
1 TOPOLOGICAL CANONIZATION OF

PLANAR SPATIAL DATA AND ITS

INCREMENTAL MAINTENANCE

Floris Geerts1, Bart Kuijpers∗2, and Jan Van den Bussche3

1University of Limburg LUC

Diepenbeek, Belgium

fgeerts@luc.ac.be

2University of Antwerp UIA

Antwerp, Belgium

kuijpers@uia.ac.be

3University of Limburg LUC

Diepenbeek, Belgium

vdbuss@luc.ac.be

Abstract: It is known that to a planar spatial database, represented by a
semi-algebraic set in the plane, one can associate a structure, here called the
“topological canonization,” such that two databases are topologically equivalent
if and only if their topological canonizations are isomorphic. The advantage
of a topological canonization is that it contains precisely the information one
needs if one is only interested in topological properties of the spatial data.
In this paper we represent semi-algebraic sets using plane graph structures.
Canonizations are represented by plane graph structures as well (the so-called
canonical structures). We discuss the basic properties of canonical structures
and of canonization. We then present a method for incremental maintenance
of the canonization under elementary updates on the original spatial database.
Incremental maintenance takes less time than recomputing the canonization
from scratch.

∗Post-doctoral research fellow of the Fund for Scientific Research of Flanders (FWO).

1



2

1.1 INTRODUCTION

One way to model a spatial database, originally suggested in the context of
the constraint database approach introduced by Kanellakis, Kuper and Revesz
[Kanellakis et al., 1995], is as a semi-algebraic set in n-dimensional Euclidean
space Rn. Semi-algebraic sets are sets definable by a boolean combination of
polynomial inequalities. In this paper, we focus on spatial databases in the
plane, so n = 2. Another way to model a planar spatial database is as a planar
subdivision consisting of points, lines, and areas. This is the approach taken
in many geographical information systems [Thompson and Laurini, 1992]. The
common data structure used to represent planar subdivisions is the plane graph
structure [Kozen, 1992], perhaps better known as the doubly-connected edge list
structure [Preparata and Shamos, 1985, de Berg et al., 1997].

To an arbitrary semi-algebraic set S in the plane, one can naturally associate
a planar subdivision that represents it, in the sense that all points, lines and
areas are labeled with + or −, such that the union of all +-labeled objects
yields the set S. Polynomial-time algorithms that do this are known from
the study of algorithms for real algebraic geometry [Kozen and Yap, 1985,
Heintz et al., 1991, Renegar, 1992]. So, plane graphs provide a data structure
for representing semi-algebraic sets in the plane. In other words, the planar
subdivision approach to modeling planar spatial databases subsumes the semi-
algebraic approach.

In this paper, we are dealing with the following situation. The spatial
database is described by a semi-algebraic set S, represented by a labeled plane
graph. The labeled plane graph completely captures S: for each point the co-
ordinates are known, and for each line an equation is known. Now suppose a
number of applications are only interested in the topology of S. Such applica-
tions are practically motivated [Thompson and Laurini, 1992, Kuijpers et al.,
1995]. Then these applications are not interested in the coordinates and equa-
tions. Indeed, if we ignore coordinates and equations, a labeled plane graph
only describes the topology of the spatial database.

Now a crucial observation is that the “abstract” labeled plane graph obtained
from a “concrete” labeled plane graph by ignoring coordinates and equations
will often contain a lot of redundancy. Indeed, if an abstract labeled plane
graph contains adjacent objects that have the same label (+ or −), then these
objects can be coalesced, and the resulting abstract labeled plane graph will
still represent the same topological information. If an abstract labeled plane
graph cannot be simplified in this way, we call it canonical.

Working with the canonical abstract labeled plane graph, which is unique
up to isomorphism, instead of with the abstract labeled plane graph coming
from the original concrete labeled plane graph, has at least two advantages.

A first advantage is that the canonical labeled plane graph contains pre-
cisely all information needed to decide any topological property of the original
database. More specifically, Paredaens and two of the present authors showed
that two spatial databases represented by two isomorphic canonical labeled
plane graphs must be topologically equivalent (in mathematical terms, iso-



TOPOLOGICAL CANONIZATION 3

topic) [Kuijpers et al., 1995].1 This implies that a computationally complete
query language for topological queries is obtained simply by using any com-
putationally complete query language for classical “generic” database queries
[Abiteboul et al., 1995] on the canonical labeled plane graph.

A second advantage, as argued recently by Segoufin and Vianu [Segoufin and
Vianu, 1998], is that the canonical labeled plane graph is often much smaller
than the original labeled plane graph, since all redundancies have been removed.

Motivated by these advantages, in the present paper, we consider the sce-
nario where, along with the original spatial database, a canonical view is stored
as well in order to support the topological applications. Now when updates on
the spatial database are performed, the canonical view must be brought up to
date. This problem is analogous to the classical incremental view maintenance
problem in standard databases: also here we want to avoid recomputing the
view from scratch. We present a method by which the canonical view can be
maintained incrementally under elementary updates on the spatial data. The
time needed by our method, given an update on some object, is proportional
to the sum of the sizes of all objects that have been coalesced with that object
during canonization. This paper is organized as follows. Section 1.2 gives the

canonization

canonization

Original data Canonical View

?update

Figure 1.1 Example of update

basic definitions concerning plane graphs and semi-algebraic sets. Section 1.3
introduces the notion of topological canonization. Section 1.4 describes the

1A detailed constructive proof of this theorem can be found in Kuijpers’s thesis [Kuijpers,
1998]; a very similar result was obtained by Papadimitriou, Suciu and Vianu [Papadimitriou
et al., 1996].



4

−

+

+

−

+

−

+

Figure 1.2 Example of a semi-algebraic set

doubly-connected edge list data structure used to store plane graphs, and de-
fines the basic update operations on this data structure that we will consider.
Section 1.5, finally, presents the incremental maintenance method.

1.2 BASIC DEFINITIONS

A plane graph, geometrically speaking, is a planar embedding of a planar graph.
Viewed purely combinatorially, however, we define a plane graph as a structure
consisting of points, lines, and areas, and the following associations:

to each point, a circular list of its outgoing lines in clockwise order;

to each line, its starting point, its “twin” line, and the area to its left;

to each area, the set of isolated points lying in that area.

The twin line represents the same geometric line, but viewed from the other
direction. So every geometric line is represented by a pair of two combina-
torial line objects, one for each direction. The unbounded area is specifically
designated as such.

A (planar) semi-algebraic set is a subset of the plane R2 definable as a
boolean combination of polynomial inequalities. (For simplicity of exposition
only, in this extended abstract we consider only bounded semi-algebraic sets.)

Suppose we augment a plane graph with a + or − label for each point, line,
and area. We call this structure a labeled plane graph. If we also add algebraic
coordinates for each point, and a semi-algebraic definition of a curve for each
line, we call the resulting structure a concrete labeled plane graph.

A semi-algebraic set S can be represented by a concrete labeled plane graph
as follows. Consider a partition of the plane such that

each class is of one of the following four types: a single point; homeomor-
phic to R; to R2; or to R2 minus a finite number of points;

exactly one class is unbounded, and this class must have dimension 2;



TOPOLOGICAL CANONIZATION 5

each class is labeled by + or −;

the union of all +-labeled classes equals S.

(It is known that such a partition always exists.) This partition naturally yields
a concrete labeled plane graph representing S. Note that in general there can
be many concrete labeled plane graphs representing S. However, one concrete
labeled plane graph represents only one semi-algebraic set.

Take a concrete labeled plane graph G and a semi-algebraic set S such that
G represents S. Let H be the labeled plane graph underlying G. Then we say
that also H represents S. Note that a labeled plane graph can represent many
different semi-algebraic sets. However, we will see later that all these sets must
be isotopic.

1.3 CANONICAL PLANE GRAPHS

Call two labeled plane graphs H1 and H2 equivalent if they represent precisely
the same semi-algebraic sets. We will now show how to each labeled plane
graph we can associate an equivalent one, which is unique up to isomorphism,
and which is canonical.

A labeled plane graph is called canonical if none of the following patterns
occur in it:

a line with the same label as its left and right areas (the right area of a
line is the left area of its twin);

a point with only two outgoing lines, which have the same label as the
point;

an isolated point with the same label as its area .

The following theorem shows the importance of canonical plane graphs:

Theorem 1 ([Kuijpers, 1998]) Let H and H ′ be canonical labeled plane graphs,
and let S and S′ be semi-algebraic sets represented by H and H ′, respectively.
Then H and H ′ are isomorphic if and only if S and S′ are isotopic2.

(The difficult part of the theorem is the only-if implication.)
Note that the if-implication of the above theorem implies that for each labeled
plane graph there is a unique equivalent canonical one. Indeed, by the theorem,
there cannot be two that are non-isomorphic. Moreover, to find the equivalent
canonical labeled plane graph, we can use the following rewrite rules:

ρ1: if there is a line with the same label as its left and right areas, remove
this line and merge the two areas.

2Technically, S and S′ are called isotopic if there exists an orientation-preserving homeomor-
phism h : R2

→ R
2 such that h(S) = S′.



6

Figure 1.3 The three canonization rule ρ1,ρ2, and ρ3

ρ2: if there is a point with only two outgoing lines, which have the same label
as the point, remove this point and merge the two lines.

ρ3: if there is an isolated point with the same label as its area, remove this
point.

It can be verified that the rewrite system {ρ1, ρ2, ρ3} is terminating and has
the Church-Rosser property. Moreover, by first applying ρ1 exhaustively, then
ρ2, and finally ρ3, we can canonize an arbitrary labeled plane graph in linear
time.

1.4 DATA STRUCTURES AND UPDATES

From the definition of a labeled plane graph in Section 1.2, it is straightforward
to use the doubly-connected edge list as data structure for labeled plane graphs,
after two remarks have been made: (1) In order to associate the circular list
of outgoing lines to a point, we store for each point a pointer to an arbitrary
outgoing line record; (2) To efficiently find the lines on the boundary of an area,
we store for each area a pointer to an arbitrary line on the outer boundary of
the area, and a list of pointers to arbitrary lines on the inner boundaries of the
area.
Furthermore, we extend each record with a label (+ or −), and in case of a
concrete labeled plane graph, each point record is extended with coordinates
field, and each line record contains its semi-algebraic definition.

We also need the notion of the “Next” of a line L: this is the next line in
the circular list of the source of the twin line of L, L. This corresponds to
walking on the outerboundary of the area in counterclockwise direction (See
Figure 1.4).

We now introduce our update dictionary.

1. Add an isolated point p to area α.

2. Add a point p to line L, splitting the line L into two lines L1 and L2.

3. Add a line N between two points p and q, following the line L in the
circular list of outgoing lines of p, and preceding line M in the circular
list of outgoing lines of q. (L, respectively M , does not need to be specified
if p, respe

ctively q, is isolated.)



TOPOLOGICAL CANONIZATION 7

Twin(L)

L
Next(L)

Figure 1.4 The Next of a line L

4. Delete isolated point p from area α. This is only allowed if the label of
point p equals the label of area α.

5. Delete point p with only two outgoing lines L1 and L2, coalescing lines
L1 and L2 into a new line L. This is only allowed if L1 and L2 have the
same label as p.

6. Delete line L, coalescing its incident areas. This is only allowed if the
areas incident to L have the same label as L.

7. Change the label of point p.

8. Change the label of line L.

9. Change the label of area α.

The implementation of updates on doubly-connected edge lists is trivial for
updates 7, 8, and 9, and is straightforward for updates 1, 2, 4, 5, and 6. The
only update that needs further comment is update 3:
When a line N is added it splits an area α in two, possible the same, areas α1

and α2. It depends on the existence of a path between p and q on the boundary
of α, whether α1 equals α2, or not. To decide if a path exists, start with line
L and apply Next repeatedly. If M is reached, a path between p and q exists.
If L is reached, no path exists between p and q. In the first case α1 does not
equal α2, while in the second α1 equal α2.

1.5 INCREMENTAL MAINTENANCE OF THE CANONIZATION

Given two doubly-connected edge lists: one representing the concrete “database”,
and one representing the canonical “view”. If we perform one of the nine up-
dates of Section 1.4 on the concrete database, what has to be done on the
canonical view in order to update the canonization?

To obtain a better performance than recanonizing the concrete database from
scratch, we also maintain a correspondence between the concrete database and
its canonical view. This correspondence is given by the partial function f . (See
Figure 1.5.)



8

a

bc

d

e

f

gh

m
A

B

C

D

E

F

GHI

J

M

α

δ

ǫ

γ

f

K
β

point f line f area f

a m A, B M α ǫ

b, c ⊥ C, D M β ǫ

d, e ⊥ E, F ⊥ γ ǫ

f, g ⊥ G, H ⊥ δ ǫ

h ⊥ I, J ⊥
K ⊥

Figure 1.5 Example of the partial function f

The partial function f is either defined for an object o of the database, or is
undefined in o, in which case we write f(o) = ⊥. The function f is surjective
and is always defined on areas.

The first auxiliary notion we introduce is that of the coalesce class of a line
L or area α in the database. This is defined as the set of all lines L′ (resp.
areas α′) for which f(L′) = f(L) (resp. f(α′) = f(α)). Of course the crucial
issue is how to find this coalesce class. This is possible in time proportional to
the size of the coalesce class; we omit the details due to space limitations.

1.5.1 Canonization rules

In our maintenance algorithm, we will need to apply the canonization rules ρ1,
ρ2 and ρ3 defined in Section 1.3 to specified parts of the view. In doing so, we
must also update our mapping f . The details are as follows:

ρ1: Let L be a line in the database, and let α and β be its adjacent areas.
Assume that f(L) is defined, and has the same label as f(α) and f(β).
Then we perform the following operations:

(a) Delete f(L) from the view. This will imply that f(α) and f(β) will
be coalesced in the view into an area γ.

(b) Put f(L) := ⊥.

(c) Put f(α′) := γ for each α′ in the coalesce class of α, and similarly
for β.



TOPOLOGICAL CANONIZATION 9

ρ2: Let p be a point in the database, and let L and M be its only adjacent
lines. Assume that f(p), f(L), and f(M) are defined, and all have the
same label. Then we perform the following operations:

(a) Delete f(p) from the view. This will imply that f(L) and f(M) will
be coalesced in the view into a line N .

(b) Put f(p) := ⊥.

(c) Put f(L′) := N for each L′ in the coalesce class of L, and similarly
for M .

ρ3: Let p be an isolated point in the database, and incident with the area
α. Assume that f(p) is defined, and f(p) and f(α) have the same label.
Then we peform the following operation:

(a) Delete f(p) from the view.

(b) Put f(p) := ⊥.

1.5.2 Inverse canonization rules

In our maintenance algorithm, we will also need to apply “inverses” of the
canonization rules. We denote these procedures by δ1, δ2, and δ3. They work
as follows:

δ1: Let N be a line of the database with endpoints p and q, predecessor L in
the list of outgoing lines of p, and successor M in the list of outgoing lines
of q. Assume that both f(p) and f(q) are defined, and f(N) = ⊥. Denote
with α1 and α2 the areas, adjacent to L. In this case f(α1) = f(α2) = γ.
Then we perform the following operations:

(a) Look backwards in the circular list around p, starting with L, for
a line L′ such that f(L′) is defined. Similarly, look forwards in the
circular list around q, starting with M , for a line M ′ such that f(M ′)
is defined.

(b) Add a new line, f(N), in the view between f(p) and f(q) with
predecessor f(L′) and successor f(M ′).

(c) By the addition of f(N) in the view, we have (possibly) split area
γ in two areas γ1 and γ2. We partition the coalesce class of α1

(which coincides with coalesce class of α2) as follows: If α′

1
is in the

coalesce class of α1, and there exists a path connecting a point in
α1 to a point in α′

1
, such that this path only crosses lines K 6= N ,

for which f(K) = ⊥, then α′

1
is in the new coalesce class of α1. Put

f(α′

1
) = γ1. Similarly for α2. (Due to space limitations, we omit the

details.)

δ2: Let p be a point in the database, and L and M its only two different
outgoing lines. Assume that f(p) = ⊥, and f(L) = f(M) = N . Then
we perform the following operations:



10

(a) Add a new point, f(p), in the view on line N .

(b) By the addition of f(p) in the view, the line N is split in two lines
N1 and N2. We partition the coalesce class of L (which equals the
coalesce class of M) as follows: If L′ is in the coalesce class of L and
is reachable from L by repeatedly performing Next, then L′ is in the
new coalesce class of L. Put f(L′) = N1. Similarly for M .

δ3: Let p be a point of the database such that either p is isolated, or f is
undefined for all outgoing edges of p. Let α be an adjacent area of p.
Assume that f(p) = ⊥. We then perform the following operations:

(a) Add a new isolated point, f(p), in the view to area f(α).

All the procedures ρi and δi change the view and adapt the partial function
f to this new view. The difference between ρi and δi is, that the parameters
of ρi are objects of the view, while for δi, the parameters are objects of the
database.

1.5.3 The incremental view maintenance algorithm

We are now ready to describe the incremental view maintenance algorithm.
Thereto we consider the 9 kinds of updates defined in Section 1.4.

update ?

Original data Canonical View

canonization

canonization canonization

inverse

update

canonization
local

local

Maintenance algorithm

Figure 1.6 The incremental view maintenance algorithm

1. Addition of a new isolated point p in area α.

(a) Add a new point, f(p), in the view to area f(α).



TOPOLOGICAL CANONIZATION 11

2. Addition of a new point p on a line L.

(a) If f(L) = ⊥ and f(r) = ⊥ and/or f(s) = ⊥, where r and s are the
endpoints of L, perform δ3 or δ2 on r and/or s, and apply δ1 on L.

(b) Add a new point, f(p), in the view on f(L).

(c) By the addition of p in the database, the line L is split in two lines
L1 and L2. Correspondingly, the line f(L) is split into M1 and M2.
We partition the coalesce class of L1 (which equals the coalesce class
of L1 and L2) as follows: If L′

1
is in the coalesce class of L1 and is

reached by performing Next on L1, then L′

1
is in the new coalesce

class of L1. Put f(L′

1
) = M1. Similarly for L2.

(d) Finally apply ρ1 to M1 and M2 if possible, and perform ρ2 or ρ3 to
f(p), f(r), and f(s), if possible

3. Addition of a new line N between p and q with predecessor L in the list
of lines around p, and successor M in the list around q.

(a) If f(p) = ⊥, perform δ2 or δ3 (whichever appropriate) on p. Similarly
for q.

(b) Look backwards in the circular list around p, starting with L, for
a line L′ such that f(L′) is defined. Similarly, look forwards in the
circular list around q, starting with M , for a line M ′ such that f(M ′)
is defined.

(c) Add a new line, f(N), in the view between f(p) and f(q) with
predecessor f(L′) and successor f(M ′).

(d) By the addition of N in the database, we have (possibly) split an
area α in two areas α1 and α2. Correspondingly, f(α) has been
split in two areas γ1 and γ2. We partition the coalesce class of α1

(which coincides with coalesce class of α2) as follows: If α′

1
is in the

coalesce class of α1, and there exist a path connecting a point in α1

to a point in α′

1
, such that this path only crosses lines K 6= N , for

which f(K) = ⊥, then α′

1
is in the new coalesce class of α1. Put

f(α′

1
) = γ1. Similarly for α2.

(e) Finally, perform ρ1 on f(N) if possible, and perform ρ2 or ρ3 on
f(p) and f(q), if possible.

4. Deletion of an isolated point p in area α.

(a) If possible, this update is already performed by ρ3 on the view.

5. Deletion of point p with only two outgoing lines L1 and L2.

(a) If possible, this update is already performed by ρ2 on the view.

(b) By the deletion of point p, we have coalesced the lines L1 and L2

into a new line, L, in the database. Set f(L) := f(L1) = f(L2).



12

6. Deletion of a line L with endpoints p and q.

(a) If possible, this update is already performed by ρ1 in the view.

(b) By the deletion of the line L, we have (possibly) coalesced the ad-
jacent areas α1 and α2 into a new area, α, in the database. Set
f(α) := f(α1) = f(α2).

7. Relabeling a point p.

(a) If f(p) = ⊥, and f(L′) = ⊥ for each L′ in the circular list around
p, then apply δ3 to p. If f(p) = ⊥, and f(L′) = ⊥ for each L′ in
the circular list around p, except for two lines L1, and L2, such that
f(L1) = f(L2). In this case apply δ2 to p.

(b) Relabel point f(p).

(c) If possible apply ρ2 or ρ3 to f(p).

8. Relabeling a line L between p and q.

(a) If f(p) = ⊥, perform δ2 or δ3 (whichever appropriate) on p. Similarly
for q.

(b) If f(L) = ⊥, then apply δ1 to line L.

(c) Relabel f(L).

(d) Perform ρ1 to f(L) if possible, and apply ρ1 or ρ2 to f(p) and/or
f(q), if possible.

9. Relabeling an area α.

(a) If f(p) = ⊥ for an isolated point p in α, or a point p on the boundary
of α, for which f is undefined for all outgoing lines, then perform δ3

to p. If f(q) = ⊥ for a point q on the boundary of α, then apply δ2

to q. Finally, if f(L) = ⊥ for a line L on the boundary of α, then
apply δ1 to L.

(b) Relabel area f(α).

(c) Apply ρ1 for each line f(L) on the boundary of f(α), if possible.
For each point f(q) on the boundary of f(α), perform ρ2 if possible,
and for each isolated point f(p) in f(α), apply ρ3, if possible.

1.6 CONCLUDING REMARK

Further research on this topic shall be focused on complexity issues of the main-
tenance algorithm. More specific, we are interested in whether the algorithm
given here, is optimal or not.



TOPOLOGICAL CANONIZATION 13

References

[Abiteboul et al., 1995] Abiteboul, S., Hull, R., and Vianu, V. (1995). Foun-
dations of Databases. Addison-Wesley.

[de Berg et al., 1997] de Berg, M., van Kreveld, M., Overmars, M., and
Schwarzkopf, O. (1997). Computational Geometry—Algorithms and Appli-
cations. Springer.

[Heintz et al., 1991] Heintz, J., Recio, T., and Roy, M.-F. (1991). Algorithms
in real algebraic geometry and applications to computational geometry. In
Goodman, J., Pollack, R., and Steiger, W., editors, Discrete and Computa-
tional Geometry, volume 6. AMS-ACM.

[Kanellakis et al., 1995] Kanellakis, P., Kuper, G., and Revesz, P. (1995). Con-
straint query languages. Journal of Computer and System Sciences, 51(1):26–
52.

[Kozen, 1992] Kozen, D. (1992). The Design and Analysis of Algorithms.
Springer-Verlag.

[Kozen and Yap, 1985] Kozen, D. and Yap, C.-K. (1985). Algebraic cell decom-
position in NC (preliminary version). In Proceedings 26th Annual Symposium
on Foundations of Computer Science, pages 515–521. IEEE.

[Kuijpers, 1998] Kuijpers, B. (1998). Topological properties of spatial databases
in the polynomial constraint model. PhD thesis, University of Antwerp (UIA).

[Kuijpers et al., 1995] Kuijpers, B., Paredaens, J., and Van den Bussche, J.
(1995). Lossless representation of topological spatial data. In Egenhofer,
M. and Herring, J., editors, Advances in Spatial Databases, volume 951 of
Lecture Notes in Computer Science, pages 1–13. Springer.

[Papadimitriou et al., 1996] Papadimitriou, C., Suciu, D., and Vianu, V.
(1996). Topological queries in spatial databases. In Proceedings 15th ACM
Symposium on Principles of Database Systems, pages 81–92. ACM Press.

[Preparata and Shamos, 1985] Preparata, F. and Shamos, M. (1985). Compu-
tational Geometry—An Introductio. Springer-Verlag.

[Renegar, 1992] Renegar, J. (1992). On the computational complexity and
geometry of the first-order theory of the reals. Journal of Symbolic Compu-
tation, 13:1992.

[Segoufin and Vianu, 1998] Segoufin, L. and Vianu, V. (1998). Querying spatial
databases via topological invariants. In Proceedings 17th ACM Symposium
on Principles of Database Systems. ACM Press. to appear.

[Thompson and Laurini, 1992] Thompson, D. and Laurini, R. (1992). Funda-
mentals of Spatial Information Systems. Number 37 in APIC Series. Aca-
demic Press.


