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Abstract Frequent sets lie at the basis of many Data Mining algorithms. As a result, hun-
dreds of algorithms have been proposed in order to solve the frequent set mining
problem. In this chapter, we attempt to survey the most successful algorithms
and techniques that try to solve this problem efficiently.
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Introduction

Frequent sets play an essential role in many Data Mining tasks that try to
find interesting patterns from databases, such as association rules, correlations,
sequences, episodes, classifiers, clusters and many more of which the min-
ing of association rules, as explained in Chapter 16 in this volume, is one
of the most popular problems. The identification of sets of items, products,
symptoms, characteristics, and so forth, that often occur together in the given
database, can be seen as one of the most basic tasks in Data Mining.

Since its introduction in 1993 by Agrawal et al. (1993), the frequent set
mining problem has received a great deal of attention. Hundreds of research
papers have been published, presenting new algorithms or improvements to
solve this mining problem more efficiently.

In this chapter, we explain the frequent set mining problem, some of its
variations, and the main techniques to solve them. Obviously, given the huge
amount of work on this topic, it is impossible to explain or even mention all
proposed algorithms or optimizations. Instead, we attempt to give a compre-
hensive survey of the most influential algorithms and results.
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1. Problem Description

The original motivation for searching frequent sets came from the need to
analyze so called supermarket transaction data, that is, to examine customer
behavior in terms of the purchased products (Agrawal et al., 1993). Frequent
sets of products describe how often items are purchased together.

Formally, letI be a set of items.
A transactionoverI is a coupleT = (tid , I) wheretid is the transaction

identifier andI is a set of items fromI.
A databaseD overI is a set of transactions overI such that each transaction

has a unique identifier. We omitI whenever it is clear from the context.
A transactionT = (tid , I) is said tosupporta setX, if X ⊆ I. Thecover

of a setX in D consists of the set of transaction identifiers of transactions in
D that supportX. Thesupportof a setX in D is the number of transactions
in the cover ofX inD. Thefrequencyof a setX inD is the probability thatX
occurs in a transaction, or in other words, the support ofX divided by the total
number of transactions in the database. We omitD whenever it is clear from
the context.

A set is calledfrequentif its support is no less than a given absoluteminimal
support thresholdσabs , with 0 ≤ σabs ≤ |D|. When working with frequencies
of sets instead of their supports, we use a relativeminimal frequency threshold
σrel , with 0 ≤ σrel ≤ 1. Obviously,σabs = dσrel · |D|e. In this chapter, we
will mostly use the absolute minimal support threshold and omit the subscript
abs unless explicitly stated otherwise.

Definition 17.1 LetD be a database of transactions over a set of itemsI,
andσ a minimal support threshold. The collection of frequent sets inD with
respect toσ is denoted by

F(D, σ) := {X ⊆ I | support(X,D) ≥ σ},
or simplyF if D andσ are clear from the context.

Problem 1 (Frequent Set Mining) Given a set of itemsI, a database of
transactionsD overI, and minimal support thresholdσ, findF(D, σ).

In practice we are not only interested in the set of setsF , but also in the actual
supports of these sets.

For example, consider the database shown in Table 17.1 over the set of items
I = {beer, chips, pizza, wine}.

Table 17.2 shows all frequent sets inD with respect to a minimal support
threshold equal to1, their cover inD, plus their support and frequency.

Note that the Set Mining problem is actually a special case of the Associa-
tion Rule Mining problem explained in Chapter 16 in this volume. Indeed, if
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Table 17.1. An example databaseD.

tid set of items
100{beer, chips, wine}
200 {beer, chips}
300 {pizza, wine}
400 {chips, pizza}

Table 17.2. Frequent sets, their cover, support, and frequency inD.

Set Cover SupportFrequency
{} {100, 200, 300, 400} 4 100%
{beer} {100,200} 2 50%
{chips} {100,200,400} 3 75%
{pizza} {300,400} 2 50%
{wine} {100,300} 2 50%
{beer, chips} {100,200} 2 50%
{beer, wine} {100} 1 25%
{chips, pizza} {400} 1 25%
{chips, wine} {100} 1 25%
{pizza, wine} {300} 1 25%
{beer, chips, wine} {100} 1 25%

we are given the support thresholdσ, then every frequent setX also represents
the trivial ruleX ⇒ {} which holds with100% confidence.

Nevertheless, the task of discovering all frequent sets is quite challeng-
ing. The search space is exponential in the number of items occurring in the
database and the targeted databases tend to be massive, containing millions of
transactions. Both these characteristics make it a worthwhile effort to seek the
most efficient techniques to solve this task.

Search Space Issues. The search space of all sets contains exactly2|I| dif-
ferent sets. IfI is large enough, then the naive approach to generate and count
the supports of all sets over the database can’t be achieved within a reasonable
period of time. For example, in many applications,I contains thousands of
items, and then, the number of sets is more than the number of atoms in the
universe (≈ 1079).

Instead, we could limit ourselves to those sets that occur at least once in the
database by generating only all subsets of all transactions in the database. Of
course, for large transactions, this number could still be too large. As an op-
timization, we could generate only those subsets of at most a given maximum
size. This technique, however, suffers from massive meory requirements for
any but a database with only very small transactions (Amir et al., 1997). Most
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other efficient solutions perform a more directed search through the search
space. During such a search, several collections ofcandidate setsare gener-
ated and their supports computed until all frequent sets have been generated.
Obviously, the size of a collection of candidate sets must not exceed the size of
available main memory. Moreover, it is important to generate as few candidate
sets as possible, since computing the supports of a collection of sets is a time
consuming procedure. In the best case, only the frequent sets are generated
and counted. Unfortunately, this ideal is impossible in general, which will be
shown later in this section.

The main underlying property exploited by most algorithms is that support
is monotone decreasing with respect to extension of a set.

Property 1 (Support monotonicity) Given a database of transactionsD
overI, and two setsX, Y ⊆ I. Then,

X ⊆ Y ⇒ support(Y ) ≤ support(X).

Hence, if a set is infrequent, all of its supersets must be infrequent, and vice
versa, if a set is frequent, all of its subsets must be frequent too. In the litera-
ture, this monotonicity property is also called the downward closure property,
since the set of frequent sets is downward closed with respect to set inclusion.
Similarly, the set of infrequent sets is upward closed.

Database Issues. To compute the supports of a collection of sets, we need
to access the database. Since such databases tend to be very large, it is not
always possible to store them into main memory.

An important consideration in most algorithms is the representation of the
database. Conceptually, such a database can be represented by a
two-dimensional binary matrix in which every row represents an individual
transaction and the columns represent the items inI. Such a matrix can be
implemented in several ways. The most commonly used layout is the so called
horizontal layout. That is, each transaction has a transaction identifier and a list
of items occurring in that transaction. Another commonly used layout is the
vertical layout, in which the database consists of a set of items, each followed
by its cover (Holsheimer et al., 1995; Savasere et al., 1995; Zaki, 2000).

To count the support of a candidate setX using the horizontal layout, we
need to scan the database completely and test for every transactionT whether
X ⊆ T . Of course, this can be done for a large collection of sets at once.
Although scanning the database is an I/O intensive operation, in most cases,
this is not the major cost of such counting steps. Instead, updating the supports
of all candidate sets contained in a transaction consumes considerably more
time than reading that transaction from a file or from a database cursor. Indeed,
for each transaction, we need to check for every candidate set whether it is



Frequent Set Mining 381

included in that transaction, or otherwise, we need to check for every subset of
that transaction whether it is in the set of candidate sets.

The vertical database layout on the other hand, has the major advantage
that the support of a setX can be easily computed by simply intersecting the
covers of any two subsetsY, Z ⊆ X, such thatY ∪ Z = X (Holsheimer
et al., 1995; Savasere et al., 1995). Given a set of candidate sets, however, this
technique requires that the covers of a lot of sets are available in main memory,
which is evidently not always possible. Indeed, the covers of all singleton sets
already represent the complete database.

In the next two sections, we will describe the standard algorithm for min-
ing all frequent sets using the horizontal layout and the vertical database lay-
out. After that, we consider several optimizations and variations of both ap-
proaches.

2. Apriori

Together with the introduction of the frequent set mining problem, also the
first algorithm to solve it was proposed, later denoted asAIS (Agrawal et al.,
1993). Shortly after that, the algorithm was improved and calledApriori. The
main improvement was to exploit the monotonicity property of the support of
sets (Agrawal and Srikant, 1994; Srikant and Agrawal, 1995). The same tech-
nique was independently proposed by Mannila et al. (1994). Both works were
combined afterwards (Agrawal et al., 1996). Note that the Apriori algorithm
actually solves the complete association rule mining problem, of which mining
all frequent sets was only the first, but most difficult phase.

From now on, we assume for simplicity that items in transactions and sets
are kept sorted in their lexicographic order, unless stated otherwise.

The set mining phase of the Apriori algorithm is given in Algorithm 17.1.
We use the notationX[i] to represent theith item inX; thek-prefixof a setX
is thek-set{X[1], . . . , X[k]}, andFk denotes the frequentk-sets.

The algorithm performs a breadth-first (levelwise) search through the search
space of all sets by iteratively generating and counting a collection of candidate
sets. More specifically, a set is candidate if all of its subsets are counted and
frequent. In each iteration, the collectionCk+1 of candidate sets of sizek + 1
is generated, starting withk = 0. Obviously, the initial setC1 consists of all
items inI (line 1). At a certain levelk, all candidate sets of sizek + 1 are
generated. This is done in two steps. First, in thejoin step, the unionX ∪Y of
setsX, Y ∈ Fk is generated if they have the samek − 1-prefix (lines 10–11).
In theprunestep,X ∪ Y is inserted intoCk+1 only if all of its k-subsets are
frequent and thus, must occur inFk (lines 12–13).

To count the supports of all candidatek-sets, the database, which remains
on secondary storage in the horizontal layout, is scanned one transaction at a
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Input: D, σ
Output: F(D, σ)

1: C1 := {{i} | i ∈ I}
2: k := 1
3: while Ck 6= {} do
4: for all transactions(tid , I) ∈ D do
5: for all candidate setsX ∈ Ck do
6: if X ⊆ I then
7: IncrementX.support by 1
8: end if
9: end for

10: end for
11: Fk := {X ∈ Ck | X.support ≥ σ}
12: Ck+1 := {}
13: for all X, Y ∈ Fk, such thatX[i] = Y [i]
14: for 1 ≤ i ≤ k − 1, andX[k] < Y [k] do
15: I := X ∪ {Y [k]}
16: if ∀J ⊂ I, |J | = k : J ∈ Fk then
17: Add I to Ck+1

18: end if
19: end for
20: Incrementk by 1
21: end while

Figure 17.1. Apriori
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time, and the supports of all candidate sets that are included in that transaction
are incremented (lines 4–7). All sets that turn out to be frequent are inserted
intoFk (line 8).

If the number of candidate sets is too large to remain into main memory,
the algorithm can be easily modified as follows. The candidate generation
procedure stops and the supports of all generated candidates is counted. In the
next iteration, instead of generating candidate sets of sizek + 2, the remaining
candidatek + 1-sets are generated and counted repeatedly until all frequent
sets of sizek + 1 are generated and counted.

Although this is a very efficient and robust algorithm, its main drawback lies
in its inefficient support counting mechanism. As already explained, for each
transaction, we need to check for every candidate set whether it is included
in that transaction, or otherwise, we need to check for every subset of that
transaction whether it is in the set of candidate sets.

When transactions are large, generating allk-subsets of a transaction and
testing for each of them whether it is a candidate set, can take a prohibitive
amount of time. For example, suppose we are counting candidate sets of size
5 in single transaction containing only20 items. Then, we have to do already
more than15 000 set equality tests. Of course, this can be somewhat optimized
since many of these sets have large intersections and hence, can be tested at the
same time (Brin et al., 1997). Nevertheless, transactions can be much larger
causing this method to become a significant bottleneck.

On the other hand, testing for each candidate set whether it is contained in
the given transaction can also take to much time when the collection of can-
didate sets is large. For example, consider the case in which we have1 000
frequent items. This means there are almost500 000 candidate2-sets. Obvi-
ously, testing whether all of them occur in a single transaction, for every trans-
action, could take an immense amount of time. Fortunately, a lot of counting
optimizations have been proposed for many different situations (Park et al.,
1995; Srikant, 1996; Brin et al., 1997; Orlando et al., 2002). To reduce the
number of iterations that are needed to go through the the database, it is also
possible to combine the last few iterations of the algorithm. That is, generate
every candidate set of sizek+` if all of its k-subsets are known to be frequent,
for all possiblè > 1. Of course, it is of crucial importance not to do this too
early, since that could cause an exponential blowup in the number of generated
candidate sets. It is possible, however, to bound the remaining number of can-
didate sets very accurately using a combinatorial technique proposed by Geerts
et al. (2001). Given this bound, a combinatorial explosion can be avoided.

Another important aspect of the Apriori algorithm is the data structure used
to store the candidate and frequent sets for the candidate generation and the
support counting processes. Indeed, they both require an efficient data struc-
ture in which all candidate sets are stored since it is important to efficiently
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find the sets that are contained in a transaction or in another set. The two most
successful data structures are the hash-tree and the trie. We refer the inter-
ested reader to other literature describing these data structures in more detail,
e.g. (Srikant, 1996; Brin et al., 1997; Borgelt and Kruse, 2002).

3. Eclat

As explained earlier, when the database is stored in the vertical layout, the
support of a set can be counted much easier by simply intersecting the covers
of two of its subsets that together give the set itself. The original Eclat algo-
rithm essentially used this technique inside the Apriori algorithm (Zaki, 2000).
This is, however, not always possible since the total size of all covers at a cer-
tain iteration of the local set generation procedure could exceed main memory
limits. Fortunately, it is possible to significantly reduce this total size by gen-
erating collections of candidate sets in a depth-first strategy. Also, in stead of
using the intersection based technique already from the start, it is usually more
efficient to first find the frequent items and frequent2-sets separately and use
the Eclat algorithm only for all larger sets (Zaki, 2000).

Given a database of transactionsD and a minimal support thresholdσ, de-
note the set of all frequent sets with the same prefixI ⊆ I by F [I](D, σ).
(Note thatF [{}](D, σ) = F(D, σ).) The main idea of the search strategy is
that all sets containing itemi ∈ I, but not containing any item smaller than
i, can be found in the so calledi-conditional database(Han et al., 2004), de-
noted byDi. That is,Di consists of those transactions fromD that contain
i, and from which all items beforei, andi itself are removed. In general, for
a given setI, we can create theI-conditional database,DI , consisting of all
transactions that containI, but from which all items before the last item inI
and that item itself have been removed. Then, for every frequent set found
in DI , we addI to it, and thus, we found exactly all large tiles containingI,
but not any item before the last item inI which is not inI, in the original
database,D. Finally, Eclat recursively generates for every itemi ∈ I the set
F [{i}](Di, σ).

For simplicity of presentation, we assume that all items that occur in the
database are frequent. In practice, all frequent items can be computed during an
initial scan over the database, after which all infrequent items will be ignored.

The final Eclat algorithm is given in Algorithm 17.2.
Note that a candidate set is now represented by each setI ∪ {i, j} of which

the support is computed at line 6 and 7 of the algorithm. Since the algorithm
doesn’t fully exploit the monotonicity property, but generates a candidate set
based on the frequency of only two of its subsets, the number of candidate
sets that are generated is much larger as compared to Apriori’s breadth-first
approach. As a comparison, Eclat essentially generates candidate sets using
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Input: D, σ, I ⊆ I (initially called with I = {})
Output: F [I](D, σ)

1: F [I] := {}
2: for all i ∈ I occurring inD do
3: F [I] := F [I] ∪ {I ∪ {i}}
4: Di := {}
5: for all j ∈ I occurring inD such thatj > i do
6: C := cover({i}) ∩ cover({j})
7: if |C| ≥ σ then
8: Di := Di ∪ {(j, C)}
9: end if

10: end for
11: // Depth-first recursion
12: ComputeF [I ∪ {i}](Di, σ) recursively
13: F [I] := F [I] ∪ F [I ∪ {i}]
14: end for

Figure 17.2. Eclat

only the join step from Apriori. The sets that are needed for the prune step are
simply not available.

Recently, Zaki et al. proposed a significant improvement to this algorithm
to reduce the amount of necessary memory and to compute the support of a set
even faster using the vertical database layout (Zaki and Gouda, 2003). Instead
of storing the cover of ak-setI, the difference between the cover ofI and the
cover of thek − 1-prefix of I is stored, called thediffsetof I. To compute the
support ofI, we simply need to subtract the size of the diffset from the support
of its k − 1-prefix. This support can be provided as a parameter within the
recursive function calls of the algorithm. The diffset of a setI ∪ {i, j}, given
the two diffsets of its subsetsI ∪ {i} andI ∪ {j}, with i < j, is computed as
follows:

diffset(I ∪ {i, j}) := diffset(I ∪ {j}) \ diffset(I ∪ {i}).
This technique has experimentally shown to result in significant performance
improvements of the algorithm, now designated asdEclat (Zaki and Gouda,
2003). The original database is still stored in the original vertical database
layout.

Observe an arbitrary recursion path of the algorithm starting from the set
{i1}, up to thek-setI = {i1, . . . , ik}. The set{i1} has stored its cover and
for each recursion step that generates a subset ofI, we compute its diffset.
Obviously, the total size of all diffsets generated on the recursion path can be
at most|cover({i1})|. On the other hand, if we generate the cover of each
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generated set, the total size of all generated covers on that path is at least(k −
1) ·σ and can be at most(k−1) · |cover({i1})|. This observation indicates that
the total size of all diffsets that are stored in main memory at a certain point in
the algorithm is much less than the total size of all covers. These predictions
were supported by several experiments (Zaki and Gouda, 2003).

4. Optimizations

A lot of other algorithms proposed after the introduction of Apriori retain
the same general structure, adding several techniques to optimize certain steps
within the algorithm. Since the performance of the Apriori algorithm is al-
most completely dictated by its support counting procedure, most research has
focused on that aspect of the Apriori algorithm.

The Eclat algorithm was not the first of its kind when considering the in-
tersection based counting mechanism (Holsheimer et al., 1995; Savasere et al.,
1995). Also, its original design did not pursue a depth-first traversal of the
search space, although this is only a simple but effective change, which was
later corrected in extensions of the algorithm (Zaki and Gouda, 2003; Zaki and
Hsiao, 2002). The effectiveness of this change mainly shows in the amount
of memory that is consumed. Indeed, the amount and total size of all covers
or diffsets stored within a depth-first recursion is usually much smaller than
compared to this amount during a breadth-first recursion (Goethals, 2004).

4.1 Item reordering

One of the most important optimizations which can be effectively exploited
by almost any frequent set mining algorithm, is the reordering of items.

The underlying intuition is to assume statistical independence of all items.
Then, items with high frequency tend to occur in more frequent sets, while low
frequent items are more likely to occur in only very few sets.

For example, in the case of Apriori, sorting the items in support ascending
order improves the distribution of the candidate sets within the used data struc-
ture (Borgelt and Kruse, 2002). Also, the number of candidate sets generated
during the join step can be reduced in this way. Also in Eclat the number of
candidate sets that is generated is reduced using this order, and hence, the num-
ber of intersections that need to be computed and the total size of the covers of
all generated sets is reduced accordingly. In fact, in Eclat, such reordering can
be performed at every recursion step of the algorithm.

Unfortunately, until now, no results have been presented on an optimal
ordering of all items for any given algorithm and only vague intuitions and
heuristics are given supported by practical experiments.
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4.2 Partition

As the main drawback of Apriori is its slow and iterative support counting
mechanism, Eclat has the drawback that it requires large parts of the (vertical)
database to fit in main memory. To solve these issues, Savasere et al. pro-
posed the Partition algorithm (Savasere et al., 1995). (Note, however, that this
algorithm was already presented before Eclat and its relatives.)

The main difference in the Partition algorithm, compared to Apriori and
Eclat, is that the database is partitioned into several disjoint parts and the al-
gorithm generates for every part all sets that are relatively frequent within that
part. This is can be done very efficiently by using the Eclat algorithm (origi-
nally, a slightly different algorithm was presented). The parts of the database
are chosen in such a way that each part fits into main memory. Then, the al-
gorithm merges all relatively frequent sets of every part together. This results
in a superset of all frequent sets over the complete database, since a set that
is frequent in the complete database must be relatively frequent in one of the
parts. Finally, the actual supports of all sets are computed during a second scan
through the database.

Although the covers of all items can be stored in main memory, during the
generation of all local frequent sets for every part, it is still possible that the
covers of all local candidatek-sets can not be stored in main memory. Also,
the algorithm is highly dependent on the heterogeneity of the database and
can generate too many local frequent sets, resulting in a significant decrease
in performance. However, if the complete database fits into main memory and
the total of all covers at any iteration also does not exceed main memory limits,
then the database must not be partitioned at all and the algorithm essentially
comes down to Eclat.

4.3 Sampling

Another technique to solve Apriori’s slow counting and Eclat’s large mem-
ory requirements is to use sampling as proposed by Toivonen (Toivonen, 1996).

The presented Sampling algorithm picks a random sample from the
database, then finds all relatively frequent patterns in that sample, and then ver-
ifies the results with the rest of the database. In the cases where the sampling
method does not produce all frequent sets, the missing sets can be found by
generating all remaining potentially frequent sets and verifying their supports
during a second pass through the database. The probability of such a failure
can be kept small by decreasing the minimal support threshold. However, for
a reasonably small probability of failure, the threshold must be drastically de-
creased, which can cause a combinatorial explosion of the number of candidate
patterns. Nevertheless, in practice, finding all frequent patterns within a small
sample of the database can be done very fast using Eclat or any other efficient
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frequent set mining algorithm. In the next step, all true supports of these pat-
terns must be counted after which the standard levelwise algorithm could fin-
ish finding all other frequent patterns by generating and counting all candidate
patterns iteratively. It has been shown that this technique usually needs only
one more scan resulting in a significant performance improvement (Toivonen,
1996).

4.4 FP-tree

One of the most cited algorithms proposed after Apriori and Eclat is the
FP-growth algorithm by Han et al. (2004). Like Eclat, it performs a depth-first
search through all candidate sets and also recursively generates the so called
i-conditional databaseDi, but in stead of counting the support of a candidate
set using the intersection based approach, it uses a more advanced technique.

This technique is based on the so-calledFP-tree. The main idea is to store
all transactions in the database in a trie based structure. In this way, in stead
of storing the cover of every frequent item, the transactions themselves are
stored and each item has a linked list linking all transactions in which it occurs
together. By using the trie structure, a prefix that is shared by several transac-
tions is stored only once. Nevertheless, the amount of consumed memory is
usually much more as compared to Eclat (Goethals, 2004).

The main advantage of this technique is that it can exploit the so-called
single prefix pathcase. That is, when it seems that all transactions in the cur-
rently observed conditional database share the same prefix, the prefix can be
removed, and all subsets of that prefix can afterwards be added to all frequent
sets that can still be found (Han et al., 2004), resulting in significant perfor-
mance improvements. As we will see later, however, an almost equally effec-
tive technique can be used in Eclat, based on the notion of closure of a set.

5. Concise representations

If the number of frequent sets for a given database is large, it could become
infeasible to generate them all. Moreover, if the database is dense, or the min-
imal support threshold is set too low, then there could exist a lot of very large
frequent sets, which would make sending them all to the output infeasible to
begin with. Indeed, a frequent set of sizek includes the existence of at least
2k − 1 frequent sets, i.e. all of its subsets. To overcome this problem, several
proposals have been made to generate only a concise representation of all fre-
quent sets for a given database such that, if necessary, the frequency of a set,
or the support of a set not in that representation can be efficiently determined
or estimated (Gunopulos et al., 2003; Bayardo, 1998; Mannila, 1997; Pasquier
et al., 1999; Boulicaut et al., 2003; Bykowski and Rigotti, 2001; Calders and
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Goethals, 2002; Calders and Goethals, 2003). In this section, we address the
most popular.

5.1 Maximal Frequent Sets

Since the collection of all frequent sets is downward closed, it can be rep-
resented by its maximal elements, the so calledmaximal frequent sets. Most
algorithms that have been proposed to find the maximal frequent sets rely on
the same general structure as the Apriori and Eclat algorithm. The main addi-
tions are the use of several lookahead techniques and efficient subset checking.

The Max-Miner algorithm, proposed by Bayardo (1998), is an adapted ver-
sion of the Apriori algorithm to which two lookahead techniques are added.
Initially, all candidatek + 1-sets are partitioned such that all sets sharing the
samek-prefix are in a single part. Hence, in one such part, corresponding to
a prefix setX, each candidate set adds exactly one item toX. Denote this set
of ‘added’ items byI. When a superset ofX ∪ I is already known to be fre-
quent, this part of candidate sets can already be removed, since they can never
belong to the maximal frequent sets anymore, and hence, also their supports
don’t need to be counted anymore. This subset checking procedure is done
using a similar hash-tree as is used to store all frequent and candidate sets in
Apriori.

First, during the support counting procedure, for each part, not only the
support of all candidate sets is counted, but also the support ofX ∪ I. If it
turns out that this set it frequent, again none of its subsets need to be generated
anymore, since they can never belong to the maximal frequent sets. All other
k+1-sets that turn out to be frequent are added to the collection of maximal sets
unless a superset is already known to be frequent, and all subsets are removed
from the collection, since, obviously, they are not maximal.

A second technique is the so calledsupport lower boundingtechnique. That
is, after counting the support of every candidate setX ∪ {i}, it is possible
to compute a lower bound on the support its supersets using the following
inequality:

support(X ∪ J) ≥ support(X)−
∑

i∈J

support(X)− support(X ∪ {i}).

For every part with prefix setX, this bound is computed starting withJ con-
taining the most frequent item, after which items are added in frequency de-
creasing order as long as the total sum remains above the minimum support
threshold. Finally,X ∪ J is added to the maximal frequent sets and all its
subsets are removed.

Obviously, these techniques result in additional pruning power on top of the
Apriori algorithm, when only maximal frequent sets are needed. Later, several
other algorithms used similar lookahead techniques on top of depth-first algo-
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rithms such as Eclat. Among them, the most popular are GenMax (Gouda and
Zaki, 2001) and MAFIA (Burdicket al., 2001), which also use more advanced
techniques to check whether a superset of a candidate set was already found to
be frequent. Also the FP-tree approach has shown to be effective for maximal
frequent set mining (G. Grahne, 2003; Liu et al., 2003).

A completely different approach, calledDualize and Advance, was proposed
by Gunopulos et al. (2003). Here, a randomized algorithm finds a few maximal
frequent sets by simply adding items to a frequent set until no extension is
possible anymore. Then, all other maximal frequent sets can be found similarly
by adding items to sets which are so called minimal hypergraph transversals
of the complements of all already found maximal frequent sets. Although the
algorithm has been theoretically shown to be better than all other proposed
algorithms, until now, extensive experiments have only shown otherwise (Uno
and Satoh, 2003; Goethals and Zaki, 2003).

5.2 Closed Frequent Sets

Another very popular concise representation of all frequent sets are the so
calledclosed frequent sets, proposed by Pasquier et al (1999). A set is called
closed if its support is different from the supports of its supersets. Although all
frequent sets can essentially be closed, in practice, it shows that a lot of sets are
not. Also here, several different algorithms, based on those described earlier,
have been proposed to find only the closed frequent sets. The main added
pruning technique simply checks for each set whether its support is the same
as any of its subsets. If this is the case, the item can immediately be added to all
frequent supersets of that subset, and does not need to be considered separately
anymore as it can never result in a closed frequent set. Again, efficient subset
checking techniques are necessary to make sure that a generated frequent has
no closed superset with the same support that was generated earlier. Efficient
algorithms include CHARM (Zaki and Hsiao, 2002) and CLOSET+ (Wang
et al., 2003), and many of their improvements (G. Grahne, 2003; Liu et al.,
2003).

5.3 Non Derivable Frequent Sets

Although the support monotonicity property is very simple and easy, it is
possible to derive much better bounds on the support of a candidate setI, by
using the inclusion-exclusion principle, given the supports of all subsets of
I (Calders and Goethals, 2002). More specifically, for any subsetJ ⊆ I, we
obtain a lower or an upper bound on the support ofI using one of the following
formulas.



Frequent Set Mining 391

If |I \ J | is odd, then

support(I) ≤
∑

J⊆X

(−1)|I\X|+1support(X). (17.1)

If |I \ J | is even, then

support(I) ≥
∑

J⊆X

(−1)|I\X|+1support(X). (17.2)

Then, when the smallest upper bound is less than the minimal support
threshold, the set does not need to be counted anymore, but more interestingly,
if the largest lower bound is equal to the smallest upper bound of the support of
the set, then it also does not need to be counted anymore since these bounds are
necessarily equal to support itself. Such a set is calledderivableas its support
can be derived from the supports of its subsets, ornon-derivableotherwise. A
nice property of the collection of non-derivable frequent sets is that it is down-
ward closed. That is, every subset of a non-derivable set is non-derivable. An
additional interesting property is that the size of the largest non-derivable set
is at most1+ log |D| where|D| denotes the total number of transactions in the
database.

As a result, it makes sense to generate only the non-derivable frequent sets
as its derivable counterparts essentially give no new information about the
database. Also, the Apriori algorithm can easily be adapted to generate only
the non-derivable frequent sets by implementing the inclusion-exclusion for-
mulas as stated above. The resulting algorithm is called NDI (Calders and
Goethals, 2002).

6. Theoretical Aspects

Already in the first section of this chapter, we made clear how hard the
problem of frequent set mining is. More specifically, the search space of all
possible frequent sets is exponential in the number of items and the number
of transactions in the database tends to be huge such that the number of scans
through it should be minimized. Of course, we can make it all sound as hard
as we want, but fortunately, also some theoretical results have been presented,
proving the hardness of the frequent set mining problems.

First, Gunupolos et al. studied the problem of counting the number of fre-
quent sets and have proven it to be #P-hard (Gunopulos et al., 2003). Addition-
ally, it was shown that deciding whether there is a maximal frequent set of size
k, is NP-complete (Gunopulos et al., 2003). After that, Yang has shown that
even counting the number of maximal frequent sets is #P-hard (Yang, 2004).

Ramesh et al. presented several results on the size distributions of frequent
sets and their feasibility (G. Ramesh, 2003). Mielikäinen introduced and stud-
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ied theinverse frequent set mining problem, i.e., given all frequent sets, what
is the computational complexity of finding a database consistent with the col-
lection of frequent sets (Mielik̈ainen, 2003). It is shown that this problem is
NP-hard and its enumeration conterpart, counting the number of compatible
databases, also #P-hard. Similarly, Calders introduced and studied the FRE-
QSAT problem, i.e. given some set-interval pairs, does there exist a database
such that for every pair, the support of the set falls in the interval? Again, it is
shown that this problem is NP-complete (Calders, 2004).

7. Further Reading

During the first ten years after the proposal of the frequent set mining prob-
lem, several hundreds of scientific papers were written on the topic and it seems
that this trend is keeping its pace. For a fair comparison of all these algorithms,
a contest is organized to find the best implementations in order to to understand
precisely why and under what conditions one algorithm would outperform an-
other (Goethals and Zaki, 2003).

Of course, many articles also study variations of the frequent set mining
problem. In this section, we list the most prominent, but refer the interested
reader to the original articles.

Another interesting issue is how to effectively exploit more contraints next
to the frequency constraint (Srikant et al., 1997). For example, find all sets
contained in a specific set or containing a specific set, or boolean combinations
of those (Goethals and den Bussche, 2000). Ng et al. have listed a large collec-
tion of constraints and classified them into several classes for which different
optimization techniques could be used (Ng et al., 1998). The most studied
classes or the class of so-calledanti-monotoneconstraints, as is the minimal
support threshold, and themonotone constraints, such as the minimum length
constraint (Bonchi et al., 2003).

Combining the exploitation of constraints with the notion of concise repre-
sentations for the collection of frequent sets has been widely studied within the
inductive databaseframework (Mannila, 1997) as they are both crucial steps
towards an effective optimization of so calledData Mining queries.

When databases contain only a small number of transactions, but a huge
number of different items, then it is best to focus on only the closed frequent
sets, and a slightly different approach might be benificial (Pan et al., 2003; Ri-
oult et al., 2003). More specifically, as a closed set is essentially the intersec-
tion of transactions of the given database (while a non-closed set is not), these
approaches perform a search traversal through all combinations of transactions
in stead of all combinations of items.

Since privacy in Data Mining presents several important issues, also private
frequent set mining has been studied (Vaidya and Clifton, 2002). Also from
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a theoretical point of view, several problems closely related to frequent set
mining remain unsolved (Mannila, 2002).
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