions for deterministic (node-conservative) ones, i.e.,
how to generate the expression e′ of Theorem 1, based on
ε(e), which is working on an encoding of (St, Env). We do so
by showing how encoding (St, Env) and afterwards decoding
results St′, v can be done for node-conservative expressions.

The expression ε(e) will be evaluated against (St, dEnv), wheredEnv contains the encoded store and environment. We con-
struct St dEnv in such a way that it contains exactly all trees
of St for which a node occurs in the variable bindings of
Env. Assuming that we can have a sequence that is the
concatenation of all variable bindings in Env, we can write
an expression to create a new sequence $roots that, start-
ing from the former sequence, filters out the nodes, applies
the root function to each node and finally sorts this result
by document order by applying a self-axis step. Since the
roots of all trees that have to be in St dEnv are now in docu-
ment order in $roots, we can write another expression that
creates the encoded store St dEnv starting from an empty en-
coded store, by simply traversing through the trees under

the nodes in $roots and extending St dEnv = (bV , bE, bδ), rep-
resented by the variables $tau:V, $tau:E and $tau:delta

in the environment dEnv). If this traversal is done in depth-
first, left-to-right manner, we visit all nodes of St that will
be encoded in St dEnv in document order. Node identifiers
can then be chosen in such a way that they correspond to
the position in St dEnv. Starting from Env, we can now create

the encoded environment dEnv by replacing all expressions
in b by the simulations ε(b), adding the variables for the
encoded store and environment to the function signatures
in a, replacing all sequences in the variable bindings with
their encoded sequences, and finally, adding the variables
$tau:V,$tau:E and $tau:delta to v. Since all nodes that
occur in Env are encoded in St dEnv and node identifiers were
assigned based on the position of nodes within the forest un-
der $roots, we can easily obtain the encoded sequences for
the variable bindings.

The result of the evaluation of ε(e) is the store St and a
store-value encoding Stbv. Based on this we can create the
result sequence the original expression returned if it was
a node-conservative expression. In that case the encoded

result sequence will only contain encoded nodes of which the
real counterparts were available in the initial XML store St.
Therefore we can loop over encoded items in Stbv. Encodings
of atomic values are simply replaced by the atomic values
itself. For every encoded node we first determine whether
it was originally in St dEnv. This can be done by storing
(during the encoding phase) all nodes and their chosen node
identifiers as pairs in a variable. If the node identifier occurs
in this variable then it is an original node and we can easily
return the corresponding node. If the root of the encoded
node is an encoded document node that is associated to
a URI in the variable $tau:delta then we can obtain the
original document root node by a simple doc function call,
else it is a newly created node and hence this expression is
not a node-conservative expression. By using the position
of the encoded node relative to the encoded root node, we
can determine the position of the corresponding real node in
the document tree and hence we replace the encoded node
by the real node in the result sequence.

4. CONCLUSION
In this paper, we showed that deterministic XQuery expres-
sions, always yielding a result with only nodes from the in-
put store, can be rewritten to equivalent expressions that do
not contain node constructors. In further research, we plan
to investigate whether a similar result can also be obtained
for non-recursive XQuery. Furthermore, we intend to inves-
tigate how this result can be used to optimize queries by
removing or postponing node creation operations in query
evaluation plans. Finally, we want to examine whether this
result can be used for rewriting let expressions in non-
recursive XQuery without using XQuery functions. This
is not trivial, since simple variable substitution would result
in multiple creation of the nodes on the right-hand side of
the variable assignment.

5. REFERENCES
[1] XML query (XQuery). http://www.w3.org/XML/Query.

[2] S. Abiteboul and P. C. Kanellakis. Object identity as a
query language primitive. Journal of the ACM, 45:798–842,
September 1998.

[3] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL hosts. In
Proceedings of the 30th Int’l Conference on Very Large
Databases (VLDB 2004), August/September 2004 2004.

[4] J. Hidders, J. Paredaens, P. Michiels, and R. Vercammen.
LiXQuery: A formal foundation for XQuery research.
SIGMOD Record, September 2005.

[5] J. Hidders, J. Paredaens, R. Vercammen, and S. Demeyer. A
light but formal introduction to XQuery. In Proceedings of
the Second International XML Database Symposium (XSym
2004), Toronto, Canada, 2004. Springer.

[6] J. Paredaens and D. Van Gucht. Converting nested algebra
expressions into flat algebra expressions. ACM Transactions
on Database Systems (TODS), 17:65–93, 1992.

[7] J. Van den Bussche. Simulation of the nested relational
algebra by the flat relational algebra, with an application to
the complexity of evaluating powerset algebra expressions.
Theoretical Computer Science, 254:363–377, 2001.

[8] J. Van den Bussche, D. Van Gucht, M. Andries, and
M. Gyssens. On the completeness of object-creating
database transformation languages. Journal of the ACM,
44:272–319, March 1997.

