
A framework for pattern mining and anomaly
detection in multi-dimensional time series and

event logs

Len Feremans1, Vincent Vercruyssen2, Wannes Meert2,
Boris Cule1, and Bart Goethals1,3

1 University of Antwerp, Belgium
{firstname.lastname}@uantwerpen.be

2 KU Leuven, Belgium
{firstname.lastname}@cs.kuleuven.be

3 Monash University, Melbourne, Australia

Abstract. In the present-day, sensor data and textual logs are generated
by many devices. Analysing these time series data leads to the discovery of
interesting patterns and anomalies. In recent years, numerous algorithms
have been developed to discover interesting patterns in time series data as
well as detect periods of anomalous behaviour. However, these algorithms
are challenging to apply in real-world settings. We propose a framework,
consisting of generic transformations, that allows to combine state-of-
the-art time series representation, pattern mining, and pattern-based
anomaly detection algorithms. Using an early- or late integration our
framework handles a mix of multi-dimensional continuous series and event
logs. In addition, we present an open-source, lightweight, interactive tool
that assists both pattern mining and domain experts to select algorithms,
specify parameters, and visually inspect the results, while shielding them
from the underlying technical complexity of implementing our framework.

1 Introduction

Discovering interesting patterns and anomalous periods in heterogeneous time
series data is often the main interest of people generating and analyzing these
data. In the past decades, the field of pattern mining has developed a large body of
algorithms to automatically discover different types of interesting patterns, such
as frequent itemsets and sequential patterns [21]. However, these algorithms are
difficult to use for anyone who is not familiar with their inner workings. Moreover,
the algorithms require the data to be preprocessed to the proper format and the
type and quality of the patterns being found is largely dependent on the choices
made in the preprocessing steps. If a dataset consists of multiple time series or
dimensions this becomes even more problematic. Recent algorithms for pattern-
based anomaly detection in time series suffer from the same drawbacks [7,11].

An example pattern-based anomaly detection pipeline is shown in Figure 1.
Here we transform the single continuous signal to a transaction database of small

Fig. 1: Example of a pipeline for pattern-based anomaly detection. A window has
a high anomaly score if it matches few frequent patterns.

discrete sequences using discretisation and a sliding window. Next, we mine
frequent patterns in this transaction database and finally give a high anomaly
score to windows that match no (or few) frequent patterns. When a new sequential
pattern mining or a pattern-based anomaly detection algorithm is presented,
important time series representation choices are often only discussed in the
experimental design, and a review of alternative representations is often out of
scope. Moreover, a wealth of itemset and sequential pattern mining algorithms has
been developed in the past decades [8]. Most of these pattern mining algorithms
are optimised towards specific, built-in constraints, such as mining closed itemsets
or mining sequential patterns satisfying temporal constraints [16]. In the literature,
little attention is given to generic external constraints for reducing the set of
discovered patterns independently from any specific algorithm.

In addition, we find that in real-world applications anomalies are often
contextual [1], that is, an outlier value is only anomalous given that it’s out of
context. For example, a high temperature during a cold winter night is anomalous,
while it’s normal during a summer day. Likewise, a shopping bill for more than a
thousand dollar is anomalous, except during the Christmas period. Note that
we do not require defining contextual attributes, but rather mine patterns of
normal behaviour in all input dimensions. In contrast, classic outlier detection
algorithms assume a single continuous time series that is stationary, meaning

2

that statistical properties, such as distribution or auto-correlation structure are
constant.

We contribute a framework for pattern mining and anomaly detection in time
series data. The framework allows its users flexibility regarding the three major
steps in the time series analysis workflow: preprocessing, pattern mining, and
anomaly detection. First, the framework supports several preprocessing algorithms
for representing continuous time series, as well as a generic transformation that
creates a transaction or sequence database for both single, multi-dimensional, and
mixed continuous and discrete time series data. Second, the framework supports
the use of all state-of-the-art pattern mining algorithms for mining itemsets and
sequential patterns [8]. In addition, it adds a number of external constraints
for reducing the set of discovered patterns independently from any specific
algorithm, such as temporal constraints. Third, the framework supports two
anomaly detection algorithms [11,7] that are extended to make them compatible
with any pattern mining algorithm and multiple dimensions. The framework allows
its users to rapidly test various compositions of these three time series analysis
building blocks, even new compositions not considered by the original authors of
each separate block. For example, instead of frequent sequential patterns, an end-
user of our framework can mine a set of sequential patterns using an alternative
interestingness measure [6,17], subsequently apply temporal constraints, and then
use these patterns as input to an anomaly detection algorithm. Finally. we have
created an open-source tool for Time series Pattern Mining and anomaly detection
(Tipm). The tool enables an iterative, exploratory workflow for preprocessing,
finding patterns and discovering anomalies, and visualising data and patterns
using our framework.

2 Preliminaries

This section clarifies the important time series and pattern mining terminology
used throughout the paper. The concepts are largely adapted from [7].

Time series data. A continuous time series is as a sequence of numerical
values pxx1, t1y, . . . , xxn, tnyq, where each real value xk is associated with a
distinct timestamp tk. A discrete event log is a sequence of discrete events
pxe1, t1y, . . . , xen, tnyq where ek P Σ, with Σ a finite domain of discrete event
types. Multiple events can co-occur at the same timestamp. Finally, a mixed-type
time series S is a collection of N continuous time series and M event logs and
has dimensionality M `N . A single time series Si in S has only one dimension.
It is possible for M or N to be 0. Thus, univariate and multivariate time series
are special cases of this definition.

A time series window Sit,l is a contiguous subsequence of a time series Si

containing all measurements for which txxi, tiy or xei, tiy| t ď ti ă t ` lu. A
segment of length l can be defined over all dimensions of S simultaneously.

Pattern mining. The following definitions are adapted from [21]. An itemset
X consists of one or more items xj P Ω, where Ω is a finite domain of discrete

3

values, that is, X “ tx1, . . . , xmu Ď 2|Ω|. An itemset does not require a temporal
order between its items. An itemset X is covered by a window Sit,l if all items in

X occur in that window in any order, denoted as X ă Sit,l. Given the set of all
windows S of a time series, coverpX,Sq is the set of all windows in S that cover
X and supportpX,Sq is the length of this set.

A sequential pattern Xs consists of an ordered list of one or more items,
denoted as Xs “ px1, . . . , xmq, where xj P Ω. A sequential pattern can contain
repeating items, and, unlike n-grams, an occurrence of a sequential pattern allows
gaps between items. A sequential pattern Xs is covered by a window Sit,l if all
items in X occur in that window in the order imposed by the sequential pattern,
denoted as Xs ă Sit,l. The definitions of cover and support are equivalent to
those of itemsets. Finally, an itemset or a sequential pattern is frequent if its
support is higher than a user-defined threshold on minimal support.

3 Method

The problem we are trying to solve is defined as follows:

Given: A time series dataset S consisting of one or multiple time series.
Do: Find interesting patterns and/or periods of abnormal behaviour in the data.

The general workflow of our framework is shown in Figure 2. Note that in our
framework two strategies are available for finding anomalies. In the first strategy,
we create a model of normal behaviour and predict anomalies based on deviations
from this model. This is the case for the frequent pattern-based anomaly detection
technique, where try to find many patterns that occur frequently and are used for
positive detection of anomalies. A second strategy is to find anomalous patterns
directly or use negative detection [4]. Which strategy to use, depends on the use
case and can be freely chosen by the user.

3.1 Time series representation for pattern mining

Dealing with outliers. If one uses positive detection, it makes sense to remove
outlier (extreme) values, that is, cap outlier values that deviate a user-specified
number of standard deviations from the mean. If one uses negative detection,
it makes sense to keep outlier values and discretise them along with the rest of
the data, possibly in a separate bin, as the occurrence of outlier values, is often
indicative of contextual anomalies.

Time series dimensionality reduction. A straightforward transformation to
reduce time series is piecewise aggregate approximation (Paa) [12]. Given a time
series S, one sets a window duration lPaa and then replaces each consecutive
window in S with the mean of the continuous values in the window. This effectively
downsamples a time series S by a factor |S|{lPaa. In practice, it is often beneficial
to downsample each time series as we are more interested in patterns that span
a larger period. Note that Paa allows more flexibility than symbolic aggregate

4

Fig. 2: Workflow of our framework.

approximation [14]. The latter assumes that the time series values are normally
distributed, which is rarely the case in a non-stationary time series.

Discretisation. After reducing dimensionality, the continuous time series are
discretised using equal-width or equal-length bins. As a rule-of-thumb, equal-width
discretisation is applied if the observations are normally or uniformly distributed
over the bins. If this is not the case, equal-length binning with a slightly larger
number of bins can be selected by the end-user. The goal of discretisation is to
have good coverage of items that occur in at least 5% of segments.

Segmentation. Before pattern mining, the time series need to be transformed
into a transaction database. This is done by sliding a fixed-size window over
the data and storing each time series window separately as a transaction. The
window duration lsegm and increment isegm are specified in time units or steps.
Setting segmentation parameters is largely domain-specific. For instance, if the
length of the datasets is two hours, but measurements (or events) are sampled
every second, then finding patterns within 1 minute makes sense. The window
duration and increment are important parameters towards pattern mining since
they directly determine which patterns will found as well as their length. In
practice, useful patterns are limited in length so one must ensure that windows
are of moderate size by either setting a relatively small value for the duration or
by reducing the time series dimensionality.

Filters and aggregation. Finally, our framework supports basic filtering and
aggregation on the time series, as well as generic SQL queries. Filtering is useful
if the goal is to model only a part of the dataset. For instance, an end-user can
filter the time series on time, on periods where certain warning or error codes
occur, or periods where some continuous variable exceeds a certain threshold.
This has the advantage that end-users can mine and discover interesting patterns

5

Fig. 3: Detailed overview of our framework.

local to certain events or conditions. Finally, the framework provides options to
aggregate values within each window and compute summary statistics such as
min, mean, max, count and unique.

Automatically selecting parameters. What constitutes a good time series
representation depends strongly on the specific application. Good parameters
are either selected using domain knowledge or set interactively in a trial-and-
error way. However, for the anomaly detection algorithms, it is possible to select
parameters using a wrapped approach. Let lPaa, lsegm , isegm , and b be the Paa
window duration, segmentation length, window increment, and the number of
bins respectively. The optimal parameters are selected from the parameter space
Ω “ tlPaa, lsegm , isegm , bu through optimization of an evaluation metric on the
anomaly scores (e.g., AUROC).

3.2 Pattern mining

After the time series data are discretised and segmented, we can mine patterns.
A more detailed overview of our framework is shown in Figure 3.

Frequent pattern mining. An end-user can discover patterns for each di-
mension of time series S that is either discrete or has been transformed into a
discrete representation. Our current framework integrates with the Spmf library
containing more than 40 algorithms for itemset and sequential pattern mining,

6

covering efficient algorithms for mining frequent, closed, and maximal itemsets
and sequential patterns, top-k sequential patterns ranked on leverage and a set
of sequential patterns compressed using minimal description length [8,17,13]. For
the brevity of this paper, we will not discuss the details of these algorithms and
refer to existing work [8,21]. Itemset and sequential pattern mining algorithms
require a suitable representation for enumerating patterns and computing sup-
port. Itemset mining algorithms require a transaction database. This database is
created by generating a transaction, or unordered set of items, for each window.
Likewise, sequential pattern mining algorithms require a sequence database where
for each window, we create a chronologically ordered list of items (if two events
happen at the same time, this is also encoded). Each item is encoded using an
integer identifier and either represents an event code or discretised continuous
value. We decode item identifiers to report human-readable patterns. An example
of maximal itemset mining is shown in Figure 4.

Fig. 4: Example of maximal itemset mining.

External constraints. A recent benchmark study found that temporal con-
straints for pattern mining in time series are of high importance [22]. Our
framework computes occurrences of itemsets and sequential patterns, reported
by any algorithm, and computes the occurrences that have a minimum duration
in each window, by looking at the raw dataset. If the minimal occurrence does
not satisfy temporal constraints on maximal duration and maximal gap (time
between two pattern items in one occurrence), we remove the occurrence and
re-compute the support for each pattern. In addition, we provide basic external
constraints for filtering patterns on the minimum and maximal length, filtering
the top-k patterns on support, and removing redundant patterns using a threshold
on Jaccard similarity, i.e., if two patterns cover mostly the same transactions,
filter out the pattern with the lowest support.

Multi-dimensional pattern mining. Thus far, pattern mining algorithms
only work on a single-dimensional event log or continuous time series, after
preprocessing. Our framework makes it possible to uncover patterns with events

7

from multiple dimensions of a time series S. Under this early integration strategy,
a transaction (or sequence) database is created from the time series by adding
events from multiple dimensions of the time series to a transaction. Similarly,
sequence transactions (necessary for sequential pattern mining) are created by
adding events from multiple dimensions in a chronological fashion. We differentiate
between events from different dimensions by encoding the item identifier to reflect
the source dimension. An example pipeline is shown in Figure 5.

Fig. 5: Example of mining pattern in multi-dimensional time series. Under the
early integration strategy, events from both dimensions are considered simultane-
ously. Under the late integration strategy, patterns are mined in each dimension
separately.

Pattern explosion in time series. While the pattern mining community has
gone through great lengths in creating efficient algorithms for different tasks,
time series remain a difficult data source for efficient pattern mining. For example,
imagine a time series that contains a sequence of 20 values and occurs frequently.
Because this series is frequent, any subsequence will also be frequent, thereby
generating an exponential number of patterns. In general, time series generate a
lot of patterns due to naturally occurring autocorrelation. The problem becomes
even worse when two or more dimensions are added, especially if different time
series dimensions are highly correlated. In practice, we prefer mining maximal
patterns with relatively high support in each dimension separately. This strategy,
dubbed the late integration strategy, is illustrated in Figure 5. Alternatively, we
can change the representation of the time series. In our experience, we find that
using pattern sets with more than a few thousand of patterns rarely results in
higher accuracy.

8

3.3 Pattern-based anomaly detection

Our framework supports two algorithms for anomaly detection: a generalised
version of frequent pattern-based outlier factor (Fpof) and a generalised version of
pattern-based anomaly detection (Pbad) [11,7]. Both methods take a set (or sets)
of patterns as input and compute an anomaly score between 0.0 (normal) and 1.0
(abnormal) for each time series segment. By setting the window increment isegm
equal to a single time step, it is possible to compute the anomaly score at each
timestamp. Figure 6 shows an example of both anomaly detection approaches.

Fig. 6: Example of Fpof and Pbad for computing anomalies based on a previously
discovered pattern set. In Fpof the anomaly score is based on the number of
exactly matching patterns. In Pbad we compute the distance between each
window and pattern and compute scores using an isolation forest.

Generic outlier factor. Fpof [11] computes an anomaly score a for each
segment Sit,l in time series S, given a pattern set P, based on the total number
of patterns matching each segment, denoted by Pk ă Si:

apSit,l,Pq “ 1.0´
|tPk|Pk P P and Pk ă Sit,lu|

|P|
.

The authors only consider closed itemsets over a single dimension, but we can
extend Fpof to compute this score for any pattern set, such as sequential patterns,
and for multiple pattern sets mined over multiple dimensions of S. Given two
patterns sets, P1 and P2, the anomaly score is computed as:

apSit,l,P1 YP2q “ 1.0´
|tPk|Pk P P1 YP2 and Pk ă Sit,lu|

|P1 YP2|
.

9

It is trivial to extend this formula to d dimensions. The only requirement is
that for computing a match from dimension d, we need to check if the pattern
mined from dimension d matches the segment of the corresponding dimension.
Multiple pattern sets can also be mined over the same dimension using a different
algorithm or settings. For example, we can mine both itemsets and sequential
patterns in a single dimension Si.

Generic isolation forest of distance-weighted occurrences. Pbad [7] com-
putes anomaly scores with the help of the isolation forest algorithm applied to
an embedding of both maximal itemsets and sequential patterns for each contin-
uous and discrete dimension [7]. For continuous time series, the authors use a
distance-weighted match to match both itemsets and sequential patterns with
each original, non-discretised, segment. For example, the distance between itemset
Pk “ t’0.5’, ’0.6’u and segment S1 “ p0.50, 0.61, 0.11, 0.10q will be smaller than
the distance to segment S2 “ p0.31, 0.42, 0.12, 0.04q. We generalise Pbad by
decoupling the pattern mining from the anomaly detection phase. Concretely,
the distance-weighted embedding and isolation forest can be used on any pattern
set and any number of dimensions. Assume we have two pattern sets P1 and
P2. First, we compute the distance-weighted match between each pattern and
each window for continuous time series, and the exact match for discrete (or
multi-dimensional) time series. We now have two matrices of dimensions |S|ˆ|P1|

and |S| ˆ |P2|, and can represent each segment Sit,l using a feature vector (or
embedding) of length |P1| ` |P2|. Finally, we feed this embedding to an isolation
forest to compute anomaly scores.

Concept Drift. For pattern-based anomaly detection, we assume a stable
distribution such that the mined patterns are good descriptors of the new data
that enters the system and deviations are anomalies. However, this might not
be true in practice, especially over a long period of time where the observed
system might change. In such a setting we can use the pattern-based anomaly
detection as part of an online adaptive learning procedure [9] and extend our
framework to detect concept drift. The anomaly score is, in this case, the target
variable that is being predicted from the new instances, and the loss function
is the deviation from an average anomaly score closer to 0, representing normal
behaviour. When the aggregated loss grows too large or some other change point
detection algorithms crosses a threshold, the framework signals concept drift.
Depending on the application, various strategies can be used to relearn. From
maintaining a database of previous data to gradual forgetting old patterns and
introducing new mined patterns to the pattern set(s). We refer to Gama et al.
for an extensive overview.

3.4 Implementation of the framework

We implemented our framework in Java as an open-source web-based application
called Tipm4.

4 Source and datasets available at https://bitbucket.org/len_feremans/tipm_pub

10

https://bitbucket.org/len_feremans/tipm_pub

Fig. 7: Tipm: Time series representation options. In the first use case, we apply
Paa with lPaa “ 10, cap outlier values, discretise all time series using 16 equal
width bins and create overlapping segments with a lsegm “ 10 and isegm “ 5.

Fig. 8: Tipm: Using an early integration strategy, we mined maximal itemsets
and maximal sequential patterns with minimal support “ 20 and compute
the generalised Fpof anomaly score. An example of an anomalous pattern is
highlighted.

Interactive workflow. Tipm takes in any dataset that contains at least a
timestamp and one or more value columns. Tipm visualises the histogram and

11

Fig. 9: Tipm: Visualisation of anomaly scores and patterns. We show occurrences
of the interpretable anomalous pattern pc1 “ 15, pc2 “ 6.

summary statistics for each column and allows transforming continuous time
series using our framework, as shown in Figure 7. Pattern mining is done using
the algorithms implemented in Spmf. Multi-dimensional mining transformations,
external constraints and anomaly detection algorithms are implemented in our
framework as shown in Figure 8. Tipm can plot continuous time series values,
transformed values, discrete event logs, labels, and segmentation, on different
levels of granularity in time (raw, hourly, daily, yearly, etc.). For validation
purposes, the tool can render pattern occurrences and anomaly scores as shown
in Figure 9. We remark that Tipm saves intermediate files after each operation
allowing end-users to undo any operation.

Representing mixed-type real-world datasets. Many real-world datasets,
such as supervisory control and data acquisition datasets for wind turbines,
contain missing values, non-continuous periods, and timestamped values stored
together with event log data in a single file. In our framework, we stay close
to this tabular format as this is most convenient for collaborating with domain
experts who prefer to look at the raw data for validation. In addition, we provide
two explicit temporal join operations: partition and merge. Partition takes a
subgroup of columns having non-zero values and saves them in a separate table.
This is useful for extracting event log data from continuous time series data.
Merge is the opposite operation and takes the union of two tables and sorts them
on time. If two column names match in both tables, merge takes the column value
of the first table. For example, merge can be used to join time series datasets
from multiple devices.

12

Scaling to large datasets. In our implementation, we use streaming operations
as much as possible. Each procedure implemented in this way, processes one
row at a time, instead of loading all data into main memory. Alternative, we
load data in a paginated way, that is, we only load data required in the user
interface, i.e. only the current period of the time series. By processing data
using streaming operations and loading data paginated, the interface and pre-
and postprocessing transformations can handle large time series with millions of
samples instantaneously. For pattern mining, we can manage resources by setting
support to a relatively high value, and reducing time series as discussed before.
A possible extension would be to include streaming pattern mining algorithms.

4 Use cases

In this section, we will illustrate the usefulness of our framework, implemented
in Tipm, using two use cases.

Anomaly detection on multivariate times series. For the first use case, we
detect anomalies in a multivariate time series dataset that was obtained by using
a Kinect sensor to track the body movements during indoor physical exercises [2].
The goal is to assist people in performing the exercises correctly. We focus on
detecting incorrectly executed exercises during a continuous workout session
consisting of 60 lunges and 10 squats. The ground-truth values are known. The
original dataset consists of 75 time series and we reduced this to 3 time series
using principal component analysis [7].

First, we upload the time series in tabular file format. Tipm shows statistics
and histograms for each time series (pc1, pc2 and pc3) as well as the label as
shown in Figure 7. We can now select options to preprocess each time series. First,
we cap outlier values based on the 1% and 99% quantiles. Next, we compute and
store the average value every 10 time steps, that is lPaa “ 10, to reduce the 3
continuous dimensions using Paa. We then apply equal-width discretisation with
b “ 16 bins. For multi-dimensional mining, our input dataset thus consists of
16ˆ 3 discrete items. We create sliding windows with a duration of lsegm “ 10
(3 seconds in absolute time) and isegm “ 5, resulting in 223 windows of length
10 that overlap for 50%. With all continuous data time series represented as
discretised segments, we start mining patterns. We opt for early integration
and select all three dimensions as input. We select an algorithm for mining
maximal itemsets (Charm Mfi) with a minimum support of 20%. For reducing
patterns, we remove itemsets that co-occur in at least 90% of windows, resulting
in 999 itemsets. We compare this set of patterns by mining maximal sequential
patterns (Vmsp) with the same settings, resulting in 360 patterns. Finally, we
run the generic outlier factor and compute an anomaly score for both types of
pattern sets individually. The screens in Tipm are shown in Figure 8 for mining
and Figure 9 for visualisation. We show occurrences of the (anomalous) pattern
pc1 “ 15, pc2 “ 6, found by sorting all maximal sequential patterns with minimal
support of 20 on decreasing confidence towards labelled anomalies. Figure 10
shows the first minute of the Kinect dataset. Tipm shows the transformed time

13

Fig. 10: Visualisation in Tipm of the first minute of data. The blue line is pc1,
the light blue line pc2, and the orange line pc3. We show the top-5 most frequent
maximal itemsets, mined over all three dimensions.

Fig. 11: Visualisation in Tipm of anomaly detection results. Segments with a
red background are labelled anomalies, and the black line is the anomaly score
predicted (unsupervised) using generic outlier factor using maximal sequential
patterns. The dotted line is the results using maximal itemset patterns.

series and overlapping segments. We selected the top-5 most frequent maximal
itemsets for visualisation. The first itemset is tpc1 “ 1, 2, 4^pc2 “ 1^pc3 “ 4, 5u
which has a support of 56 (or relative support of 0.25). This means that 25% of
segments contain both (discretised) values of 1, 2 and 4 in time series pc1, 1 in pc2,
and 4 and 5 in pc3. Notice that the first frequent pattern, as well as the 2nd, 3th

and 5th, but not 4th, almost never occur in any anomalous segment highlighted in
red. Consequently, the patterns are examples of frequent interpretable patterns
that occur during normal behaviour. Deviations from these patterns are marked
as anomalies. As mentioned before, Tipm allows sorting patterns on confidence
towards normal or abnormal segments, thereby assuming labels. We find that
sequential patterns containing high values of pc1 are the most predictive towards
abnormal behaviour. Figure 11 shows the anomaly scores over the entire 6 minute
time series. Using the generic outlier factor anomaly detection method we can
report an AUROC of 0.839 and average precision of 0.767 for maximal itemsets,
and an AUROC of 0.884 and average precision of 0.833 for maximal sequential
patterns.

Exploratory analysis of real-world heterogeneous time series. In the
second use case, we perform an exploratory analysis of a supervisory control and
data acquisition dataset collected from a wind turbine farm [5]. This dataset is
challenging because: (i) the data was collected over different years, (ii) there are
multiple continuous time series, (iii) there is an event log containing more than
hundreds of different types of events, (iv) behaviour of a wind turbine is strongly

14

Fig. 12: Tipm: Use case for exploratory analysis of heterogeneous wind turbine
data. We show two interesting patterns that are characteristic of operational
behaviour, mined from the event log.

dependent on current weather conditions. Figure 12 shows the preprocessed data
and two interesting patterns for a selected period of 1 month in Tipm. For the
wind turbine, we have selected two continuous variables representing the wind
speed and power output as well as an event log containing warning, error, and
operational codes. First, we normalised both continuous time series. We verify
that wind speed and power output are highly correlated. The main difference is
that power output is capped to a maximal value. The different occurring events
are shown as colour-coded dots. We mine maximal itemsets with a minimal
support of 1 and found about 140 patterns. Next, we filter patterns with a
minimum size of 2. Next, we remove redundant patterns by setting a Jaccard
similarity threshold of 0.9, thereby removing patterns that co-occur in 90% of
windows. From the remaining patterns, we show two maximal itemsets of size 5
and 6 that occur in the selected period. Both patterns correspond to a specific
series of operator actions for remotely stopping and restarting the turbine. If
these patterns occur, the power output drops to 0, regardless of the current wind
speed. From this second use case, we conclude that our framework can be used
to explore complex multi-dimensional datasets, using patterns extracted from
the event log, to capture meaningful operational behaviour.

5 Related work

Most general data mining libraries, such as Weka or Knime, are incomplete
concerning pattern mining. Tipm is complementary to Spmf [8] by implement-
ing temporal constraints, multi-dimensional pattern mining, and pattern-based

15

anomaly detection algorithms. In contrast to Spmf, and other libraries that im-
plement time series transformations on consecutive numeric vectors, we support
timestamped tabular data with multiple dimensions, and mixed-type attributes.
Other tools for anomaly detection in time series uses either shapelets or motifs
(or discords) in single-dimensional continuous time series [18]. Interactive pattern
mining tools, such as Mime [10] or Sniper [15], do not support continuous time
series.

There exist algorithms for directly mining patterns with temporal con-
straints [16]. However, by providing temporal constraints as an external post-
processing filter, we can apply them to any pattern mining algorithm. This is of
interest for many efficient algorithms for mining closed, maximal or interesting
patterns that do not support temporal constraints. Many more transformations
for reducing the length of the time series exist [3]. We prefer Paa for two reasons.
First, different authors have confirmed that more advanced techniques are not
necessarily more effective [3,14]. Second, many other representation techniques,
i.e., transformation to spectral space, single value decomposition, or clustering,
make interpretation much harder while patterns of binned values are easy to
interpret. Remark that other transformations, such as differencing or smoothing
the raw time series are not problematic regarding interpretation.

Two popular techniques for classification and anomaly detection in time series
are the matrix profile [20], that computes an outlier score relative to the euclidean
or dynamic time warping (Dtw) distance to its nearest neighbour, and time
series shapelets, which are subsequences from a continuous time series and are
used in combination with the Dtw distance to classify time series segments [19].
A key difference is that frequent patterns naturally handle both continuous time
series and event logs. If we compare sequential patterns to shapelets, we argue
that on the one hand, sequential patterns generalise shapelets, because we use
non-continuous subsequences with gaps. On the other hand, sequential patterns
are more specific, because they consist of discretised values instead of continuous
values. The latter argument against sequential patterns, however, can be relaxed
by using a weighted distance. Itemsets, however, are radically different from
shapelets and of value for predicting anomalies. In future work, an ensemble of
representations could have value. That is, we can compute itemset and sequential
pattern distances, exact pattern matches, shapelet distances, motif distances,
and combine those in one feature vector, as input for existing classification or
anomaly detection algorithms.

6 Conclusion

Existing pattern-based anomaly detection algorithms focus on a particular com-
bination of time series representation, pattern mining, and computation of the
anomaly score. In Pbad, the authors remarked that this method is a promising
general framework for time series anomaly detection, where certain variations
might be more effective in different applications [7]. In this paper, we implement
such a framework and discuss a wealth of general building blocks, that can be

16

composed to create new variations. This allows data scientists to create novel
unsupervised anomaly detection models. We also present Tipm, an interactive,
easy-to-use, and open-source tool that implements our framework. Tipm is unique
since we have a rich set of options for interactively preprocessing and mining
patterns from mixed-type time series, supported by visualisation of (raw and
transformed) time series, event logs, segments, patterns and anomaly scores.
With our framework, we show how to discover interesting interpretable patterns
and detect anomalies in multi-dimensional time series in two different use cases.

Our framework and corresponding tool are designed to support real-world
applications. For applications such as condition monitoring of devices, it is
important to support devices that log both sensor values and events. We focus on
contextual anomalies, i.e. we only consider outlier values as anomalous if they are
abnormal given the current operational conditions, by capturing normal behaviour
using patterns and predicting anomalies as deviations from normal behaviour.
We also discussed the integration of concept drift within our framework as an
important next step.

Acknowledgements

The authors would like to thank the VLAIO SBO HYMOP project for funding
this research.

References

1. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM
computing surveys (CSUR) 41(3), 15 (2009)

2. Decroos, T., Schütte, K., De Beéck, T.O., Vanwanseele, B., Davis, J.: AMIE: Auto-
matic monitoring of indoor exercises. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. pp. 424–439. Springer (2018)

3. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and
mining of time series data: experimental comparison of representations and distance
measures. Proceedings of the VLDB Endowment 1(2), 1542–1552 (2008)

4. Esponda, F., Forrest, S., Helman, P.: A formal framework for positive and negative
detection schemes. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 34(1), 357–373 (2004)

5. Feremans, L., Cule, B., Devriendt, C., Goethals, B., Helsen, J.: Pattern mining
for learning typical turbine response during dynamic wind turbine events. In:
ASME 2017 International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference. pp. V001T02A018–V001T02A018.
American Society of Mechanical Engineers (2017)

6. Feremans, L., Cule, B., Goethals, B.: Mining top-k quantile-based cohesive sequential
patterns. In: Proceedings of the 2018 SIAM International Conference on Data
Mining. pp. 90–98. SIAM (2018)

7. Feremans, L., Vercruyssen, V., Cule, B., Meert, W., Goethals, B.: Pattern-based
anomaly detection in mixed-type time series. Joint European Conference on Machine
Learning and Knowledge Discovery in Databases (2019)

17

8. Fournier-Viger, P., Lin, J.C.W., Gomariz, A., Gueniche, T., Soltani, A., Deng, Z.,
Lam, H.T.: The spmf open-source data mining library version 2. In: Joint European
conference on machine learning and knowledge discovery in databases. pp. 36–40.
Springer (2016)

9. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM computing surveys (CSUR) 46(4), 44 (2014)

10. Goethals, B., Moens, S., Vreeken, J.: Mime: a framework for interactive visual
pattern mining. In: Proceedings of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining. pp. 757–760. ACM (2011)

11. He, Z., Xu, X., Huang, Z.J., Deng, S.: FP-outlier: Frequent pattern based outlier
detection. Computer Science and Information Systems 2(1), 103–118 (2005)

12. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction
for fast similarity search in large time series databases. Knowledge and information
Systems 3(3), 263–286 (2001)

13. Lam, H.T., Mörchen, F., Fradkin, D., Calders, T.: Mining compressing sequential
patterns. Statistical Analysis and Data Mining: The ASA Data Science Journal
7(1), 34–52 (2014)

14. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series,
with implications for streaming algorithms. In: Proceedings of the 8th ACM SIG-
MOD workshop on Research issues in data mining and knowledge discovery. pp.
2–11. ACM (2003)

15. Moens, S., Jeunen, O., Goethals, B.: Interactive evaluation of recommender systems
with sniper - an episode mining approach. In: Proceedings of Thirteenth ACM
Conference on Recommender Systems. RecSys ’19 (September 2019)

16. Pei, J., Han, J., Wang, W.: Constraint-based sequential pattern mining: the pattern-
growth methods. Journal of Intelligent Information Systems 28(2), 133–160 (2007)

17. Petitjean, F., Li, T., Tatti, N., Webb, G.I.: Skopus: Mining top-k sequential patterns
under leverage. Data Mining and Knowledge Discovery 30(5), 1086–1111 (2016)

18. Senin, P., Lin, J., Wang, X., Oates, T., Gandhi, S., Boedihardjo, A.P., Chen, C.,
Frankenstein, S., Lerner, M.: Grammarviz 2.0: a tool for grammar-based pattern
discovery in time series. In: Joint European conference on machine learning and
knowledge discovery in databases. pp. 468–472. Springer (2014)

19. Ye, L., Keogh, E.: Time series shapelets: a new primitive for data mining. In:
Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining. pp. 947–956. ACM (2009)

20. Yeh, C.C.M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H.A., Silva, D.F.,
Mueen, A., Keogh, E.: Matrix profile i: all pairs similarity joins for time series: a
unifying view that includes motifs, discords and shapelets. In: 2016 IEEE 16th
international conference on data mining (ICDM). pp. 1317–1322. IEEE (2016)

21. Zaki, M.J., Meira, W.: Data mining and analysis: fundamental concepts and
algorithms. Cambridge University Press (2014)

22. Zimmermann, A.: Understanding episode mining techniques: Benchmarking on
diverse, realistic, artificial data. Intelligent Data Analysis 18(5), 761–791 (2014)

18

	A framework for pattern mining and anomaly detection in multi-dimensional time series and event logs

