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ABSTRACT
We discuss four different core protocols for synchronizing access
to and modifications of XML document collections. These core
protocols synchronize structure traversals and modifications. They
are meant to be integrated into a native XML base management
System (XBMS) and are based on two phase locking. We also
demonstrate the different degrees of cooperation that are possible
with these protocols by various experimental results. Furthermore,
we also discuss extensions of these core protocols to full-fledged
protocols. Further, we show how to achieve a higher degree of
concurrency by exploiting the semantics expressed in Document
Type Definitions (DTDs).

1. INTRODUCTION
The rapid proliferation of the eXtentensible Markup Language (XML
[4]) in many different application areas results in a rapidly grow-
ing number of XML documents. This is especially true in web-
based applications where the semi-structuredness of the data makes
markup languages ideal for representing data. It is our hypothe-
sis that sooner or later users will work concurrently on XML doc-
uments with general purpose applications like XML editors and
stylesheet processors as well as with specialized tools tailored to
the needs of specific application areas. At the moment, most tools
of this kind work on the XML documents using a standardized ap-
plication programming interface (e.g. the Document Object Model
(DOM) [8]). Isolating different concurrent applications (i.e. pre-
venting them from having unwanted side effects on each other) be-
comes an important issue.

There are essentially three possibilities of storing XML documents.
The first alternative is to use a file system, which — from an isola-
tion point of view — is a bad choice, due to the lack of synchroniza-
tion mechanisms. The second alternative is an existing relational,
object-oriented, or object-relational database system [3, 7, 10, 16,
20, 23, 24]. In the case of relational database systems there are
several different translation schemes. In one of them elements are
mapped onto tuples. Elements from different documents may also
share tables. In this case we need to lock the whole table when in-
serting nodes to avoid the phantom problem. The only translation
scheme in which tables are not shared stores the XML documents in
Character Large OBjects (CLOBs). In this case, however, locking
is only possible at the document level by locking the whole CLOB
or at random byte positions within the CLOB by range locking.
Obviously, locking the whole document has too coarse a granu-
larity, while range locking completely disregards the structure of
the XML document. The third alternative is to implement a native
XML base management system (XBMS) [9, 11, 15]. One of the
reasons to follow the XBMS approach is that it allows incorporat-

ing synchronization protocols specifically adapted to the manipula-
tion of XML document collections.

The development of synchronization protocols for isolating differ-
ent applications has a long and successful history in the database
community. One of the key concepts here is the notion of serializ-
ability, i.e. that the outcome of concurrently executed transactions
is equivalent to a strictly serial execution of the transactions. Most
of the protocols that guarantee serializability already found their
way into textbooks more than a decade ago [2, 13, 18]. During
the last decade some researchers have concentrated on defining no-
tions weaker than serializability and developed protocols that allow
a more liberal cooperation between users. For a survey on cooperat-
ing transactions and synchronization in general see [19]. Recently,
the topic of synchronization was picked up again in the context of
XML. Grabs et al. propose DGLOCK [12], a protocol for seman-
tic locking on DataGuides. However, there are still some shortfalls
concerning the handling of IDREFs and position-based predicates.
Dekeyser and Hidders argue that predicate locks are too expensive
and still too restrictive. As an alternative, they propose a path lock-
ing protocol in [5, 6]. However, a direct jump into subtrees via
IDREFs is still not possible and the paths for locking may not be
arbitrary (only a subset of XPath is covered).

We believe that serializability should be the foundation for proto-
cols that allow cooperation, as there is always a lowest level where
actions have to be atomic and have to be isolated carefully in order
to prevent the unwanted side effects mentioned before. This moti-
vated us to start with the development of protocols that guarantee
serializability [14].

The paper is organized as follows. In Section 2, we briefly describe
a set of access and modification operations we will consider for
our core protocols. Section 3 discusses four different core proto-
cols. They are based on strict two phase locking and differ in their
locking granularity. Two of these core protocols use mechanisms
developed for synchronizing ADTs [1, 17, 22]. In Section 4, we
take a closer look at the performance of the protocols. Section 5
discusses extensions to the core protocols necessary to support the
full DOM interface. This section also shows how knowledge about
the DTD of a document can be exploited to achieve a higher level
of concurrency. Section 6 concludes the paper.

2. TRAVERSING AND MODIFYING XML
DOCUMENTS

Semi-structured data, like XML documents, are often represented
as ordered, labeled trees. The nodes of the tree store the names of
the tags or textual data. For an example of a tree representation of
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an XML document, see Figure 1.

<a>
  <b>
    foo
  </b>
  <c>
    bar
  </c>
</a>
  
  
  

a

b c

’foo’ ’bar’

(a) An XML document (b) Tree representation

Figure 1: An XML document and its tree representation

We take a different path than than other approaches by proposing a
locking protocol tailored to typical APIs for processing XML doc-
uments.

The operations of these APIs (e.g. DOM [8]) fall into four cate-
gories: mutators and observers of the contents of a node and muta-
tors and observers of the structure of a document (for a list of some
operations provided by DOM see Figure 2). The latter are usually
called traversal operations. Since we believe that modifying the
string contents of a node can be handled by standard synchroniza-
tion protocols, we concentrate first on isolating document structure
traversals and modifications. This will yield core protocols. In Sec-
tion 5, we extend these core protocols to isolate content reads and
modifications as well as retrieval of nodes by ID/IDREF attributes.
(With an attribute of type ID, an identifier can be given to a node
that is unique among all identifiers contained in the document the
node belongs to. An attribute of type IDREF allows to point to a
single node with a given ID. The IDREFS attribute allows to point
to several nodes by giving a list of IDs. For further details see [4]).

In order not to overburden the discussion, we work with a small
representative set of operations a transaction can execute. We as-
sume that a transaction first selects a document to work on. This
is done via a select document (sd) operation. The result is a refer-
ence to the root node of the selected document. From there on it
traverses and modifies the document structure, using a sequence of
the following operations:

observer structure firstChild
lastChild
previousSibling
nextSibling
getNodeById
getElementByTagName

contents getTextContents
nodeName
getAttribute

mutator structure insertBefore
replaceChild
removeChild
appendChild

contents appendData
deleteData
insertData
replaceData
setAttribute

Figure 2: Some DOM Operations

nthP retrieves the n-th child in the child list

nthM retrieves the n-th child counting from the end of the child
list backwards

insA inserts a new node after a given node

insB inserts a new node before a given node

del deletes a given node

The distinction between attribute, element, and other node types
is not important for synchronization purposes. We therefore talk
about nodes only.

3. PROTOCOLS
In this section, we introduce the core protocols for synchronizing
structure traversals and modifications of XML documents. Gener-
ally speaking, our protocols are based on two phase locking [2, 18].
It is important to note that all core protocols require that document
access starts at the root node and traverses documents top down.
This requirement is relaxed in Section 5. Insofar it is different from
regular tree locking protocols (as described in [2]). In our full pro-
tocol we do not need the assumption that all accesses are strictly
from top to bottom. We also provide different locking schemes,
e.g. locking pointers instead of nodes.

3.1 Lock Modes
In standard two phase locking protocols for synchronizing read and
write operations, we have two kinds of locks: shared locks (S) and
exclusive (X) locks. We could also allow browse locks [25] in
our approach without further trouble, but to keep the following de-
scriptions as simple as possible, we confine ourselves to shared and
exclusive locks at this point. Read operations require a shared lock
while write operations require an exclusive lock. We will look at
the topic of content modification later, when introducing the com-
plete protocols (Section 5).

The more difficult (and novel) subject is synchronizing structure
traversal and modification via locking protocols. Therefore, we
investigate this first. Similar to the shared and exclusive locks
for content traversal and modification, we introduce a shared lock
named T that has to be acquired for traversing the document struc-
ture and an exclusive lock named M that has to be acquired for
modifying the document structure.

3.2 Compatibility Matrix
The compatibility matrix of these two locks is analogous to the
one for S and X locks (see Figure 3 (a)). The standard rules of
two phase locking (2PL) have to be obeyed: Before performing an
operation, the corresponding lock has to be acquired; during lock
acquisition, a check for conflicting locks is performed; if a conflict
exists, the lock requiring transaction is blocked and locks are held
till the end of the transaction. If a transaction is blocked, the wait
graph is updated, and if it contains a cycle, the transaction that
completes the cycle is aborted.

3.3 Doc2PL
The first and simplest protocol Doc2PL locks at the document level.
For applications where transactions work on different documents,
e.g. one author edits one document, this easy to implement low-
overhead protocol suffices. Note that although this protocol is widely
used in XBMS at the moment (e.g. in Tamino [21]), it does not
allow cooperation on one single XML document. We include it
nonetheless, as we use it as a reference for comparison.
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T M
T + -
M - -

(a)

TL TR TA TZ ML MR MA MZ
TL + + + + - + + +
TR + + + + + - + +
TA + + + + + + - +
TZ + + + + + + + -
ML - + + + - + + +
MR + - + + + - + +
MA + + - + + + - +
MZ + + + - + + + -

(b)

Figure 3: Compatibility matrices

3.4 Conceptual Document Model
The next protocols lock at the node level. In order to understand
these protocols and their differences, one can think of an XML
document consisting of nodes with pointers which connect them.
Figure 4 shows a parent node and its child nodes together with the
pointers. Of course the XBMS does not have to represent docu-
ments with these pointers. For example, one could have embedded
child nodes (as in Natix [9]) or an array of pointers to all children.
We use the pointer model only to explain the protocols and to de-
rive lock names. The protocols themselves are independent of the
actual representation of the XML document structure.

Node2PL

OO2PL

NO2PL

P

C3C1 C2

A Z

L

R R

L

Figure 4: Conceptual list representation of XML documents

3.5 Node2PL and NO2PL
Figure 4 also shows on which items the different protocols acquire
locks. The Node2PL protocol acquires locks for parent nodes. For
example, if we traverse to the nth-child of a given node P , then
node P is locked in T mode. If we insert a child under node P ,
then node P is locked in M mode.

The protocol NO2PL acquires locks for all nodes whose pointers
are — at least conceptually — traversed or modified. Refer again
to Figure 4. If we introduce, for example, a new child C0 before
child C1, then we have to acquire two exclusive locks: one for
the parent node P , since its first child pointer is modified, and one
for the child node C1 because its left sibling pointer is modified.
However, we do not have to acquire a lock for child C0, since no
other transaction will be able to traverse to this node, as all ways to
it are blocked: C0 can be reached from the parent node neither by
an nthP operation nor by an nthM operation, since P and C1 are
locked exclusively.

3.6 OO2PL
Whereas in Node2PL and NO2PL we lock nodes, OO2PL locks
pointers. As there are four pointers for every node (first child (A),
last child (Z), left sibling (L) and right sibling(R)), we need four
shared and four exclusive locks. The locks are TA, TZ, TL, TR, MA,
MZ, ML, MR corresponding to the above order. The compatibility
matrix is shown in Figure 3(b). Again, before executing an opera-
tion, locks have to be acquired according to the pointers (conceptu-

document parameters
number of documents 100
document depth 4
minimal fan-out of node 3
maximal fan-out of a node 5

transaction parameters
number of transactions 100
. . . concurrent transactions 5
. . . operations per transaction 50

probab. for ops
select document 0
nthP 40
nthM 40
insA 5
insB 5
delete 10

Table 1: Default parameters for the simulation environment

ally) traversed or modified. OO2PL can be seen as an application
of the framework for synchronizing abstract data types [22].

4. EVALUATION
4.1 Simulation Environment
We implemented a simulation environment in which we tested the
performance of the different core protocols. In the context of our
simulations we generate a number of documents. Each document
has a certain depth, and the fan-out of a node is determined ran-
domly within a certain range. The default parameters chosen to
generate the documents are given in Table 1. These parameters
sometimes lead to abortion rates that are quite high and may be
seen as unrealistic (e.g. having only five times as many documents
as transactions). We did this in order to see how the protocols op-
erate at full capacity or even beyond. In other words, we are inter-
ested in how well the protocols scale and are able to handle peak
activity or even overload.

On these documents, the transactions perform operations as defined
in Section 2. As its first operation, a transaction selects a document
randomly. It then continues by choosing randomly any of the op-
erations with the default probabilities indicated in Table 1. These
probabilities do not apply to modifications at the root node level.
Root nodes cannot be deleted and no siblings to root nodes can be
inserted. When a transaction tries to access a child of a document’s
leaf node, this operation fails and the transaction selects a new doc-
ument randomly.

We measured the percentage of transactions that aborted as well
as the average number of waits (in number of operation steps) per
committed transaction. Note that these two parameters are critical
for the throughput of the protocols, as one reflects the probability
that a transaction will commit successfully, while the other mea-
sures the average idle time before a transaction successfully com-
mits. We investigated these two parameters subject to variations
in the number of operations per transaction, the number of concur-
rently running transactions, and the number of documents in our
collection. Unless otherwise indicated, we use the default parame-
ters from Table 1.

4.2 Varying the Length of Transactions
Figure 5 shows the results for varying the length of the involved
transactions. The left hand part (Figure 5(a)) depicts the percent-
age of aborted transactions, while the right hand part (Figure 5(b))
displays the average number of wait cycles before committing. Ob-
viously, the longer the transactions, the more conflicts occur, result-
ing in a higher abort rate and longer waits. We can clearly see that
the higher locking granularity of the protocols Node2PL, NO2PL,
and OO2PL pays off. Doc2PL runs into deadlocks much more of-
ten. OO2PL usually has an abort rate that is only half as large as
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Figure 5: Results for varying length of transactions

that of Doc2PL. Up to a transaction size of 40 operations OO2PL
has no aborts (due to deadlocks) whatsoever. It also has the small-
est idle time per committed transaction.

When comparing Node2PL to NO2PL, we can see that Node2PL
dominates NO2PL, as they both show similar performance, but
NO2PL needs to hold twice the number of locks to accomplish this
(so its overhead is greater). OO2PL is even better than Node2PL
and NO2PL, but it needs to manage four locks per node.

4.3 Varying the Number of Concurrent Trans-
actions

Figure 6 shows the results for varying the number of concurrently
running transactions. Again, the left hand part (Figure 5(a)) de-
picts the percentage of aborted transactions, while the right hand
part (Figure 5(b)) displays the average number of wait cycles be-
fore committing. Clearly, an increase in the number of concurrently
running transactions leads to more conflicts, as more transactions
are simultaneously competing for the same documents. For this
parameter, the performance gap between Doc2PL and OO2PL be-
comes even more apparent. Most of the time, the percentage of
aborted transactions for Doc2PL is three to four times as high as
for OO2PL. In terms of performance, Node2PL and NO2PL are
very close to each other again, making Node2PL the better choice.

4.4 Varying the Number of Documents
Figure 7 shows the results for varying the number of documents in
our collection. The left hand part (Figure 7(a)) depicts the percent-
age of aborted transactions, while the right hand part (Figure 7(b))
displays the average number of wait cycles before committing. Ob-
viously, the more documents we have, the lower the number of con-
flicts, as the transactions are more spread out. In terms of perfor-
mance, the picture looks quite the same. OO2PL comes in at first
place, followed by Node2PL and NO2PL (which are very close to
each other), and Doc2PL lags behind.

4.4.1 General result
Generally speaking, the degree of cooperation allowed on a collec-
tion of XML documents can be improved considerably by abandon-
ing the straightforward approach of locking whole documents. We
achieved this by investing resources in the lock manager increasing
its lock granularity.

5. EXTENSIONS TO FULL-FLEDGED PRO-
TOCOLS

5.1 Node contents
In order to extend the core protocols to full protocols, we need
to isolate content accesses and modifications as well as structural
traversals and modifications. For our core protocols, this can easily
be done by adding the traditional S and X locks for contents with
their corresponding compatibility matrix. The compatibility matrix
comprising all four locks is:

S X T M
S + - + -
X - - + -
T + + + -
M - - - -

Note that the S and X locks are compatible with the T locks, while
M locks are not compatible with any other locks. All these locks
can be applied at the document and node level. This way, Doc2PL,
Node2PL and NO2PL can easily be extended.

In the OO2PL protocol, it does not make sense to devise a com-
bined compatibility matrix composed of S, X , Tx, and Mx locks,
because the content locks refer to nodes, while the structural locks
refer to pointers. Tx locks are implicitly compatible with S and
X locks, as traversing through a node using its pointers does not
affect the content of a node. Mx locks are implicitly incompatible
with S and X locks, because another transaction that has acquired
a content lock on a node must have navigated to this node in some
way, thereby setting at least one Tx lock.

5.2 ID lookup
XML provides ID attributes which uniquely identify nodes within
a document. Using IDREF and IDREFS attributes we can estab-
lish links from arbitrary nodes within the same document to nodes
with an ID attribute. These links allow us to jump directly from
one node to another without starting at the root and descending
down a non-interrupted path. However, allowing ID jumps leads
to serious problems in regular tree locking protocols, resulting in
non-serializable schedules. So far, we have required that a trans-
action moves down a document. More specifically, a transaction
must hold a lock on the parent node in order to acquire a lock for
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Figure 6: Results for varying the concurrency
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Figure 7: Results varying the number of documents

the child node. This is the typical requirement for tree locking pro-
tocols designed for higher concurrency on B-Tree index structures
[2]. The reason why this is necessary is the following. If, for ex-
ample, a node with children is deleted, we only lock the deleted
node but not its descendants. If another transaction jumps to a de-
scendant of the (about to be) deleted node via an IDREF, we are in
trouble. The straightforward solution to this problem is to lock all
descendants of the node we want to delete. Nevertheless, we ad-
vise against this, since it involves a lot of overhead (traversing and
locking all the descendants).

Instead, we propose to keep a set of ID locks for every document.
Again, we distinguish between shared ID locks (IDS) and exclusive
ID locks (IDX). IDS locks are compatible with other IDS locks,
while IDX locks are incompatible with all other ID locks. Every
time a transaction wants to follow an IDREF link to a node with
the ID i, it has to acquire an IDS lock on i. After getting this lock
the transaction may navigate from this node to others (or request S

or X locks) in the usual way. If we want to delete a node nj , we
have to acquire exclusive IDX locks on all descendants of ni that
possess an ID attribute. In this way, we can enforce serializability
even in the presence of ID jumps. (Note that ID locks can be seen
as a variant of the Tx and Mx locks of the OO2PL protocol; they
can be interpreted as yet another pointer we can traverse.)

5.3 DTD-based conflict reduction

Knowledge of the DTD can reduce the number of conflicts (and
hence increase the degree of cooperation) of the protocols Node2PL,
NO2PL and OO2PL. We illustrate the exploitation of DTD knowl-
edge by means of a simple example. Let a DTD specify a node’s
content as A*B*C*. That is, the first couple of children are of type
A, then follow the B and the C nodes. Figure 8 (a) shows an ex-
ample document adhering to this DTD. Note that the DTD groups
the children of the root node into different blocks.

Assume that there are operations first(t) and last(t) that retrieve the
first/last child of type t of a given node. Consider the schedule

TA1 TA2

first(B)
last(A)

insB(x)
insA(y)

In this schedule, all protocols block T1 when it is trying to execute
insB(x). Assume that x is of type B and y is of type A. Then
— under the given DTD — there is no conflict since last(A) and
insB(x) as well as first(B) and insA(y) commute.

In general, whenever the DTD groups the children of a node into
sets of disjoint type, any jump to one of these sets and any modi-
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Figure 8: DTD illustration

fication of it commutes with any jump to another set and its mod-
ification. To see the reason why the operations commute consider
our example document in Figure 8(a) again. Since the nodes in
each group are of different type, we can introduce artificial dummy
nodes A′, B′ and C′. Executing for example a first(B) operation is
then equivalent to jumping to B′ — the artificial top node of all B

nodes — and then selecting its first child. Any change taking place
under any of the dummy nodes obviously does not interfere with
any change in another subtree below some other dummy node.

6. CONCLUSION AND OUTLOOK
One of the basic concepts for synchronizing accesses of many dif-
ferent users to the same data is the isolation of these accesses from
each other. In order to isolate structure traversals and modifications
on XML documents and guarantee serializability for these oper-
ations, we have introduced four different core protocols based on
two phase locking. OO2PL is also based on ideas for synchronizing
abstract data types. Furthermore, we discussed how these core pro-
tocols can be extended to provide support for all concepts to cover
the full DOM standard. We further illustrated that DTD knowledge
can improve the degree of concurrency achieved by the two phase
locking based protocols.

At the moment we are integrating the presented techniques into
our native XML base Natix [9] to test them in real applications.
We also plan to adapt timestamp-based protocols for synchronizing
accesses to semi-structured data. For low-conflict environments we
expect these protocols to be even better than 2PL-based ones, due
to the avoidance of deadlocks.

7. REFERENCES
[1] B. Badrinath and K. Ramamrithan. Semantics-based concurrency

control: Beyond commutativity. ACM Trans. on Database Systems,
17(1):163–199, 1992.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987.
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