
On Private Scalar Product Computation for
Privacy-Preserving Data Mining

Bart Goethals1, Sven Laur2, Helger Lipmaa2, and Taneli Mielik̈ainen1

1 HIIT Basic Research Unit
Department of Computer Science
University of Helsinki, Finland

{goethals,tmielika }@cs.helsinki.fi
2 Laboratory for Theoretical Computer Science

Department of Computer Science and Engineering
Helsinki University of Technology, Finland
{slaur,helger }@tcs.hut.fi

Abstract. In mining and integrating data from multiple sources, there are many
privacy and security issues. In several different contexts, the security of the full
privacy-preserving data mining protocol depends on the security of the underly-
ing private scalar product protocol. We show that two of the private scalar product
protocols, one of which was proposed in a leading data mining conference, are
insecure. We then describe a provably private scalar product protocol that is based
on homomorphic encryption and improve its efficiency so that it can also be used
on massive datasets.
Keywords: Privacy-preserving data mining, private scalar product protocol, ver-
tically partitioned frequent pattern mining.

1 Introduction

Within the context of privacy-preserving data mining, several private (shared) scalar
product protocols [DA01b,DA01a,DZ02,VC02] have been proposed. The goal is that
one of the participants obtains the scalar product of the private vectors of all parties.
Additionally, it is often required that no information about the private vectors, except
what can be deduced from the scalar product, will be revealed during the protocol.
Moreover, since data mining applications work with a huge amount of data, it is de-
sirable that the scalar product protocol is also very efficient. A secure scalar prod-
uct protocol has various applications in privacy-preserving data mining, starting with
privacy-preserving frequent pattern mining on vertically distributed database [VC02]
and ending with privacy-preserving cooperative statistical analysis [DA01a].

To give an idea of how such a protocol can be used, let us look at the protocol by
Vaidya and Clifton for computing frequent itemsets from vertically partitioned transac-
tion database [VC02]. A transaction database is a multi-set of subsets (transactions) of
some finite set (ofitems). A transaction database can be seen also as a binary matrix
where each row corresponds to a transaction, each column corresponds to an item, and
there is one in the entry(i, j) if and only if the transactioni contains the itemj. An
itemset is a subset of items. The frequency of an itemset in a transaction database is

the fraction of transactions containing the itemset as their subset. (The support of an
itemset is its frequency multiplied by the number of transactions in the database.) The
σ-frequent itemsets (i.e., the frequent itemsets with minimum frequency thresholdσ)
in a transaction database are the itemsets with frequency at leastσ. Thus, mining the
σ-frequent itemsets is equivalent to finding all subsets of columns of the binary matrix
where at least aσ-fraction of rows have only ones in those columns. In a frequent item-
set mining protocol for a vertically partitioned transaction database one party, Alice,
has the projection of the database onto some items and another party, Bob, has the pro-
jection of database onto the rest of the items. The frequent itemset mining protocol of
Vaidya and Clifton is based on the property that an itemset can be frequent only if all
of its subsets are frequent. The candidate itemsets are generated and tested level-wise
as in the APRIORI algorithm [AMS+96].

If an itemset contains items of only one party, then the party can compute the fre-
quency privately and share it with the other parties without any additional privacy prob-
lems. The main challenge occurs when the support of a candidate itemset containing
items from both parties needs to be computed. In that case, each party first computes
which of the transactions contain the itemset within their own part of the database. This
kind of information can be conveniently represented as binary vectors in which theith
entry represents whether or not the itemset is contained in theith transaction. The num-
ber of transactions containing the itemset in the combined transaction database amounts
to the scalar product between the corresponding binary vectors of Alice and Bob. A pro-
tocol, given by Vaidya and Clifton [VC02], attempts to compute the scalar product in
a secure manner, by computing the scalar product on scrambled versions of the binary
vectors, such that in the end of the protocol, both parties obtain the joint support without
ever seeing each others vector. Their protocol reveals the supports of some infrequent
itemsets, as not all candidate itemsets are frequent; this can be avoided by combining
private shared scalar product protocols and Yao’s circuits for frequency testing.

In this paper, we show that the private scalar product protocol of Vaidya and
Clifton [VC02] is not private. Additionally, we are able to break another private (shared)
scalar product protocol which was recently proposed by Du and Atallah [DA01a]. Our
attacks against the Vaidya-Clifton and Du-Atallah protocols work in the simplest cryp-
tographic model: namely, they enable one of the two parties to retrieve the private input
of another party with probability, very close to1, after the two parties have executed the
corresponding protocol once.

While the attacks do not work for all possible private vectors of Alice and Bob, they
show that before applying the Vaidya-Clifton and Du-Atallah protocols, one must care-
fully analyse whether it is safe to apply these protocols in any concrete case. Moreover,
the provided attacks can be readily generalised to work for a much larger fraction of pri-
vate vectors in a more complex model where attack’s success probability does not have
to be1 (but just large enough for practical purposes, say0.001) and/or when Alice and
Bob re-execute the corresponding scalar product protocols from [DA01a,VC02] with
similar private vectors. (Scalar product protocol from [DA01b] was recently analysed
in [LL04b].)

As a positive result, we describe a cryptographic protocol for computing scalar prod-
uct. We prove that the new scalar product protocol is private—in a strong cryptographic

sense—under standard cryptographic assumptions. More specifically, no probabilistic
polynomial time algorithm substituting Alice (resp., Bob) can obtain a non-negligible
amount of information about Bob’s (resp., Alice’s) private input, except what can be
deduced from the private input and private output of Alice (resp., Bob). This means,
in particular, that this protocol can be used a polynomial number of times (in the se-
curity parameter) withany private vectors of Alice and Bob inany context. In prac-
tice, the latter means “an arbitrary number of times”. Finally, we show that by using
some optimisation tricks, the proposed protocol can be made very efficient: we show
how to separately optimise for Alice’s and Bob’s computation, and for the communi-
cation of the new protocol. In particular, the communication-optimal version is more
communication-efficient than either of the Vaidya-Clifton or the Du-Atallah protocols.

Road-map. In Section 2, we describe the necessary cryptographic preliminaries. In
Section 3, we analyse some previous private scalar product protocols. In Section 4, we
propose a new scalar product protocol, prove its security and propose some important
optimisations. We finish with conclusions and acknowledgements.

2 Cryptographic Preliminaries

Secure Multi-Party and Two-Party Computation. To guarantee that a protocol is
secure in as many applications as possible, one should use the secure multi-party and
two-party techniques [Gol04]. Briefly, a two-party protocol between Alice and Bob is
securewhen privacy and correctness are guaranteed for both Alice and Bob. It is said
that a protocolprotects privacy, when the information that is leaked by the distributed
computation is limited to the information that can be learned from the designated output
of the computation [Pin02].

There are several different security models where one can prove the security of a
protocol in. The simplest setting is thesemi-honestmodel, where it is assumed that
both Alice and Bob follow the protocol, but they are also curious: that is, they store
all exchanged data and try to deduce information from it. In themalicious model, no
assumption is made about the behaviour of Alice and Bob, and it is required that the
privacy of one party is preserved even in the case of an arbitrary behaviour of the second
party. Most of the papers on privacy-preserving data mining provide only security in
the semi-honest model. Such a protocol can be made secure in the malicious model
when accompanied with zero-knowledge proofs that both parties follow the protocol.
However, such proofs are usually too inefficient to be used in data mining applications.

Homomorphic public-key cryptosystems. A public-key cryptosystemΠ is a triple
(Gen,Enc,Dec) of probabilistic polynomial-time algorithms for key-generation, en-
cryption and decryption. The security of a public-key cryptosystem is determined by a
security parameterk. For a fixedk, it should take more than polynomial ink operations
to break the cryptosystem. Together with increased security, largerk means also larger
keys and ciphertexts. The key generation algorithm generates, on input1k = 1 . . . 1
(k ones) a valid pair(sk, pk) of private and public keys that corresponds to the secu-
rity parameterk. For a fixed key pair(sk, pk), let P (sk) denote the plaintext space of

Π. The encryption algorithmEnc takes as an input a plaintextm ∈ P (sk), a random
valuer and a public keypk and outputs the corresponding ciphertextEncpk(m; r). The
decryption algorithmDec takes as an input a ciphertextc and a private keysk (cor-
responding to the public keypk) and outputs a plaintextDecsk(c). It is required that
Decsk(Encpk(m; r)) = m for anym ∈ P (sk), pk andr.

A public-key cryptosystem issemantically secure(IND-CPA secure) when a prob-
abilistic polynomial-time adversary cannot distinguish between random encryptions
of two elements, chosen by herself. We denote the encryption of a messagem by
Encpk(m; r), wherepk is the corresponding public key andr is the used random string.
A public-key cryptosystem ishomomorphicwhenEncpk(m1; r1) · Encpk(m2; r2) =
Encpk(m1 + m2; r1 · r2), where+ is a group operation and· is a groupoid operation.
This means that a party can add encrypted plaintexts by doing simple computations with
ciphertexts,withouthaving the secret key. Usually,P (sk) = Zm for some largem. One
of the most efficient currently known semantically secure homomorphic cryptosystems
was proposed by Paillier cryptosystem [Pai99] and then improved by Damgård and Ju-
rik [DJ01]. In Paillier’s case,P (sk) = Zm with m ≥ 21024. One can effectively assume
that m is as large as say24096, when using the Damgård-Jurik cryptosystem [DJ01].
We will assume thatk is the bit length of the plaintexts, thusk ≥ 1024.

Oblivious transfer. In an
(
n
1

)
-oblivious transfer protocol, Bob has a database

(D1, . . . ,Dn) and Alice has an indexi ∈ [n]. The goal is for Alice to retrieve the
elementDi without revealing her indexi to Bob, and Bob does not want Alice to get
to know anything about the other elements in his database apart from the element she
asks for. Recently, Lipmaa [Lip04] proposed an asymptotically efficient

(
n
1

)
-oblivious

transfer protocol with communicationΘ(log2 n)k.

3 Cryptanalysis of Proposed Private SP Protocols

Before cryptanalysing some of the previously proposed private scalar product and pri-
vate shared scalar product protocols, we must define what does it mean to attack one.
Next, we will give a somewhat intuitive definition. For simplicity, we will require that
all arithmetic is done inZm for somem.

We call a protocol between Alice and Bob ascalar product(SP) protocol when
Bob obtains, on Alice’s private inputx = (x1, . . . , xN) ∈ ZN

m and on Bob’s private
input y = (y1, . . . , yN) ∈ ZN

m, the scalar productx · y =
∑N

i=1 xiyi. A protocol
is ashared scalar product (SSP) protocolwhen Alice receives a uniformly distributed
random valuesA ∈ Zm and Bob receives a dependent uniformly distributed random
valuesB ∈ Zm, such thatsA + sB ≡ x · y (mod m). A scalar product protocol is
privatewhen after executing the protocol, Bob obtains no more knowledge thanx · y
and Alice obtains no new knowledge at all. In particular, Alice gets to know nothing
new about Bob’s vector and Bob gets to know nothing about Alice’s vector that is not
implied byx andx ·y. A private shared scalar product protocolis defined analogously.

Recently, several researchers from the data mining community have proposed pri-
vate SSP and SP protocols [DA01b,DA01a,DZ02,VC02], that were primarily meant to

PRIVATE INPUT OF ALICE: x ∈ {0, 1}N
PRIVATE INPUT OF BOB: y ∈ {0, 1}N
PRIVATE OUTPUT OFBOB: Scalar productx · y mod m.

1. Alice and Bob jointly do:
Generate a random invertibleN ×N matrixC.

2. Alice does:
Generate a random vectorp ∈ ZN

m.
Sendu← x + Cp to Bob.

3. Bob does:
Generatè random valuess1, . . . , s` ∈ Zm.
Sendv ← CTy + r, wherer[i]← si1, to Alice.

4. Alice does:
Sett0 := v · p.
For i ∈ {1, . . . , `}, setti :=

∑n
j=1 p[i]j .

Send(t0, t1, . . . , t`) to Bob.
5. Bob does:

Returnu · y − t0 +
∑`

i=1 siti.

Protocol 1: Vaidya-Clifton private shared scalar product protocol. (All computations
are done modulo a publicm.)

be used in the context of privacy-preserving data mining. Most of the proposed solu-
tions try to achieve information-theoretical security—that is, without relying on any
computational assumption—by using additive or linear noise to mask the values. In
almost all such solutions, one can construct a system of linear equations based on the
specification of the protocol, and solve it for the secret values. We will next demonstrate
that explicitly in the case of the protocols from [DA01a,VC02].

3.1 Vaidya-Clifton Private Scalar Product Protocol

First, we analyse the Vaidya-Clifton private SP protocol [VC02], depicted by Protocol 1.
For the sake of simplicity, we assume that the database size isN = `n, wheren is a
block size and̀ is the number of blocks. We represent eachN -dimensional vectorz ei-
ther asz = (z1, . . . , zN) or z = (z[1], . . . ,z[`]), wherez[i] = (z(i−1)n+1, . . . , zin).
We denote then-dimensional vectors(1, . . . , 1) and(0, . . . , 0) by 1 and0.

Protocol 1 is a slight modification of the original Vaidya-Clifton protocol. Namely,
in the original protocol all scalars belong toR, while in Protocol 1 they belong toZm

with m > N . Our modifications make the protocol more applicable and also more
secure for the next reasons. First, as computers can use only limited precision, there
will be stability and correctness problems when computing over real numbers. Second,
adding random noiser from R to valuex from R does not perfectly hidex since it
is impossible to chooser uniformly at random fromR, or even fromN. Therefore,
cryptanalysis of the original Vaidya-Clifton protocol is simpler and attacks against it
are more dangerous when we consider their protocol as working inR.

In the following, we explicitly assume thatm is prime. Proposed attacks also
work with compositem, but then one would have to tackle many insubstantial

yet technical details. We will also establish some additional notation. First, for any
I = {i1, . . . , ij} ⊆ [N] with |I| = j, any vectorx and any matrixM , let
xI = (xi1 , . . . , xij) andMI denote the sub-matrix ofM that consists of the rows
I = {i1, . . . , ij}. Second,C is invertible and known to both Alice and Bob. Therefore,
defineai := (CT)−1ei mod m, whereei[j] = 1 if i = j andei[j] = 0, other-
wise. Defineω := (CT)−1v. Then(CT)−1r ≡ (CT)−1(s11, . . . , s`1) ≡

∑`
i=1 siai

(mod m), ω ≡ y +
∑`

i=1 siai (mod m) andti ≡ ei · p ≡ ai · Cp (mod m) for
i ≥ 1.

First, we show that if the vectory has a low support then Alice is guaranteed to
learn half coefficientsyi—and with a high probability the whole vectory—after just
executing Protocol 1 once.

Lemma 1. As previously, letsupp(y) := |{y : yi 6= 0}| be the support ofy. Assume
that N ≥ (2 supp(y) + 1)`. After just executing Protocol 1 once, a semi-honest Alice
obtains at least half of the coefficients ofy, with probability1, by solving2 supp(y)+1
systems of linear equations in` variables.

Proof. Let M be the matrix with column vectorsa1, . . . ,a`. Lets = (s1, . . . , s`). The
attack is based on the observation that the equalityMs ≡ ω−y (mod m) gives Alice
a system ofN linear equations iǹ unknownssj . The valuesvi and vectorsa1, . . . ,a`

are known to Alice; the valuesyi ∈ {0, 1} are unknown. Alice partitions the set[N]
iteratively into≥ N/` (non-empty) partsIk as follows: DenoteJk := [N] \

⋃
i<k Ik.

Alice chooses anIk ⊆ Jk, such that the matrixMIk
has the maximal possible rank

with respect toJk andIk is minimal unless the rank ofMJk
is zero. In particular,

MJk
= DkMIk

for some matrixDk. If rank of MJk
is zero then Alice chooses a

random index fromJk. Note thatMJk
= DkMIk

still holds for an appropriate zero
matrixDk.

Now, there are at leastN/` ≥ 2 supp(y) + 1 partsIk. For a majority of indicesk
(we say that such indicesk are “good”),yIk

is a zero vector. Therefore, in the majority
of the cases, Alice obtains the correct valuessIk

by solving the equationMIk
s = ωIk

.
SinceMJk

s = DkMIk
s, the value ofyJk

is uniquely determined bysIk
. Moreover,

the smallest “good”k = k0 satisfiesk0 ≤ supp(y) + 1. The solutions of MIk0
s =

(ω)Ik0
is consistent with the solutions that correspond to other “good”k’s, that is,

MIk
· sIk0

= ωIk
for all “good” indicesk > k0. Therefore, Alice can find all “good”

indicesk by majority voting. She also obtains all coordinates ofyJk0
. ut

If |Ik0 | = ` then all coordinates ofy are revealed, otherwise coefficients are re-
vealed for all sets|Ik| ≤ |Ik0 |, as any solution toMIk0

s = ωIk0
uniquely determines

yJk0
= ωJk0

−Dk0ωIk0
. The next result shows thaty is revealed almost certainly.

Lemma 2. Let Ik be defined as in the proof of the previous lemma. Then
Pr [|Ik| = |Ik+1|] =

∏d−1
i=0

(
1−m−|Jk|+i

)
. Thus, the probability that all coefficients

are revealed is approximately(1−m−N/2)supp(y)` ≈ 1− supp(y)`m−N/2.

Proof. Consider all possible vector assignments ofa1, . . . ,a` that are consistent with
the choice ofI1, . . . , Ik; that is, such assignments, for whichMJk

= D′
kMIk

for
someD′

k. The latter is equivalent to the assumption that rows ofMJk
are randomly

sampled from a vector space of dimension|Ik|. By a standard result [vLW92, p. 303],
the probability thatrank(MJk

) = |Ik| is equal to
∏|Ik|−1

i=0 (1−m−|Jk|+i). Hence, the
first claim is proven. Now,y is completely determined if

∣∣Isupp(y)+1

∣∣ = `. As |I1| = `

by the protocol construction and fork < supp(y),
∣∣Jsupp(y)

∣∣ > N/2, the second claim
follows from a straightforward calculation. ut

If we give more power to Alice, she will be able to do much better. Assume that
Protocol 1 is run twice with the same input vectory; let a1, . . . ,a` anda′

1, . . . ,a′
` be

vectors, computed from the random matricesC andC ′ as previously. Then,ω − ω′ =∑`
i=1 siai −

∑`
i=1 s′ia

′
i. With high probability, this determiness ands′ uniquely. To

avoid similar attacks, Bob must never run Protocol 1 twice with the same inputy but
different matricesC. The next lemma shows that also Alice must never run Protocol 1
twice with the same inputx but different matricesC.

Lemma 3. If Protocol 1 is re-executedk > N/` times with the samex, Bob obtainsx
with probability higher than

∏N−1
i=0 (1−m−k`+i).

Proof. Each execution of Protocol 1 provides` linear equationsai · u = ai · x +
ai · Cp = ai · x + ti for i ∈ {1, . . . , `}. As a1, . . . ,a` are chosen randomly, similar
argumentation as in Lemma 2 gives the probability estimate. ut

Finally, we get another efficient attack when we consider itemsets with almost the
same support. For example, assume that Alice knows thatsupp(y − y′) < N/(4`) −
1/2. Then, by using Lemma 1, Alice can determines ands′ from the equationω −
ω′ = y − y′ +

∑`
i=1 siai −

∑`
i=1 s′ia

′
i; therefore, she obtainsy andy′. This attack

works with any choice ofC. The conditionsupp(y − y′) � N is not so rare in the
context of frequent itemset mining. Moreover, several optimisations of APRIORI are
devised to exploit such shortcuts. To analyse the applicability of low support attacks,
we need additional notations. Letsupp(I) denote the support of the itemsetI andyI

the corresponding vector, i.e.yI,k = 1 iff the kth row contains itemsI. We say thatI
is a closed frequent itemset, iffsupp(I) is over frequency threshold and for any proper
supersetJ) I, supp(I) > supp(J). Now, if the frequent itemsetI is not closed, then
the APRIORI algorithm discoversJ ⊃ I such thatsupp(yI − yJ) = 0 and Alice can
apply the attack. The ratioρ between frequent and frequent closed sets describes the
average number of vectors revealed by a single closed set. Empirical results [PHM00]
on standard data mining benchmarks indicate thatρ can range from2 to 100 depending
on the frequency threshold, when the database contains some highly correlated items.

The analysis can be extended further by using notion of frequentδ-free sets. A
itemsetI is δ-free iff for any proper subsetJ (I, supp(yI −yJ) > δ. In other words,
if I is not δ-free but frequent, then two vectorsyI andyJ with supp(yI − yJ) ≤ δ
appear in the APRIORI algorithm. Again, empirical results [BBR03,BB00] on standard
data mining benchmarks show that the number of frequentδ-free sets withδ ∈ [0, 20]
is several magnitudes smaller than the number of frequent sets, when database contain
highly correlated items. To conclude, a low support differences are quite common for
many practical data sets and thus the Vaidya-Clifton scalar product protocol is insecure
for frequent itemset mining.

Remark on [VC02, Section 5.2]. In [VC02, Section 5.2], Vaidya and Clifton note
that the fact thatxi andyi belong to{0, 1} can create a disclosure risk. They propose
two solutions. The first consists of “cleverly” selecting the matrixC so that it is not
evident which of the values ofxi andyi are1’s. Lemma 1 states that such a “clever”
choice is impossible in general since at least a half ofy’s coordinates is revealed for
every matrixC. Besides, the solution is not fully spelled out and no security proofs are
given. Another solution from [VC02, Section 5.2] is said to increase the security of Bob
but decrease the security of Alice, but again, no security proofs are given. Thus, it is
difficult to estimate the exact security of the proposed solutions. It seems that neither of
these mentioned solutions is secure against our attacks.

Communication and computation of Vaidya-Clifton protocol. Alice and Bob must
both knowC, thus the communication of the Vaidya-Clifton protocol is approximately
N2 log m bits. In the version of the scalar product protocol where no privacy is guar-
anteed, Alice just sends her vector (N bits) to Bob, who returns the scalar product
(dlog2 Ne bits). Define the communication overhead of a private scalar protocolP to
be equal toC(P)/N , whereC(P) is the number of bits communicated in the proto-
col P . Thus, the communication overhead of the Vaidya-Clifton private SP protocol is
Nm. Computation is dominated byΘ(N2) multiplications and additions inZm. The
new scalar product protocol, that we will propose in this paper, is both more secure and
more efficient.

3.2 Du-Atallah Private Scalar Product Protocol

Du and Atallah proposed another private SSP protocol [DA01a], depicted by Protocol 2.
We show that also this protocol cannot handle binary vectors with low support.

Since Protocol 2 chooses the valuesri randomly,sA is a random value and therefore
Alice does not learn anything abouty. To learnx, Bob must guess correctly the values
`i for all i. Since the probability of a random guess isp−d, Du and Atallah argue that
this protocol is secure whenpd > 280. Bob can do much better, however.

Lemma 4. AssumeN ≥ (2 supp(x) + 1)pd. Then, with probability1, Bob finds at
leastN/2 coordinates ofx by solvingsupp(x) + 1 systems of linear equations, each
having dimensionpd − 1. With high probability≈ (1 −m−N/2)supp(x)(pd−1) ≈ 1 −
supp(x)(pd− 1)m−N/2, Bob obtains the whole vectorx.

Proof. Bob knows that
∑d

i=1 hiji
= x for some valuesji. Equivalently,

d∑
i=1

p∑
j=1

cijhij = x ,

wherecij = 1 if j = ji and cij = 0, otherwise. Exactly as Alice did in the proof
of Lemma 1, Bob iteratively partitions[N] into subsetsIk with maximal possible rank.
Hence, a solution to

∑
i,j cij(hij)Ik0

= 0 uniquely determinesxIk
=

∑
i,j cij(hij)Ik

for k > k0. On the other hand, Bob creates at least2 supp(x) + 1 partitionsIk. Thus,

PRIVATE INPUTS: Vectorsx ∈ {0, 1}N andy ∈ {0, 1}N .
PRIVATE OUTPUTS: SharessA + sB ≡ x · y mod m.

1. Alice does:
Generate randomv1, . . . , vd−1 ← ZN

m.
Setvd := x−

∑d−1
i=1 vi andsA := 0.

2. Fori = 1 to d do
(a) Alice does:

Generate random̀i ∈ {1, . . . , p}.
Sethi`i := vi.
For j ∈ {1, . . . , `i − 1, `i + 1, . . . , p}: Generate randomhij ∈ Zn

m.
Send(hi1, . . . , hip) to Bob.

(b) Bob does:
Generate randomri ∈ Zm.
For j ∈ {1, . . . , p}: Setzij := hij · y + ri.

(c) Alice does:
Use

(
p
1

)
-oblivious transfer to retrievezi`i from (zi1, . . . , zip).

SetsA := sA + zi`i .
3. Alice outputssA, Bob outputssB = −

∑d
i=1 ri.

Protocol 2: Du-Atallah private SSP protocol. Here,m > N is a public modulus

there exists ak ≤ supp(x) + 1, such thatxIk
= 0. As in the proof of Lemma 1, we

can determine the first “good”k0 ≤ supp(x) + 1 by using majority voting.
To reduce the amount of computations, Bob can ignore all sets|Ik| = pd. For any

“good” k, |Ik| ≤ pd−1, asxIk
= 0 and the homogeneous system

∑
i,j cij(hij)Ik

= 0
has a nontrivial solution.

The proof of the second claim is similar to the proof of Lemma 2, since it is suf-
ficient thatpd − 1 random vectors are linearly independent, and|I1| ≥ pd − 1 by
construction. ut

This protocol has another serious weakness, since with high probability slightly
more thanpd coordinates ofx allow to determine correctcij and thus also reveal other
coordinates. Therefore, a leakage ofpd database entries, can reveal the whole vector
(database) and thuspd must be large, say more than200. On the other hand, this proto-
col is very inefficient whenpd is large.

Communication and computation complexity. Assumepd > 280. Then the commu-
nication of the Du-Atallah private SSP protocol isdpN + dtp, wheretp is the com-
munication complexity of the

(
p
1

)
-oblivious transfer protocol. This is minimal when

d is maximised, i.e., whenp = 2. Taking the efficient
(
p
1

)
-oblivious transfer protocol

from [AIR01], one hast2 = 3k, wherek ≈ 1024 is the security parameter. Then the
communication is2dN + 3dk bits for d ≥ 80 andk ≥ 1024. Taking d = 80 and
k = 1024, we get communication160N + 245760 bits. However, Lemma 4 indicates
that for the security of the Du-Atallah protocol, one should pickp andd such thatpd

PRIVATE INPUTS: Private vectorsx, y ∈ ZN
µ .

PRIVATE OUTPUTS: SharessA + sB ≡ x · y mod m

1. Setup phase. Alice does:
Generate a private and public key pair(sk, pk).
Sendpk to Bob.

2. Alice does fori ∈ {1, . . . , N}:
Generate a random new stringri.
Sendci = Encpk(xi; ri) to Bob.

3. Bob does:
Setw ←

∏N
i=1 cyi

i .
Generate a random plaintextsB and a random noncer′.
Sendw′ = w · Encpk(−sB ; r′) to Alice.

4. Alice does: ComputesA = Decsk(w
′) = x · y − sB .

Protocol 3: Private homomorphic SSP protocol

is quite large. For example, pickingp = 211 andd = 8 might result in an acceptable
security level, but then the communication of the protocol will be214 ·N + dtp bits.

4 Cryptographic Private SSP Protocol

In this section we describe a private SSP protocol (Protocol 3) that is based on homo-
morphic encryption. Note that a private SP protocol can be obtained from it by defining
sB ← 0.

Theorem 1. Assume thatΠ = (Gen,Enc,Dec) is a semantically secure homomorphic
public-key cryptosystem withP (sk) = Zm for some largem. Setµ := b

√
m/Nc.

Protocol 3 is a secure SSP protocol in the semi-honest model, assuming thatx,y ∈ ZN
µ .

Alice’s privacy is guaranteed when Bob is a probabilistic polynomial-time machine.
Bob’s privacy is information-theoretical.

Proof. Clearly, the protocol is correct if the participants are honest. Since the cryptosys-
tem is semantically secure, Bob only seesN random ciphertexts, for which he cannot
guess the plaintexts. In particular, this holds even when Bob has given two candidate
vectorsx1 andx2 to Alice and Alice has randomly chosen one of them,x := xb. Even
after a polynomial number of protocol executions with Alice’s input, Bob will gain only
an insignificant amount of information aboutxb that will not help him in guessing the
value ofb. (This roughly corresponds to the standard notion of semantic security.) On
the other hand, Alice only sees a random encryption ofsA = x · y − sB , wheresB is
random. But Alice has the key anyways, so she can decrypt this message. Thus, Alice
obtains no information at all. ut

(Note that ifm > 21024 andN ≈ 216 thenµ ≥ 2504.) In Appendix A, we describe an
extension of this protocol to more than two parties.

Practical considerations. Note that when Alice and Bob need to execute this protocol
several times, they can reuse public and private keys and thus the setup phase can be ex-
ecuted only once. Public key cryptography is computationally demanding. To estimate
the computational cost of the new scalar product protocol, we must count encryptions,
decryptions and multiplications of ciphertexts. Bob must performN exponentiations
and1 encryption. Alice has to performN encryptions and1 decryption.

In the specifically interesting case whenxi, yi ∈ {0, 1} (e.g., whenx andy cor-
respond to characteristic functions of two setsX andY ; thenx · y = |X ∩ Y |), this
protocol can be further optimised. Namely, Alice can pre-compute and then store a large
table of random encryptions of0’s and1’s. Then every “encryption” just corresponds
of fetching a new element from the correct table; this can be done very quickly. Bob
has to perform1 encryption andsupp(y) multiplications, since the exponentsyi are all
Boolean. (Whenyi = 0 thencyi

i = 1 and otherwisecyi

i = ci.)
The current hardware allows to do approximately105 multiplications per seconds

and thus the computational complexity of both Alice and Bob is tolerable. A similar
analysis applies for Protocol 4. Here, Alice and Bob must pre-computeN encryptions.
Hence, we can conclude that the computational complexity is not a serious downside of
the proposed protocols. Similar, although not as efficient, optimisation tricks can also
be used to speed up Protocol 3 whenx andy are not binary.

Estimated communication complexity. The only serious drawback of the new proto-
cols is the communication overhead: since Alice sendsN ciphertextsci, the overhead
is k′/µ, wherek′ is just the size of each ciphertext in bits. When using any of the cur-
rently known most efficient semantically secure homomorphic cryptosystems (e.g., the
one from [Pai99]),k′ ≈ 2048. For x,y ∈ Zm′ with very smallm′—say,m′ ≤ 13,
this compares non-favourably with the overhead of the (insecure) Du-Atallah protocol
which has the overhead of approximately160 times withd = 80 andk = 1024. For
a largem′, the described protocol is already more communication-efficient than the
Du-Atallah protocol.

Comparison with Freedman-Nissim-Pinkas protocol. Recently, Freedman, Nissim
and Pinkas proposed a related cryptographically secure protocol for computing the set
intersection cardinality [FNP04], a task that is equivalent to privately computing the
scalar product of two binary vectors. In the non-shared case, the Freedman-Nissim-
Pinkas protocol is more efficient than the new one, but then the participants also learn
the valuessupp(x) andsupp(y). However, recall that in the data mining applications it
is preferable that both parties will get only sharessA+sB = x·y mod m of the scalar
product, otherwise frequency of some infrequent sets is revealed. Moreover, sometimes
only a list of frequent sets without frequencies is required.

Freedman, Nissim and Pinkas proposed also a solution for shared version, but their
protocol requires a secure circuit evaluation. Briefly, secure evaluation means that first
Alice and Bob obtainsupp(x) different shares

si + ti =

{
0, if xi = 1, yi = 1
ri, if xi = 1, yi = 0

}
mod m

whereri ∈ Zm is a random value andm is (say) a1024-bit number. To securely
computex · y by secure circuit evaluation, one therefore needs to execute oblivious
transfer for each1024 · supp(x) input bit pairs(si, ti). Since a

(
2
1

)
-oblivious transfer

protocol requires sending at least three encryptions, the communication overhead of
the Freedman-Nissim-Pinkas protocol is lower than the communication overhead of
Protocol 3 only ifsupp(x) ≤ N/(3 · 1024), i.e., if the candidate set is very infrequent.

Reducing communication overhead.We shall now discuss how to reduce the over-
head if it is known thatx andy are Boolean. Again, similar optimisation techniques
can be used whenx,y ∈ Zµ′ for some2 < µ′ � µ. In the following we assume that
the plaintext space of the cryptosystemΠ is a residue ringZm such thatlog m ≥ 1024.
This is the case for all widely known homomorphic cryptosystems. When we assume
that xi, yi ∈ {0, 1}, every ciphertextci in Protocol 3 only transfers a single bitxi,
which results in communication overhead.

The next technique for packing several bits into one plaintext is fairly stan-
dard in cryptography (it has been used at least in the context of electronic vot-
ing [CGS97,DJ01], electronic auctions [LAN02] and oblivious transfer [Lip04]). To
packk entries into a single message—recall that the plaintext length isk bits—, we
fix a radixB > N , such thatBk < m, and work implicitly withB-ary numbers. Let
[vk, . . . , v2, v1] = v1 + v2B + · · ·+ vkBk−1. Our method works only in the case when
Alice and Bob do patch computation of scalar products, more precisely, when Alice and
Bob need to computexi · y for several vectorsxi, i ∈ {1, . . . , k}, owned by Alice.
(This is exactly what happens in the context of frequent itemset mining.)

The new patch scalar product protocol looks exactly like Protocol 3, except that
Alice computesci as

ci =Encpk([xki, . . . , x2i, x1i]; ri)

=Encpk(1; 0)x1iEncpk(B; 0)x2i · · · · · Encpk(Bk−1; 0)xikEncpk(0; ri) .

It takes at mostk multiplications to computeci. Again, the encryptionsEncpk(Bj ; 0)
can be computed in the setup phase. Hence, during the first step, Alice’s computation is
N encryptions andO(kN) multiplications.

At the second step of the protocol, Bob computes

w =
N∏

i=1

Encpk(yi[xki, . . . , x2i, x1i]; ri)Encpk(−sB , r′)

= Encpk ([xk · y, . . . ,x1 · y]− sB ; r′′) .

Hence, if Bob revealssB , Alice can restoreall scalar productsxj · y. Sometimes it
is also needed that Alice be able only to computexj · y for j ∈ I, whereI is a
proper subset of{1, . . . , k}. One can do this efficiently by using standard cryptographic
techniques.

Therefore, when using the Paillier cryptosystem, the resulting protocol for privately
computing the scalar product of two binary vectors has almost optimal communication

overhead ofdlog Ne times. (When using the Damgård-Jurik cryptosystem, the commu-
nication overhead might even be smaller.) This should be compared to the160 times
overhead of the insecure Du-Atallah protocol.

Security in malicious model. Protocol 3 can be made in the malicious model by letting
Alice to prove in zero-knowledge, for everyi, thatci encrypts a value fromZµ. This can
be done efficiently in the random oracle (or common reference string) model [Lip03].
An alternative is to use conditional disclosure of secrets [AIR01] modified recently to
the setting of Paillier’s cryptosystem in [LL04a]. Both methods guarantee that at the
end of a protocol run, Alice is no better of than mounting the nextprobing attack: Alice
creates a suitable valid input vectorx′, executes the protocol with Bob, and obtainsx′ ·
y. If x′ is suitably chosen (e.g.,x′i = 1 andx′j = 0 for j 6= i), this may result in privacy
leakage. However, this probing attack is unavoidable, no matter what private scalar
product protocol is used instead of Protocol 3. The only way to tackle this attack is to
let Alice to prove that her inputx is “correctly” computed, whatever “correctly” means
in the concrete application (e.g., in frequent itemset mining on vertically distributed
databases). While such a functionality can be added to Protocol 3, it is not a part of the
definition of a “private scalar product” protocol, but highly application-dependent (and
thus should be left to be specified on a higher level), and very often, highly costly.

5 Conclusions

The secure computation of a scalar product is an important task within many data min-
ing algorithms that require the preservation of privacy. Recently, several protocols have
been proposed to solve this task. We have shown, however, that they are insecure. More-
over, we presented a private scalar product protocol based on standard cryptographic
techniques and proved that it is secure. Furthermore, we described several optimisa-
tions in order to make it very efficient in practice.

Acknowledgements.We would like to thank Benny Pinkas for useful comments. This
work was partially supported by the Finnish Defence Forces Institute for Technological
Research and by the Finnish Academy of Sciences.

References

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced Oblivious Transfer: How to
Sell Digital Goods. In Birgit Pfitzmann, editor,Advances in Cryptology — EURO-
CRYPT 2001, volume 2045 ofLecture Notes in Computer Science, pages 119–135,
Innsbruck, Austria, 6–10 May 2001. Springer-Verlag.

[AMS+96] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, and
A. Inkeri Verkamo. Fast Discovery of Association Rules. In Usama M. Fayyad, Gre-
gory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy, editors,Ad-
vances in Knowledge Discovery and Data Mining, pages 307–328. AAAI/MIT Press,
1996.

[BB00] Jean-Franois Boulicaut and Artur Bykowski. Frequent Closures as a Concise Repre-
sentation for Binary Data Mining. InPADKK 2000, volume 1805 ofLecture Notes in
Computer Science, pages 62–73. Springer, 2000.

[BBR03] Jean-Franois Boulicaut, Artur Bykowski, and Christophe Rigotti. Free-Sets: A Con-
densed Representation of Boolean Data for the Approximation of Frequency Queries.
Data Mining and Knowledge Discovery, 7(1):5–22, 2003.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A Secure and Opti-
mally Efficient Multi-Authority Election Scheme. In Walter Fumy, editor,Advances
in Cryptology — EUROCRYPT ’97, volume 1233 ofLecture Notes in Computer Sci-
ence, pages 103–118, Konstanz, Germany, 11–15 May 1997. Springer-Verlag.

[DA01a] Wenliang Du and Mikhail J. Atallah. Privacy-Preserving Statistical Analysis. In
Proceedings of the 17th Annual Computer Security Applications Conference, pages
102–110, New Orleans, Louisiana, USA, December 10–14 2001.

[DA01b] Wenliang Du and Mikhail J. Atallah.Protocols for Secure Remote Database Access
with Approximate Matching, volume 2 ofAdvances in Information Security, page
192. Kluwer Academic Publishers, Boston, 2001. http://www.wkap.nl/prod/b/0-
7923-7399-5.

[DJ01] Ivan Damg̊ard and Mads Jurik. A Generalisation, a Simplification and Some Appli-
cations of Paillier’s Probabilistic Public-Key System. In Kwangjo Kim, editor,Public
Key Cryptography 2001, volume 1992 ofLecture Notes in Computer Science, pages
119–136, Cheju Island, Korea, 13–15 February 2001. Springer-Verlag.

[DZ02] Wenliang Du and Zhijun Zhan. A Practical Approach to Solve Secure Multi-party
Computation Problems. In Carla Marceau and Simon Foley, editors,Proceedings of
New Security Paradigms Workshop, pages 127–135, Virginia Beach, virginia, USA,
September 23–26 2002. ACM Press.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient Private Matching
and Set Intersection. In Christian Cachin and Jan Camenisch, editors,Advances in
Cryptology — EUROCRYPT 2004, volume 3027 ofLecture Notes in Computer Sci-
ence, pages 1–19, Interlaken, Switzerland, 2–6 May 2004. Springer-Verlag.

[Gol04] Oded Goldreich.Foundations of Cryptography: Basic Applications. Cambridge Uni-
versity Press, 2004.

[LAN02] Helger Lipmaa, N. Asokan, and Valtteri Niemi. Secure Vickrey Auctions without
Threshold Trust. In Matt Blaze, editor,Financial Cryptography — Sixth Interna-
tional Conference, volume 2357 ofLecture Notes in Computer Science, pages 87–
101, Southhampton Beach, Bermuda, 11–14 March 2002. Springer-Verlag.

[Lip03] Helger Lipmaa. On Diophantine Complexity and Statistical Zero-Knowledge Ar-
guments. In Chi Sung Laih, editor,Advances on Cryptology — ASIACRYPT 2003,
volume 2894 ofLecture Notes in Computer Science, pages 398–415, Taipei, Taiwan,
30 November–4 December 2003. Springer-Verlag.

[Lip04] Helger Lipmaa. An Oblivious Transfer Protocol with Log-Squared Total Communica-
tion. Technical Report 2004/063, International Association for Cryptologic Research,
February 25 2004.

[LL04a] Sven Laur and Helger Lipmaa. Additive Conditional Disclosure of Secrets Or: Good-
Bye, Random Oracles. Manuscript, November 2004.

[LL04b] Sven Laur and Helger Lipmaa. On Private Similarity Search Protocols. In Sanna Li-
imatainen and Teemupekka Virtanen, editors,Proceedings of the Ninth Nordic Work-
shop on Secure IT Systems (NordSec 2004), pages 73–77, Espoo, Finland, Novem-
ber 4–5, 2004.

[Pai99] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuos-
ity Classes. In Jacques Stern, editor,Advances in Cryptology — EUROCRYPT ’99,

volume 1592 ofLecture Notes in Computer Science, pages 223–238, Prague, Czech
Republic, 2–6 May 1999. Springer-Verlag.

[PHM00] J. Pei, J. Han, and R. Mao. CLOSET: An efficient algorithm for mining frequent
closed itemsets. In2000 ACM SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery, 2000.

[Pin02] Benny Pinkas. Cryptographic Techniques for Privacy-Preserving Data Mining.KDD
Explorations, 4(2):12–19, 2002.

[VC02] Jaideep Vaidya and Chris Clifton. Privacy Preserving Association Rule Mining in
Vertically Partitioned Data. InProceedings of The 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 639–644, Edmonton,
Alberta, Canada, July 23–26 2002. ACM.

[vLW92] Jacobus H. van Lint and Richard M. Wilson.A Cource in Combinatorics. Cambridge
University Press, 1992.

A Private Generalised Scalar Product Protocol

Next, we propose a secure generalised scalar product protocol (Protocol 4) for

〈x1,x2, . . . ,xk〉 =
N∑

i=1

x1i · · ·xki .

For the sake of simplicity, we consider only the three-party case but the protocol can
be easily generalised. Again, Alice has a private key; Bob and Carol know only the
corresponding public key. The security of the generalised scalar product protocol de-
pends on Alice. Namely, when Alice colludes with other parties then privacy can be
compromised. For example, colluding Alice and Carol can revealyi, unlessxi = 0,
sinceDecsk(di) = xiyi. Thus, we get the following result.

Theorem 2. Assume thatΠ = (Gen,Enc,Dec) is a semantically secure homomorphic
public-key cryptosystem withP (sk) = Zm for some largem. Protocol 4 is a secure gen-
eralised scalar product protocol. In particular, it is secure against all possible coalitions
provided that Alice does collude with other parties.

The proof is a simple generalisation of the previous proof. Bob must re-randomise
ci’s asdi = ci · Encpk(0; r′i), since otherwise the values ofyi’s can be detected only
by comparing the ciphertext that he receives from Alice with the one he sends to Carol.
The sharing step 4 allows combine the outcome with other cryptographic protocols.

The assumption that Alice does not collude with other parties is quite strong. When
we modify the protocol so that(sk, pk) is generated jointly by Alice, Bob and Carol and
that on the step4, they do threshold decryption ofw, we get a private SP protocol with
the next security result:

Theorem 3. AssumeΠ = (Gen,Enc,Dec) is a semantically secure homomorphic
threshold public-key cryptosystem. Then Protocol 4, generalised toκ parties, is secure
against coalitions by< κ/2 parties.

PRIVATE INPUTS: Private vectorsx, y, z ∈ ZN
µ .

PRIVATE OUTPUTS: SharessA + sB + sC ≡ 〈x, y, z〉 mod m

1. Alice does:
Generate a key-pair(sk, pk).
Send the public keypk to Bob and Carol.

2. Alice does fori ∈ {1, . . . , N}:
Sendci = Encpk(xi; ri) to Bob.

3. Bob does fori ∈ {1, . . . , N}:
Setdi = cyi

i Encpk(0; r′i).
Senddi to Carol.

4. Carol does:
Setw ←

∏N
i=1 czi

i .
Generate a random plaintextsC and a random noncer′.
Sendw′ ← w · Encpk(−sC ; r′) to Bob.

5. Bob does:
Generate a random plaintextsB and a random noncer′′.
Sendw′′ ← w′ · Encpk(−sB ; r′′) to Alice.

6. Alice computessA ← Decsk(w
′′) = x · y − sB − sC .

Protocol 4: Private generalised homomorphic SSP protocol

