
School voor Informatietechnologie
Kennistechnologie, Informatica, Wiskunde, ICT

Efficient Frequent Pattern Mining

Proefschrift voorgelegd tot het behalen van de graad van
Doctor in de Wetenschappen, richting Informatica
te verdedigen door

BART GOETHALS

Promotor: Prof. dr. J. Van den Bussche

December 2002

D/2002/2541/46

Acknowledgements

Many people have contributed to the realization of this thesis.
First an foremost, I am grateful to my advisor Jan Van den Bussche for his

guidance throughout my doctoral studies and all the time and effort he put
in the development of me and my work. The amount of decibels we produced
during our vivid discussions, are directly related to the amount of knowledge
he passed on to me.

I am much in debt to my office-mate Floris Geerts. His help, encourage-
ment and interest in my research resulted in the work presented in Chapter 4.
I also thank the other members of our research group, the department and the
administrative staff for creating a stimulating environment.

This thesis further benefitted from pleasant discussions with, among oth-
ers, Tom Brijs, Toon Calders, Christian Hidber, Paolo Palmerini, Hannu
Toivonen and Jean-François Boulicaut.

Also many thanks to my parents, sister, other family members and friends
for the support and encouragement they have given me during my long career
as a student.

Finally, I am very much in debt for the unconditional support, endless
patience and constant encouragement I have received from my companion in
life, Eva. Thank you.

You are all part of the “we” used throughout this thesis.

Diepenbeek, December 2002

i

Contents

Acknowledgements i

1 Introduction 1

2 Survey on Frequent Pattern Mining 5
2.1 Problem Description . 6
2.2 Itemset Mining . 10

2.2.1 Search Space . 10
2.2.2 Database . 13

2.3 Association Rule Mining . 14
2.4 Example Data Sets . 15
2.5 The Apriori Algorithm . 16

2.5.1 Itemset Mining . 16
2.5.2 Association Rule Mining 18
2.5.3 Data Structures . 19
2.5.4 Optimizations . 21

2.6 Depth-First Algorithms . 29
2.6.1 Eclat . 29
2.6.2 FP-growth . 32

2.7 Experimental Evaluation . 36
2.8 Conclusions . 39

3 Interactive Constrained Association Rule Mining 41
3.1 Related Work . 42
3.2 Exploiting Constraints . 43

3.2.1 Conjunctive Constraints 44
3.2.2 Boolean Constraints . 48
3.2.3 Experimental Evaluation 50

3.3 Interactive Mining . 50
3.3.1 Integrated Querying or Post-Processing? 50
3.3.2 Incremental Querying: Basic Approach 52

iii

iv CONTENTS

3.3.3 Incremental Querying: Overhead 54
3.3.4 Avoiding Exploding Queries 55
3.3.5 Experimental Evaluation 55

3.4 Conclusions . 58

4 Upper Bounds 59
4.1 Related Work . 60
4.2 The Basic Upper Bounds . 61
4.3 Improved Upper Bounds . 64
4.4 Generalized Upper Bounds . 68

4.4.1 Generalized KK -Bounds 68
4.4.2 Generalized KK ∗-Bounds 71

4.5 Efficient Implementation . 72
4.6 Experimental Evaluation . 73
4.7 Conclusions . 82

Bibliography 85

Samenvatting (Dutch Summary) 93

1
Introduction

Progress in digital data acquisition, distribution, retrieval and storage tech-
nology has resulted in the growth of massive databases. One of the greatest
challenges facing organizations and individuals is how to turn their rapidly
expanding data collections into accessible, and actionable knowledge.

The attempts to counter these challenges gathered researchers from ar-
eas such as statistics, machine learning, databases and probably many more,
resulting in a new area of research, called Data Mining.

Data mining is usually mentioned in the broader setting of Knowledge
discovery in databases, or KDD, and is viewed as a single step in a larger
process called the KDD process [27]. This process includes:

• Developing an understanding of the application domain, the relevant
prior knowledge, and the goals of the end-user.

• Selecting the target data set on which discovery is to be performed, and
cleaning and transforming this data if necessary.

• Choosing the data mining task, the algorithm, and deciding which mod-
els and parameters may be appropriate.

• Performing the actual data mining to extract patterns and models.

• Visualizing, interpreting and consolidating the discovered knowledge.

This process is iterative in the sense that each step can inspire rectifications to
preceding steps. It is interactive in the sense that a user must be able to limit
the amount of work done by the system to that what he is really interested in.

1

2 Chapter 1. Introduction

The data mining step is concerned with the task of automated information
extraction from data that might be valuable to the owner of the data store.
A working definition of this discipline is the following [43]:

Data mining is the analysis of (often large) observational data
sets to find unsuspected relationships and to summarize the data
in novel ways that are both understandable and useful to the data
owner.

In order to do this analysis, several different types of tasks have been identi-
fied, corresponding to the objectives of what needs to be analyzed and more
importantly, what the intended outcome should describe. These tasks can be
categorized as follows [43].

Exploratory Data Analysis The goal is here to explore the data without
any clear ideas of what is wanted to be found. Typical techniques include
graphical display methods, projection techniques and summarization methods.

Retrieval by Content The user has a specific pattern in mind in advance
and is looking for similar patterns in the data set. This task is most commonly
used for the retrieval of information from large collections of text or image
data. The main challenge here is to define similarity and how to find all
similar patterns according to this definition. A well known example is the
Google search engine (http://www.google.com) of Brin and Page [17], which
finds web pages that contain information similar to the set of key-words given
by the user.

Descriptive Modelling As the name suggests, descriptive models try to
describe all of the collected data. Typical descriptions include several statis-
tical models, clusters and dependency models.

Predictive Modelling Predictive techniques such as classification and re-
gression try to answer questions by examining prior knowledge and answers in
order to generalize them for future occasions. An impressive example of clas-
sification is the SKICAT system of Fayyad et al. [26], that can perform as well
as human experts in classifying stars and galaxies. Their system is in routine
use at NASA for automatically cataloging millions of stars and galaxies from
digital images of the sky.

Pattern Discovery The aim here is to find local patterns that occur fre-
quently within a database. A lot of algorithms have been studied for sev-
eral types of patterns, such as sets [3], tree structures [82], graph struc-
tures [54, 49], or arbitrary relational structures [23, 32], and association rules

3

over these structures. The most well studied type of patterns are sets of items
that occur frequently together in transaction databases such as market bas-
ket logs of retail stores. An interesting application of association rules is in
cross-selling applications in a retail context [15].

During the past few years, several very good books and surveys have been
published on these topics, to which we refer the interested reader for more
information [43, 39, 47].

In this thesis we focus on the Frequent Pattern Discovery task and how
it can be efficiently solved in the specific context of itemsets and association
rules.

The original motivation for searching association rules came from the need
to analyze so called supermarket transaction data, that is, to examine cus-
tomer behavior in terms of the purchased products. Association rules describe
how often items are purchased together. For example, an association rule
“beer ⇒ chips (80%)” states that four out of five customers that bought beer
also bought chips. Such rules can be useful for decisions concerning product
pricing, promotions, store layout and many others.

Since their introduction in 1993 by Argawal et al. [3], the frequent itemset
and association rule mining problems have received a great deal of attention.
Within the past decade, hundreds of research papers have been published
presenting new algorithms or improvements on existing algorithms to solve
these mining problems more efficiently.

In Chapter 2, we explain the frequent itemset and association rule mining
problems. We present an in depth analysis of the most influential algorithms
which made significant contributions to several efficiency issues of these mining
problems.

Since the data mining process is an essentially interactive process, it moti-
vated the idea of a “data mining query language” [37, 38, 47, 48, 60]. A data
mining query language allows the user to ask for specific subsets of association
rules by specifying several constraints within each query.

In Chapter 3, we present new techniques in order to efficiently find all fre-
quent patterns that satisfy the constraints given by the user. For that purpose,
we study a class of constraints on associations to be generated, which should be
expressible in any reasonable data mining query language: Boolean combina-
tions of atomic conditions, where an atomic condition can either specify that a
certain item occurs in the antecedent of the rule or the consequent of the rule.
Efficiently supporting data mining query language environments is a challeng-
ing task. Towards this goal, we present and compare three approaches. In the
first extreme, the integrated querying approach, every individual data mining
query will be answered by running an adaptation of the mining algorithm in
which the constraints on the rules and sets to be generated are directly in-
corporated. The second extreme, the post-processing approach, first mines as

4 Chapter 1. Introduction

much associations as possible, by performing one major, global mining opera-
tion. After this relatively expensive operation, the actual data mining queries
issued by the user then amount to standard lookups in the set of materialized
associations. A third approach, the incremental querying approach, combines
the advantages of both previous approaches.

In Chapter 4, we describe a combinatorial problem which is implicit to
a wide range of frequent pattern mining algorithms. Our contribution is to
solve this problem by providing hard and tight combinatorial upper bounds
on the amount of work that a typical range of frequent itemset algorithms will
need to perform. By computing our upper bounds, we have at all times an
airtight guarantee of what is still to come, on which then various optimization
decisions can be based, depending on the specific algorithm that is used.

2
Survey on Frequent Pattern
Mining

Frequent itemsets play an essential role in many data mining tasks that try to
find interesting patterns from databases, such as association rules, correlations,
sequences, episodes, classifiers, clusters and many more of which the mining of
association rules is one of the most popular problems. The original motivation
for searching association rules came from the need to analyze so called super-
market transaction data, that is, to examine customer behavior in terms of the
purchased products. Association rules describe how often items are purchased
together. For example, an association rule “beer ⇒ chips (80%)” states that
four out of five customers that bought beer also bought chips. Such rules can
be useful for decisions concerning product pricing, promotions, store layout
and many others.

Since their introduction in 1993 by Argawal et al. [3], the frequent itemset
and association rule mining problems have received a great deal of attention.
Within the past decade, hundreds of research papers have been published
presenting new algorithms or improvements on existing algorithms to solve
these mining problems more efficiently.

In this chapter, we explain the basic frequent itemset and association rule
mining problems. We describe the main techniques used to solve these prob-
lems and give a comprehensive survey of the most influential algorithms that
were proposed during the last decade.

5

6 Chapter 2. Survey on Frequent Pattern Mining

2.1 Problem Description

Let I be a set of items. A set X = {i1, . . . , ik} ⊆ I is called an itemset, or a
k-itemset if it contains k items.

A transaction over I is a couple T = (tid , I) where tid is the transaction
identifier and I is an itemset. A transaction T = (tid , I) is said to support an
itemset X ⊆ I, if X ⊆ I.

A transaction database D over I is a set of transactions over I. We omit
I whenever it is clear from the context.

The cover of an itemset X in D consists of the set of transaction identifiers
of transactions in D that support X:

cover(X,D) := {tid | (tid , I) ∈ D, X ⊆ I}.

The support of an itemset X in D is the number of transactions in the cover
of X in D:

support(X,D) := |cover(X,D)|.

The frequency of an itemset X in D is the probability of X occurring in a
transaction T ∈ D:

frequency(X,D) := P (X) =
support(X,D)

|D|
.

Note that |D| = support({},D). We omit D whenever it is clear from the
context.

An itemset is called frequent if its support is no less than a given absolute
minimal support threshold σabs , with 0 ≤ σabs ≤ |D|. When working with
frequencies of itemsets instead of their supports, we use a relative minimal
frequency threshold σrel , with 0 ≤ σrel ≤ 1. Obviously, σabs = dσrel · |D|e. In
this thesis, we will only work with the absolute minimal support threshold for
itemsets and omit the subscript abs unless explicitly stated otherwise.

Definition 2.1. Let D be a transaction database over a set of items I, and
σ a minimal support threshold. The collection of frequent itemsets in D with
respect to σ is denoted by

F(D, σ) := {X ⊆ I | support(X,D) ≥ σ},

or simply F if D and σ are clear from the context.

Problem 2.1. (Itemset Mining) Given a set of items I, a transaction
database D over I, and minimal support threshold σ, find F(D, σ).

2.1. Problem Description 7

In practice we are not only interested in the set of itemsets F , but also in
the actual supports of these itemsets.

An association rule is an expression of the form X ⇒ Y , where X and Y
are itemsets, and X ∩ Y = {}. Such a rule expresses the association that if
a transaction contains all items in X, then that transaction also contains all
items in Y . X is called the body or antecedent, and Y is called the head or
consequent of the rule.

The support of an association rule X ⇒ Y in D, is the support of X ∪ Y
in D, and similarly, the frequency of the rule is the frequency of X ∪ Y . An
association rule is called frequent if its support (frequency) exceeds a given
minimal support (frequency) threshold σabs (σrel). Again, we will only work
with the absolute minimal support threshold for association rules and omit
the subscript abs unless explicitly stated otherwise.

The confidence or accuracy of an association rule X ⇒ Y in D is the
conditional probability of having Y contained in a transaction, given that X
is contained in that transaction:

confidence(X ⇒ Y,D) := P (Y |X) =
support(X ∪ Y,D)

support(X,D)
.

The rule is called confident if P (Y |X) exceeds a given minimal confidence
threshold γ, with 0 ≤ γ ≤ 1.

Definition 2.2. Let D be a transaction database over a set of items I, σ
a minimal support threshold, and γ a minimal confidence threshold. The
collection of frequent and confident association rules with respect to σ and γ
is denoted by

R(D, σ, γ) := {X ⇒ Y | X,Y ⊆ I, X ∩ Y = {},
X ∪ Y ∈ F(D, σ), confidence(X ⇒ Y,D) ≥ γ},

or simply R if D, σ and γ are clear from the context.

Problem 2.2. (Association Rule Mining) Given a set of items I, a trans-
action database D over I, and minimal support and confidence thresholds σ
and γ, find R(D, σ, γ).

Besides the set of all association rules, we are also interested in the support
and confidence of each of these rules.

Note that the Itemset Mining problem is actually a special case of the
Association Rule Mining problem. Indeed, if we are given the support and
confidence thresholds σ and γ, then every frequent itemset X also represents
the trivial rule X ⇒ {} which holds with 100% confidence. Obviously, the
support of the rule equals the support of X. Also note that for every itemset

8 Chapter 2. Survey on Frequent Pattern Mining

I, all rules X ⇒ Y , with X ∪Y = I, hold with at least σrel confidence. Hence,
the minimal confidence threshold must be higher than the minimal frequency
threshold to be of any effect.

Example 2.1. Consider the database shown in Table 2.1 over the set of items

I = {beer, chips,pizza,wine}.

tid X

100 {beer, chips,wine}
200 {beer, chips}
300 {pizza,wine}
400 {chips,pizza}

Table 2.1: An example transaction database D.

Table 2.2 shows all frequent itemsets in D with respect to a minimal sup-
port threshold of 1. Table 2.3 shows all frequent and confident association
rules with a support threshold of 1 and a confidence threshold of 50%.

The first algorithm proposed to solve the association rule mining problem
was divided into two phases [3]. In the first phase, all frequent itemsets are
generated (or all frequent rules of the form X ⇒ {}). The second phase con-
sists of the generation of all frequent and confident association rules. Almost
all association rule mining algorithms comply with this two phased strategy.
In the following two sections, we discuss these two phases in further detail.
Nevertheless, there exist a successful algorithm, called MagnumOpus, that
uses another strategy to immediately generate a large subset of all association
rules [79]. We will not discuss this algorithm here, as the main focus of this
survey is on frequent itemset mining of which association rules are a natural
extension.

Next to the support and confidence measures, a lot of other interestingness
measures have been proposed in order to get better or more interesting asso-
ciation rules. Recently, Tan et al. presented an overview of various measures
proposed in statistics, machine learning and data mining literature [76]. In this
survey, we only consider algorithms within the support-confidence framework
as presented before.

2.1. Problem Description 9

Itemset Cover Support Frequency
{} {100, 200, 300, 400} 4 100%
{beer} {100,200} 2 50%
{chips} {100,200,400} 3 75%
{pizza} {300,400} 2 50%
{wine} {100,300} 2 50%
{beer, chips} {100,200} 2 50%
{beer,wine} {100} 1 25%
{chips,pizza} {400} 1 25%
{chips,wine} {100} 1 25%
{pizza,wine} {300} 1 25%
{beer, chips,wine} {100} 1 25%

Table 2.2: Itemsets and their support in D.

Rule Support Frequency Confidence
{beer} ⇒ {chips} 2 50% 100%
{beer} ⇒ {wine} 1 25% 50%
{chips} ⇒ {beer} 2 50% 66%
{pizza} ⇒ {chips} 1 25% 50%
{pizza} ⇒ {wine} 1 25% 50%
{wine} ⇒ {beer} 1 25% 50%
{wine} ⇒ {chips} 1 25% 50%
{wine} ⇒ {pizza} 1 25% 50%
{beer, chips} ⇒ {wine} 1 25% 50%
{beer,wine} ⇒ {chips} 1 25% 100%
{chips,wine} ⇒ {beer} 1 25% 100%
{beer} ⇒ {chips,wine} 1 25% 50%
{wine} ⇒ {beer, chips} 1 25% 50%

Table 2.3: Association rules and their support and confidence in D.

10 Chapter 2. Survey on Frequent Pattern Mining

2.2 Itemset Mining

The task of discovering all frequent itemsets is quite challenging. The search
space is exponential in the number of items occurring in the database. The
support threshold limits the output to a hopefully reasonable subspace. Also,
such databases could be massive, containing millions of transactions, making
support counting a tough problem. In this section, we will analyze these two
aspects into further detail.

2.2.1 Search Space

The search space of all itemsets contains exactly 2|I| different itemsets. If I
is large enough, then the naive approach to generate and count the supports
of all itemsets over the database can’t be achieved within a reasonable period
of time. For example, in many applications, I contains thousands of items,
and then, the number of itemsets is more than the number of atoms in the
universe (≈ 1079).

Instead, we could generate only those itemsets that occur at least once
in the transaction database. More specifically, we generate all subsets of all
transactions in the database. Of course, for large transactions, this number
could still be too large. Therefore, as an optimization, we could generate only
those subsets of at most a given maximum size. This technique has been
studied by Amir et al. [8] and has proven to pay off for very sparse transaction
databases. Nevertheless, for large or dense databases, this algorithm suffers
from massive memory requirements. Therefore, several solutions have been
proposed to perform a more directed search through the search space.

During such a search, several collections of candidate itemsets are gener-
ated and and their supports computed until all frequent itemsets have been
generated. Formally,

Definition 2.3. (Candidate itemset) Given a transaction database D, a
minimal support threshold σ, and an algorithm that computes F(D, σ), an
itemset I is called a candidate if that algorithm evaluates whether I is frequent
or not.

Obviously, the size of a collection of candidate itemsets may not exceed the
size of available main memory. Moreover, it is important to generate as few
candidate itemsets as possible, since computing the supports of a collection of
itemsets is a time consuming procedure. In the best case, only the frequent
itemsets are generated and counted. Unfortunately, this ideal is impossible
in general, which will be shown later in this section. The main underlying
property exploited by most algorithms is that support is monotone decreasing
with respect to extension of an itemset.

2.2. Itemset Mining 11

Proposition 2.1. (Support monotonicity) Given a transaction database
D over I, let X,Y ⊆ I be two itemsets. Then,

X ⊆ Y ⇒ support(Y) ≤ support(X).

Proof. This follows immediately from

cover(Y) ⊆ cover(X).

Hence, if an itemset is infrequent, all of its supersets must be infrequent.
In the literature, this monotonicity property is also called the downward clo-
sure property, since the set of frequent itemsets is closed with respect to set
inclusion.

The search space of all itemsets can be represented by a subset-lattice,
with the empty itemset at the bottom and the set containing all items at the
top. The collection of frequent itemsets F(D, σ) can be represented by the
collection of maximal frequent itemsets, or the collection of minimal infre-
quent itemsets, with respect to set inclusion. For this purpose, Mannila and
Toivonen introduced the notion of the Border of a downward closed collection
of itemsets [58].

Definition 2.4. (Border) Let F be a downward closed collection of subsets
of I. The Border Bd(F) consists of those itemsets X ⊆ I such that all subsets
of X are in F , and no superset of X is in F :

Bd(F) := {X ⊆ I | ∀Y ⊂ X : Y ∈ F ∧ ∀Z ⊃ X : Z /∈ F}.

Those itemsets in Bd(F) that are in F are called the positive border Bd+(F):

Bd+(F) := {X ⊆ I | ∀Y ⊆ X : Y ∈ F ∧ ∀Z ⊃ X : Z /∈ F},

and those itemsets in Bd(F) that are not in F are called the negative border
Bd−(F):

Bd−(F) := {X ⊆ I | ∀Y ⊂ X : Y ∈ F ∧ ∀Z ⊇ X : Z /∈ F}.

The lattice for the frequent itemsets from Example 2.1, together with its
borders, is shown in Figure 2.1.

Several efficient algorithms have been proposed to find only the positive
border of all frequent itemsets, but if we want to know the supports of all item-
sets in the collection, we still need to count them. Therefore, these algorithms
are not discussed in this survey. From a theoretical point of view, the border
gives some interesting insights into the frequent itemset mining problem, and
still poses several interesting open problems [35, 58, 57].

12 Chapter 2. Survey on Frequent Pattern Mining

{beer, pizza} {beer, wine}{beer, chips} {chips, pizza} {chips, wine} {pizza, wine}

{beer, chips, wine}{beer, chips, pizza} {beer, pizza, wine} {chips, pizza, wine}

{pizza}{chips} {wine}{beer}

{}

{beer, chips, pizza, wine} negative borderpositive border

Figure 2.1: The lattice for the itemsets of Example 2.1 and its border.

Theorem 2.2. [58] Let D be a transaction database over I, and σ a minimal
support threshold. Finding the collection F(D, σ) requires that at least all
itemsets in the negative border Bd−(F) are evaluated.

Note that the number of itemsets in the positive or negative border of any
given downward closed collection of itemsets over I can still be large, but it
is bounded by

(|I|
b|I|/2c

)
. In combinatorics, this upper bound is well known as

Sperner’s theorem.
If the number of frequent itemsets for a given database is large, it could

become infeasible to generate them all. Moreover, if the transaction database
is dense, or the minimal support threshold is set too low, then there could
exist a lot of very large frequent itemsets, which would make sending them
all to the output infeasible to begin with. Indeed, a frequent itemset of size
k includes the existence of at least 2k − 1 other frequent itemsets, i.e. all
of its subsets. To overcome this problem, several proposals have been made
to generate only a concise representation of all frequent itemsets for a given
transaction database such that, if necessary, the support of a frequent itemset
not in that representation can be efficiently computed or estimated without
accessing the database [56, 66, 14, 18, 19]. These techniques are based on
the observation that the support of some frequent itemsets can be deduced

2.2. Itemset Mining 13

from the supports of other itemsets. We will not discuss these algorithms in
this survey because all frequent itemsets need to be considered to generate
association rules anyway. Nevertheless, several of these techniques can still
be used to improve the performance of the algorithms that do generate all
frequent itemsets, as will be explained later in this chapter.

2.2.2 Database

To compute the supports of a collection of itemsets, we need to access the
database. Since such databases tend to be very large, it is not always possible
to store them into main memory.

An important consideration in most algorithms is the representation of the
transaction database. Conceptually, such a database can be represented by
a binary two-dimensional matrix in which every row represents an individual
transaction and the columns represent the items in I. Such a matrix can be
implemented in several ways. The most commonly used layout is the horizontal
data layout. That is, each transaction has a transaction identifier and a list
of items occurring in that transaction. Another commonly used layout is the
vertical data layout, in which the database consists of a set of items, each
followed by its cover [70, 80]. Table 2.4 shows both layouts for the database
from Example 2.1. Note that for both layouts, it is also possible to use the
exact bit-strings from the binary matrix [71, 64]. Also a combination of both
layouts can be used, as will be explained later in this chapter.

beer wine chips pizza
100 1 1 1 0
200 1 0 1 0
300 0 1 0 1
400 0 0 1 1

beer wine chips pizza
100 1 1 1 0
200 1 0 1 0
300 0 1 0 1
400 0 0 1 1

Table 2.4: Horizontal and Vertical database layout of D.

To count the support of an itemset X using the horizontal database layout,
we need to scan the database completely, and test for every transaction T
whether X ⊆ T . Of course, this can be done for a large collection of itemsets
at once. An important misconception about frequent pattern mining is that
scanning the database is a very I/O intensive operation. However, in most
cases, this is not the major cost of such counting steps. Instead, updating
the supports of all candidate itemsets contained in a transaction consumes
considerably more time than reading that transaction from a file or from a
database cursor. Indeed, for each transaction, we need to check for every
candidate itemset whether it is included in that transaction, or similarly, we
need to check for every subset of that transaction whether it is in the set

14 Chapter 2. Survey on Frequent Pattern Mining

of candidate itemsets. On the other hand, the number of transactions in
a database is often correlated to the maximal size of a transaction in the
database. As such, the number of transactions does have an influence on the
time needed for support counting, but it is by no means the dictating factor.

The vertical database layout has the major advantage that the support of
an itemset X can be easily computed by simply intersecting the covers of any
two subsets Y, Z ⊆ X, such that Y ∪Z = X. However, given a set of candidate
itemsets, this technique requires that the covers of a lot of sets are available
in main memory, which is of course not always possible. Indeed, the covers of
all singleton itemsets already represent the complete database.

2.3 Association Rule Mining

The search space of all association rules contains exactly 3|I| different rules.
However, given all frequent itemsets, this search space immediately shrinks
tremendously. Indeed, for every frequent itemset I, there exists at most 2|I|

rules of the form X ⇒ Y , such that X ∪ Y = I. Again, in order to efficiently
traverse this search space, sets of candidate association rules are iteratively
generated and evaluated, until all frequent and confident association rules are
found. The underlying technique to do this, is based on a similar monotonicity
property as was used for mining all frequent itemsets.

Proposition 2.3. (Confidence monotonicity) Let X,Y, Z ⊆ I be three
itemsets, such that X ∩ Y = {}. Then,

confidence(X \ Z ⇒ Y ∪ Z) ≤ confidence(X ⇒ Y).

Proof. Since X ∪ Y ⊆ X ∪ Y ∪ Z, and X \ Z ⊆ X, we have

support(X ∪ Y ∪ Z)
support(X \ Z)

≤ support(X ∪ Y)
support(X)

.

In other words, confidence is monotone decreasing with respect to exten-
sion of the head of a rule. If an item in the extension is included in the body,
then it is removed from the body of that rule. Hence, if a certain head of an
association rule over an itemset I causes the rule to be unconfident, all of the
head’s supersets must result in unconfident rules.

As already mentioned in the problem description, the association rule min-
ing problem is actually more general than the frequent itemset mining problem
in the sense that every itemset I can be represented by the rule I ⇒ {}, which
holds with 100% confidence, given its support is not zero. On the other hand,

2.4. Example Data Sets 15

{beer, chips, wine}=>{}

{chips, wine}=>{beer} {beer, wine}=>{chips} {beer, chips}=>{wine}

{wine}=>{beer, chips} {chips}=>{beer, wine}

{}=>{beer, chips, wine}

{beer}=>{chips, wine}

Figure 2.2: An example of a lattice representing a collection of association
rules for {beer, chips,wine}.

for every itemset I, the frequency of the rule {} ⇒ I equals its confidence.
Hence, if the frequency of I is above the minimal confidence threshold, then
so are all other association rules that can be constructed from I.

For a given frequent itemset I, the search space of all possible association
rules X ⇒ Y , such that X∪Y = I, can be represented by a subset-lattice with
respect to the head of a rule, with the rule with an empty head at the bottom
and the rule with all items in the head at the top. Figure 2.2 shows such a
lattice for the itemset {beer, chips,wine}, which was found to be frequent on
the artificial data set used in Example 2.4.

Given all frequent itemsets and their supports, the computation of all
frequent and confident association rules becomes relatively straightforward.
Indeed, to compute the confidence of an association rule X ⇒ Y , with X∪Y =
I, we only need to find the supports of I and X, which can be easily retrieved
from the collection of frequent itemsets.

2.4 Example Data Sets

For all experiments we performed in this thesis, we used four data sets with
different characteristics. We have experimented using three real data sets,
of which two are publicly available, and one synthetic data set generated
by the program provided by the Quest research group at IBM Almaden [5].
The mushroom data set contains characteristics of various species of mush-
rooms, and was originally obtained from the UCI repository of machine learn-

16 Chapter 2. Survey on Frequent Pattern Mining

Data set #Items #Transactions min|T | max|T | avg|T |
T40I10D100K 942 100 000 4 77 39
mushroom 119 8 124 23 23 23
BMS-Webview-1 497 59 602 1 267 2
basket 13 103 41 373 1 52 9

Table 2.5: Data Set Characteristics.

ing databases [11]. The BMS-WebView-1 data set contains several months
worth of clickstream data from an e-commerce web site, and is made publicly
available by Blue Martini Software [52]. The basket data set contains transac-
tions from a Belgian retail store, but can unfortunately not be made publicly
available. Table 2.5 shows the number of items and the number of transac-
tions in each data set, and the minimum, maximum and average length of the
transactions.

Additionally, Table 2.6 shows for each data set the lowest minimal support
threshold that was used in our experiments, the number of frequent items and
itemsets, and the size of the longest frequent itemset that was found.

Data set σ |F1| |F| max{k | |Fk| > 0}
T40I10D100K 700 804 550 126 18
mushroom 600 60 945 309 16
BMS-Webview-1 36 368 461 521 15
basket 5 8 051 285 758 11

Table 2.6: Data Set Characteristics.

2.5 The Apriori Algorithm

The first algorithm to generate all frequent itemsets and confident association
rules was the AIS algorithm by Agrawal et al. [3], which was given together
with the introduction of this mining problem. Shortly after that, the algo-
rithm was improved and renamed Apriori by Agrawal et al., by exploiting
the monotonicity property of the support of itemsets and the confidence of
association rules [6, 73]. The same technique was independently proposed by
Mannila et al. [59]. Both works were cumulated afterwards [4].

2.5.1 Itemset Mining

For the remainder of this thesis, we assume for simplicity that items in trans-
actions and itemsets are kept sorted in their lexicographic order unless stated
otherwise.

2.5. The Apriori Algorithm 17

The itemset mining phase of the Apriori algorithm is given in Algorithm 1.
We use the notation X[i], to represent the ith item in X. The k-prefix of an
itemset X is the k-itemset {X[1], . . . , X[k]}.

Algorithm 1 Apriori - Itemset mining
Input: D, σ
Output: F(D, σ)
1: C1 := {{i} | i ∈ I}
2: k := 1
3: while Ck 6= {} do
4: // Compute the supports of all candidate itemsets
5: for all transactions (tid , I) ∈ D do
6: for all candidate itemsets X ∈ Ck do
7: if X ⊆ I then
8: X.support++
9: end if

10: end for
11: end for
12: // Extract all frequent itemsets
13: Fk := {X | X.support ≥ σ}
14: // Generate new candidate itemsets
15: for all X,Y ∈ Fk, X[i] = Y [i] for 1 ≤ i ≤ k − 1, and X[k] < Y [k] do
16: I = X ∪ {Y [k]}
17: if ∀J ⊂ I, |J | = k : J ∈ Fk then
18: Ck+1 := Ck+1 ∪ I
19: end if
20: end for
21: k++
22: end while

The algorithm performs a breadth-first search through the search space of
all itemsets by iteratively generating candidate itemsets Ck+1 of size k + 1,
starting with k = 0 (line 1). An itemset is a candidate if all of its subsets are
known to be frequent. More specifically, C1 consists of all items in I, and at
a certain level k, all itemsets of size k + 1 in Bd−(Fk) are generated. This is
done in two steps. First, in the join step, Fk is joined with itself. The union
X ∪ Y of itemsets X,Y ∈ Fk is generated if they have the same k − 1-prefix
(lines 20–21). In the prune step, X ∪ Y is only inserted into Ck+1 if all of its
k-subsets occur in Fk (lines 22–24).

To count the supports of all candidate k-itemsets, the database, which
retains on secondary storage in the horizontal database layout, is scanned one
transaction at a time, and the supports of all candidate itemsets that are

18 Chapter 2. Survey on Frequent Pattern Mining

included in that transaction are incremented (lines 6–12). All itemsets that
turn out to be frequent are inserted into Fk (lines 14–18).

Note that in this algorithm, the set of all itemsets that were ever generated
as candidate itemsets, but turned out to be infrequent, is exactly Bd−(F).

If the number of candidate k + 1-itemsets is too large to retain into main
memory, the candidate generation procedure stops and the supports of all
generated candidates is computed as if nothing happened. But then, in the
next iteration, instead of generating candidate itemsets of size k + 2, the
remainder of all candidate k+ 1-itemsets is generated and counted repeatedly
until all frequent itemsets of size k + 1 are generated.

2.5.2 Association Rule Mining

Given all frequent itemsets, we can now generate all frequent and confident
association rules. The algorithm is very similar to the frequent itemset mining
algorithm and is given in Algorithm 2.

Algorithm 2 Apriori - Association Rule mining
Input: D, σ, γ
Output: R(D, σ, γ)
1: Compute F(D, σ)
2: R := {}
3: for all I ∈ F do
4: R := R∪ I ⇒ {}
5: C1 := {{i} | i ∈ I};
6: k := 1;
7: while Ck 6= {} do
8: // Extract all heads of confident association rules
9: Hk := {X ∈ Ck | confidence(I \X ⇒ X,D) ≥ γ}

10: // Generate new candidate heads
11: for all X,Y ∈ Hk, X[i] = Y [i] for 1 ≤ i ≤ k−1, and X[k] < Y [k] do
12: I = X ∪ {Y [k]}
13: if ∀J ⊂ I, |J | = k : J ∈ Hk then
14: Ck+1 := Ck+1 ∪ I
15: end if
16: end for
17: k++
18: end while
19: // Cumulate all association rules
20: R := R∪ {I \X ⇒ X | X ∈ H1 ∪ · · · ∪Hk}
21: end for

2.5. The Apriori Algorithm 19

First, all frequent itemsets are generated using Algorithm 1. Then, every
frequent itemset I is divided into a candidate head Y and a body X = I \ Y .
This process starts with Y = {}, resulting in the rule I ⇒ {}, which always
holds with 100% confidence (line 4). After that, the algorithm iteratively
generates candidate heads Ck+1 of size k + 1, starting with k = 0 (line 5).
A head is a candidate if all of its subsets are known to represent confident
rules. This candidate head generation process is exactly like the candidate
itemset generation in Algorithm 1 (lines 11–16). To compute the confidence
of a candidate head Y , the support of I and X is retrieved from F . All heads
that result in confident rules are inserted into Hk (line 9). In the end, all
confident rules are inserted into R (line 20).

It can be seen that this algorithm does not fully exploit the monotonicity of
confidence. Given an itemset I and a candidate head Y , representing the rule
I \ Y ⇒ Y , the algorithm checks for all Y ′ ⊂ Y whether the rule I \ Y ′ ⇒ Y ′

is confident, but not whether the rule I \ Y ⇒ Y ′ is confident. Nevertheless,
this is perfectly possible if all rules are generated from an itemset I, only if all
rules are already generated for all itemsets I ′ ⊂ I.

However, exploiting monotonicity as much as possible is not always the
best solution. Since computing the confidence of a rule only requires the
lookup of the support of at most 2 itemsets, it might even be better not to
exploit the confidence monotonicity at all and simply remove the prune step
from the candidate generation process, i.e., remove lines 13 and 15. Of course,
this depends on the efficiency of finding the support of an itemset or a head
in the used data structures.

Luckily, if the number of frequent and confident association rules is not
too large, then the time needed to find all such rules consists mainly of the
time that was needed to find all frequent sets.

Since the proposal of this algorithm for the association rule generation
phase, no significant optimizations have been proposed anymore and almost
all research has been focused on the frequent itemset generation phase.

2.5.3 Data Structures

The candidate generation and the support counting processes require an ef-
ficient data structure in which all candidate itemsets are stored since it is
important to efficiently find the itemsets that are contained in a transaction
or in another itemset.

Hash-tree

In order to efficiently find all k-subsets of a potential candidate itemset, all
frequent itemsets in Fk are stored in a hash table.

20 Chapter 2. Survey on Frequent Pattern Mining

Candidate itemsets are stored in a hash-tree [4]. A node of the hash-tree
either contains a list of itemsets (a leaf node) or a hash table (an interior
node). In an interior node, each bucket of the hash table points to another
node. The root of the hash-tree is defined to be at depth 1. An interior node
at depth d points to nodes at depth d+ 1. Itemsets are stored in leaves.

When we add a k-itemset X during the candidate generation process, we
start from the root and go down the tree until we reach a leaf. At an interior
node at depth d, we decide which branch to follow by applying a hash function
to the X[d] item of the itemset, and following the pointer in the corresponding
bucket. All nodes are initially created as leaf nodes. When the number of
itemsets in a leaf node at depth d exceeds a specified threshold, the leaf node
is converted into an interior node, only if k > d.

In order to find the candidate-itemsets that are contained in a transaction
T , we start from the root node. If we are at a leaf, we find which of the
itemsets in the leaf are contained in T and increment their support. If we are
at an interior node and we have reached it by hashing the item i, we hash on
each item that comes after i in T and recursively apply this procedure to the
node in the corresponding bucket. For the root node, we hash on every item
in T .

Trie

Another data structure that is commonly used is a trie (or prefix-tree) [8,
13, 16, 9]. In a trie, every k-itemset has a node associated with it, as does
its k − 1-prefix. The empty itemset is the root node. All the 1-itemsets are
attached to the root node, and their branches are labelled by the item they
represent. Every other k-itemset is attached to its k − 1-prefix. Every node
stores the last item in the itemset it represents, its support, and its branches.
The branches of a node can be implemented using several data structures such
as a hash table, a binary search tree or a vector.

At a certain iteration k, all candidate k-itemsets are stored at depth k in the
trie. In order to find the candidate-itemsets that are contained in a transaction
T , we start at the root node. To process a transaction for a node of the trie,
(1) follow the branch corresponding to the first item in the transaction and
process the remainder of the transaction recursively for that branch, and (2)
discard the first item of the transaction and process it recursively for the node
itself. This procedure can still be optimized, as is described in [13].

Also the join step of the candidate generation procedure becomes very
simple using a trie, since all itemsets of size k with the same k − 1-prefix
are represented by the branches of the same node (that node represents the
k−1-prefix). Indeed, to generate all candidate itemsets with k−1-prefix X, we
simply copy all siblings of the node that represents X as branches of that node.

2.5. The Apriori Algorithm 21

Moreover, we can try to minimize the number of such siblings by reordering
the items in the database in support ascending order [13, 16, 9]. Using this
heuristic, we reduce the number of itemsets that is generated during the join
step, and hence, we implicitly reduce the number of times the prune step needs
to be performed. Also, to find the node representing a specific k-itemset in
the trie, we have to perform k searches within a set of branches. Obviously,
the performance of such a search can be improved when these sets are kept as
small as possible.

An in depth study on the implementation details of a trie for Apriori can
be found in [13].

All implementations of all frequent itemsets mining algorithms presented
in this thesis are implemented using this trie data structure.

2.5.4 Optimizations

A lot of other algorithms proposed after the introduction of Apriori retain the
same general structure, adding several techniques to optimize certain steps
within the algorithm. Since the performance of the Apriori algorithm is al-
most completely dictated by its support counting procedure, most research
has focused on that aspect of the Apriori algorithm. As already mentioned
before, the performance of this procedure is mainly dependent on the number
of candidate itemsets that occur in each transaction.

AprioriTid, AprioriHybrid

Together with the proposal of the Apriori algorithm, Agrawal et al. [6, 4] pro-
posed two other algorithms, AprioriTid and AprioriHybrid. The AprioriTid
algorithm reduces the time needed for the support counting procedure by re-
placing every transaction in the database by the set of candidate itemsets that
occur in that transaction. This is done repeatedly at every iteration k. The
adapted transaction database is denoted by Ck. The algorithm is given in
Algorithm 3.

More implementation details of this algorithm can be found in [7]. Al-
though the AprioriTid algorithm is much faster in later iterations, it performs
much slower than Apriori in early iterations. This is mainly due to the addi-
tional overhead that is created when Ck does not fit into main memory and
has to be written to disk. If a transaction does not contain any candidate
k-itemsets, then Ck will not have an entry for this transaction. Hence, the
number of entries in Ck may be smaller than the number of transactions in
the database, especially at later iterations of the algorithm. Additionally, at
later iterations, each entry may be smaller than the corresponding transaction
because very few candidates may be contained in the transaction. However, in

22 Chapter 2. Survey on Frequent Pattern Mining

Algorithm 3 AprioriTid
Input: D, σ
Output: F(D, σ)
1: Compute F1 of all frequent items
2: C1 := D (with all items not in F1 removed)
3: k := 2
4: while Fk−1 6= {} do
5: Compute Ck of all candidate k-itemsets
6: Ck := {}
7: // Compute the supports of all candidate itemsets
8: for all transactions (tid , T) ∈ Ck do
9: CT := {}

10: for all X ∈ Ck do
11: if {X[1], . . . , X[k− 1]} ∈ T ∧ {X[1], . . . , X[k− 2], X[k]} ∈ T then
12: CT := CT ∪ {X}
13: X.support++
14: end if
15: end for
16: if CT 6= {} then
17: Ck := Ck ∪ {(tid , CT)}
18: end if
19: end for
20: Extract Fk of all frequent k-itemsets
21: k++
22: end while

2.5. The Apriori Algorithm 23

early iterations, each entry may be larger than its corresponding transaction.
Therefore, another algorithm, AprioriHybrid, has been proposed [6, 4] that
combines the Apriori and AprioriTid algorithms into a single hybrid. This
hybrid algorithm uses Apriori for the initial iterations and switches to Apri-
oriTid when it is expected that the set Ck fits into main memory. Since the
size of Ck is proportional with the number of candidate itemsets, a heuristic
is used that estimates the size that Ck would have in the current iteration. If
this size is small enough and there are fewer candidate patterns in the current
iteration than in the previous iteration, the algorithm decides to switch to
AprioriTid. Unfortunately, this heuristic is not airtight as will be shown in
Chapter 4. Nevertheless, AprioriHybrid performs almost always better than
Apriori.

Counting candidate 2-itemsets

Shortly after the proposal of the Apriori algorithms described before, Park et
al. proposed another optimization, called DHP (Direct Hashing and Pruning)
to reduce the number of candidate itemsets [65]. During the kth iteration,
when the supports of all candidate k-itemsets are counted by scanning the
database, DHP already gathers information about candidate itemsets of size
k + 1 in such a way that all (k + 1)-subsets of each transaction after some
pruning are hashed to a hash table. Each bucket in the hash table consists of
a counter to represent how many itemsets have been hashed to that bucket so
far. Then, if a candidate itemset of size k + 1 is generated, the hash function
is applied on that itemset. If the counter of the corresponding bucket in the
hash table is below the minimal support threshold, the generated itemset is
not added to the set of candidate itemsets. Also, during the support counting
phase of iteration k, every transaction trimmed in the following way. If a
transaction contains a frequent itemset of size k + 1, any item contained in
that k + 1 itemset will appear in at least k of the candidate k-itemsets in Ck.
As a result, an item in transaction T can be trimmed if it does not appear
in at least k of the candidate k-itemsets in Ck. These techniques result in
a significant decrease in the number of candidate itemsets that need to be
counted, especially in the second iteration. Nevertheless, creating the hash
tables and writing the adapted database to disk at every iteration causes a
significant overhead.

Although DHP was reported to have better performance than Apriori and
AprioriHybrid, this claim was countered by Ramakrishnan if the following
optimization is added to Apriori [72]. Instead of using the hash-tree to store
and count all candidate 2-itemsets, a triangular array C is created, in which
the support counter of a candidate 2-itemset {i, j} is stored at location C[i][j].
Using this array, the support counting procedure reduces to a simple two-level

24 Chapter 2. Survey on Frequent Pattern Mining

for-loop over each transaction. A similar technique was later used by Orlando
et al. in their DCP and DCI algorithms [63, 64].

Since the number of candidate 2-itemsets is exactly
(|F1|

2

)
, it is still possi-

ble that this number is too large, such that only part of the structure can be
generated and multiple scans over the database need to be performed. Nev-
ertheless, from experience, we discovered that a lot of candidate 2-itemsets
do not even occur at all in the database, and hence, their support remains
0. Therefore, we propose the following optimization. When all single items
are counted, resulting in the set of all frequent items F1, we do not generate
any candidate 2-itemset. Instead, we start scanning the database, and remove
from each transaction all items that are not frequent, on the fly. Then, for
each trimmed transaction, we increase the support of all candidate 2-itemsets
contained in that transaction. However, if the candidate 2-itemset does not
yet exists, we generate the candidate itemset and initialize its support to 1.
In this way, only those candidate 2-itemsets that occur at least once in the
database are generated. For example, this technique was especially useful for
the basket data set used in our experiments, since in that data set there exist
8 051 frequent items, and hence Apriori would generate

(
8 051

2

)
= 32 405 275

candidate 2-itemsets. Using this technique, this number was drastically re-
duced to 1 708 203.

Support lower bounding

As we already mentioned earlier in this chapter, apart from the monotonicity
property, it is sometimes possible to derive information on the support of an
itemset, given the support of all of its subsets. The first algorithm that uses
such a technique was proposed by Bayardo in his MaxMiner and Apriori-LB
algorithms [9]. The presented technique is based on the following property
which gives a lower bound on the support of an itemset.

Proposition 2.4. Let X,Y, Z ⊆ I be itemsets.

support(X ∪ Y ∪ Z) ≥ support(X ∪ Y) + support(X ∪ Z)− support(X)

Proof.

support(X ∪ Y ∪ Z) = |cover(X ∪ Y) ∩ cover(X ∪ Z)|
= |cover(X ∪ Y) \ (cover(X ∪ Y) \ cover(X ∪ Z))|
≥ |cover(X ∪ Y) \ (cover(X) \ cover(X ∪ Z))|
≥ |cover(X ∪ Y)| − |(cover(X) \ cover(X ∪ Z))|
= |cover(X ∪ Y)| − (|cover(X)| − |cover(X ∪ Z)|)
= support(X ∪ Y) + support(X ∪ Z)− support(X)

2.5. The Apriori Algorithm 25

In practice, this lower bound can be used in the following way. Every
time a candidate k + 1-itemset is generated by joining two of its subsets of
size k, we can easily compute this lower bound for that candidate. Indeed,
suppose the candidate itemset X∪{i1, i2} is generated by joining X∪{i1} and
X ∪ {i2}, we simply add up the supports of these two itemsets and subtract
the support of X. If this lower bound is higher than the minimal support
threshold, then we already know that it is frequent and hence, we can already
generate candidate itemsets of larger sizes for which this lower bound can
again be computed. Nevertheless, we still need to count the exact supports of
all these itemsets, but this can be done all at once during the support counting
procedure. Using the efficient support counting mechanism as we described
before, this optimization could result in significant performance improvements.

Additionally, we can exploit a special case of Proposition 2.4 even more.

Corollary 2.5. Let X,Y, Z ⊆ I be itemsets.

support(X ∪ Y) = support(X) ⇒ support(X ∪ Y ∪ Z) = support(X ∪ Z)

This specific property was later exploited by Pasquier et al. in order to
find a concise representation of all frequent itemsets [66, 14]. Nevertheless, it
can already be used to improve the Apriori algorithm.

Suppose we have generated and counted the support of the frequent itemset
X ∪ {i} and that its support is equal to the support of X. Then we already
know that the supports of every superset X ∪ {i} ∪ Y is equal to the support
of X ∪ Y and hence, we do not have to generate all such supersets anymore,
but only have to keep the information that every superset of X ∪ {i} is also
represented by a superset of X.

Recently, Calders and Goethals presented a generalization of all these tech-
niques resulting in a system of deduction rules that derive tight bounds on the
support of candidate itemsets [19]. These deduction rules allow for construct-
ing a minimal representation of all frequent itemsets, but can also be used to
efficiently generate the set of all frequent itemsets. Unfortunately, for a given
candidate itemset, an exponential number of rules in the length of the itemset
need to be evaluated. The rules presented in this section, which are part of the
complete set of derivation rules, are shown to result in significant performance
improvements, while the other rules only show a marginal improvement.

Combining passes

Another improvement of the Apriori algorithm, which is part of the folklore,
tries to combine as many iterations as possible in the end, when only few
candidate patterns can still be generated. The potential of such a combination
technique was realized early on [6], but the modalities under which it can be

26 Chapter 2. Survey on Frequent Pattern Mining

applied were never further examined. In Chapter 4, we study this problem
and provide several upper bounds on the number of candidate itemsets that
can yet be generated after a certain iteration in the Apriori algorithm.

Dynamic Itemset Counting

The DIC algorithm, proposed by Brin et al. tries to reduce the number of
passes over the database by dividing the database into intervals of a specific
size [16]. First, all candidate patterns of size 1 are generated. The supports
of the candidate sets are then counted over the first interval of the database.
Based on these supports, a new candidate pattern of size 2 is already generated
if all of its subsets are already known to be frequent, and its support is counted
over the database together with the patterns of size 1. In general, after every
interval, candidate patterns are generated and counted. The algorithm stops if
no more candidates can be generated and all candidates have been counted over
the complete database. Although this method drastically reduces the number
of scans through the database, its performance is also heavily dependent on
the distribution of the data.

Although the authors claim that the performance improvement of reorder-
ing all items in support ascending order is negligible, this is not true for Apriori
in general. Indeed, the reordering used in DIC was based on the supports of
the 1-itemsets that were computed only in the first interval. Obviously, the
success of this heuristic also becomes highly dependent on the distribution of
the data.

The CARMA algorithm (Continuous Association Rule Mining Algorithm),
proposed by Hidber [45] uses a similar technique, reducing the interval size
to 1. More specifically, candidate itemsets are generated on the fly from every
transaction. After reading a transaction, it increments the supports of all can-
didate itemsets contained in that transaction and it generates a new candidate
itemset contained in that transaction, if all of its subsets are suspected to be
relatively frequent with respect to the number of transactions that has already
been processed. As a consequence, CARMA generates a lot more candidate
itemsets than DIC or Apriori. (Note that the number of candidate itemsets
generated by DIC is exactly the same as in Apriori.) Additionally, CARMA
allows the user to change the minimal support threshold during the execution
of the algorithm. After the database has been processed once, CARMA is
guaranteed to have generated a superset of all frequent itemsets relative to
some threshold which depends on how the user changed the minimal support
threshold during its execution. However, when the minimal support threshold
was kept fixed during the complete execution of the algorithm, at least all
frequent itemsets have been generated. To determine the exact supports of all
generated itemsets, a second scan of the database is required.

2.5. The Apriori Algorithm 27

Sampling

The sampling algorithm, proposed by Toivonen [77], performs at most two
scans through the database by picking a random sample from the database,
then finding all relatively frequent patterns in that sample, and then verifying
the results with the rest of the database. In the cases where the sampling
method does not produce all frequent patterns, the missing patterns can be
found by generating all remaining potentially frequent patterns and verifying
their supports during a second pass through the database. The probability of
such a failure can be kept small by decreasing the minimal support threshold.
However, for a reasonably small probability of failure, the threshold must be
drastically decreased, which can cause a combinatorial explosion of the number
of candidate patterns.

Partitioning

The Partition algorithm, proposed by Savasere et al. uses an approach which
is completely different from all previous approaches [70]. That is, the database
is stored in main memory using the vertical database layout and the support
of an itemset is computed by intersecting the covers of two of its subsets.
More specifically, for every frequent item, the algorithm stores its cover. To
compute the support of a candidate k-itemset I, which is generated by joining
two of its subsets X,Y as in the Apriori algorithm, it intersects the covers of
X and Y , resulting in the cover of I.

Of course, storing the covers of all items actually means that the com-
plete database is read into main memory. For large databases, this could be
impossible. Therefore, the Partition algorithm uses the following trick. The
database is partitioned into several disjoint parts and the algorithm generates
for every part all itemsets that are relatively frequent within that part, using
the algorithm described in the previous paragraph and shown in Algorithm 4.
The parts of the database are chosen in such a way that each part fits into
main memory on itself.

The algorithm merges all relatively frequent itemsets of every part to-
gether. This results in a superset of all frequent itemsets over de complete
database, since an itemset that is frequent in the complete database must be
relatively frequent in one of the parts. Then, the actual supports of all itemsets
are computed during a second scan through the database. Again, every part
is read into main memory using the vertical database layout and the support
of every itemset is computed by intersecting the covers of all items occurring
in that itemset. The exact Partition algorithm is given in Algorithm 5.

The exact computation of the supports of all itemsets can still be op-
timized, but we refer to the original article for further implementation de-

28 Chapter 2. Survey on Frequent Pattern Mining

Algorithm 4 Partition - Local Itemset Mining
Input: D, σ
Output: F(D, σ)
1: Compute F1 and store with every frequent item its cover
2: k := 2
3: while Fk−1 6= {} do
4: Fk := {}
5: for allX,Y ∈ Fk−1, X[i] = Y [i] for 1 ≤ i ≤ k−2, andX[k−1] < Y [k−1]

do
6: I = {X[1], . . . , X[k − 1], Y [k − 1]}
7: if ∀J ⊂ I : J ∈ Fk−1 then
8: I.cover := X.cover ∩ Y.cover
9: if |I.cover | ≥ σ then

10: Fk := Fk ∪ I
11: end if
12: end if
13: end for
14: k++
15: end while

Algorithm 5 Partition
Input: D, σ
Output: F(D, σ)
1: Partition D in D1, . . . , Dn

2: // Find all local frequent itemsets
3: for 1 ≤ p ≤ n do
4: Compute Cp := F(Dp, dσrel · |Dp|e)
5: end for
6: // Merge all local frequent itemsets
7: Cglobal :=

⋃
1≤p≤nC

p

8: // Compute actual support of all itemsets
9: for 1 ≤ p ≤ n do

10: Generate cover of each item in Dp

11: for all I ∈ Cglobal do
12: I.support := I.support + |I[1].cover ∩ · · · ∩ I[|I|].cover |
13: end for
14: end for
15: // Extract all global frequent itemsets
16: F := {I ∈ Cglobal | I.support ≥ σ}

2.6. Depth-First Algorithms 29

tails [70].
Although the covers of all items can be stored in main memory, during

the generation of all local frequent itemsets for every part, it is still possible
that the covers of all local candidate k-itemsets can not be stored in main
memory. Also, the algorithm is highly dependent on the heterogeneity of the
database and can generate too many local frequent itemsets, resulting in a
significant decrease in performance. However, if the complete database fits
into main memory and the total of all covers at any iteration also does not
exceed main memory limits, then the database must not be partitioned at all
and outperforms Apriori by several orders of magnitude. Of course, this is
mainly due to the fast intersection based counting mechanism.

2.6 Depth-First Algorithms

As explained in the previous section, the intersection based counting mech-
anism made possible by using the vertical database layout shows significant
performance improvements. However, this is not always possible since the
total size of all covers at a certain iteration of the local itemset generation
procedure could exceed main memory limits. Nevertheless, it is possible to sig-
nificantly reduce this total size by generating collections of candidate itemsets
in a depth-first strategy. The first algorithm proposed to generate all frequent
itemsets in a depth-first manner is the Eclat algorithm by Zaki [80, 84]. Later,
several other depth-first algorithms have been proposed [1, 2, 41] of which the
FP-growth algorithm by Han et al. [41, 40] is the most well known. In this
section, we explain both the Eclat and FP-growth algorithms.

Given a transaction database D and a minimal support threshold σ, denote
the set of all frequent k-itemsets with the same k−1-prefix I ⊆ I by F [I](D, σ).
(Note that F [{}](D, σ) = F(D, σ).) Both Eclat and FP-growth recursively
generate for every item i ∈ I the set F [{i}](D, σ).

For the sake of simplicity and presentation, we assume that all items that
occur in the transaction database are frequent. In practice, all frequent items
can be computed during an initial scan over the database, after which all
infrequent items will be ignored.

2.6.1 Eclat

Eclat uses the vertical database layout and uses the intersection based ap-
proach to compute the support of an itemset. The Eclat algorithm is given in
Algorithm 6.

Note that a candidate itemset is now represented by each set I ∪ {i, j} of
which the support is computed at line 6 of the algorithm. Since the algorithm
doesn’t fully exploit the monotonicity property, but generates a candidate

30 Chapter 2. Survey on Frequent Pattern Mining

Algorithm 6 Eclat
Input: D, σ, I ⊆ I
Output: F [I](D, σ)
1: F [I] := {}
2: for all i ∈ I occurring in D do
3: F [I] := F [I] ∪ {I ∪ {i}}
4: // Create Di

5: Di := {}
6: for all j ∈ I occurring in D such that j > i do
7: C := cover({i}) ∩ cover({j})
8: if |C| ≥ σ then
9: Di := Di ∪ {(j, C)}

10: end if
11: end for
12: // Depth-first recursion
13: Compute F [I ∪ {i}](Di, σ)
14: F [I] := F [I] ∪ F [I ∪ {i}]
15: end for

itemset based on only two of its subsets, the number of candidate itemsets
that are generated is much larger as compared to the breadth-first approaches
presented in the previous section. As a comparison, Eclat essentially generates
candidate itemsets using only the join step from Apriori, since the itemsets
necessary for the prune step are not available. Again, we can reorder all items
in the database in support ascending order to reduce the number of candi-
date itemsets that is generated, and hence, reduce the number of intersections
that need to be computed and the total size of the covers of all generated
itemsets. In fact, such reordering can be performed at every recursion step
of the algorithm between line 10 and line 11 in the algorithm. In comparison
with Apriori, counting the supports of all itemsets is performed much more
efficiently. In comparison with Partition, the total size of all covers that is
kept in main memory is on average much less. Indeed, in the breadth-first
approach, at a certain iteration k, all frequent k-itemsets are stored in main
memory together with their covers. On the other hand, in the depth-first
approach, at a certain depth d, the covers of at most all k-itemsets with the
same k−1-prefix are stored in main memory, with k ≤ d. Because of the item
reordering, this number is kept small.

Recently, Zaki and Gouda [81, 83] proposed a new approach to efficiently
compute the support of an itemset using the vertical database layout. Instead
of storing the cover of a k-itemset I, the difference between the cover of I and
the cover of the k − 1-prefix of I is stored, denoted by the diffset of I. To

2.6. Depth-First Algorithms 31

compute the support of I, we simply need to subtract the size of the diffset
from the support of its k−1-prefix. Note that this support does not need to be
stored within each itemset but can be maintained as a parameter within the
recursive function calls of the algorithm. The diffset of an itemset I ∪ {i, j},
given the two diffsets of its subsets I∪{i} and I∪{j}, with i < j, is computed
as follows:

diffset(I ∪ {i, j}) := diffset(I ∪ {j}) \ diffset(I ∪ {i}).

This technique has experimentally shown to result in significant performance
improvements of the algorithm, now designated as dEclat [81]. The original
database is still stored in the original vertical database layout. Observe an
arbitrary recursion path of the algorithm starting from the itemset {i1}, up
to the k-itemset I = {i1, . . . , ik}. The itemset {i1} has stored its cover and
for each recursion step that generates a subset of I, we compute its diffset.
Obviously, the total size of all diffsets generated on the recursion path can be
at most |cover({i1})|. On the other hand, if we generate the cover of each
generated itemset, the total size of all generated covers on that path is at
least (k − 1) · σ and can be at most (k − 1) · |cover({i1})|. Of course, not all
generated diffsets or covers are stored during all recursions, but only for the
last two of them. This observation indicates that the total size of all diffsets
that are stored in main memory at a certain point in the algorithm is less
than the total size of all covers. These predictions were supported by several
experiments [81].

Using this depth-first approach, it remains possible to exploit a technique
presented as an optimization of the Apriori algorithm in the previous section.
More specifically, suppose we have generated and counted the support of the
frequent itemset X ∪ {i} and that its support is equal to the support of X
(hence, its diffset is empty). Then we already know that the support of every
superset X ∪ {i} ∪ Y is equal to the support of X ∪ Y and hence, we do
not have to generate all such supersets anymore, but only have to retain the
information that every superset of X ∪{i} is also represented by a superset of
X.

If the database does not fit into main memory, the Partition algorithm can
be used in which the local frequent itemsets are found using Eclat.

Another optimization proposed by Hipp et al. combines Apriori and Eclat
into a single Hybrid [46]. More specifically, the algorithm starts generating
frequent itemsets in a breadth-first manner using Apriori, and switches after
a certain iteration to a depth-first strategy using Eclat. The exact switching
point must be given by the user. The main performance improvement of
this strategy occurs at the generation of all candidate 2-itemsets if these are
generated online as described in Section 2.5.4. Indeed, when a lot of items in

32 Chapter 2. Survey on Frequent Pattern Mining

the database are frequent, Eclat generates every possible 2-itemset whether or
not it occurs in the database. On the other hand, if the transaction database
contains a lot of large transactions of frequent items, such that Apriori needs
to generate all its subsets of size 2, Eclat still outperforms Apriori. Of course,
as long as the number of transactions that still contain candidate itemsets is
too high to store into main memory, switching to Eclat might be impossible,
while Apriori nicely marches on.

2.6.2 FP-growth

In order to count the supports of all generated itemsets, FP-growth uses a com-
bination of the vertical and horizontal database layout to store the database
in main memory. Instead of storing the cover for every item the database, it
stores the actual transactions from the database in a trie structure and every
item has a linked list going through all transactions that contain that item.
This new data structure is denoted by FP-tree (Frequent-Pattern tree) and is
created as follows [41]. Again, we order the items in the database in support
ascending order for the same reasons as before. First, create the root node of
the tree, labelled with “null”. For each transaction in the database, the items
are processed in reverse order (hence, support descending) and a branch is
created for each transaction. Every node in the FP-tree additionally stores a
counter which keeps track of the number of transactions that share that node.
Specifically, when considering the branch to be added for a transaction, the
count of each node along the common prefix is incremented by 1, and nodes
for the items in the transaction following the prefix are created and linked ac-
cordingly. Additionally, an item header table is built so that each item points
to its occurrences in the tree via a chain of node-links. Each item in this
header table also stores its support. The reason to store transactions in the
FP-tree in support descending order is that in this way, it is hoped that the
FP-tree representation of the database is kept as small as possible since the
more frequently occurring items are arranged closer to the root of the FP-tree
and thus are more likely to be shared.

Example 2.2. Assume we are given a transaction database and a minimal
support threshold of 2. First, the supports of all items is computed, all infre-
quent items are removed from the database and all transactions are reordered
according to the support descending order resulting in the example transaction
database in Table 2.7. The FP-tree for this database is shown in Figure 2.3.

Given such an FP-tree, the supports of all frequent items can be found in
the header table. Obviously, the FP-tree is just like the vertical and horizontal
database layouts a lossless representation of the complete transaction database
for the generation of frequent itemsets. Indeed, every linked list starting from

2.6. Depth-First Algorithms 33

tid X

100 {a, b, c, d, e, f}
200 {a, b, c, d, e}
300 {a, d}
400 {b, d, f}
500 {a, b, c, e, f}

Table 2.7: An example preprocessed transaction database.

b:3

c:3

d:1e:2

d:1

b:1

d:1

f:1

a:4

null

e:1f:2

item

node−link

support

header table

a

b

c

d

e

f

4

3

3

3

3

4

Figure 2.3: An example of an FP-tree.

34 Chapter 2. Survey on Frequent Pattern Mining

an item in the header table actually represents a compressed form of the cover
of that item. On the other hand, every branch starting from the root node
represents a compressed form of a set of transactions.

Apart from this FP-tree, the FP-growth algorithm is very similar to Eclat,
but it uses some additional steps to maintain the FP-tree structure during the
recursion steps, while Eclat only needs to maintain the covers of all generated
itemsets. More specifically, in order to generate for every i ∈ I all frequent
itemsets in F [{i}](D, σ), FP-growth creates the so called i-projected database
of D. Essentially, the Di used in Eclat is the vertical database layout of the
i-projected database considered here. The FP-growth algorithm is given in
Algorithm 7.

Algorithm 7 FP-growth
Input: D, σ, I ⊆ I
Output: F [I](D, σ)
1: F [I] := {}
2: for all i ∈ I occurring in D do
3: F [I] := F [I] ∪ {I ∪ {i}}
4: // Create Di

5: Di := {}
6: H := {}
7: for all j ∈ I occurring in D such that j > i do
8: if support(I ∪ {i, j}) ≥ σ then
9: H := H ∪ {j}

10: end if
11: end for
12: for all (tid , X) ∈ D with i ∈ X do
13: Di := Di ∪ {(tid,X ∩H)}
14: end for
15: // Depth-first recursion
16: Compute F [I ∪ {i}](Di, σ)
17: F [I] := F [I] ∪ F [I ∪ {i}]
18: end for

The only difference between Eclat an FP-growth is the way they count the
supports of every candidate itemset and how they represent and maintain the
i-projected database. I.e., only lines 5–10 of the Eclat algorithm are renewed.
First, FP-growth computes all frequent items for Di at lines 6–10, which is of
course different in every recursion step. This can be efficiently done by simply
following the linked list starting from the entry of i in the header table. Then
at every node in the FP-tree it follows its path up to the root node and
increments the support of each item it passes by its count. Then, at lines

2.6. Depth-First Algorithms 35

11–13, the FP-tree for the i-projected database is built for those transactions
in which i occurs, intersected with the set of all frequent items in D greater
than i. These transactions can be efficiently found by following the node-links
starting from the entry of item i in the header table and following the path
from every such node up to the root of the FP-tree and ignoring all items that
are not in H. If this node has count n, then the transaction is added n times.
Of course, this is implemented by simply incrementing the counters, on the
path of this transaction in the new i-projected FP-tree, by n. However, this
technique does require that every node in the FP-tree also stores a link to its
parent. Additionally, we can also use the technique that generates only those
candidate itemsets that occur at least once in the database. Indeed, we can
dynamically add a counter initialized to 1 for every item that occurs on each
path in the FP-tree that is traversed.

These steps can be further optimized as follows. Suppose that the FP-tree
consists of a single path. Then, we can stop the recursion and simply enumer-
ate every combination of the items occurring on that path with the support
set to the minimum of the supports of the items in that combination. Essen-
tially, this technique is similar to the technique used by all other algorithms
when the support of an itemset is equal to the support of any of its subsets.
However, FP-growth is able to detect this one recursion step ahead of Eclat.

As can be seen, at every recursion step, an item j occurring in Di actually
represents the itemset I ∪ {i, j}. In other words, for every frequent item i
occurring in D, the algorithm recursively finds all frequent 1-itemsets in the
i-projected database Di.

Although the authors of the FP-growth algorithm claim that their algo-
rithm [40, 41] does not generate any candidate itemsets, we have shown that
the algorithm actually generates a lot more candidate itemsets since it essen-
tially uses the same candidate generation technique as is used in Apriori but
without its prune step.

The only main advantage FP-growth has over Eclat is that each linked list,
starting from an item in the header table representing the cover of that item, is
stored in a compressed form. Unfortunately, to accomplish this gain, it needs
to maintain a complex data structure and perform a lot of dereferencing, while
Eclat only has to perform simple and fast intersections. Also, the intended
gain of this compression might be much less than is hoped for. In Eclat, the
cover of an item can be implemented using an array of transaction identifiers.
On the other hand, in FP-growth, the cover of an item is compressed using
the linked list starting from its node-link in the header table, but, every node
in this linked list needs to store its label, a counter, a pointer to the next node,
a pointer to its branches and a pointer to its parent. Therefore, the size of
an FP-tree should be at most 20% of the size of all covers in Eclat in order
to profit from this compression. Table 2.8 shows for all four used data sets

36 Chapter 2. Survey on Frequent Pattern Mining

Data set ||D|| |FP-tree| |cover |
|FP-tree|

T40I10D100K 3 912 459 : 15 283K 3 514 917 : 68 650K 89% : 174%
mushroom 174 332 : 680K 16 354 : 319K 9% : 46%
BMS-Webview-1 148 209 : 578K 55 410 : 1 082K 37% : 186%
basket 399 838 : 1 561K 294 311 : 5 748K 73% : 368%

Table 2.8: Memory usage of Eclat versus FP-growth.

the size of the total length of all arrays in Eclat (||D||), the total number of
nodes in FP-growth (|FP-tree|) and the corresponding compression rate of the
FP-tree. Additionally, for each entry, we show the size of the data structures
in bytes and the corresponding compression of the FP-tree.

As can be seen, the only data set for which FP-growth becomes an actual
compression of the database is the mushroom data set. For all other data sets,
there is no compression at all, on the contrary, the FP-tree representation is
often much larger than the plain array based representation.

2.7 Experimental Evaluation

We implemented the Apriori implementation using the online candidate 2-
itemset generation optimization. Additionally, we implemented the Eclat,
Hybrid and FP-growth algorithms as presented in the previous section. All
these algorithms were implemented in C++ using several of the data struc-
tures provided by the C++ Standard Template Library [75]. All experiments
reported in this thesis were performed on a 400 MHz Sun Ultra Sparc 10 with
512 MB main memory, running Sun Solaris 8.

Figure 2.7 shows the performance of the algorithms on each of the data
sets described in Section 2.4 for varying minimal support thresholds.

The first interesting behavior can be observed in the experiments for the
basket data. Indeed, Eclat performs much worse than all other algorithms.
Nevertheless, this behavior has been predicted since the number of frequent
items in the basket data set is very large and hence, a huge amount of candi-
date 2-itemsets is generated. The other algorithms all use dynamic candidate
generation of 2-itemsets resulting in much better performance results. The
Hybrid algorithm performed best when Apriori was switched to Eclat after
the second iteration, i.e., when all frequent 2-itemsets were generated.

Another remarkable result is that Apriori performs better than FP-growth
for the basket data set. This result is due to the overhead created by the
maintenance of the FP-tree structure, while updating the supports of all can-
didate itemsets contained in each transaction is performed very fast due to
the sparseness of this data set.

2.7. Experimental Evaluation 37

1

10

100

1000

0 10 20 30 40 50 60 70 80 90 100

tim
e

(s
ec

on
ds

)

support

apriori

eclat

fpgrowth

hybrid

(a) basket

1

10

100

40 45 50 55 60

tim
e

(s
ec

on
ds

)

support

apriori

eclat

fpgrowth

hybrid

(b) BMS-Webview-1

Figure 2.4: Frequent itemset mining performance.

38 Chapter 2. Survey on Frequent Pattern Mining

100

1000

10000

700 750 800 850 900 950 1000

tim
e

(s
ec

on
ds

)

support

apriori

eclat

fpgrowth

hybrid

(c) T40I10D100K

1

10

100

1000

600 650 700 750 800 850 900 950 1000

tim
e

(s
ec

on
ds

)

support

apriori

eclat

fpgrowth

hybrid

(d) mushroom

Figure 2.4: Frequent itemset mining performance.

2.8. Conclusions 39

For the BMS-Webview-1 data set, the Hybrid algorithm again performed
best when switched after the second iteration. For all minimal support thresh-
olds higher than 40, the differences in performance are negligible and are
mainly due to the initialization and destruction routines of the used data
structures. For very low support thresholds, Eclat clearly outperforms all
other algorithms. The reason for the lousy performance of Apriori is because
of some very large transactions for which the subset generation procedure for
counting the supports of all candidate itemsets consumes most of the time. To
support this claim we did some additional experiments which indeed showed
that only 34 transactions containing more than 100 frequent items consumed
most of the time of during the support counting of all candidate itemsets of
sized 5 to 10. For example, counting the supports of all 7-itemsets takes 10
seconds of which 9 seconds were used for these 34 transactions.

For the synthetic data set, all experiments showed the normal behavior as
was predicted by the analysis in this survey. However, this time, the switch-
ing point for which the Hybrid algorithm performed best was after the third
iteration.

Also the mushroom data set shows some interesting results. The perfor-
mance differences of Eclat and FP-growth are negligible and are again mainly
due to the differences in initialization and destruction. Obviously, because of
the small size of the database, both run extremely fast. Apriori on the other
hand runs extremely slow because each transaction contains exactly 23 items
and of which a many have very high supports. Here, the Hybrid algorithm
doesn’t perform well at all and only performed well when Apriori is not used
at all. We show the time of Hybrid when the switch is performed after the
second iteration.

2.8 Conclusions

Throughout the last decade, a lot of people have implemented and compared
several algorithms that try to solve the frequent itemset mining problem as
efficiently as possible. Unfortunately, only a very small selection of researchers
put the source codes of their algorithms publicly available such that fair em-
pirical evaluations and comparisons of their algorithms become very difficult.
Moreover, we experienced that different implementations of the same algo-
rithms could still result in significantly different performance results. As a
consequence, several claims that were presented in some articles were later
contradicted in other articles. For example, a very often used implementa-
tion of the Apriori algorithm is that by Christian Borgelt [13]. Nevertheless,
when we compared his implementation with ours, the performance of both
algorithms showed immense differences. While Borgelt his implementation

40 Chapter 2. Survey on Frequent Pattern Mining

performed much better for high support thresholds, it performed much worse
for small thresholds. This is mainly due to differences in the implementation
of some of the used data structures and procedures. Indeed, different compil-
ers and different machine architectures sometimes showed different behavior
for the same algorithms. Also different kinds of data sets on which the algo-
rithms were tested showed remarkable differences in the performance of such
algorithms. An interesting example of this is presented by Zheng et al. in
their article on the real world performance of association rule algorithms [85]
in which five well-known association rule mining algorithms are compared on
three new real-world data sets. They discovered different performance behav-
iors of the algorithms as was previously claimed by their respective authors.

In this survey, we presented an in depth analysis of a lot of algorithms
which made a significant contribution to improve the efficiency of frequent
itemset mining.

We have shown that as long as the database fits in main memory, the
Hybrid algorithm, as a combination of an optimized version of Apriori and
Eclat is by far the most efficient algorithm. However, for very dense databases,
the Eclat algorithm is still better.

If the database does not fit into memory, the best algorithm depends on the
density of the database. For sparse databases the Hybrid algorithm seems the
best choice if the switch from Apriori to Eclat is made as soon as the database
fits into main memory. For dense databases, we envisage that the partition
algorithm, using Eclat to compute all local frequent itemsets, performs best.

For our experiments, we did not implement Apriori with all possible op-
timizations as presented in this survey. Nevertheless, the main cost of the
algorithm can be dictated by only a few very large transactions, for which the
presented optimizations will not always be sufficient.

Several experiments on four different data sets confirmed the reasoning
presented in the analysis of the various algorithms.

3
Interactive Constrained
Association Rule Mining

The interactive nature of the mining process has been acknowledged from the
start [27]. It motivated the idea of a “data mining query language” [37, 38,
47, 48, 60] and was stressed again by Ng et al. [62]. A data mining query
language allows the user to ask for specific subsets of association rules by
specifying several constraints within each query.

In this chapter, we consider a class of conditions on associations to be gen-
erated, which should be expressible in any reasonable data mining query lan-
guage: Boolean combinations of atomic conditions, where an atomic condition
can either specify that a certain item occurs in the body of the rule or the head
of the rule, or set a threshold on the support or on the confidence. A mining
session then consists of a sequence of such Boolean combinations (henceforth
referred to as queries). Efficiently supporting data mining query language en-
vironments is a challenging task. Towards this goal, we present and compare
three approaches. In the first extreme, the integrated querying approach, ev-
ery individual data mining query will be answered by running an adaptation
of the mining algorithm in which the constraints on the rules and sets to be
generated are directly incorporated. The second extreme, the post-processing
approach, first mines as much associations as possible, by performing one ma-
jor, global mining operation. After this expensive operation, the actual data
mining queries issued by the user then amount to standard lookups in the
set of materialized associations. A third approach, the incremental querying
approach, combines the advantages of both previous approaches.

41

42 Chapter 3. Interactive Constrained Association Rule Mining

Our contributions We present the first algorithm to support interactive
mining sessions efficiently. We measure efficiency in terms of the total number
of itemsets that are generated, but do not satisfy the query, and the number
of scans over the database that have to be performed. Specifically, our results
are the following:

1. Although our results show significant improvements of performance, we
will also show that exploiting constraints is not always the best solution.
More specifically, if mining without constraints is feasible to begin with,
then the presented post-processing approach will eventually outperform
integrated querying.

2. The querying achieved by exploiting the constraints is optimal, in the
sense that it never generates an itemset that could give rise to a rule
that does not satisfy the query, apart from the minimal support and
confidence thresholds. Therefore, the number of generated itemsets dur-
ing the execution of a query, becomes proportional to the strength of
the constraints in the query: the more specific the query, the faster its
execution.

3. Not only is the number of passes through the database reduced, but also
the size of the database itself, again proportionally to the strength of
the constraints in the query.

4. Within a session, a generated itemset will never be regenerated as a
candidate itemset: results of earlier queries are reused when answering
a new query.

This chapter is further organized as follows. Section 3.1 gives an overview
of related work on constrained mining. In Section 3.2, we present a way of
incorporating query-constraints inside a frequent set mining algorithm. In
Section 3.3, we discuss ways of supporting interactive mining sessions. We
conclude the chapter in Section 3.4.

Bibliographical note Parts of this chapter have been published before in
the Proceedings of the Second International Conference on Data Warehousing
and Knowledge Discovery [31].

3.1 Related Work

The idea that queries can be integrated in the mining algorithm was initially
launched by Srikant, Vu, and Agrawal [74], who considered queries that are
Boolean expressions over the presence or absence of certain items in the rules.

3.2. Exploiting Constraints 43

Queries specified on bodies or heads were not discussed. The authors consid-
ered three different approaches to the problem. The proposed algorithms are
not optimal: they generate and test several itemsets that do not satisfy the
query, and their optimizations also do not always become more efficient for
more specific queries.

Also Lakshmanan, Ng, Han and Pang worked on the integration of con-
straints on itemsets in mining, considering conjunctions of conditions on item-
sets such as those considered here, as well as others (arbitrary Boolean combi-
nations were not discussed) [55, 62]. Of the various strategies for the so-called
“CAP” algorithm they present, the one that can handle the queries consid-
ered here, limited to conjunctions, is their “strategy II”. Again, this strategy
generates and tests itemsets that do not satisfy the query. Also, their algo-
rithms implement a rule-query by separately mining for possible heads and
for possible bodies, while we tightly couple the querying of rules with the
querying of sets. This work has also been further studied by Pei, Han and
Lakshmanan [67, 68], and employed within the FP-growth algorithm.

Still other work focused on other kinds of constraints over association rules
and frequent sets, such as correlation [33], and improvement [10]. These and
other statistical measures of interestingness will not be discussed.

All previously mentioned works do not discuss the reuse of results acquired
from earlier queries within a session. Nag, Deshpande, and DeWitt proposed
the use of a knowledge cache for this purpose [61]. Several caching strategies
were studied for different cache sizes. However, their work only considers
mining sessions of queries where only constraints on the support of the itemsets
are allowed. No solutions were provided for other constraints like those studied
here. Also Jeudy and Boulicaut have studied the use of a knowledge cache
for finding a condensed representation of all itemsets, based on the concept of
free sets [50].

3.2 Exploiting Constraints

As already mentioned in the introduction, the constraints we consider are
Boolean combinations of atomic conditions. An atomic condition can either
specify that a certain item i occurs in the body of the rule or the head of the
rule, denoted respectively by Body(i) or Head(i), or set a threshold on the
support or on the confidence.

In this section, we explain how we can incorporate these constraints in the
mining algorithm. We first consider the special case of constraints where only
conjunctions of atomic conditions or their negations are allowed.

44 Chapter 3. Interactive Constrained Association Rule Mining

3.2.1 Conjunctive Constraints

Let b1, . . . , b` be the items that must be in the body by the constraint; b′1,
. . . , b′`′ those that must not; h1, . . . , hm those that must be in the head; and
h′1, . . . , h′m′ those that must not.

Recall that an association rule X ⇒ Y is only generated if X ∪ Y is a
frequent set. Hence, we only have to generate those frequent sets that contain
every bi and hi, plus some of the subsets of these frequent sets that can serve
as bodies or heads. Therefore we will create a set-query corresponding to the
rule-query, which is also a conjunctive expression, but now over the presence
or absence of an item i in a frequent set, denoted by Set(i) and ¬Set(i). We
do this as follows:

1. For each positive literal Body(i) or Head(i) in the rule-query, add the
literal Set(i) in the set-query.

2. If for an item i both ¬Body(i) and ¬Head(i) are in the rule-query, add
the negated literal ¬Set(i) to the set-query.

3. Add the minimal support threshold to the set-query.

4. All other literals in the rule-query are ignored because they do not re-
strict the frequent sets that must be generated.

Formally, the following is readily verified:

Lemma 3.1. An itemset Z satisfies the set-query if and only if there exists
itemsets X and Y such that X ∪ Y = Z and the rule X ⇒ Y satisfies the
rule-query, apart from the confidence threshold.

So, once we have generated all sets Z satisfying the set-query, we can
generate all rules satisfying the rule-query by splitting all these Z in all pos-
sible ways in a body X and a head Y such that the rule-query is satisfied.
Lemma 3.1 guarantees that this method is “sound and complete”.

So, we need to explain two things:

1. Finding all frequent Z satisfying the set-query.

2. Finding, for each such Z, the frequencies of all bodies and heads X and
Y such that X ∪ Y = Z and X ⇒ Y satisfies the rule-query.

Finding the frequent sets satisfying the set-query Let Pos := {i |
Set(i) in set-query} and Neg := {i | ¬Set(i) in set-query}. Note that Pos =
{b1, . . . , b`, h1, . . . , hm}. Denote the data set of transactions by D. We define
the following derived data set D0:

D0 := {t− (Pos ∪Neg) | t ∈ D and Pos ⊆ t}

3.2. Exploiting Constraints 45

In other words, we ignore all transactions that are not supersets of Pos and
from all transactions that are not ignored, we remove all items in Pos plus all
items that are in Neg .

We observe:

Lemma 3.2. Let p be the support threshold defined in the query. Let S0 be
the set of itemsets over the new data set D0, without any further conditions,
except that their support is at least p. Let S be the set of itemsets over the
original data set D that satisfy the set-query, and whose support is also at least
p. Then

S = {s ∪ Pos | s ∈ S0}.

Proof. To show the inclusion from left to right, consider Z ∈ S. We show that
s := Z−Pos is in S0. Thereto, it suffices to establish an injection t 7→ t0 from
the transactions t in the support set of Z in D (i.e., the set of all transactions
in D containing Z) into the transactions t0 in the support set of s in D0.

Let t be in D and containing Z. Since Z satisfies the set-query, Z contains
Pos, and hence t contains Pos as well. Thus, t0 := t − (Pos ∪ Neg) is in
D0. Since Z ∩ Neg = ∅ (again because Z satisfies the set-query), t0 contains
Z − Pos = s. Hence, t0 is in the support set of s in D0, as desired.

To show the inclusion from right to left, consider s ∈ S0. We show that
Z := s ∪ Pos is in S. Thereto, it suffices to establish an injection t0 7→ t from
the transactions t0 in the support set of s in D0 into the transactions t in the
support set of Z in D.

Let t0 be in D0 and containing s. Obviously, a transaction t ∈ D exists,
such that t0 ∪Pos ⊆ t−Neg ⊆ t. Since t contains s∪Pos, it is in the support
set of Z in D, as desired.

We can thus perform any frequent set generation algorithm, using only
D0 instead of D. Note that the number of transactions in D0 is exactly the
support of Pos in D. Also, the search space of all itemsets is halved for every
item in Pos ∪ Neg . In practice, the search space of all frequent itemsets is
at least halved for every item in Pos and at most halved for every item in
Neg . Still put differently: we are mining in a world where itemsets that do
not satisfy the query simply do not exist. The correctness and optimality of
our method is thus automatically guaranteed.

Note however that now an itemset I, actually represents the itemset I∪Pos!
We thus head-start with a lead of k, where k is the cardinality of Pos, in
comparison with standard, non-constrained mining.

Finding the frequencies of bodies and heads We now have all frequent
sets containing every bi and hi, from which rules that satisfy the rule-query can
be generated. Recall that in the standard association rule mining algorithm

46 Chapter 3. Interactive Constrained Association Rule Mining

rules are generated by taking every item in a frequent set as a head and the
others as body. All heads that result in a confident rule, with respect to the
minimal confidence threshold, can then be combined to generate more general
rules. But, because we now only want rules that satisfy the query, a head
must always be a superset of {h1, . . . , hm} and may not include any of the h′i
and bi (the latter because bodies and heads of rules are disjoint). In this way,
we head-start with a lead of m. Similarly, a body must always be a superset
of {b1, . . . , b`} and may not include any of the b′i and hi.

The following lemma (which follows immediately from Lemma 3.2) tells us
that these potential heads and bodies are already present, albeit implicitly, in
S0:

Lemma 3.3. Let S0 be as in Lemma 3.2. Let B (H) be the set of bodies
(heads) of those association rules over D that satisfy the rule-query. Then

B = {s ∪ {b1, . . . , b`} | s ∈ S0 and s ∩ {b′1, . . . , b′`′ , h1, . . . , hm} = ∅}

and

H = {s ∪ {h1, . . . , hm} | s ∈ S0 and s ∩ {h′1, . . . , h′m′ b1, . . . , b`} = ∅}.

So, for the potential bodies (heads), we use, in S0, all sets that do not
include any of the b′i and hi (h′i and bi), and add all bi (hi). Hence, all we
have to do is to determine the frequencies of these subsets by performing one
additional scan through the data set. (We do not necessarily yet have these
frequencies because these sets do not contain either items bi or hi, while we
ignored transactions that did not contain all items bi and hi.)

Each generated itemset can thus have up to three different “personalities:”

1. A frequent set that satisfies the set-query;

2. A frequent set that can act as body of a rule that satisfies the rule-query;

3. A frequent set that can act as head of a rule that satisfies the rule-query.

Hence, we finally have at most three families of sets, i.e., those sets from
which rules must be generated, the rule-sets (S0 with all bi and hi added); a
family of possible bodies, the body-sets (S0 with all bi added, minus all those
sets that include any of the b′i and hi); and yet another family of possible
heads, the head-sets (S0 with all hi added, minus all those sets that include
any of the h′i and bi). Note that the frequencies of the body-sets and head-sets
need not necessarily to be recounted since their frequencies are equal to the
frequencies of their corresponding sets in S0 if the query consists of negated
atoms only. We finally generate the desired association rules from the rule-
sets, by looking for possible bodies and heads only within the body-sets and
head-sets respectively, on condition that they have enough confidence.

3.2. Exploiting Constraints 47

S0 S B H
{} {1, 3} {1} {3}
{2} {1, 2, 3} - {2, 3}
{4} {1, 3, 4} {1, 4} -
{6} {1, 3, 6} {1, 6} {3, 6}
{8} {1, 3, 8} {1, 8} {3, 8}
{2, 6} {1, 2, 3, 6} - {2, 3, 6}
{4, 8} {1, 3, 4, 8} {1, 4, 8} -

Table 3.1: An example of generated sets, which can represent a frequent set,
as well as a body, as well as a head.

Optimality Note that every rule-set, body-set, and head-set is needed to
construct the rules potentially satisfying the rule-query so that these can be
tested for confidence, and moreover, no other sets are ever needed. In this
precise sense, our method is optimal.

Example 3.1. We illustrate our method with an example. Assume we are
given the rule-query

Body(1) ∧ ¬Body(2) ∧Head(3) ∧ ¬Head(4)
∧ ¬Body(5) ∧ ¬Head(5) ∧ support ≥ 1 ∧ confidence ≥ 50%.

We begin by converting it to the set-query

Set(1) ∧ Set(3) ∧ ¬Set(5) ∧ support ≥ 1.

Hence Pos = {1, 3} and Neg = {5}. Consider a database consisting of the
three transactions {2, 3, 5, 6, 9}, {1, 2, 3, 5, 6} and {1, 3, 4, 8}. We ignore the
first transaction because it is not a superset of Pos. We remove items 1 and
3 from the second transaction because they are in Pos, and we also remove
5 because it is in Neg . We only remove items 1 and 3 from the third trans-
action. Table 3.1 shows the itemsets that result from the mining algorithm
after reading, according to Lemma 3.1 and 3.2, the two resulting transactions.
For example, the itemset {4, 8} actually represents the set {1, 3, 4, 8}. It also
represents a potential body, namely {1, 4, 8}, but it does not represent a head,
because it includes item 4, which must not be in the head according to the
given rule-query. As another example, the empty set now represents the set
{1, 3} from which a rule can be generated. It also represents a potential body
and a potential head.

48 Chapter 3. Interactive Constrained Association Rule Mining

3.2.2 Boolean Constraints

Assume now given a rule-query that is an arbitrary Boolean combination of
atomic conditions. We can put it in disjunctive normal form (DNF) and then
generate all frequent itemsets for every disjunct (which is a conjunction) in
parallel by feeding every transaction of the database to every disjunct, and
processing them there as described in the previous subsection.

However, this approach is a bit simplistic, as it might generate some
sets and rules multiple times. For example, consider the following query:
Body(1) ∨ Body(2). If we convert it to its corresponding set-query (disjunct
by disjunct), we get Set(1)∨Set(2). Then, we would generate for both disjuncts
all supersets of {1, 2}. We can avoid this problem by putting the set-query
to disjoint DNF.∗ Then, no itemset can satisfy more than one set-disjunct.
On the other hand this does not solve the problem of generating some rules
multiple times. Consider the equivalent disjoint DNF of the above set-query:
Set(1)∨ (Set(2)∧¬Set(1)). The first disjunct thus contains the set {1, 2} and
all of its supersets. If we generate for every itemset all potential bodies and
heads according to every rule-disjunct, both rule-disjuncts will still generate
all rules with the itemset {1, 2} in the body. The easiest way to avoid this
problem is to already put the rule-query in disjoint DNF. Obviously, this does
not mean its corresponding set-query is also in disjoint DNF, and hence, we
still have to put it in disjoint DNF.

After all sets have been generated according to the set-query, we still have
to generate all rules according to the rule-query. This can be done for every
rule-disjunct (which is a conjunction) in parallel after some modifications to
the algorithm described in the previous subsection.

Indeed, a single set-disjunct can now contain sets from which rules can
be generated satisfying several rule-disjuncts. Hence, a set generated in one
set-disjunct has now possibly even more personalities. More specifically, for
every rule disjunct, it can possibly represent a set from which rules can be
generated, a body of such a rule and a head of such a rule. We illustrate this
with the rule-query given in the previous paragraph.

Example 3.2. Assume we are given the rule-query

Body(1) ∧ (Body(2) ∨Head(2)).

In disjoint DNF, this gives

(Body(1) ∧ Body(2)) ∨ (Body(1) ∧Head(2)).

∗In disjoint DNF, the conjunction of any two disjuncts is unsatisfiable. Any boolean
expression has an equivalent disjoint DNF.

3.2. Exploiting Constraints 49

Converted to its corresponding set-query in disjoint DNF, we get

Set(1) ∧ Set(2).

Obviously, this single set-disjunct contains sets from which rules satisfying the
first rule-disjunct can be generated. Following the methodology described in
the previous subsection, this means we still have to count the frequencies of
all these sets without item 1 and item 2 included, since they will occur as
heads in the rules satisfying the first rule disjunct. But now, the set-disjunct
also contains sets from which rules satisfying the second rule-disjunct can be
generated. Hence, we still have to count the frequencies of the generated sets
with item 1 included, which can serve as bodies for the rules satisfying the
second rule-disjunct, and the sets with item 2 included, which can serve as
heads.

Until now, we have disregarded the possible presence of negated thresholds
in the queries, which can come from the conversion to disjoint DNF, or from
the user himself. In the latter case, it would not be possible to exploit this
constraint in an Apriori-like algorithm, because it is an essentially bottom-up
algorithm. Algorithms that generate sets also in a top-down strategy could
exploit this constraint. Another source for negated thresholds is the conversion
from the user’s query to a disjoint DNF formula. Before we discuss this, we
first have to explain how we are going to convert a given formula to disjoint
DNF.

We first put the Boolean expression φ in DNF, obtaining an expression
of the form φ1 ∨ φ2 ∨ · · · ∨ φn, in which φi is a conjunction of atomic con-
ditions or their negations. Of course, any two of these disjuncts may not be
disjoint. A good way to obtain a disjoint DNF is to add to every disjunct φi

the negated disjuncts φj with j < i. We thus become the equivalent formula
φ1 ∨ (φ2 ∧ ¬φ1) ∨ · · · ∨ (φn ∧ ¬φn−1 ∧ · · · ∧ ¬φ1) in which all disjuncts are
pairwise disjoint. Our problem is not yet solved, because our formula is not
even in DNF anymore. We thus still have to convert every disjunct on itself
to disjoint DNF. For example, take (φ2 ∧ ¬φ1) with φ1 ≡ p1 ∧ p2 ∧ · · · ∧ p` in
which pi is an atomic condition or its negation. The disjunct thus becomes
(φ2 ∧ ¬p1) ∨ (φ2 ∧ p1 ∧ ¬p2) ∨ · · · ∨ (φ2 ∧ p1 ∧ p2 ∧ · · · ∧ p`−1 ∧ ¬p`), which is
in disjoint DNF.

An example showing that negated thresholds can be introduced in this
process, is the following.

Example 3.3. Assume we are given the rule-query

(Body(1) ∧ support ≥ 10) ∨ (Body(2) ∧ support ≥ 5).

50 Chapter 3. Interactive Constrained Association Rule Mining

As equivalent disjoint DNF, we obtain

(Body(1) ∧ support ≥ 10) ∨ (Body(2) ∧ support ≥ 5 ∧ ¬Body(1))
∨ (Body(2) ∧ support ≥ 5 ∧ Body(1) ∧ support < 10).

Notice the maximal support threshold in the last disjunct, which is needed to
avoid generating itemsets satisfying Body(2) ∧ support ≥ 10 ∧ Body(1) that
are already generated by the first disjunct.

Negated support thresholds can be avoided however. After putting the
user’s formula in DNF, but before putting the DNF in disjoint DNF, we sort
all disjuncts on their support threshold, in ascending order. This guarantees
that the conversion to disjoint DNF does not introduce any negated support
thresholds.

Note that we cannot avoid negated confidence thresholds at the same time:
we have already sorted on support, and thus cannot sort anymore on confidence
at the same time. Since we are here already in phase 2, it is less of an efficiency
issue to just ignore maximal confidence thresholds.

Furthermore, if a set-disjunct (rule-disjunct) consists of nothing but a
negated support (confidence) threshold, we can of course easily switch the
generation algorithm and generate the candidate sets (heads) in a top-down
manner.

3.2.3 Experimental Evaluation

For our experiments, we have implemented an extensively optimized version of
the Apriori algorithm, equipped with the querying optimizations as described
in the previous sections.

For each data set, we generated 100 random Boolean queries consisting of
at most three atomic conditions. Figure 3.1 shows the improvement on the
performance of the algorithm exploiting the constraints. The y-axis shows
the time needed for the algorithm exploiting our queries, relative to the time
needed without exploiting the queries. The x-axis shows the number of pat-
terns satisfying the given query, relative to the total number of patterns. As
can be seen, the time improvement is proportional to the selectivity of the
constraints. Notice that the proportionality factor is around 1.

3.3 Interactive Mining

3.3.1 Integrated Querying or Post-Processing?

In the previous section, we have seen a way to integrate constraints tightly
into the mining of association rules. We call this integrated querying. At the

3.3. Interactive Mining 51

0

20

40

60

80

100

0 20 40 60 80 100

tim
e

(%
)

patterns satisfying the query (%)

BMS-Webview-1

mushroom

T40I10D00K

basket

Figure 3.1: Improvement after exploiting constraints.

other end of the spectrum we have post-processing, where we perform standard,
non-constrained mining, save the resulting itemsets and rules, and then query
those results for the constraints.

Integrated querying has the following two obvious advantages over post-
processing:

1. Answering one single data mining query using integrated querying is
much more efficient than answering it using post-processing.

2. It is well known that, by setting parameters such as minimal support
too low, or by the nature of the data, association rule mining can be
infeasible, simply because of a combinatorial explosion involved in the
generation of rules or frequent itemsets. Under such circumstances, of
course, post-processing is infeasible as well; yet, integrated querying can
still be executed, if the query conditions can be effectively exploited to
reduce the number of itemsets and rules from the outset.

However, as already mentioned in the introduction, data mining query
language environments must support an interactive, iterative mining process,
where a user repeatedly issues new queries based on what he found in the
answers of his previous queries. Now consider a situation where minimal sup-
port requirements and data set particulars are favorable enough so that post-
processing is not infeasible to begin with. Then the global, non-constrained
mining operation, on the result of which the querying will be performed by

52 Chapter 3. Interactive Constrained Association Rule Mining

post-processing, can be executed once and its result materialized for the re-
mainder of the data mining session.

In that case, if the session consists of, say, 20 data mining queries, these
20 queries amount to standard retrieval queries on the materialized mining
results. In contrast, answering every single one of the 20 queries by integrated
querying will involve at least one, and often many more, passes over the data,
as each query involves a separate mining operation. Also, several queries could
have a non-empty intersection, such that a lot of work is repeated several times.
Hence, the total time needed to answer the integrated queries is guaranteed
to grow beyond the post-processing total time.

The naively conceived advantages of integrated querying over post-process-
ing become much less clear now. Indeed, if the number of data mining queries
issued by the user is large enough, then the post-processing approach clearly
outperforms the integrated querying approach. We have performed several
experiments which all confirmed this predicted effect. For the post-processing
approach, we only materialized all frequent itemsets, since the time needed
to generate all association rules that satisfy the query turned out to be as
fast as finding all such rules from the materialized results. Moreover, storing
all frequent and confident association rules requires huge storage capabilities,
and hence, it is preferable to generate the necessary association rules on the
fly. Figure 3.2 shows the total time needed for answering up to 20 different
queries on the BMS-Webview-1 data set. Since the time needed to generate all
association rules is the same for both approaches, we only recorded the time to
generate all itemsets that were needed to generate all association rules. The
queries were randomly generated, only those queries with an empty output
were replaced, but all used the same support threshold as was used for the
initial mining operation of the post-processing approach. As can be seen,
the cut-off point from where the post-processing approach outperforms the
integrated querying approach occurs already after the eighth query.

3.3.2 Incremental Querying: Basic Approach

From the above discussion it is clear that we should try to combine the ad-
vantages of integrated querying and post-processing. We now introduce such
an approach, which we call incremental querying.

In the incremental approach, all itemsets that result from every posed
query, as well as all intermediate generated itemsets, are stored into a cache.
Initially, when the user issues his first query, nothing has been mined yet, and
thus we answer it using integrated querying.

Every subsequent query is first converted to its corresponding rule- and set-
query in disjoint DNF. For every disjunct in the set-query, the system adds all
currently cached itemsets that satisfy the disjunct to the data structure holding

3.3. Interactive Mining 53

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16 18 20

to
ta

l t
im

e
(s

ec
on

ds
)

query number

post-processing

integrated

Figure 3.2: Integrated querying versus post-processing.

itemsets, that is used for mining that disjunct, as well as all of its subsets that
satisfy the disjunct (note that these subsets may not all be cached; if they are
not, we have to count their supports during the first scan through the data
set). We also immediately add all candidate itemsets.

If no new candidate itemsets can be generated, which means that all nec-
essary itemsets were already cached, we are done. However, if this is not the
case, we can now begin our queried mining algorithm with the important gen-
eralization that in each iteration, candidate itemsets of different cardinalities
are now generated. In order for this to work, candidate itemsets that turn
out to be infrequent must be kept such that they are not regenerated in later
iterations. This generalization was first used by Toivonen in his sampling
algorithm [77].

Caching all generated itemsets gives us another advantage that can be ex-
ploited by the integrated querying algorithm. Consider a set-query stating
that items 1 and 2 must be in the itemsets. In the first iteration of the algo-
rithm, all single itemsets are generated as candidate sets over the new data
set D0 (cf. Section 3.2.1). We explained that these single itemsets actually
represent supersets of {1, 2}. Normally, before we generate a candidate item-
set, we check if all of its subsets are frequent. Of course, this is impossible
if these subsets do not even exist in D0. Now, however, we can check in the
cache for a subset with too low support; if we find this, we avoid generating
the candidate.

We thus obtain an algorithm which reuses previously generated itemsets

54 Chapter 3. Interactive Constrained Association Rule Mining

as if they had been generated in previous iterations of the algorithm. We
are optimal in the sense that we never generate and test itemsets that were
generated before. For rule generation, we again did not cache the results, but
instead generated all association rules when needed for the same reasons as
explained in the previous subsection.

In the worst case, the cached results do not contain anything that can
be reused for answering a query, and hence the time needed to generate the
itemsets and rules that satisfy the query is equal to the time needed when
answering that query using the integrated querying approach. In the best
case, all requested itemsets are already cached, and hence the time needed to
find all itemsets and rules that satisfy the query is equal to the time needed for
answering that query using post-processing. In the average case, part of the
needed itemsets are cached and will then be used to speed up the integrated
querying approach. If the time gained by this speedup is more than the time
needed to find the reusable sets, then the incremental approach will always
be faster than the integrated querying approach. In the limit, all itemsets
will be materialized, and hence all subsequent queries will be answered using
post-processing.

3.3.3 Incremental Querying: Overhead

Could it be that the time gained by the speedup in the integrated querying
approach is less than the time needed to find and reuse the reusable itemsets?
This could happen when a lot of itemsets are already cached, but almost none
of them satisfy the constraints. It is also possible that the reusable itemsets
give only a marginal improvement. We can however counter this phenomenon
by estimating what is currently cached, as follows.

We keep track of a set-query φsets which describes the stored sets. This
query is initially false. Given a new query (rule-query) ψ, the system now goes
through the following steps: (step 1 was described in Section 3.2.1)

1. Convert the rule-query ψ to the set-query φ

2. φmine := φ ∧ ¬φsets

3. φsets := φsets ∨ φ

After this, we perform:

1. Generate all frequent sets according to φmine , using the basic incremental
approach.

2. Retrieve all cached sets satisfying φ ∧ ¬φmine .

3. Add all needed subsets that can serve as bodies or heads.

3.3. Interactive Mining 55

4. Generate all rules satisfying ψ.

Note that the query φmine is much more specific than the original query
φ. We thus obtain a speedup, because we have shown in Section 3.2 that the
speed of integrated querying is proportional to the selectivity of the query.

3.3.4 Avoiding Exploding Queries

The improvement just described incurs a new problem. The formula φsets

becomes longer with the session. When, given the next query φ, we mine for
φ ∧ ¬φsets , and convert this to disjoint DNF which could explode.

To avoid this, consider φsets in DNF: φ1∨· · ·∨φn. Instead of the full query
φ∧¬φsets , we are going to use a query φ∧¬φ′sets , where φ′sets is obtained from
φsets by keeping only the least selective disjuncts φi (their negation will thus
be most selective). In this way φ ∧ ¬φ′sets is kept short.

But how do we measure selectiveness of a φi? Several heuristics come to
mind. A simple one is to keep for each φi the number of cached sets that
satisfy it. These numbers can be maintained incrementally.

3.3.5 Experimental Evaluation

For each data set, we experimented with a session of 100 queries using the inte-
grated querying approach, the post-processing approach and the incremental
approach. For the same reasons as explained in the previous section, we only
show the time needed to generate the necessary itemsets. Again, the queries
used for the sessions were randomly generated. Figure 3.3 shows the evolution
of the sessions in time.

For all four sessions, the cut-off point where the integrated querying ap-
proach loses against the post-processing approach is the same for the incremen-
tal querying approach since not enough itemsets could be reused before that.
Except for the mushroom data set, the incremental approach starts paying off
after the twentieth query. However, as can be seen, the incremental approach
shows a significant improvement on the integrated querying approach. Only
for the mushroom data set, the cut-off point occurs at the fifth query, and
almost all itemsets have been generated after the eighteenth query. As can be
seen, the performance of the post-processing approach is very good compared
to the other approaches. Nevertheless, if we still lowered the support thresh-
olds, the post-processing approach became infeasible to begin with, due to an
overload of frequent itemsets. In that case, the integrated and incremental ap-
proach are still feasible and perform very similarly as they do in the presented
experiments.

56 Chapter 3. Interactive Constrained Association Rule Mining

0

200

400

600

800

1000

1200

0 20 40 60 80 100

to
ta

l t
im

e
(s

ec
on

ds
)

query number

post-processing

integrated

incremental

(a) basket

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100

to
ta

l t
im

e
(s

ec
on

ds
)

query number

post-processing

integrated

incremental

(b) BMS-Webview-1

Figure 3.3: Performance comparison of the three approaches.

3.3. Interactive Mining 57

0

5000

10000

15000

20000

25000

0 20 40 60 80 100

to
ta

l t
im

e
(s

ec
on

ds
)

query number

post-processing

integrated

incremental

(c) T40I10D100K

0

5000

10000

15000

20000

25000

0 20 40 60 80 100

to
ta

l t
im

e
(s

ec
on

ds
)

query number

post-processing

integrated

incremental

(d) mushroom

Figure 3.3: Performance comparison of the three approaches.

58 Chapter 3. Interactive Constrained Association Rule Mining

3.4 Conclusions

This study revealed several insights into the association rule mining prob-
lem. First, due to recent advances on association rule mining algorithms, the
performance has been significantly improved, such that the advantages of in-
tegrating constraints into the mining algorithm suddenly become less clear.
Indeed, we showed that as long as mining without any constraints is feasible,
that is, if the number of frequent itemsets does not reach massive amounts,
the total time spent to query the frequent itemsets and confident association
rules becomes less after a certain amount of queries, compared to integrated
querying, in which every query is pushed into the mining algorithm. The in-
cremental approach still improves the integrated approach by reusing as much
previously generated results as possible. If the cut-off point would lie beyond
the number of queries in which the user is interested, the incremental approach
is obviously the best choice to use.

Of course, if the user is interested in some frequent itemsets and associa-
tion rules which have very low frequencies, and hence mining without any con-
straints becomes infeasible, the incremental approach can still be performed.

Also note that if a user is still interested in all frequent sets and association
rules, but mining without constraints is infeasible, our queries can be used to
divide the task over several runs, without spending much more time. For
example, one can ask different queries of which the disjunction still gives all
sets and rules. Essentially, this technique forms the basis of the Eclat [80] and
FP-growth [41] algorithms.

4
Tight Upper Bounds on the
Number of Candidate
Patterns

Several improvements on the Apriori algorithm try to reduce the number of
scans through the database by estimating the number of candidate patterns
that can still be generated.

At the heart of all these techniques lies the following purely combinatorial
problem, that must be solved first before we can seriously start applying them:
given the current set of frequent patterns at a certain iteration of the algorithm,
what is the maximal number of candidate patterns that can be generated in the
iterations yet to come?

Our contribution is to solve this problem by providing a hard and tight
combinatorial upper bound. By computing our upper bound after every it-
eration of the algorithm, we have at all times an airtight guarantee on the
size of what is still to come, on which we can then base various optimization
decisions, depending on the specific algorithm that is used.

In the next section, we will discuss existing techniques to reduce the num-
ber of database scans, and point out the dangers of using existing heuristics
for this purpose. Using our upper bound, these techniques can be made wa-
tertight. In Section 4.2, we derive our upper bound, using a combinatorial
result from the sixties by Kruskal and Katona. In Section 4.3, we show how
to get even more out of this upper bound by applying it recursively. We will
then generalize the given upper bounds such that they can be applied by a

59

60 Chapter 4. Upper Bounds

wider range of algorithms in Section 4.4. In Section 4.5, we discuss several
issues concerning the implementation of the given upper bounds on top of
Apriori-like algorithms. In Section 4.6, we give experimental results, showing
the effectiveness of our result in estimating, far ahead, how much will still be
generated in the future. Finally, we conclude the chapter in Section 4.7.

Bibliographical note Parts of this chapter have been published before in
the Proceedings of the 2001 IEEE International Conference on Data Min-
ing [30].

4.1 Related Work

Nearly all frequent pattern mining algorithms developed after the proposal of
the Apriori algorithm, rely on its levelwise candidate generation and prun-
ing strategy. Most of them differ in how they generate and count candidate
patterns as we described in Chapter 2.

Several strategies try to reduce the number of scans through the database.
However, such a reduction often causes an increase in the number of candidate
patterns that need to be explored during a single scan. This tradeoff between
the reduction of scans and the number of candidate patterns is important
since, as we recall, the time needed to process a transaction is dependent on
the number of candidates that are covered in that transaction, which might
blow up exponentially. Our upper bound can be used to predict whether or
not this blowup will occur.

The Partition algorithm, proposed by Savasere et al. [70], reduces the
number of database scans to two. Nevertheless, its performance is heavily
dependent on the distribution of the data, and could generate much too many
candidates.

The Sampling algorithm proposed by Toivonen [77] performs at most
two scans through the database by first mining a random sample from the
database. In the cases where this sample does not produce all frequent pat-
terns, the missing patterns can be found by generating all remaining poten-
tially frequent patterns and verifying their frequencies during a second scan
through the database. The probability of such a failure can be kept small by
decreasing the minimal support threshold. However, for a reasonably small
probability of failure, the threshold must be drastically decreased, which can
again cause a combinatorial explosion of the number of candidate patterns.

Other successful algorithms attempt to generate frequent patterns using a
depth-first search. Generating patterns in a depth-first manner implies that
the monotonicity property cannot be exploited anymore. Hence, a lot more

4.2. The Basic Upper Bounds 61

patterns will be generated and need to be counted, compared to the breadth-
first algorithms.

The first heuristic specifically proposed to estimate the number of can-
didate patterns that can still be generated was used in the AprioriHybrid
algorithm [6, 4], as we explained in Chapter 2. This algorithm uses Apriori in
the initial iterations and switches to AprioriTid if it expects it to run faster.
This AprioriTid algorithm does not use the database at all for counting the
support of candidate patterns. Rather, an encoding of the candidate patterns
used in the previous iteration is employed for this purpose. The AprioriHy-
brid algorithm switches to AprioriTid when it expects this encoding of the
candidate patterns to be small enough to fit in main memory. The size of the
encoding grows with the number of candidate patterns. Therefore, it calcu-
lates the size the encoding would have in the current iteration. If this size is
small enough and there are fewer candidate patterns in the current iteration
than the in previous iteration, the heuristic decides to switch to AprioriTid.

This heuristic (like all heuristics) is not waterproof, however. Take, for
example, two disjoint data sets. The first data set consists of all subsets of
a frequent pattern of size 20. The second data set consists of all subsets of
1 000 disjoint frequent patterns of size 5. If we merge these two data sets,
we get

(
20
3

)
+ 1 000

(
5
3

)
= 11 140 patterns of size 3 and

(
20
4

)
+ 1 000

(
5
4

)
= 9845

patterns of size 4. If we have enough memory to store the encoding for all these
patterns, then the heuristic decides to switch to AprioriTid. This decision is
premature, however, because the number of new patterns in each pass will
start growing exponentially afterwards.

Another improvement of the Apriori algorithm, which is part of the folk-
lore, tries to combine as many iterations as possible in the end, when only few
candidate patterns can still be generated. The potential of such a combination
technique was realized early on [6], but the modalities under which it can be
applied were never further examined. Our work does exactly that.

4.2 The Basic Upper Bounds

In all that follows, L is some family of patterns of size k.

Definition 4.1. A candidate pattern for L is a pattern (of size larger than k)
of which all k-subsets are in L. For a given p > 0, we denote the set of all
size-k + p candidate patterns for L by Ck+p(L).

For any p ≥ 1, we will provide an upper bound on |Ck+p(L)| in terms of
|L|. The following lemma is central to our approach. (A simple proof was
given by Katona [51].)

62 Chapter 4. Upper Bounds

Lemma 4.1. Given n and k, there exists a unique representation

n =
(
mk

k

)
+

(
mk−1

k − 1

)
+ · · ·+

(
mr

r

)
,

with r ≥ 1, mk > mk−1 > . . . > mr, and mi ≥ i for i = r, r + 1, . . . , k.

This representation is called the k-canonical representation of n and can
be computed as follows: The integer mk satisfies

(
mk
k

)
≤ n <

(
mk+1

k

)
, the

integer mk−1 satisfies
(mk−1

k−1

)
≤ n −

(
mk
k

)
<

(mk−1+1
k−1

)
, and so on, until n −(

mk
k

)
−

(mk−1

k−1

)
− · · · −

(
mr

r

)
is zero.

We now establish:

Theorem 4.2. If

|L| =
(
mk

k

)
+

(
mk−1

k − 1

)
+ · · ·+

(
mr

r

)
in k-canonical representation, then

|Ck+p(L)| ≤
(
mk

k + p

)
+

(
mk−1

k − 1 + p

)
+ · · ·+

(
ms+1

s+ p+ 1

)
,

where s is the smallest integer such that ms < s+ p. If no such integer exists,
we set s = r − 1.

Proof. Suppose, for the sake of contradiction, that

|Ck+p(L)| ≥
(
mk

k + p

)
+

(
mk−1

k − 1 + p

)
+ · · ·+

(
ms+1

s+ p+ 1

)
+

(
s+ p

s+ p

)
.

Note that this is in k+p-canonical representation. A theorem by Kruskal and
Katona [29, 51, 53] says that

|L| ≥
(
mk

k

)
+

(
mk−1

k − 1

)
+ · · ·+

(
ms+1

s+ 1

)
+

(
s+ p

s

)
.

But this is impossible, because

|L| =
(
mk

k

)
+

(
mk−1

k − 1

)
+ · · ·+

(
ms+1

s+ 1

)
+

(
ms

s

)
+ · · ·+

(
mr

r

)
≤

(
mk

k

)
+

(
mk−1

k − 1

)
+ · · ·+

(
ms+1

s+ 1

)
+

∑
1≤i≤s

(
i+ p− 1

i

)
<

(
mk

k

)
+

(
mk−1

k − 1

)
+ · · ·+

(
ms+1

s+ 1

)
+

∑
0≤i≤s

(
i+ p− 1

i

)
=

(
mk

k

)
+

(
mk−1

k − 1

)
+ · · ·+

(
ms+1

s+ 1

)
+

(
s+ p

s

)
.

The first inequality follows from the observation that ms ≤ s+ p− 1 implies
mi ≤ i + p − 1 for all i = s, s − 1, . . . , r. The last equality follows from a
well-known binomial identity.

4.2. The Basic Upper Bounds 63

Notation We will refer to the upper bound provided by the above theorem
as KK k+p

k (|L|) (for Kruskal-Katona). The subscript k, the level at which we
are predicting, is important, as the only parameter is the cardinality |L| of L,
not L itself. The superscript k + p denotes the level we are predicting.

Proposition 4.3 (Tightness). The upper bound provided by Theorem 4.2 is
tight: for any given n and k there always exists an L with |L| = n such that
for any given p, |Ck+p(L)| = KK k+p

k (|L|).

Proof. Let us write a finite set of natural numbers as a string of natural num-
bers by writing its members in decreasing order. We can then compare two
such sets by comparing their strings in lexicographic order. The resulting or-
der on the sets is known as the colexicographic (or colex) order. An intuitive
proof of the Kruskal-Katona theorem, based on this colex order, was given by
Bollobás [12]. Let (

mk

k

)
+

(
mk−1

k − 1

)
+ · · ·+

(
mr

r

)
be the k-canonical representation of n. Then, Bollobás has shown that all k−p-
subsets of the first n k-sets of natural numbers in colex order, are exactly the
first (

mk

k − p

)
+

(
mk−1

k − 1− p

)
+ · · ·+

(
ms

r − s

)
k − p-sets of natural numbers in colex order, with s the smallest integer such
that s > p. Using the same reasoning as above, we can conclude that all k+p-
supersets of the first n k-sets of natural numbers in colex order are exactly
the first KKk+p

k (n) k + p-sets of natural numbers in colex order.

Analogous tightness properties hold for all upper bounds we will present
in this chapter, but we will no longer explicitly state this.

Example 4.1. Let L be the set of 13 patterns of size 3:

{{3, 2, 1}, {4, 2, 1}, {4, 3, 1}, {4, 3, 2},
{5, 2, 1}, {5, 3, 1}, {5, 3, 2}, {5, 4, 1}, {5, 4, 2}, {5, 4, 3},
{6, 2, 1}, {6, 3, 1}, {6, 3, 2}}.

The 3-canonical representation of 13 is
(
5
3

)
+

(
3
2

)
and hence the maximum

number of candidate patterns of size 4 is KK 4
3(13) =

(
5
4

)
+

(
3
3

)
= 6 and the

maximum number of candidate patterns of size 5 is KK 5
3(13) =

(
5
5

)
= 1. This

is tight indeed, because

C4(L) = {{4, 3, 2, 1}, {5, 3, 2, 1}, {5, 4, 2, 1},
{5, 4, 3, 1}, {5, 4, 3, 2}, {6, 3, 2, 1}}

64 Chapter 4. Upper Bounds

and
C5(L) = {{5, 4, 3, 2, 1}}.

Estimating the number of levels The k-canonical representation of |L|
also yields an upper bound on the maximal size of a candidate pattern, de-
noted by maxsize(L). Recall that this size equals the number of iterations the
standard Apriori algorithm will perform. Indeed, since |L| <

(
mk+1

k

)
, there

cannot be a candidate pattern of size mk + 1 or higher, so:

Proposition 4.4. If
(
mk
k

)
is the first term in the k-canonical representation

of |L|, then maxsize(L) ≤ mk.

We denote this number mk by µk(|L|). From the form of KK k+p
k as given

by Theorem 4.2, it is immediate that µ also tells us the last level before which
KK becomes zero. Formally:

Proposition 4.5.

µk(|L|) = k + min{p | KK k+p
k (|L|) = 0} − 1.

Estimating all levels As a result of the above, we can also bound, at any
given level k, the total number of candidate patterns that can be generated,
as follows:

Proposition 4.6. The total number of candidate patterns that can be gener-
ated from a set L of k-patterns is at most

KK total
k (|L|) :=

∑
p≥1

KK k+p
k (|L|).

4.3 Improved Upper Bounds

The upper bound KK on itself is neat and simple as it takes as parameters
only two numbers: the current size k, and the number |L| of current frequent
patterns. However, in reality, when we have arrived at a certain level k,
we do not merely have the cardinality: we have the actual set L of current
k-patterns! For example, if the frequent patterns in the current pass are
all disjoint, our current upper bound will still estimate their number to a
certain non-zero figure. However, by the pairwise disjointness, it is clear that
no further patterns will be possible at all. In sum, because we have richer
information than a mere cardinality, we should be able to get a better upper
bound.

To get inspiration, let us recall that the candidate generation process of
the Apriori algorithm works in two steps. In the join step, we join L with

4.3. Improved Upper Bounds 65

itself to obtain a superset of Ck+1. The union p∪ q of two patterns p, q ∈ L is
inserted in Ck+1 if they share their k − 1 smallest items:

insert into Ck+1

select p[1], p[2], . . . , p[k], q[k]
from Lk p, Lk q
where p[1] = q[1], . . . , p[k − 1] = q[k − 1], p[k] < q[k]

Next, in the prune step, we delete every pattern c ∈ Ck+1 such that some
k-subset of c is not in L.

Let us now take a closer look at the join step from another point of view.
Consider a family of all frequent patterns of size k that share their k − 1
smallest items, and let its cardinality be n. If we now remove from each of
these patterns all these shared k − 1 smallest items, we get exactly n distinct
single-item patterns. The number of pairs that can be formed from these
single items, being

(
n
2

)
, is exactly the number of candidates the join step will

generate for the family under consideration. We thus get an obvious upper
bound on the total number of candidates by taking the sum of all

(nf

2

)
, for

every possible family f .
This obvious upper bound on |Ck+1|, which we denote by obviousk+1(L),

can be recursively computed in the following manner. Let I denote the set of
items occurring in L. For an arbitrary item x, define the set Lx as

Lx = {s− {x} | s ∈ L and x = min s}.

Then

obviousk+1(L) :=

(
|L|
2

)
if k = 1;∑

x∈I obviousk(Lx) if k > 1.

This upper bound is much too crude, however, because it does not take
the prune step into account, only the join step. The join step only checks two
k-subsets of a potential candidate instead of all k + 1 k-subsets.

However, we can generalize this method such that more subsets will be
considered. Indeed, instead of taking a family of all frequent patterns sharing
their k− 1 smallest items, we can take all frequent patterns sharing only their
k′ smallest items, for some k′ ≤ k − 1. If we then remove these k′ shared
items from each pattern in the family, we get a new set L′ of n patterns of size
k − k′. If we now consider the set C ′ of candidates (of size k − k′ + 1) for L′,
and add back to each of them the previously removed k′ items, we obtain a
pruned set of candidates of size k+1, where instead of just two (as in the join
step), k − k′ + 1 of the k-subsets were checked in the pruning. Note that we
can get the estimate KKk−k′+1

k−k′ (|L′|) on the cardinality of C ′ from our upper
bound Theorem 4.2.

66 Chapter 4. Upper Bounds

Doing this for all possible values of k′ yields an improved upper bound
on |Ck+1|, which we denote by improvedk+1(L), and which is computed by
refining the recursive procedure for the obvious upper bound as follows:

improvedk+1(L) :=

(
|L|
2

)
if k = 1;

min{KKk+1
k (|L|),

∑
x∈I improvedk(Lx)} if k > 1.

Actually, as in the previous section, we can do this not only to estimate
|Ck+1|, but also more generally to estimate |Ck+p| for any p ≥ 1. Henceforth
we will denote our general improved upper bound by KK∗

k+p(L). The general
definition is as follows:

KK ∗
k+p(L) :=

{
KK k+p

k (|L|) if k = 1;
min{KK k+p

k (|L|),
∑

x∈I KK ∗
k+p−1(L

x)} if k > 1.

(For the base case, note that KK k+p
k (|L|), when k = 1, is nothing but

(|L|
p+1

)
.)

By definition, KK ∗
k+p is always smaller than KK k+p

k . We now prove for-
mally that it is still an upper bound on the number of candidate patterns of
size k + p:

Theorem 4.7.
|Ck+p(L)| ≤ KK ∗

k+p(L).

Proof. By induction on k. The base case k = 1 is clear. For k > 1, it suffices
to show that for all p > 0

Ck+p(L) ⊆
⋃
x∈I

Ck+p−1(Lx) + x. (4.1)

(For any set of patterns H, we denote {h ∪ {x} | h ∈ H} by H + x.)
From the above containment we can conclude

|Ck+p(L)| ≤ |
⋃
x∈I

Ck+p−1(Lx) + x|

≤
∑
x∈I

|Ck+p−1(Lx) + x|

=
∑
x∈I

|Ck+p−1(Lx)|

≤
∑
x∈I

KK ∗
k+p−1(L

x)

where the last inequality is by induction.

4.3. Improved Upper Bounds 67

To show (4.1), we need to show that for every p > 0 and every s ∈ Ck+p(L),
s − {x} ∈ Ck+p−1(Lx), where x = min s. This means that every subset of
s − {x} of size k − 1 must be an element of Lx. Let s − {x} − {y1, . . . , yp}
be such a subset. This subset is an element of Lx iff s− {y1, . . . , yp} ∈ L and
x = min(s− {y1, . . . , yp}). The first condition follows from s ∈ Ck+p(L), and
the second condition is trivial. Hence the theorem.

A natural question is why we must take the minimum in the definition of
KK ∗. The answer is that the two terms of which we take the minimum are
incomparable. The example of an L where all patterns are pairwise disjoint,
already mentioned in the beginning of this section, shows that, for example,
KK k+1

k (|L|) can be larger than the summation
∑

x∈I KK ∗
k(L

x). But the con-
verse is also possible: consider L = {{1, 2}, {1, 3}}. Then KK 3

2(L) = 0, but
the summation yields 1.

Example 4.2. Let L consist of all 19 3-subsets of {1, 2, 3, 4, 5} and {3, 4, 5, 6, 7}
plus the sets {5, 7, 8} and {5, 8, 9}. Because 21 =

(
6
3

)
+

(
2
2

)
, we have KK 4

3(21) =
15, KK 5

3(21) = 6 and KK 6
3(21) = 1. On the other hand,

KK ∗
4(L) = KK ∗

3(L
1) + KK ∗

3(L
2) + KK ∗

3(L
3) + KK ∗

3(L
4)

+ KK ∗
2((L

5)6) + KK ∗
2((L

5)7) + KK ∗
2((L

5)8) + KK ∗
2((L

5)9)

+ KK ∗
3(L

6) + KK ∗
3(L

7) + KK ∗
3(L

8) + KK ∗
3(L

9)
= 4 + 1 + 4 + 1 + 0 + · · ·+ 0
= 10

and

KK ∗
5(L) = KK ∗

4(L
1) + KK ∗

4(L
2) + KK ∗

4(L
3) + KK ∗

4(L
4)

+ KK ∗
3((L

5)6) + KK ∗
3((L

5)7) + KK ∗
3((L

5)8) + KK ∗
3((L

5)9)

+ KK ∗
4(L

6) + KK ∗
4(L

7) + KK ∗
4(L

8) + KK ∗
4(L

9)
= 1 + 0 + 1 + 0 + 0 + · · ·+ 0
= 2.

Indeed, we have 10 4-subsets of {1, 2, 3, 4, 5} and {3, 4, 5, 6, 7}, and the two
5-sets themselves.

We can also improve the upper bound µk(|L|) on maxsize(L). In analogy
with Proposition 4.5, we define:

µ∗k(L) := k + min{p | KK ∗
k+p(L) = 0} − 1.

We then have:

68 Chapter 4. Upper Bounds

Proposition 4.8.
maxsize(L) ≤ µ∗k(L) ≤ µk(L).

We finally use Theorem 4.7 for improving the upper bound KK total
k on the

total number of candidate patterns. We define:

KK ∗
total(L) :=

∑
p≥1

KK ∗
k+p(L).

Then we have:

Proposition 4.9. The total number of candidate patterns that can be gener-
ated from a set L of k-patterns is bounded by KK ∗

total(L). Moreover,

KK ∗
total(L) ≤ KK total

k (L).

4.4 Generalized Upper Bounds

The upper bounds presented in the previous sections work well for algorithms
that generate and test candidate patterns of one specific size at a time. How-
ever, a lot of algorithms generate and test patterns of different sizes within
the same pass of the algorithm [16, 9, 77]. Hence, these algorithms know in
advance that several patterns of size larger than k are frequent or not. Since
our upper bound is solely based on the patterns of a certain length k, it does
not use information about patterns of length larger than k.

Nevertheless, these larger sets could give crucial information. More specif-
ically, suppose we have generated all frequent patterns of size k, and we also
already know in advance that a certain set of size larger than k is not frequent.
Our upper bound on the total number of candidate patterns that can still be
generated, would disregard this information. We will therefore generalize our
upper bound such that it will also incorporate this additional information.

4.4.1 Generalized KK -Bounds

From now on, L is some family of sets of patterns Lk, Lk+1, . . . , Lk+q which
are known to be frequent, such that Lk+p contains patterns of size k + p, and
all k + p− 1-subsets of all patterns in Lk+p are in Lk+p−1. We denote by |L|
the sequence of numbers |Lk|, |Lk+1|, . . . , |Lk+q|.

Similarly, let I be a family of sets of patterns Ik, Ik+1, . . . , Ik+q which are
known to be infrequent, such that Ik+p contains patterns of size k+ p and all
k + p− 1-subsets of all patterns in Ik+p are in Lk+p−1. We denote by |I| the
sequence of numbers |Ik|, |Ik+1|, . . . , |Ik+q|. Note that for each p ≥ 0, Lk+p

and Ik+p are disjoint.
Before we present the general upper bounds, we also generalize our notion

of a candidate pattern.

4.4. Generalized Upper Bounds 69

Definition 4.2. A candidate pattern for (L, I) of size k+p is a pattern which
is not in Lk+p or Ik+p, all of its k-subsets are in Lk, and none of its subsets
of size larger than k is included in Ik ∪ Ik+1 ∪ · · · ∪ Ik+q. For a given p, we
denote the set of all k + p-size candidate patterns for (L, I) by Ck+p(L, I).

We note:

Lemma 4.10.

Ck+p(L, I) =

{
Ck+1(Lk) \ (Lk+1 ∪ Ik+1) if p = 1;
Ck+p

(
Ck+p−1(L, I) ∪ Lk+p−1

)
\ (Lk+p ∪ Ik+p) if p > 1.

Proof. The case p = 1 is clear. For p > 1, we show the inclusion in both
directions.

⊇ For every set in Ck+p

(
Ck+p−1(L, I) ∪ Lk+p−1

)
, we know that all of its

k-subsets are always contained in a k + p − 1 subset, and these are
in Ck+p−1(L, I) ∪ Lk+p−1. By definition, we know that for every set in
Ck+p−1(L, I), all of its k-subsets are in Lk. Also, for every set in Lk+p−1,
all of its k-subsets are in Lk. By definition, for every set in Ck+p−1(L, I),
all of its k+p−i-subsets are not in Ik+p−i. Also, for every set in Lk+p−1,
all of its k+p− i-subsets are in Lk+p−i and hence they are not in Ik+p−i

since they are disjoint. By definition, none of the patterns in Lk+p∪Ik+p

are in Ck+p(L, I).

⊆ It suffices to show that for every set in Ck+p(L, I), every k+p−1-subset
s is in Ck+p−1(L, I) ∪ Lk+p−1. Obviously, this is true, since if it is not
already in Lk+p−1, still all k-subsets of s must be in Lk, s can not be in
Ik+p−1 and none of its subsets can be in any Ik+p−` with ` > 1.

Hence, we define

gKK k+p
k (|L|, |I|) :={

KK k+1
k (|Lk|)− |Lk+1| − |Ik+1| if p = 1;

KK k+p
k+p−1(gKK k+p−1

k (|L|, |I|) + |Lk+p−1|)− |Lk+p| − |Ik+p| if p > 1,

and obtain:

Theorem 4.11.

|Ck+p(L, I)| ≤ gKK k+p
k (|L|, |I|) ≤ KK k+p

k (|Lk|)− |Lk+p| − |Ik+p|.

70 Chapter 4. Upper Bounds

Proof. The first inequality is clear by Lemma 4.10. The second inequality is
by induction on p. The base case p = 1 is by definition. For p > 1, we have:

gKK k+p
k (|L|, |I|) = KK k+p

k+p−1(gKK k+p−1
k (|L|, |I|) + |Lk+p−1|)

− |Lk+p| − |Ik+p|

≤ KK k+p
k+p−1(KK k+p−1

k (|Lk|)− |Ik+p−1|)− |Lk+p| − |Ik+p|

≤ KK k+p
k+p−1(KK k+p−1

k (|Lk|))− |Lk+p| − |Ik+p|

= KK k+p
k (|Lk|)− |Lk+p| − |Ik+p|

where the first inequality is by induction and because of the monotonicity of
KK , the second inequality also because of the monotonicity of KK and the
last equality follows from

KK k+p
k (|Lk|)) = KK k+p

k+p−1(KK k+p−1
k (|Lk|)).

Again, we can also generalize the upper bound on the maximal size of
a candidate pattern, denoted by maxsize(L, I), and the upper bound on the
total number of candidate patterns, both also incorporating (L, I):

gµ(|L|, |I|) := k + min{p | gKK k+p
k (|L|, |I|) = 0} − 1

gKK total
k (|L|, |I|) :=

∑
p≥1

gKK k+p
k (|L|, |I|).

We obtain:

Proposition 4.12.

maxsize(L, I) ≤ gµ(|L|, |I|) ≤ µ(|L|).

Proposition 4.13. The total number of candidate patterns that can be gen-
erated from (L, I) is bounded by gKK total

k (|L|, |I|). Moreover,

gKK total
k (|L|, |I|) ≤ KK total

k (|Lk|).

Example 4.3. Suppose L3 consists of all subsets of size 3 of the set {1, 2, 3, 4,
5, 6}. Now assume we already know that I4 contains patterns {1, 2, 3, 4} and
{3, 4, 5, 6}. The KK upper bound presented in the previous section would
estimate the number of candidate patterns of sizes 4, 5, and 6 to be at most(
6
4

)
= 15,

(
6
5

)
= 6, and

(
6
6

)
= 1 respectively. Nevertheless, using the additional

information, gKK can already reduce these numbers to 13, 3, and 0. Also, µ
would predict the maximal size of a candidate pattern to be 6, while gµ can
already predict this number to be at most 5. Similarly, KK total would predict
the total number of candidate patterns that can still be generated to be at
most 22, while gKK total can already deduce this number to be at most 16.

4.4. Generalized Upper Bounds 71

4.4.2 Generalized KK ∗-Bounds

Using the generalized basic upper bound, we can now also generalize our im-
proved upper bound KK ∗. For an arbitrary item x, define the family of sets
Lx as Lx

k, L
x
k+1, . . . , L

x
k+q, and Ix as Ix

k , I
x
k+1, . . . , I

x
k+q. We define:

gKK ∗
k+p(L, I) :={

gKK k+p
k (|L|, |I|) if k = 1;

min{gKK k+p
k (|L|, |I|),

∑
x∈I gKK ∗

k+p−1(L
x, Ix)} if k > 1.

We then have:

Theorem 4.14.

|Ck+p(L, I)| ≤ gKK ∗
k+p(L, I) ≤ KK ∗

k+p(Lk)− |Lk+p| − |Ik+p|.

Proof. The proof of the first inequality is similar to the proof of Theorem 4.7,
instead that we now need to show that for all p > 0,

Ck+p(L, I) ⊆
⋃
x∈I

Ck+p−1(Lx, Ix) + x.

Therefore, we need to show that for every s ∈ Ck+p(L, I) the subset s − {x}
is in Ck+p−1(Lx, Ix), where x = min s. First, this means that every subset
of s − {x} of size k − 1 must be in Lx

k. Let s − {x} − {y1, . . . , yp} be such a
subset. This subset is an element of Lx

k if and only if s−{y1, . . . , yp} ∈ Lk and
x = min(s − {y1, . . . , yp}). The first condition follows from s ∈ Ck+p(L, I),
and the second condition is trivial. Second, we need to show that s − {x} is
not in Lx

k+p. Since s ∈ Ck+p(L, I), s is not in Lk+p and hence s− {x} cannot
be in Lx

k+p. Finally, we need to show that none of the subsets of s − {x} of
size greater than k − 1 are in Ix

k+1, . . . , I
x
k+p−1. Let s− {x} − {y1, . . . , ym} be

such a subset. Since s ∈ Ck+p(L, I), s − {y1, . . . , ym} is not in Ik+p−m, and
hence s− {x} − {y1, . . . , ym} cannot be in Ix

k+p−m.
We prove the second inequality by induction on k. The base case k = 1 is

clear. For all k > 0, we have

gKK ∗
k+p(L, I) = min{gKK k+p

k (|L|, |I|),
∑
x∈I

gKK ∗
k+p−1(L

x, Ix)}

≤ min{KK k+p
k (|Lk|)− |Lk+p| − |Ik+p|,

∑
x∈I

KK ∗
k+p−1(L

x
k)− |Lx

k+p| − |Ix
k+p|}

= min{KK k+p
k (|L|),

∑
x∈I

KK ∗
k+p−1(L

x)} − |Lk+p| − |Ik+p|

= KK ∗
k+p(Lk)− |Lk+p| − |Ik+p|

where the left hand side of the minimum in the inequality is by Theorem 4.11
and the right hand side is by induction.

72 Chapter 4. Upper Bounds

Again, we get an upper bound on maxsize(L, I):

gµ∗(L, I) := k + min{p | gKK ∗
k+p(L, I) = 0} − 1,

and on the total number of candidate patterns that can still be generated:

gKK ∗
total(L, I) :=

∑
p≥1

gKK ∗
k+p(L, I).

We then have the following analogous propositions to 4.8 and 4.9:

Proposition 4.15.

maxsize(L, I) ≤ gµ∗(L, I) ≤ µ∗(L).

Proposition 4.16. The total number of candidate patterns that can be gen-
erated from (L, I) is bounded by gKK ∗

total(L, I). Moreover,

gKK ∗
total(L, I) ≤ KK ∗

total(Lk).

Example 4.4. Consider the same set of patterns as in the previous example.
I.e., L3 consists of all subsets of size 3 of the set {1, 2, 3, 4, 5, 6} and {1, 2, 3, 4}
and {3, 4, 5, 6} are included in I4. The KK ∗ upper bound presented in the
previous section would also estimate the number of candidate patterns of sizes
4, 5, and 6 to be at most

(
6
4

)
= 15,

(
6
5

)
= 6, and

(
6
6

)
= 1 respectively. Nev-

ertheless, using the additional information, gKK ∗ can perfectly predict these
numbers to be 13, 2, and 0. Again, µ∗ would predict the maximal size of a
candidate pattern to be 6, while gµ∗ can already predict this number to be at
most 5. Similarly, KK ∗

total would predict the total number of candidate pat-
terns that can still be generated to be at most 22, while gKK ∗

total can already
deduce this number to be at most 15.

4.5 Efficient Implementation

For simplicity reasons, we will restrict ourselves to the explanation of how
the improved upper bounds can be implemented. The proposed implementa-
tion can be easily extended to support the computation of the general upper
bounds.

To evaluate our upper bounds we implemented an optimized version of
the Apriori algorithm using the trie data structure to store all generated pat-
terns. This trie structure makes it cheap and straightforward to implement
the computation of all upper bounds. Indeed, a top-level subtrie (rooted at
some singleton pattern {x}) represents exactly the set Lx we defined in Sec-
tion 4.3. Every top-level subtrie of this subtrie (rooted at some two-element

4.6. Experimental Evaluation 73

pattern {x, y}) then represents (Lx)y, and so on. Hence, we can compute the
recursive bounds while traversing the trie, after the frequencies of all candidate
patterns are counted, and we have to traverse the trie once more to remove
all candidate patterns that turned out to be infrequent. This can be done as
follows.

Remember, at that point, we have the current set of frequent patterns of
size k stored in the trie. For every node at depth d smaller than k, we compute
the k−d-canonical representation of the number of descendants this node has
at depth k, which can be used to compute µk−d (cf. Proposition 4.4), KK `

k−d

for any ` ≤ µk−d (cf. Theorem 4.2) and hence also KK total
k−d (cf. Proposition 4.6).

For every node at depth k − 1, its KK ∗ and µ∗ values are equal to its KK
and µ values respectively. Then compute for every p > 0, the sum of the
KK ∗

k−d+p−1 values of all its children, and let KK ∗
k−d+p be the smallest of

this sum and KK k−d+p
k−d until this minimum becomes zero, which also gives

us the value of µ∗. Finally, we can compute KK ∗
total for this node. If this is

done for every node, traversed in a depth-first manner, then finally the root
node will contain the upper bounds on the number of candidate patterns that
can still be generated, and on the maximum size of any such pattern. The
soundness and completeness of this method follows directly from the theorems
and propositions of the previous sections.

We should also point out that, since the numbers involved can become
exponentially large (in the number of items), an implementation should take
care to use arbitrary-length integers such as provided by standard mathemat-
ical packages. Since the length of an integer is only logarithmic in its value,
the lengths of the numbers involved will remain polynomially bounded.

4.6 Experimental Evaluation

The algorithm was implemented in C++ and uses the GNU MP library for
arbitrary-length integers [34].

The results from the experiment with the real data sets were not immedi-
ately as good as the results from the synthetic data set. The reason for this,
however, turned out to be the bad ordering of the items, as explained next.

Reordering

From the form of Lx, it can be seen that the order of the items can affect the
recursive upper bounds. By computing the upper bound only for a subset of
all frequent patterns (namely Lx), we win by incorporating the structure of
the current collection of frequent patterns, but we also lose some information.
Indeed, whenever we recursively restrict ourselves to a subtrie Lx, then for

74 Chapter 4. Upper Bounds

0.01

0.1

1

10

100

100 1000 10000 100000 1e+06 1e+07

tim
e

(s
ec

on
ds

)

number of nodes

Figure 4.1: Time needed to compute upper bounds is linear in the number of
nodes.

every candidate pattern s with x = min s, we lose the information about
exactly one subpattern in L, namely s− x.

We therefore would like to make it likely that many of these excluded
patterns are frequent. A good heuristic, which has already been used for
several other optimizations in frequent pattern mining [9, 16, 2], is to force the
most frequent items to appear in the most candidate patterns, by reordering
the single item patterns in ascending order of support.

After reordering the items in the real life data set, using this heuristic, the
results became very analogous with the results using the synthetic data sets.

Efficiency

The cost for the computation of the upper bounds is negligible compared to
the cost of the complete algorithm. Indeed, the time T needed to calculate
the upper bounds is largely dictated by the number n of currently known
frequent sets. We have shown experimentally that T scales linearly with n.
Moreover, the constant factor in our implementation is very small (around
0.00001). We ran several experiments using the different data sets and varying
minimal support thresholds. After every pass of the algorithm, we registered
the number of known frequent sets and the time spent to compute all upper
bounds, resulting in 145 different data points. Figure 4.1 shows these results.

4.6. Experimental Evaluation 75

Upper Bounds

• Figure 4.2 shows, after each level k, the computed upper bound KK
and improved upper bound KK ∗ for the number of candidate patterns
of size k + 1, as well as the actual number |Ck+1| it turned out to be.
We omitted the upper bound for k + 1 = 2, since this upper bound is
simply

(|L|
2

)
, with |L| the number of frequent items.

• Figure 4.3 shows the upper bounds on the total number of candidate
patterns that could still be generated, compared to the actual number
of candidate patterns, |Ctotal|, that were effectively generated. Again,
we omitted the upper bound for k = 1, since this number is simply
2|L| − |L| − 1, with |L| the number of frequent items.

• Figure 4.4 shows the computed upper bounds µ and µ∗ on the maximal
size of a candidate pattern. Also here we omitted the result for k = 1,
since this number is exactly the number of frequent items.

The results are pleasantly surprising:

• Note that the improvement of KK ∗ over KK , and of µ∗ over µ, antici-
pated by our theoretical discussion, is indeed dramatic.

• Comparing the computed upper bounds with the actual numbers, we
observe the high accuracy of the estimations given by KK ∗. Indeed, the
estimations of KK ∗

k+1 match almost exactly the actual number of candi-
date patterns that has been generated at level k+ 1. Also note that the
number of candidate patterns in T40I10D100K is decreasing in the first
four iterations and then increases again. This perfectly illustrates that
the heuristic used for AprioriHybrid, as explained in the related work
section, would not work on this data set. Indeed, since the current num-
ber of candidate patterns is small enough and there are fewer candidate
patterns in the current iteration than in the previous iteration, these
observations would be falsely interpreted. The presented upper bounds
perfectly predict this increase.

• The upper bounds on the total number of candidate patterns are still
very large when estimated in the first few passes, which is not surprising
because at these initial stages, there is not much information yet. For
the mushroom and the artificial data sets, the upper bound is almost
exact when the frequent patterns of size 3 are known. For the basket
data set, this result is obtained when the frequent patterns of size 4 are
known and size 6 for the BMS-Webview-1 data set.

• The results obtained from experimenting with varying minimal support
thresholds were entirely similar to those presented above.

76 Chapter 4. Upper Bounds

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

3 4 5 6 7 8 9 10 11

nu
m

be
r o

f p
at

te
rn

s

k+1

|Ck+1|

KKk
k+1

KK*
k+1

(a) basket

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

4 6 8 10 12 14

nu
m

be
r o

f p
at

te
rn

s

k+1

|Ck+1|

KKk
k+1

KK*
k+1

(b) BMS-Webview-1

Figure 4.2: Actual and estimated number of candidate patterns.

4.6. Experimental Evaluation 77

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

4 6 8 10 12 14 16 18

nu
m

be
r o

f p
at

te
rn

s

k+1

|Ck+1|

KKk
k+1

KK*
k+1

(c) T40I10D100K

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

4 6 8 10 12 14 16

nu
m

be
r o

f p
at

te
rn

s

k+1

|Ck+1|

KKk
k+1

KK*
k+1

(d) mushroom

Figure 4.2: Actual and estimated number of candidate patterns.

78 Chapter 4. Upper Bounds

1e+00

1e+02

1e+04

1e+06

1e+08

1e+10

1e+12

2 3 4 5 6 7 8 9 10 11

nu
m

be
r o

f p
at

te
rn

s

k

|Ctotal|

KKk
total

KK*
total

(a) basket

1e+00

1e+02

1e+04

1e+06

1e+08

1e+10

1e+12

2 4 6 8 10 12 14

nu
m

be
r o

f p
at

te
rn

s

k

|Ctotal|

KKk
total

KK*
total

(b) BMS-Webview-1

Figure 4.3: Actual and estimated total number of future candidate patterns.

4.6. Experimental Evaluation 79

1e+00

1e+02

1e+04

1e+06

1e+08

1e+10

1e+12

2 4 6 8 10 12 14 16 18

nu
m

be
r o

f p
at

te
rn

s

k

|Ctotal|

KKk
total

KK*
total

(c) T40I10D100K

1e+00

1e+02

1e+04

1e+06

1e+08

1e+10

1e+12

2 4 6 8 10 12 14 16

nu
m

be
r o

f p
at

te
rn

s

k

|Ctotal|

KKk
total

KK*
total

(d) mushroom

Figure 4.3: Actual and estimated total number of future candidate patterns.

80 Chapter 4. Upper Bounds

0

50

100

150

200

250

300

350

400

2 3 4 5 6 7 8 9 10 11

si
ze

 o
f m

ax
im

al
 p

at
te

rn

k

µ

µ*

(a) basket

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14

si
ze

 o
f m

ax
im

al
 p

at
te

rn

k

µ

µ*

(b) BMS-Webview-1

Figure 4.4: Estimated size of the largest possible candidate pattern.

4.6. Experimental Evaluation 81

0

50

100

150

200

250

2 4 6 8 10 12 14 16 18

si
ze

 o
f m

ax
im

al
 p

at
te

rn

k

µ

µ*

(c) T40I10D100K

15

20

25

30

35

40

2 4 6 8 10 12 14 16

si
ze

 o
f m

ax
im

al
 p

at
te

rn

k

µ

µ*

(d) mushroom

Figure 4.4: Estimated size of the largest possible candidate pattern.

82 Chapter 4. Upper Bounds

Combining Iterations

As discussed in the introduction, the proposed upper bound can be used to
protect several improvements of the Apriori algorithm from generating too
many candidate patterns. One such improvement tries to combine as many
iterations as possible in the end, when only few candidate patterns can still be
generated. We have implemented this technique within our implementation of
the Apriori algorithm.

We performed several experiments on each data set and limited the number
of candidate patterns that is allowed to be generated. If the upper bound
on the total number of candidate patterns is below this limit, the algorithm
generates and counts all possible candidate patterns within the next iteration.
Figure 4.5 shows the results. The x-axis shows the total number of iterations
in which the algorithm completed, and the y-axis shows the total time the
algorithm needed to complete.

As can be seen, for all data sets, the algorithm can already combine all
remaining iterations into one very early in the algorithm. For example, the
BMS-Webview-1 data set, which normally performs 15 iteration, could be
reduced to six iterations to give an optimal performance. If the algorithm
already generated all remaining candidate patterns in the fifth iteration, the
number of candidate patterns that turned out to be infrequent was too large,
such that the gain of reducing iterations has been consumed by the time
needed to count all these candidate patterns. Nevertheless, it is still more
effective than not combining any passes at all. If we allowed the generation of
all candidate patterns to occur in even earlier iterations, although the upper
bound predicted a too large number of candidate patterns, this number became
indeed too large to keep into main memory.

4.7 Conclusions

Motivated by several heuristics to reduce the number of database scans in the
context of frequent pattern mining, we provide a hard and tight combinato-
rial upper bound on the number of candidate patterns and on the size of the
largest possible candidate pattern, given a set of frequent patterns. Our find-
ings are not restricted to a single algorithm, but can be applied to any frequent
pattern mining algorithm which is based on the levelwise generation of candi-
date patterns. Using the standard Apriori algorithm, on which most frequent
pattern mining algorithms are based, our experiments showed that these up-
per bounds can be used to considerably reduce the number of database scans
without taking the risk of getting a combinatorial explosion of the number of
candidate patterns.

4.7. Conclusions 83

30

32

34

36

38

40

42

44

34567891011

tim
e

(s
ec

on
ds

)

iteration

(a) basket

50

55

60

65

70

75

80

85

90

468101214

tim
e

(s
ec

on
ds

)

iteration

(b) BMS-Webview-1

Figure 4.5: Combining iterations.

84 Chapter 4. Upper Bounds

1000

1100

1200

1300

1400

1500

1600

1700

1800

4681012141618

tim
e

(s
ec

on
ds

)

iteration

(c) T40I10D100K

350

400

450

500

550

600

650

700

4681012141618

tim
e

(s
ec

on
ds

)

iteration

(d) mushroom

Figure 4.5: Combining iterations.

Bibliography

[1] R.C. Agarwal, C.C. Aggarwal, and V.V.V. Prasad. Depth first generation
of long patterns. In Ramakrishnan et al. [69], pages 108–118.

[2] R.C. Agarwal, C.C. Aggarwal, and V.V.V. Prasad. A tree projection
algorithm for generation of frequent itemsets. Journal of Parallel and
Distributed Computing, 61(3):350–371, March 2001.

[3] R. Agrawal, T. Imielinski, and A.N. Swami. Mining association rules
between sets of items in large databases. In P. Buneman and S. Jajodia,
editors, Proceedings of the 1993 ACM SIGMOD International Conference
on Management of Data, volume 22(2) of SIGMOD Record, pages 207–
216. ACM Press, 1993.

[4] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast
discovery of association rules. In Fayyad et al. [28], pages 307–328.

[5] R. Agrawal and R. Srikant. Quest Synthetic Data Generator. IBM
Almaden Research Center, San Jose, California, http://www.almaden.
ibm.com/cs/quest/syndata.html.

[6] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
In J.B. Bocca, M. Jarke, and C. Zaniolo, editors, Proceedings 20th Inter-
national Conference on Very Large Data Bases, pages 487–499. Morgan
Kaufmann, 1994.

[7] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
IBM Research Report RJ9839, IBM Almaden Research Center, San Jose,
California, June 1994.

[8] A. Amir, R. Feldman, and R. Kashi. A new and versatile method for
association generation. Information Systems, 2:333–347, 1997.

[9] R.J. Bayardo, Jr. Efficiently mining long patterns from databases. In
Haas and Tiwary [36], pages 85–93.

85

86 Bibliography

[10] R.J. Bayardo, Jr., R. Agrawal, and D. Gunopulos. Constraint-based rule
mining on large, dense data sets. In Proceedings of the 15th International
Conference on Data Engineering, pages 188–197. IEEE Computer Society,
1999.

[11] C.L. Blake and C.J. Merz. UCI Repository of machine learning databases.
University of California, Irvine, Dept. of Information and Computer Sci-
ences, http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.

[12] B. Bollobás. Combinatorics. Cambridge University Press, 1986.

[13] C. Borgelt and R. Kruse. Induction of association rules: Apriori
implementation. In W. Härdle and B. Rönz, editors, Proceedings
of the 15th Conference on Computational Statistics, pages 395–400,
http://fuzzy.cs.uni-magdeburg.de/~borgelt/software.html, 2002.
Physica-Verlag.

[14] J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets: A condensed
representation of boolean data for the approximation of frequency queries.
Data Mining and Knowledge Discovery, 2003. To appear.

[15] T. Brijs, B. Goethals, G. Swinnen, K. Vanhoof, and G. Wets. A data
mining framework for optimal product selection in retail supermarket
data: The generalized profset model. In Ramakrishnan et al. [69], pages
300–304.

[16] S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic itemset count-
ing and implication rules for market basket data. In Proceedings of the
1997 ACM SIGMOD International Conference on Management of Data,
volume 26(2) of SIGMOD Record, pages 255–264. ACM Press, 1997.

[17] S. Brin and L. Page. The anatomy of a large-scale hypertextual web
search engine. In Proceedings of the Seventh International World-Wide
Web Conference, volume 30(1–7) of Computer Networks, pages 107–117.
Elsevier Science, 1998.

[18] A. Bykowski and C. Rigotti. A condensed representation to find frequent
patterns. In Proceedings of the Twentieth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pages 267–273.
ACM Press, 2001.

[19] T. Calders and B. Goethals. Mining all non-derivable frequent itemsets.
In Elomaa et al. [25], pages 74–85.

[20] N. Cercone, T.Y. Lin, and X. Wu, editors. Proceedings of the 2001 IEEE
International Conference on Data Mining. IEEE Computer Society, 2001.

Bibliography 87

[21] W. Chen, J.F. Naughton, and P.A. Bernstein, editors. Proceedings of the
2000 ACM SIGMOD International Conference on Management of Data,
volume 29(2) of SIGMOD Record. ACM Press, 2000.

[22] U. Dayal, P.M.D. Gray, and S. Nishio, editors. Proceedings 21th Interna-
tional Conference on Very Large Data Bases. Morgan Kaufmann, 1995.

[23] L. Dehaspe and H. Toivonen. Discovery of relational association rules. In
S. Dzeroski and N. Lavrac, editors, Relational data mining, pages 189–
212. Springer, 2001.

[24] A. Delis, C. Faloutsos, and S. Ghandeharizadeh, editors. Proceedings of
the 1999 ACM SIGMOD International Conference on Management of
Data, volume 28(2) of SIGMOD Record. ACM Press, 1999.

[25] T. Elomaa, H. Mannila, and H. Toivonen, editors. Proceedings of the
6th European Conference on Principles of Data Mining and Knowledge
Discovery, volume 2431 of Lecture Notes in Computer Science. Springer,
2002.

[26] U.M. Fayyad, S.G. Djorgovski, and N. Weir. Automating the analysis
and cataloging of sky surveys. In Fayyad et al. [28], pages 471–494.

[27] U.M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to
knowledge discovery: An overview. In Fayyad et al. [28], pages 1–34.

[28] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, ed-
itors. Advances in Knowledge Discovery and Data Mining. MIT Press,
1996.

[29] P. Frankl. A new short proof for the Kruskal–Katona theorem. Discrete
Mathematics, 48:327–329, 1984.

[30] F. Geerts, B. Goethals, and J. Van den Bussche. A tight upper bound on
the number of candidate patterns. In Cercone et al. [20], pages 155–162.

[31] B. Goethals and J. Van den Bussche. On supporting interactive associa-
tion rule mining. In Y. Kambayashi, M.K. Mohania, and A.M. Tjoa, ed-
itors, Proceedings of the Second International Conference on Data Ware-
housing and Knowledge Discovery, volume 1874 of Lecture Notes in Com-
puter Science, pages 307–316. Springer, 2000.

[32] B. Goethals and J. Van den Bussche. Relational association rules: getting
warmer. In D. Hand, R. Bolton, and N. Adams, editors, Proceedings of
the ESF Exploratory Workshop on Pattern Detection and Discovery in
Data Mining, volume 2447 of Lecture Notes in Computer Science, pages
125–139. Springer, 2002.

88 Bibliography

[33] G. Grahne, L.V.S. Lakshmanan, and X. Wang. Efficient mining of con-
strained correlated sets. In Proceedings of the 16th International Con-
ference on Data Engineering, pages 512–521. IEEE Computer Society,
2000.

[34] T. Granlund and K. Ryde. GNUmp, Library for arithmetic on arbitrary
precision numbers. http://www.gnu.org/directory/gnump.html.

[35] D. Gunopulos, R. Khardon, H. Mannila, and H. Toivonen. Data mining,
hypergraph transversals, and machine learning. In Proceedings of the
Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 209–216. ACM Press, 1997.

[36] L.M. Haas and A. Tiwary, editors. Proceedings of the 1998 ACM SIG-
MOD International Conference on Management of Data, volume 27(2) of
SIGMOD Record. ACM Press, 1998.

[37] J. Han, Y. Fu, K. Koperski, W. Wang, and O. Zaiane. DMQL: A data
mining query language for relational databases. Presented at SIGMOD’96
Workshop on Research Issues on Data Mining and Knowledge Discovery,
1996.

[38] J. Han, Y. Fu, W. Wang, J. Chiang, W. Gong, K. Koperski, D. Li, Y. Lu,
A. Rajan, N. Stefanovic, B. Xia, and O.R. Zäıane. DBMiner: A sys-
tem for mining knowledge in large relational databases. In E. Simoudis,
J. Han, and U. Fayyad, editors, Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining, pages 250–255.
AAAI Press, 1996.

[39] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann, 2001.

[40] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In Chen et al. [21], pages 1–12.

[41] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without
candidate generation: A frequent-pattern tree approach. Data Mining
and Knowledge Discovery, 2003. To appear.

[42] D. Hand, D. Keim, and R.T. Ng, editors. Proceedings of the Eight ACM
SIGKDD international conference on Knowledge discovery and data min-
ing. ACM Press, 2002.

[43] D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. MIT
Press, 2001.

Bibliography 89

[44] D. Heckerman, H. Mannila, and D. Pregibon, editors. Proceedings of
the Third International Conference on Knowledge Discovery and Data
Mining. AAAI Press, 1997.

[45] C. Hidber. Online association rule mining. In Delis et al. [24], pages
145–156.

[46] J. Hipp, U. Güntzer, and G. Nakhaeizadeh. Mining association rules:
Deriving a superior algorithm by analyzing today’s approaches. In Zighed
et al. [86], pages 159–168.

[47] T. Imielinski and H. Mannila. A database perspective on knowledge dis-
covery. Communications of the ACM, 39(11):58–64, 1996.

[48] T. Imielinski and A. Virmani. MSQL: A query language for database
mining. Data Mining and Knowledge Discovery, 3(4):373–408, December
1999.

[49] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for
mining frequent substructures from graph data. In Zighed et al. [86],
pages 13–23.

[50] B. Jeudy and J.-F. Boulicaut. Using condensed representations for inter-
active association rule mining. In Elomaa et al. [25], pages 225–236.

[51] G.O.H. Katona. A theorem of finite sets. In Theory Of Graphs, pages
187–207. Akadémia Kiadó, 1968.

[52] R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng. KDD-
Cup 2000 organizers’ report: Peeling the onion. SIGKDD Explorations,
2(2):86–98, 2000. http://www.ecn.purdue.edu/KDDCUP.

[53] J.B. Kruskal. The number of simplices in a complex. In Mathematical
Optimization Techniques, pages 251–278. Univ. of California Press, 1963.

[54] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Cercone
et al. [20], pages 313–320.

[55] L.V.S. Lakshmanan, R.T. Ng, J. Han, and A. Pang. Optimization of
constrained frequent set queries with 2-variable constraints. In Delis et al.
[24], pages 157–168.

[56] H. Mannila. Inductive databases and condensed representations for data
mining. In J. Maluszynski, editor, Proceedings of the 1997 International
Symposium on Logic Programming, pages 21–30. MIT Press, 1997.

90 Bibliography

[57] H. Mannila. Global and local methods in data mining: basic techniques
and open problems. In P. Widmayer, F.T. Ruiz, R. Morales, M. Hennessy,
S. Eidenbenz, and R. Conejo, editors, Proceedings of the 29th Interna-
tional Colloquium on Automata, Languages and Programming, volume
2380 of Lecture Notes in Computer Science, pages 57–68. Springer, 2002.

[58] H. Mannila and H. Toivonen. Levelwise search and borders of theories in
knowledge discovery. Data Mining and Knowledge Discovery, 1(3):241–
258, November 1997.

[59] H. Mannila, H. Toivonen, and A.I. Verkamo. Efficient algorithms for
discovering association rules. In U.M. Fayyad and R. Uthurusamy, ed-
itors, Proceedings of the AAAI Workshop on Knowledge Discovery in
Databases, pages 181–192. AAAI Press, 1994.

[60] R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining
association rules. In Vijayaraman et al. [78], pages 122–133.

[61] B. Nag, P. Deshpande, and D.J. DeWitt. Using a knowledge cache for
interactive discovery of association rules. In U. Fayyad, S. Chaudhuri,
and D. Madigan, editors, Proceedings of the Fifth ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pages
244–253. ACM Press, 1999.

[62] R.T. Ng, L.V.S. Lakshmanan, J. Han, and A. Pang. Exploratory mining
and pruning optimizations of constrained association rules. In Haas and
Tiwary [36], pages 13–24.

[63] S. Orlando, P. Palmerini, and R. Perego. Enhancing the apriori algo-
rithm for frequent set counting. In Y. Kambayashi, W. Winiwarter, and
M. Arikawa, editors, Proceedings of the Third International Conference
on Data Warehousing and Knowledge Discovery, volume 2114 of Lecture
Notes in Computer Science, pages 71–82. Springer, 2001.

[64] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri. Adaptive and
resource-aware mining of frequent sets. In V. Kumar, S. Tsumoto, P.S.
Yu, and N.Zhong, editors, Proceedings of the 2002 IEEE International
Conference on Data Mining. IEEE Computer Society, 2002. To appear.

[65] J.S. Park, M.-S. Chen, and P.S. Yu. An effective hash based algorithm
for mining association rules. In Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data, volume 24(2) of SIG-
MOD Record, pages 175–186. ACM Press, 1995.

Bibliography 91

[66] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent
closed itemsets for association rules. In C. Beeri and P. Buneman, editors,
Proceedings of the 7th International Conference on Database Theory, vol-
ume 1540 of Lecture Notes in Computer Science, pages 398–416. Springer,
1999.

[67] J. Pei and J. Han. Can we push more constraints into frequent pattern
mining? In Ramakrishnan et al. [69], pages 350–354.

[68] J. Pei, J. Han, and L.V.S. Lakshmanan. Mining frequent itemsets with
convertible constraints. In Proceedings of the 17th International Confer-
ence on Data Engineering, pages 433–442. IEEE Computer Society, 2001.

[69] R. Ramakrishnan, S. Stolfo, R.J. Bayardo, Jr., and I. Parsa, editors. Pro-
ceedings of the Sixth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. ACM Press, 2000.

[70] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for
mining association rules in large databases. In Dayal et al. [22], pages
432–444.

[71] P. Shenoy, J.R. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa, and
D. Shah. Turbo-charging vertical mining of large databases. In Chen
et al. [21], pages 22–33.

[72] R. Srikant. Fast algorithms for mining association rules and sequential
patterns. PhD thesis, University of Wisconsin, Madison, 1996.

[73] R. Srikant and R. Agrawal. Mining generalized association rules. In Dayal
et al. [22], pages 407–419.

[74] R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item
constraints. In Heckerman et al. [44], pages 66–73.

[75] B. Stroustrup. The C++ Programming Language. Addison-Wesley, third
edition, 1997.

[76] P. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness
measure for association patterns. In Hand et al. [42], pages 32–41.

[77] H. Toivonen. Sampling large databases for association rules. In Vijayara-
man et al. [78], pages 134–145.

[78] T.M. Vijayaraman, A.P. Buchmann, C. Mohan, and N.L. Sarda, editors.
Proceedings 22nd International Conference on Very Large Data Bases.
Morgan Kaufmann, 1996.

92 Bibliography

[79] G.I. Webb. Efficient search for association rules. In Ramakrishnan et al.
[69], pages 99–107.

[80] M.J. Zaki. Scalable algorithms for association mining. IEEE Transactions
on Knowledge and Data Engineering, 12(3):372–390, May/June 2000.

[81] M.J. Zaki. Fast vertical mining using diffsets. Technical Report 01-1,
Rensselaer Polytechnic Institute, Troy, New York, 2001.

[82] M.J. Zaki. Efficiently mining frequent trees in a forest. In Hand et al.
[42], pages 71–80.

[83] M.J. Zaki and C.-J. Hsiao. CHARM: An efficient algorithm for closed
itemset mining. In R. Grossman, J. Han, V. Kumar, H. Mannila, and
R. Motwani, editors, Proceedings of the Second SIAM International Con-
ference on Data Mining, 2002.

[84] M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms
for fast discovery of association rules. In Heckerman et al. [44], pages
283–286.

[85] Z. Zheng, R. Kohavi, and L. Mason. Real world performance of associa-
tion rule algorithms. In F. Provost and R. Srikant, editors, Proceedings
of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 401–406. ACM Press, 2001.

[86] D.A. Zighed, H.J. Komorowski, and J.M. Zytkow, editors. Proceed-
ings of the 4th European Conference on Principles of Data Mining and
Knowledge Discovery, volume 1910 of Lecture Notes in Computer Science.
Springer, 2000.

Samenvatting

Een enorme technologische vooruitgang in hardware en software heeft de voor-
bije decennia geresulteerd in de opbouw en groei van gigantische hoeveelheden
gegevens die opgeslagen zitten in databanken. Eén van de voornaamste uitda-
gingen waar tal van ondernemingen en individuen nu voor staan, is hoe ze deze
gegevens kunnen analyseren en omzetten in handelbare en bruikbare kennis.

Pogingen om deze uitdagingen aan te gaan brachten onderzoekers samen
uit verschillende disciplines zoals statistiek, kunstmatige intelligentie, data-
banken en waarschijnlijk nog veel meer, resulterende in het nieuwe onder-
zoeksgebied Data Mining.

Data mining wordt meestal vernoemd in de bredere context van Knowledge
Discovery in Databases (KDD) en wordt beschouwd als een enkele stap in het
zogenaamde KDD proces [27].

In dit proefschrift concentreren we ons op het zoeken naar frequent voorko-
mende patronen in databanken en de efficiëntie van de methoden die daarvoor
gebruikt worden. De patronen die we hier beschouwen zijn verzamelingen van
items en associatieregels in zogenaamde transactie databanken.

De motivatie om naar zulke patronen te zoeken kwam oorspronkelijk voort
uit de behoefte om de transactiegegevens van supermarkten te analyseren.
Meer bepaald, het zoeken naar patronen in het aankoopgedrag van klanten.
Een associatieregel beschrijft dan hoe frequent verschillende items (of pro-
ducten) samen aangekocht worden. Bijvoorbeeld, de associatieregel “bier ⇒
chips (80%)” drukt uit dat vier van de vijf klanten die bier aankopen ook
chips aankopen. Zulke regels kunnen dan gebruikt worden voor beslissingen
in verband met prijstoekenningen, promoties, productplaatsing en dergelijke
meer.

Sinds hun introductie in 1993 door Agrawal et al. [3], hebben het frequente
item-verzameling-probleem en associatieregel-probleem enorm veel aandacht
gekregen. In de laatste tien jaar zijn honderden onderzoeksartikels gepubli-
ceerd, die elk nieuwe algoritmes of verbeteringen op algoritmes voorstellen om
deze problemen efficiënter op te lossen.

93

94 Samenvatting

Probleembeschrijving en overzicht: Het aantal keren dat een bepaal-
de verzameling van items in een databank voorkomt, noemen we de support
van die verzameling. Om aan te duiden wanneer een verzameling van items
frequent is, wordt er een minimale support vastgelegd. Een verzameling van
items is dan frequent als zijn support groter is dan deze minimale drempel-
waarde. Een associatieregel bestaat uit een antecedent X en een consequent
Y die allebei verzamelingen van items zijn, en wordt genoteerd X ⇒ Y . De
support van een regel is gedefinieerd als de support van de unie van het ante-
cedent en het consequent. De betrouwbaarheid van een regel wordt berekend
door de support van de regel te delen door de support van het antecedent. We
noemen een regel interessant als zijn betrouwbaarheid hoger ligt dan een vast-
gelegde minimale betrouwbaarheid en als de verzameling van items bestaande
uit de unie van het antecedent en het consequent frequent is.

Het eerste algoritme dat alle interessante associatieregels efficiënt kon ge-
nereren was het Apriori algoritme van Agrawal et al. en werd onafhankelijk
verkregen door Mannila et al. [6, 59, 4]. Het algoritme werd opgedeeld in twee
fasen. In de eerste fase werden alle frequente verzamelingen gegenereerd en in
een tweede fase alle interessante associatieregels.

Het onderliggende principe dat in het Apriori algoritme en in tal van zijn
opvolgers wordt gebruikt is het monotoniciteitsprincipe, dat zegt dat de sup-
port van een verzameling van items niet groter kan zijn dan de support van
één van zijn deelverzamelingen. Met andere woorden, als een verzameling niet
frequent is, dan kan geen enkele uitbreiding van die verzameling frequent zijn.
Het Apriori algoritme werkt als volgt.

Gegeven is een databank bestaande uit een collectie van verzamelingen
van items, ook transacties genoemd. Het Apriori algoritme is een iteratief
algoritme dat in elke iteratie k alle kandidaat verzamelingen bestaande uit
k items genereert. Een verzameling is een kandidaat verzameling als al zijn
deelverzamelingen frequent zijn. In de eerste iteratie wordt de support van
elk item apart geteld door heel de database transactie per transactie te scan-
nen. Telkens een item voorkomt in een transactie wordt zijn support met 1
verhoogd. Wanneer alle transacties op deze manier verwerkt zijn, bezitten
we de support van elk item in de databank. Vermits we enkel gëınteresseerd
zijn in frequente verzamelingen verwijderen we alle items waarvan de sup-
port kleiner is dan de gegeven minimale support. In elke volgende iteratie k,
worden verzamelingen bestaande uit k − 1 items gecombineerd tot kandidaat
verzamelingen bestaande uit k items zodat voor elke gegenereerde verzame-
ling geldt dat al zijn deelverzamelingen frequent zijn. Daarna wordt telkens
de databank volledig doorlopen om de supports te berekenen van alle gege-
nereerde kandidaat verzamelingen. Wanneer er geen kandidaat verzamelingen
meer gegenereerd kunnen worden, eindigt het algoritme en zijn alle frequent
voorkomende verzamelingen gevonden.

Samenvatting 95

Op basis van deze frequente verzamelingen kunnen we nu in de tweede fa-
se alle interessante associatieregels genereren. Daarvoor dienen we enkel elke
frequente verzameling op te delen in een antecedent en consequent en te bere-
kenen wat de betrouwbaarheid is van de bekomen regel. Vermits we daarvoor
enkel de support van die verzameling en de support van het antecedent nodig
hebben kan dit zeer efficiënt berekend worden.

Later werden nog tal van artikels gepubliceerd waarin vele mogelijke op-
timalisaties werden voorgesteld, al dan niet voor speciale situaties. Het on-
derliggende laagsgewijze algoritme werd echter zelden gewijzigd. De meeste
pogingen die werden ondernomen, trachten het aantal keren dat de databa-
se doorlopen moet worden te verminderen [77, 70, 16, 45]. Andere pogingen
trachten aan de hand van allerhande heuristieken en speciale technieken het
aantal kandidaat verzamelingen te verminderen die dienen geteld te worden.
Deze twee aspecten zijn immers de belangrijkste kostfactoren van het Apriori
algoritme.

Een zeer eenvoudig algoritme, Eclat, dat in 1997 werd voorgesteld door Za-
ki blijkt in verschillende ordes van grootte efficiënter te zijn dan Apriori [80].
Dit algoritme werkt echter wel alleen zoals gewenst wanneer de volledige data-
bank in het werkgeheugen van de computer geladen kan worden. Het algoritme
is gebaseerd op de eigenschap dat het aantal transacties waarin een bepaalde
verzameling I voorkomt, gelijk is aan het aantal transacties waarin twee van
zijn deelverzamelingen X,Y voorkomen, zodat I = X ∪ Y . Essentieel werkt
dit algoritme zeer gelijkaardig als het Apriori algoritme, met als grootste ver-
schil dat we nu voor elke verzameling een lijst bijhouden van alle transacties
waarin die verzameling voorkomt. Om dan de support te kennen van een ver-
zameling I dienen we enkel de doorsnede te nemen van de transactielijst van
twee van zijn deelverzamelingen X,Y , zodat I = X ∪Y . Met andere woorden,
als we beginnen door aan elk item zijn lijst van transacties toe te kennen door
een enkele keer door de databank te scannen, kunnen we vanaf dan recursief
telkens twee frequente verzamelingen X en Y combineren tot een grotere ver-
zameling I, waarvan we de support direct kunnen berekenen door simpelweg
de doorsnede te nemen van de transactielijsten van X en Y .

Recentelijk werd een ander algoritme voorgesteld door Han et al., genaamd
FP-growth [41], waarvan werd beweerd dat het alle frequente verzamelingen
kan vinden zonder daarvoor kandidaat verzamelingen te moeten genereren.
Ook werd een nieuwe datastructuur voorgesteld waarvan werd beweerd dat
deze zou resulteren in een veel kleiner geheugengebruik en het mede daardoor
de meest efficiënte methode zou zijn om alle frequente verzamelingen te vinden.
Wij tonen echter aan dat deze beweringen onjuist zijn en besluiten dat een
combinatie van het Apriori algoritme en Eclat momenteel de beste uitkomst
biedt.

96 Samenvatting

Interactieve methodes voor data mining: Vermits data mining een es-
sentieel interactief proces is, waarin de gebruiker herhaaldelijk bepaalde be-
perkingen moet kunnen leggen op het soort van patronen dat hij zoekt aan
de hand van queries, hebben wij drie verschillende methoden bestudeerd om
in zulke interactieve data mining sessies deze beperkingen zo goed mogelijk te
gebruiken en het data mining proces alsdusdanig efficiënter te kunnen laten
verlopen. Meer specifiek bestuderen we een klasse van beperkingen bestaande
uit Booleaanse combinaties van atomaire condities, waarin zo een atomaire
conditie kan specificeren of een bepaald item in het antecedent of in het con-
sequent van een associatieregel moet voorkomen. Doordat het genereren van
associatieregels voornamelijk bestaat uit het genereren van verzamelingen van
items, vertalen wij zulke condities onmiddellijk naar beperkingen die eisen
dat een item al dan niet mag voorkomen in een verzameling van items. Deze
vertaling gebeurt optimaal, in die zin dat we enkel en alleen die verzame-
lingen genereren die nodig zijn om alle gevraagde associatieregels te kunnen
construeren.

In de eerste methode die we voorstellen, wordt elke aparte data mining
query gëıntegreerd in de mining algoritmes aan de hand van de volgende tech-
niek. Wanneer een query stelt dat alleen die verzamelingen van items mogen
gegenereerd worden waarin de items i1, . . . , in voorkomen, dienen we enkel de
databank aan te passen door alle transacties die die items niet bevatten te ver-
wijderen en de items zelf ook nog te verwijderen uit alle overgebleven transac-
ties. Wanneer een query bovendien eist dat alleen die verzamelingen van items
dienen gegenereerd te worden waarin de items j1, . . . , jm niet voorkomen die-
nen we evenzeer enkel de databank aan te passen door uit alle overgebleven
transacties ook die items te verwijderen. Als we dan op deze aangepaste da-
tabank om het even welk algoritme dat frequente verzamelingen van items
genereert uitvoeren, verkrijgen we de correcte uitkomst door achteraf aan el-
ke verzameling de items i1, . . . , in terug toe te voegen. Door elke Booleaanse
query om te zetten in disjuncte disjunctieve normaalvorm, kunnen we de dis-
juncts op deze manier beantwoorden.

In een tweede methode bekijken we de mogelijkheid om eerst alle mogelij-
ke frequente verzamelingen te genereren voor een zo laag mogelijke minimale
support, om daarna elke query te beantwoorden door gewoon de nodige verza-
melingen te zoeken aan de hand van zeer efficiënte technieken voor databan-
ken. We tonen aan dat deze methode na verloop van de data mining sessie
uiteindelijk veel efficiënter wordt dan de eerst voorgestelde methode.

In een derde methode gebruiken we een combinatie van de twee vorige,
door in het begin van een data mining sessie elke query te beantwoorden door
de gegeven condities te integreren in het algoritme om de frequente verzamelin-
gen te genereren zoals hierboven werd beschreven, en telkens te resulterende
verzamelingen op te slaan in een aparte databank. Daaropvolgende queries

Samenvatting 97

worden dan opgedeeld in twee delen, namelijk het deel dat kan beantwoord
worden aan de hand van de tweede methode en het deel dat dient beantwoord
te worden aan de hand van de eerste methode.

Aan de hand van tal van experimenten met deze drie methoden besluiten
we dat de tweede voorgestelde methode in veel gevallen de meest efficiënte
uitkomst biedt. Wanneer deze methode echter niet mogelijk is om de reden
dat het aantal gegenereerde frequente verzamelingen te groot zou worden, blijft
de laatste gecombineerde methode de meest efficiënte oplossing.

Bovengrenzen op het aantal kandidaat verzamelingen Zoals reeds
vermeld, trachten verschillende optimalisatietechnieken het aantal scans door
de databank te reduceren om het Apriori algoritme efficiënter te laten verlopen.
Veel van deze technieken houden echter een groot risico in doordat zij moge-
lijk een te groot aantal kandidaat verzamelingen zouden genereren met een
tegengesteld effect tot gevolg. Aan de basis van deze technieken ligt volgend
puur combinatorisch probleem dat eerst opgelost dient te worden vooraleer
deze technieken effectief toegepast kunnen worden: gegeven het huidige aantal
frequente verzamelingen in een bepaalde iteratie, hoeveel kandidaat patronen
kunnen er nog maximaal gegenereerd worden tijdens komende iteraties?

Wij beantwoorden deze vraag door een aantal combinatorische bovengren-
zen voor te stellen die na elke iteratie van het apriori algoritme efficiënt bere-
kend kunnen worden en als dusdanig een waterdichte garantie geven over het
aantal kandidaat verzamelingen dat nog maximaal gegenereerd kan worden.

Experimenten tonen aan dat onze theoretisch verkregen bovengrenzen op-
merkelijk goede resultaten vertonen in de praktijk en al zeer snel kunnen voor-
spellen hoeveel kandidaat verzamelingen er nog maximaal gegenereerd kunnen
worden.

