Automata for Avoiding Unnecessary Ordering Operations in
XPath Evaluation Plans

Mary Ferndndez Jan Hidders Jérome Siméon?
Philippe Michiels
Roel Vercammen'!

July 15, 2004

!Philippe Michiels and Roel Vercammen are supported by IWT — Institute for the Encouragement of
Innovation by Science and Technology Flanders, grant numbers 31016 and 31581.
2Jéréme Siméon completed part of this work at Lucent Technologies — Bell Labs.

Abstract

XPath 2.0 path expressions can observe and preserve the document order and identity of XML
values in a document. In particular, their semantics requires that the complete result and the
result of each individual step in a path expression be in document order and duplicate-free. Im-
plementations of this semantics often guarantee correctness by inserting explicit operations that
sort and remove duplicates after each step. Such operations, however, can be redundant, because
an intermediate result may already be sorted and/or duplicate-free. This work presents a sound
and complete set of inference rules that decide whether each step in a path expression always
yields a result in document order and with no duplicates. The inference rules are implemented by
an efficient, automaton-based algorithm. Experimental results show that the algorithm detects
and eliminates all redundant sorting and duplicate elimination operators, and is effective on most
common path expressions.

Contents

1 Introduction

1.1 Motivating Examples Lo
1.2 XPath e
1.2.1 Semantics of XPath
1.2.2 Evaluation Plans for Path Expressions
1.2.3 Evaluation Plan Properties
2 Tidy Evaluation Plans
2.1 Soundness Rules
2.1.1 Inference Rules
2.1.2 Proof of Inference Rules
2.2 Completeness Rules
2.2.1 Inference Rules
2.2.2 Proof of Inference Rules
2.3 The AYW Automaton
2.3.1 Proving Soundness and Completeness

3 Sloppy Evaluation Plans

3.1 Soundness and Completenesso
3.1.1 Additional Inference Rules.
3.1.2 Proofs for the Additional Rules

3.2 Automata for Sloppy Evaluation Plans
3.2.1 The Azlﬁf PY Automaton
3.2.2 The Affsﬁg Automaton
3.2.3 Proving Soundness and Completeness

4 Implementation

4.1 Galax Architecture L
4.2 Applying the DDO Optimization o
4.3 Evaluating Core XQuery oo
5 The DD0O Optimization in Context
5.1 Preparing the DDO Optimization
5.1.1 Further Optimizations
6 Experimental Results
6.1 Analysis of XMark Queries Lo
6.2 Performance of the DDO Optimization
6.3 Applying Further Optimizations

7 Related Work and Discussion

A Correctness of the A" Automaton

38
38
38
39
43
43
43
44

47
47
49
50

51
51
52

53
53
53
o4

56

57

B Correctness of the Automata for Sloppy Evaluation Plans
B.1 Correctness of the AleOdp PY Automaton

B.2 Correctness of the Azlfgfg Automaton

Chapter 1

Introduction

XML is an inherently ordered data format, that is, the relative order of elements, comments,
processing instructions, and text in an XML document is significant. This makes XML an ideal
format for data in which order is semantically significant. The order property is closely related
to uniqueness: Two XML elements that are structurally identical can be distinguished by their
location in a document, that is, they have distinct identities even though their internal structures
are identical. Like the order property, unique identity can convey semantics.

Text-rich XML documents, such as manuscripts and transcripts, typically depend on order.
For example, the order of witnesses and their statements in the transcript of a trial conveys a
temporal order. If the order of witnesses’ remarks changes, the meaning of the transcript is
changed. Order can also be significant in data that is not text rich. For example, the order
of entries in a Web-server cache can convey the order in which the cache was populated. For
example, the same witness making the same remark three consecutive times in his testimony is
significant. Removing the otherwise equivalent remarks changes the meaning of the testimony.
Similarly, multiple structurally identical entries in a Web-server log may indicate an attempted
security attack.

The XML data model that underlies the XML query languages XPath 2.0[2], XSLT 2.0[15], and
XQuery 1.0[3], models both document order and node identity. Document order is a total ordering
of nodes in an XML document and is the order returned by a preorder traversal of the XML
document. All three query languages provide features that can observe and preserve the document
order and identity of XML values in a document. XPath path expressions navigate through the
axes of a document (e.g., child, ancestor, following-sibling), select nodes in an axis based on
their name, type, or relative order with respect to other nodes, and return a sequence of selected
nodes in document order and with no duplicates. XPath 2.0 is a proper sub-language of XQuery
1.0, therefore, XQuery 1.0 is at least as expressive. In addition, XQuery has several operations and
functions (e.g., the << and >> operators, and union and except functions) that depend on or yield
duplicate-free node sequences in document order. Therefore, any serious implementation of XPath,
XSLT, or XQuery must support the ordered data model and correctly implement the semantics
of expressions that observe and preserve order. Path expressions, in particular, are integral to
all three languages, and therefore, implementing them correctly, completely, and efficiently is
important.

The complete formal definition of path expressions is in the XQuery 1.0 Formal Semantics [5].
The semantics is expressed through normalization rules, which translate users’ expressions into a
smaller core language. The semantics of a path expression corresponds to a top-down evaluation
plan and requires that the complete result and the result of each individual step be in document or-
der and duplicate-free. This semantics guarantees that steps that depend on order, e.g., positional
predicates, always yield correct results. Because any step may yield a sequence of nodes without
these properties, the semantics is enforced by inserting explicit operations, called ddo operations
(for distinct-docorder), that sort and remove duplicates after each step. In many cases, these
operations are redundant, because the result after certain steps is always sorted and/or duplicate-

<!ELEMENT surgery procedurex*>
<!ELEMENT procedure

(anesthesia | incision | subproc | #PCDATA)*>
<!ELEMENT subproc (anesthesia | incision | #PCDATA)*>
<!ELEMENT anesthesia #PCDATA>
<!ELEMENT incision #PCDATA>

Figure 1.1: DTD of surgical procedures

free. Eliminating redundant operators yields path expressions that are semantically correct, but
easier to evaluate efficiently by enabling, for example, non-blocking, pipelined operators.

The main contribution of this work is a comprehensive technique for detecting and eliminating
redundant sorting and duplicate-elimination operators in XPath 2.0. In particular, this includes:

e A sound and complete set of inference rules that deduce whether each step in a path expres-
sion always yields a result in document order and with no duplicates, independent of the
document to which the path expression is applied;

e An efficient, automaton-based algorithm that implements the inference rules during static
analysis of a query; and

e Experimental results that show the algorithm detects and eliminates all redundant sort and
duplicate-elimination operators and is very effective on typical path expressions.

Because our goal is to support the complete XPath 2.0 language, we consider all thirteen axes
and boolean and positional predicate expressions. Our only assumption is that a step expression
(i.e., an axis, node-test pair) applied to one node always yields a duplicate-free node sequence in
document order. Note, however, that a step expression applied to a sequence of nodes may result
in a node sequence out of document order or with duplicates.

The algorithm is implemented in the Galax XQuery engine [6] as a logical rewriting of XQuery
core expressions. To support rewriting of path expressions in any XQuery expression, the pro-
posed algorithm requires weak typing, an inexpensive and easy-to-implement form of static typing,
making the algorithm applicable in other XQuery implementations.

This report is organized as follows. In the remainder of this chapter we define XPath expres-
sions, their semantics and their evaluation plans. Here we also introduce the different properties
of path expressions that we will reason about with the inference rules. In Chapter 2 we discuss
the problem for so-called tidy evaluation plans that make sure that after each step the result is
sorted and without duplicates. In Chapter 4 we look at how this work can be applied to improve
the performance of the Galax XQuery engine. In Chapter 5, we relate the DDO optimization to
other interacting optimizations and in Chapter 6 we put our techniques to the test with Galax.
Finally, in Chapter 7 we discuss related work and the obtained results.

1.1 Motivating Examples

We begin with several path expressions that illustrate the difficulty of detecting whether the final
or intermediate result of a path expression is in document order and duplicate-free.

The example expressions are applied to a document containing transcripts of surgical proce-
dures, which conform to the DTD in Figure 1.1. Each procedure contains a sequence of steps (e.g.,
administer anesthesia, make incision, perform subprocedure) interleaved with text. Figure 1.2 de-
picts a tree representation of such a document containing two procedures (p), each containing
anesthesia (a), incision (i), and sub-procedure (s) elements. The integer subscripts denote docu-
ment order. In example expressions, an absent axis denotes child: :, and all other axis names are
abbreviated (e.g., descendant:: becomes desc::). Our primary goal is to decide whether the

result of each step in a path expression is always in document order (i.e., has the ord property)
and/or never contains duplicates (i.e., has the nodup property).

Figure 1.2: A tree representation of a surgical procedure

The first example return all incisions contained within procedures:
$sur/procedure/desc: :incision

In this example the $sur variable is bound to node dj of Figure 1.2. By simple inspection, we can
infer the first procedure step is ord and nodup, and because the descendants of the procedure
nodes are unrelated, we can infer that desc::incision is also ord and nodup.

The above expression is normalized into the following core expression, which makes explicit
the semantics that the complete result and the result of each individual step be in document order
and duplicate-free. Each step is evaluated with respect to an implicit context node, which is bound
to the variable $fs:dot. The fs:distinct-docorder function sorts its input in document order
and removes duplicates.®

fs:distinct-docorder(
for $fs:dot in fs:distinct-docorder(
for $fs:dot in $sur
return child::procedure)
return descendant::incision)

Our algorithm infers that each step in the above core expression is always in document order
and duplicate-free and therefore can be simplified into the equivalent core expression:

for $fs:dot in
for $fs:dot in $sur return child::procedure
return descendant::incision

Deducing the ord and nodup properties for path expressions involving both forward and reverse
axes is more difficult. The following expression uses the parent axis to return elements that directly
contain incisions contained within some procedure:

$sur/procedure/desc: :incision/. .

As before, the first two steps are ord and nodup but the parent step may yield a sequence that
is neither ord nor nodup. For example, the parent axis applied to the sequence of incisions
(i3,15,19,111) is the sequence (p1,p1,ss,p7). Our algorithm can simplify the normalized core
expression, eliminating unnecessary fs:distinct-docorder operations, while preserving those
that are necessary.

Sometimes the intermediate result of a step may be ordered but contain duplicates, or vice
versa. For example, replacing the desc: :incision axis by the child: :incision axis in the pre-
vious expression yields a result that is always in document order but that may contain duplicates:

$sur/procedure/incision/. .

IThe fs namespace denotes “Formal Semantics”.

For example, the parent axis applied to the sequence of incisions (is,is,411) is the sequence
<p17p17p7>'

Our algorithm infers when a path expression is ordered but may contain duplicates and replaces
the fs:distinct-docorder operation by the more efficient fs:disinct operation, which takes
an ordered sequence and in linear time removes duplicates:

fs:distinct(
for $fs:dot in
for $fs:dot in
for $fs:dot in $sur
return child: :procedure
return child::incision
return parent::node())

Much existing work on XPath semantics considers a small subset of the language, ignoring
positional predicates and backward and sibling axes. Our experience is that many applications
require all of XPath, and therefore our algorithm is designed to handle the complete XPath 2.0
language. We also expect that as automatic generation of XPath expressions increases, XPath
processors will be required to implement them correctly and efficiently.

1.2 XPath

We continue with the theoretical foundation for inferencing the ord and nodup properties. We
begin with a formal definition of axes and path expressions, then introduce two evaluation plan
categories that correspond top-down evaluations of a path expression. Our goal is to decide
whether ddo operations in the evaluation plan of a path expression can be removed without
changing its semantics. We do this by deciding the properties ord and nodup after each step in a
path expression.

To derive these static properties, we need to introduce several auxiliary static properties of
evaluation plans and the inference rules that derive them. This yields a sound and complete set of
rules for deciding the ord and nodup properties. The rules are sound, because they never derive
ord or nodup for an expression that can yield a sequence that is not in order or that contains
duplicates. The rules are complete, because, if they cannot derive ord or nodup for an expression,
then there exists at least one evaluation that yields a sequence that is unordered or contains
duplicates. Lastly, we show that these rules can be realized by an efficient decision algorithm
using a deterministic automaton.

We note that in XPath 2.0, each step in a path consists of an axis and a node test followed
by an optional predicate, e.g., child: :procedure/descendent: :incision[1]. Here, we ignore node
tests and predicates and focus on deriving the ord and nodup properties for sequences of axes,
e.g., child::*/descendant::*. In Chapter 4, we explain how these properties are derived for
complete XPath expressions. Our formalism omits path expressions in which parentheses are used
to enforce right-associativity, such as in p1/(p2/ps), and the self axis, because, without a node
test, it denotes the identity function.

1.2.1 Semantics of XPath

To save space, our formalization of an XML document contains only element nodes (V) labeled
with tags (7). Other nodes (text, comment, etc.) can be added easily.

Definition 1.2.1 (XML Document). An XML document is a rooted ordered node-labeled tree
D = (N,<,r,\, <) such that (N, <) is a tree with root r, A : N — T is a labeling of the nodes, <
is the binary parent-child relation, and < is the sibling-order relation that is a strict partial order
over N such that for each two distinct nodes ni,ny € N it holds that ny < ny or ny < ny iff they
are siblings.

Axis Axis Set Semantics

Name Symbol {|Axis]} p
child 1 4
parent T >
descendant 1* <t
ancestor Tt >t
descendant-or-self r <*
ancestor-or-self 1" >
following — >0 < og”
preceding “« >%*o = oq*
following-sibling = <
preceding-sibling “ >~

Table 1.1: Axis names, symbols, and set semantics

Definition 1.2.2 (Document Order). Given an XML document D = (N, <,r, A\, <) we define
the document order in D, <p, as the strict total order over N that orders the nodes as encountered
in a pre-order tree-walk, i.e., the unique strict total order that is a superset of both < and < and
for which it holds for all ny,ns,m3 € N that if ny <t ny and ny < ng then ny <p na.

Figure 1.3: An example of an XML document

The relations <1t and <* denote the transitive closure and the reflexive and transitive closure
of <, respectively. The reverses of <, <1, <™ and <1* are denoted by >, >, >T and >*, respectively.

We first define a set semantics and a sequence semantics for each axis in terms of the above
relations on nodes, then define the set and sequence semantics for a path expression, which is a
finite sequence of axes.

Definition 1.2.3 (Axes). The set of axes A is defined as {1,], 17,17, 1%, |*, «, —», &, =} where
these symbols represent the XPath azxes as given in Table 1.1. The concise notation in Table 1.1
extends the notation in [1].

Definition 1.2.4 (Axes Semantics). The set semantics of an azis a on a document D =
(N, <, 7, A, <) is a binary relation {[altp € N x N and is defined by the third column of Table 1.1.
For example, the semantics of the following axis is defined such that it contains the pair (ni,ns)
iff no is the descendant (or the node itself) of a node that is a following sibling of an ancestor (or
the node itself) of nq2.

The sequence semantics of an axis a on a document D = (N, <,7, X, <) is a function [a]p :
N — S(N) where S(N) denotes the set of finite sequences over N such that [a] p(n) is the sequence
that is obtained by sorting the set {n'|(n,n’) € {Jal}p} with <, the document order of D.

We overload the last notation and define a function [a]p : S(N) — S(N) such that lin ebreak
lalp({n1,...,n%)) = [a]lp(n1) - ... - [a] p(nk) where - denotes sequence concatenation.

2The composition of two binary relations R and S is Ro S = {(n1,n3)|(n1,n2) € S, (n2,n3) € R}

Definition 1.2.5 (Path Expression). A path expression is a non-empty finite sequence of axes,
denoted as a1/ ... /a.

Finally, we define the semantics of a path expression, which coincides with the semantics of
path expressions in the XQuery formal semantics.

Definition 1.2.6 (Semantics of Path Expressions). The semantics of a path expression
p=ai/.../a, on a document D = (N,<,r, A\, <), is the function [p]p : N — S(N) such that
the result of [p]p(n) is the sequence obtained when sorting the set {n'|(n,n’) € {Jan]}o...o{a1]}}
with < p, the document order of D.

In other words, the result of a path expression is the set of nodes that is the result of the
composition of the semantics of each step in the expression, and this set is returned as a sequence
of nodes that is sorted by document order.

1.2.2 Evaluation Plans for Path Expressions

The above semantics specifies what a path expression means, but not how to evaluate it. Therefore
we introduce a notion of an an evaluation plan which allows us to reason about the necessity
of sorting and duplicate-elimination operations. Informally such an evaluation plan consist of
a sequence of axis symbols and the symbols ¢ and § that indicate the sorting and duplicate
elimination operation, respectively. Such a sequence is denoted as for example |*; |;0;d;T;6. The
interpretation of such a sequence is that the end-result is computed in a step-by-step fashion, i.e.,
the operation that corresponds to each step is applied to the result of the previous step. Here the
operation that corresponds to an axis symbol a is the function [a] p over sequences of nodes, i.e.,
we iterate over the input sequence, apply the axis to each node and concatenate all the results.

The evaluation plans are abstractions from the core algebra expressions to which path expres-
sions are normalized. For example the evaluation plan |*;];0;d;T;6 corresponds with:

fs:distinct(
for $fs:dot in fs:distinct-docorder(
for $fs:dot in descendent-or-self::*
return child::x)
return parent::*)

Therefore we can derive properties of these concrete evaluation plans in the core algebra by
reasoning about the abstract evaluation plans.

We now proceed with the formal definition. For this we introduce the symbols ¢ and ¢, which
denote a sorting operator and a duplicate elimination operator, respectively. We define their
semantics with the function [o]p : S(N) — S(N), which sorts a sequence of nodes with <, and
the partial function [6]p : S(IN) — S(IV), which takes a sorted sequence of nodes and removes
duplicates.

Definition 1.2.7 (Evaluation Plan). An evaluation plan is a non-empty sequence ¢ = s1;...; Sk
of azxis symbols, o and & where (1) the first element is an axis symbol and (2) between two axis
symbols and after the last axis symbol we either find the sequence o; 6, the sequence o, the sequence
0 or the empty sequence. Given a document D, the semantics of an evaluation plan ¢ = s1;...; sk,
is a partial 3 function [q]p : N — S(N) such that [q]p(n) = F({(n)) where F = [sg]po...o[s1]p-

With every evaluation plan corresponds a path expression that it is supposed to implement.
This path expression consists of the axes as encountered in the evaluation plan. For example, the
evaluation plan |*; |;0;6;7;6 implements |*/|/T. Given an evaluation plan ¢ we will write the
corresponding path expression as P(q). Furthermore, we say that an evaluation plan ¢ is correct if
it holds for all XML documents D that [¢]p = [P(q)]p. For example, the evaluation plan |; 7;4 is
correct, because the result after T will always be a sequence of zero or more times the same node,

3The semantics of an evaluation plan is a partial function, because § assumes an ordered input sequence.

but |; 7T is not correct. If an evaluation plan is correct except that it may still produce duplicates
then we call it correct up to duplicates and if it is correct except that the result may not be sorted
then we call it correct up to ordering. We also introduce a stronger form of correctness which we
call step correctness an which requires that in an evaluation plan after each evaluation of an axis
and any following o and § operations the result is always sorted and without duplicates.

Next to the semantical categories for evaluation plans defined above we also distinguish two
other syntactical categories. The first is the category of sloppy evaluation plans which are evalua-
tion plans that only consist of axes. The second category are the tidy evaluation plans which are
evaluation plans that consist of zero or more times a sequence of the form a;o;d, with a an axis
symbol, followed by a final axis symbol. For example, for the path expression |*/|/1 there is a
sloppy evaluation plan |*; |; T and a tidy evaluation plan |*;0;d; |;0;d; 7. Note that both sloppy
and tidy evaluation plans may be incorrect, as is illustrated by the previous example, but both
can be made correct by extending them at the end with the sequence o; 4.

The main subject of this report will be the problem of deciding whether sloppy evaluation plans
and tidy evaluation plans are correct up to duplicates and/or correct up to ordering. Depending
upon the implementation strategy that is chosen this information can be used in different ways.
If the implementation strategy consists of the sloppy evaluation plan followed by o;d then we can
decide whether these final two steps are indeed necessary. It is easy to see that a sloppy evaluation
plan produces the same result as a depth first evaluation strategy that does not materialize the
intermediate node sequences but iterates over them and for each evaluates the remainder of the
path expression. Therefore, we can also in this case use this information to decide whether the
final o and § steps are really necessary.

The two previous strategies have the well-known problem that intermediate results may contain
duplicates and therefore lead to duplicate computations and even an unnecessary exponential
growth of the execution time in the size of the path expression [9]. This can be solved by an
implementation strategy that consists of the tidy evaluation plan followed by o;6. Here we can
obviously use the information whether the tidy evaluation plan itself is already correct or not, to
decide whether to remove the final o; §. Moreover, we can use the same algorithm to decide for each
of the intermediate o’s and §’s if they are redundant or not. As a consequence it allows us to decide
exactly which o’s and §’s can be removed while remaining step correct. This approach is especially
interesting for implementations of XQuery such as Galax that follow the formal semantics of
XQuery closely. This is because a straightforward interpretation of the formal semantics lead to
an implementation strategy that corresponds to the tidy evaluation plan.

1.2.3 Evaluation Plan Properties

As explained in the previous section our goal is to decide whether it holds for a certain evaluation
plan whether for all XML documents and nodes in that document the result of the evaluation
plan applied to that node in that document is without duplicates and sorted in document order.
We can rephrase this problem as a decision problem where the following two properties have to
be decided for an evaluation plan.

Definition 1.2.8 (The ord and nodup Properties). For a path evaluation plan q we define the
following properties:

ord (Ordered) For every XML document D and node ny in D the list [q]p(n1) is sorted in the
document order of D.

nodup (No Duplicates) For every XML document D and node ny in D the list [q]p(n1) contains
no duplicates.

The fact that a certain property m holds for a path evaluation plan ¢ is denoted as ¢ : w. For
example, |; | : ord denotes the fact that the result of the path evaluation plan |; | is always sorted
in document order.

In order to decide these properties we introduce several other properties that we can use to
derive them.

Definition 1.2.9 (Ancillary Properties). For evaluation plans ¢ we define the following prop-
erties:

lin (Linear) For every XML document D and node ny in D all the nodes in [q]p(n1) are
ancestor-descendent related.

unrel (Unrelated) For every XML document D and node ny in D all the nodes in [q]p(n1)
are not ancestor-descendant related.

nolc (No Left Child) For every XML document D, node ny in D and nodes na, nz in
[g]lp(n1) it holds that if nay has a sibling ny that is an ancestor of ns then ng is not a
left sibling of ny.

norc (No Right Child) For every XML document D, node ny in D and nodes ng, ng in
[g]p(n1) it holds that if nay has a sibling ny that is an ancestor of ns then ng is not a
right sibling of ny.

nsib (n Siblings) For any number n there is an XML document D and a node ny in D such
that there are at least n distinct siblings in [q]p(ni).

no2d (No 2 Distinct Nodes) For every XML document D and node ny in D there are not
two distinct nodes in [q]p(nq).

ntree (Tree of size n) For any number n there is an XML document D and a node ny in D
such that there is set of nodes in [q]p(n1) that spans a tree in D of height n with all
internal nodes having n children.

nhat (Hat of n Siblings) For any number n there is an XML document D and a node ny in
D such that there is a node ny in [g]p(n1) such that there is an ancestor of no which
has at least n distinct left siblings and n distinct right siblings in [q] p(n1).

The properties defined above are all set properties in the sense that they only refer to the result
set of the evaluation plan and do not care about the order or the multiplicity of the nodes in the
result. It will be clear that this is not true for the ord and nodup properties.

The set properties are divided in positive set properties and negative set properties. The positive
set properties are those set properties that forbid certain combinations of nodes in the result of the
evaluation plan, such as for example the properties no2d, lin, unrel, nolc and norc. The negative
properties are those set properties that require that certain combinations can occur in the result
of the evaluation plan. Examples of negative properties are nsib, ntree and nhat.

The fact that a certain property does not hold for a certain evaluation plan will also be relevant
for us since, for example, we want to be able to derive when ord holds and when it does not hold.
Therefore we introduce negated versions of all properties @ which will be written as —7. The
semantics of ¢ : —m is then assumed to be that it does not holds that ¢ : m. So, if g : —ord then
it is not true that the result of ¢ is always sorted. Note that this does not mean the the result is
always unsorted. Also note that it is easy to see that the negated version of a positive set property
becomes a negative set property and vice versa.

For many properties 7 it holds that if for an evaluation plan g it holds that ¢ : 7 then the same
property also holds for ¢ extended with |; T, i.e., ¢;|;T : . For example this holds for the ord
property, but not for the nodup property. In fact, this often holds if we extend ¢ with ¢ times the |
axis followed by i times the T axis. Therefore, we introduce indexed versions of all the properties
that indicate that the original property is obtained if we apply the T axis ¢ times.

Definition 1.2.10 (Indexed evaluation plan Properties). A property m can have indices
such as in m;, T<; and w>;, which are defined as follows:

e q:miffq:m
e ifi>0 then q:m; iff (;7): mi—1.

o q:m<; iff for all j <i it holds that q : ;.

10

o q:m>; iff for all j > i it holds that q : 7;.
For all properties m we will use w, my and T<g as synonyms.

It is easy to see that if 7 is a positive (negative) set property then so are m;, 7<; and 7>;. In
case the property is negated and has an index with > or < then the negation is assumed to have
the higher priority. So, for example, ¢ : =7>; means that for all j > ¢ it holds that ¢ : —m;.

11

Chapter 2

Tidy Evaluation Plans

In this chapter we discuss how we can decide for tidy evaluation plans whether or not the result is
always ordered and free from duplicates. This information can be used to remove any unnecessary
occurrences of ddo operations from normalized path expressions. For doing this, we present a
set of rules that derive the properties ord and nodup and their negations. These rules are sound
for the entire XPath/XQuery syntax, meaning that our techniques can be applied in an XQuery
environment, as we will show in Chapter 4. Moreover, the set of rules is complete for the XPath
fragment we consider, meaning that every ddo operation that can be removed is identified by the
presented algorithm.

2.1 Soundness Rules

In this section we present the set of soundness rules, that allow us to derive the ord and nodup
properties for evaluation plans. The following rule, for instance, states that if the lin property

holds for an evaluation plan, then the norc property also holds:
q:lin

q : norc
First we present the full set of rules. Afterwards, the soundness of each of the rules is proven
separately for each rule.

2.1.1 Inference Rules

Rules for ord

q : no2d, nodup a€ A

ORD-NO2D-STEP

q;a:ord
q : unrel, ord, nodup
q : norc,ord ae{l,l* 1"}
————————— ORD-NORC-PRN ORD-UNREL-NODUP-DOWN
q;7 :ord q;a:ord
q:lin,ord

- ORD-LIN-PRS
q;« :or

12

Rules for nodup

q : no2d, nodup a€A

q; a : nodup

q : nodup
———————— NODUP-CHL
q; | : nodup

q : unrel, nodup
ae{l,|"|"}

q; a : nodup

NODUP-UNREL-DOWN

Rules for no2d
n>0
q : no2d, 1

q : no2d,
NO2D-UP

Rules for lin
n>0

q : no2d,
LIN-NO2D

q: ling,

n>1

q:ling,

— LIN-ANC
1" ling

Rules for nolc

q:lin
———— NOLC-LIN
q : nolc

n>0

q : nolcy, ling 11

» NOLC-LIN-AOS
q; 1" : nole,

q : unrely a € {«, >}
NOLC-UNREL1-SIB
q;a : nolc
q : no2d, n>0
NOLC-NO2D
q : nolc>q

NODUP-NO2D-STEP

13

a€{l,«,~>}

q : lin, nodup

q; a : nodup

q:ling, n>0

- LIN-UP
q:ling+1

q:ling, n>0

q; — : nolc

— LIN-AOS
q; 17" ling

q : nolc
NOLC-FLS

n>1

q : nolcy, ling 11

q;] : nolc

g; 17 i nolep—1

q : unrel

NOLC-UNREL-CHL

NODUP-LIN-PRNSIB

NOLC-LIN-ANC

Rules for norc

q:lin q : norc
———— NORC-LIN ————— NORC-PRS
q : norc q; « : norc
q : norcy, ling, 41 n>0 q : norcy, ling, 41 n>1
- NORC-LIN-AOS - NORC-LIN-ANC
q; 1" : norc, q; 1" nore,_1
q : unrely a € {«, >} q : unrel
NORC-UNREL1-SIB —————— NORC-UNREL-CHL
q; a : norc q;] : norc

q : no2d, n>0

NORC-NO2D
g :norcso
Rules for unrel
q : nolc q : norc
——————— UNREL-NOLC-FLS ———————— UNREL-NORC-PRS
q; — : unrel q; « :unre
q : unrel, n>1 q : no2dy, n>0
UNREL-DOWN UNREL-NO2D
q :unrel, 1 q : unrel

Rules for Positive Set Properties

In order to avoid having separate rules for all positive set properties with an index, we provide some
general properties that apply to all positive set properties. Hence if P € {no2d, lin, nolc, norc, unrel }
then following rules hold:

q: P, n>0 q: P, n>1
——— — P-CHL ———————— P-PRN
¢l Poya G 1P
q: P, a € {«, >} n>1
q;a: P,

P-SIB

2.1.2 Proof of Inference Rules

Definition 2.1.1 (Domination of evaluation plans). An evaluation plan q is said to dominate
another evaluation plans q' if it holds that for all XML documents D and nodes n € Np it holds

that [¢']p(n) C [qlp(n).

Definition 2.1.2 (Monotonicity of properties). A property 7 is said to be monotonous if for
for all evaluation plans q,q € T it holds that if q : @ and q dominates ¢’ then it follows that ¢’ : =

Lemma 2.1.1 (Monotonicity of positive set properties). All positive set properties are
monotone.

Proof. Since positive set properties forbid certain configurations in the result of an evaluation
plan, it holds that if ¢ has this property and ¢’ always returns a subset of the result of ¢, then ¢’
will also have this property. O

Lemma 2.1.2. Given two evaluation plans q and ¢’ it holds that if ¢ dominates ¢’ then ¢;1
dominates ¢'; 1.

Proof. Let D be an XML document and n € Np. If n’ € [¢/; 1]} (n) then there is a child n” of n’ in
[¢'T5(n), and since ¢ dominates ¢’ it follows that n” € [¢]%,(n) and therefore n’ € [g; 1] (n). O

14

Rules for ord

ORD-NO2D-STEP (2.1.1)

q : no2d, nodupl
a€c A

q;a:ord

ORD-NORC-PRN (2.1.1)

q : norc,ord

q;7 :ord

Proof. If nod2d and nodup hold then the result is a single node and,
by definition, axes applied to a single node result in an ordered se-
quence of nodes. O

Proof. Let a and b be two input nodes of D with a < b and let ¢ and
d be their respective parent nodes in the result of the step expression.
Suppose now that d < ¢ This means that either d is an ancestor of ¢
or d is a preceding node of c.

e d is a preceding node of ¢ — If this were true, then all children
of d would be preceding nodes of ¢. This however conflicts with
the fact that a < b;

e d is an ancestor node of ¢ — Since a < b, this implies that
there is an ancestor of ¢ that has a right sibling, namely b. This
conflict with the definition of the norc property.

We conclude that any two parents of two input nodes occur in order
in the result. O

15

ORD-UNREL-NODUP-
DOWN (2.1.1)

q : unrel,ord
ac{l,|"|"}

q;a:ord

Rules for nodup

NODUP-NO2D-STEP
(2.1.1)

q : no2d, nodup
a€A

q; a : nodup

NODUP-CHL (2.1.1)

q : nodup
———————— NODUP-CHL
q;] : nodup

Proof. Let a and b be two input nodes of D. Then a and b are two
different nodes since we have no duplicates in the input sequence.
Hence we can assume without loss of generality that a < b. Let ¢ and
d be their respective child nodes in the result of the step expression.
Suppose now that d < ¢ This means that either d is an ancestor of ¢
or d is a preceding node of c.

d is an ancestor node of ¢ — This implies that b is an ancestor of
a or vice versa which is in conflict with the unrel property.

d is a preceding node of ¢ — There are three possibilities in this

Q ® @

dH dwun g
b

| I / \

© ® @

(i) (ii) (iii)
e (i) b is a preceding node of a — This conflicts with a < b;

e (ii) b is a ancestor node of a — This conflicts with the unrel
property;

e (iii) b is a descendant node of a¢ and an ancestor node
of ¢ — This conflicts with the unrel property.

We conclude that ¢ < d for every two nodes ¢ and d in the result of
the step expression. O

Proof. If no2d and nodup hold for ¢ then the result of ¢ contains at
most one node, and it follows from the definition of the evaluation
plan of an axis that the axis applied to a single node contains no
duplicates. O

Proof. Since the nodes are part of a tree, no two different nodes will
have a common child. Hence if a certain node would occur twice in
the result after following the child axis, then this would imply that
it’s parent occured twice in the input list. This cannot be, because
the nodup property holds. O

16

NODUP-LIN-PRNSIB
(2.1.1)

q : lin, nodup
q; T : nodup

NODUP-UNREL-DOWN

(2.1.1)

q : unrel, nodup
ae{l,l* 1"}

q; a : nodup

Rules for no2d

NO2D-UP (2.1.1)

q : no2dy, n>0
q:no2d, 41

Rules for lin

LIN-NO2D (2.1.1)

q : no2d, n>0
q:lin

LIN-UP (2.1.1)

q:ling, n>0

q:ling41

Proof. Only duplicate nodes or pairs of siblings will produce dupli-
cates in the list of parents or siblings. Since both the nodup and the
lin property hold, no duplicates will occur in the result after following
the parent, preceding sibling or following sibling axis. O

Proof. By definition of a tree, two unrelated nodes never have com-
mon descendants. Therefore, unrelated nodes will never generate
duplicates when one of the axes |, |7 or |* are followed. O

Proof. If a sequence has the same n'" ancestor, then also the (n +

1)t" ancestor is the same, since the n'" ancestor has at most one
parent. O

Proof. If a set contains no two distinct nodes then all the nodes in
the sequence are the same, and hence linear. Suppose that no2d,
with n > 0 holds. Then for the n'® ancestors the no2d holds and
hence lin holds for the n*" ancestors of the sequence. This is equal
to saying that lin, holds for the sequence. O

Proof. 1If a sequence of nodes of a tree are linear then their parents are
also linear. Hence if the n'” ancestors of the nodes of node sequence
are linear then also their (n 4 1)*" ancestors are linear. O

17

LIN-ANC (2.1.1)

q:ling, n>1

g1 ling

LIN-AOS (2.1.1)

q:ling, n>0

¢ 1" linyg,

Rules for nolc

NOLC-LIN (2.1.1)

q:lin

q : nolc

NOLC-FLS (2.1.1)

q : nolc

q;— : nolc

Proof. Suppose that the lin,,_; property does not hold after following
the ancestor axis. Then there are two nodes n; and ng, which are
respectively the m’" and m#* ancestor of nodes nz and ny of the
input sequence (mq, my > 1) and for which their (n — 1) ancestors
(respectively ns and ng) are not linear. Since the lin,, property holds
in the input sequence, it follows from LIN-UP (2.1.1) that the all
ancestors that are n or more levels upwards from n3 and n4 are
linear. Since the ancestor relation is transitive we know that ns and
ng are respectively the (my+(n—1))* and (ma+ (n—1))*" ancestors
of ng and n4. Hence we have two ancestors that are n or more levels
upwards from the input nodes and that are not linear. This is a
contradiction with the assumption that the lin, property holds in
the input sequence. O

Proof. The proof of this inference rule is analogous to that of LIN-ANC
(2.1.1). O

Proof. If all nodes in a sequence are linear then they do not have
siblings in the sequence and therefore the nolc property holds. O

Proof. Suppose that after following the following-sibling axis the nolc
property does not hold anymore. Then there are two nodes no,ng in
the result sequence such that ns has a sibling n4 that is an ancestor
of ng and ns is a left sibling of n4. Since ny and ng are in the result
sequence after selecting the following siblings, we know that there
have to be left siblings of ng and ng (respectively ns and ng) in the
input sequence. But then ns is also a left sibling of n, and n4 is an
ancestor of ng. Hence the nolc property does not hold in the input
sequence, which contradicts the initial assumption. O

18

NOLC-LIN-AOS (2.1.1)

q : nolcy, ling 11
n>0

q; 1" : nole,

NOLC-LIN-ANC (2.1.1)

q : nolcy, ling 41
n>1

¢ 1" s nolen

NOLC-UNREL1-SIB (2.1.1)

q :unrelq
a € {«, >}

q; a : nolc

Proof. Suppose n = 0. Then nolc and liny hold in the input sequence.
Now suppose that nolc does not hold after following the T* axis.
Hence there are two nodes b and c¢ in the result which are positioned
as follows:

(d)

©

Since b is not on the line, it has to be in the input sequence (this
follows from liny), and since c is in the output sequence, ¢ or a de-
scendant of ¢ has to be in the input sequence. Hence nolc does not
hold in the input sequence. Suppose n > 0. Then for the n** ances-
tors nolc and lin; holds and hence nolc holds for the nt* ancestors
after following the T* axis and therefore nolc, holds in the output
sequence. O

Proof. The result of 1% is equal to the result of T; 1*. From rule P-PRN
(2.1.1) follows that after following the T axis, nolc,—1 and lin, holds.
Hence it follows by rule NOLC-LIN-AOS (2.1.1) that by following the
1* axis after the T axis, the property nolc,_1 holds. O

Proof. Suppose that after following the «- or —» axis the nolc prop-
erty doesn’t hold. Then we have two nodes b and ¢ which are posi-
tioned according to following figure:

®

It is clear that unrel; does not hold for the result, since the parents
of b and c¢ are related. But since the set of parents of the output
sequence is a subset of those of the input sequence, unrel; does not
hold in the input sequence and hence we get a contradiction. O

19

NOLC-UNREL-CHL (2.1.1)

q : unrel

q;] : nolc

NOLC-NO2D (2.1.1)

q : no2d, n>0

q : nolc>g

Rules for norc

NORC-LIN (2.1.1)

q:lin

q : norc

NORC-PRS (2.1.1)

q : norc

q; < : norc

NORC-LIN-AOS (2.1.1)

q :norcy, ling, 41
n>1

;1" : norey,

Proof. Suppose that after following the | axis the nolc property
doesn’t hold. Then we have two nodes b and ¢ which are positioned
according to following figure:

©)

But then the parents of b and ¢ are in the input sequence and hence
unrel does not hold in the input sequence. O

Proof. Since no2d, holds for some n > 0, we know that all nodes
in the sequence are the n'” descendants of one node and hence are
on the same level. Therefore it is impossible to have two nodes of
a different level in the sequence and hence there are no two nodes b
and c¢ such that a sibling of b is an ancestor of c. O

Proof. If all nodes in a sequence are linear then they do not have
siblings in the sequence and therefore the norc property holds. [

Proof. Suppose that after following the preceding-sibling axis the
norc property does not hold anymore. Then there are two nodes
n2,ng in the result sequence such that no has a sibling n4 that is an
ancestor of n3 and no is a right sibling of n4. Since no and ng are
in the result sequence after selecting the preceding siblings, we know
that there have to be right siblings of ny and n3 (respectively ns and
ng) in the input sequence. But then nj is also a right sibling of ny
and n4 is an ancestor of ng. Hence the norc property does not hold
in the input sequence, which contradicts the initial assumption. [

Proof. Analogous to the proof of NOLC-LIN-AOs (2.1.1). O

20

NORC-LIN-ANC (2.1.1)

q :norcy, ling, 41
n>1

;1" s norey 1

NORC-UNREL1-SIB (2.1.1)

q :unrely
a € {«, >}

q;a :norc

NORC-UNREL-CHL (2.1.1)

q : unrel

q;] : norc

NORC-NO2D (2.1.1)

n>0

g norcx>o

q : no2d,

Rules for unrel

UNREL-NOLC-FLS (2.1.1)

q : nolc

q;—» : unrel

UNREL-NORC-PRS (2.1.1)

q : norc

q; « : unrel

Proof. Analogous to the proof of NOLC-LIN-ANC (2.1.1). O

Proof. Analogous to the proof of NOLC-UNREL1-SIB (2.1.1). O
Proof. Analogous to the proof of NOLC-UNREL-CHL (2.1.1). O
Proof. Analogous to the proof of NOLC-NO2D (2.1.1) O

Proof. Suppose that after following the following-sibling axis the
unrel property does not hold. Then there are two nodes n; and
no in the output sequence such that n; is an ancestor of ny. Hence
both n; and ny have a left sibling which is in the input sequence, say
n3 and nyg. Hence ng has a sibling n; that is an ancestor of ny and
hence ny4 (since siblings have the same ancestors). Furthermore ng is
a left sibling of ny. Therefore the nolc property does not hold in the
input sequence which contradicts our initial assumption. O

Proof. Suppose that after following the preceding-sibling axis the
unrel property does not hold. Then there are two nodes n; and
ng in the output sequence such that n; is an ancestor of ny. Hence
both n; and ne have a right sibling which is in the input sequence,
say n3 and n,. Hence ng has a sibling n; that is an ancestor of ny
and hence ny (since siblings have the same ancestors). Furthermore
ng is a right sibling of ny. Therefore the norc property does not hold
in the input sequence which contradicts our initial assumption. [

21

UNREL-DOWN (2.1.1)

q : unrel, n>1

q:unrel, 1

UNREL-NO2D (2.1.1)

q : no2d, n

>0

q : unrel

Rules for Set Properties

P-CHL (2.1.1)
q: P, n>0
¢l Poa

P-PRN (2.1.1)
q: P, n>1
¢ 1 P

P-SIB (2.1.1)
q: Py

ae{é’%

n>1}

q;a: P,

Proof. Suppose that the unrel, property holds and the unrel,_;
property doesn’t. Then there are two nodes ny and ns for which
their (n — 1)*" ancestors are related and their n” ancestors are not,
which is a contradiction. O

Proof. Suppose that the no2d,, property holds and the unrel property
doesn’t. Then there are two nodes on the same level which have an
ancestor-descendant relation, which is clearly a contradiction. O

Proof. For every node n of a document D, it holds that [g¢; |; T]p(n) C
[¢lp(n). Since the nodes in ¢ are a subset of those in ¢; |; T (up to
some duplicates), we know (by Lemma 2.1.1) that if ¢ has the P
property, so does ¢; |; 7. This implies (by Definition 1.2.10) that ¢; |
has the P, 1 property. O

Proof. This follows from Definition 1.2.10. O

Proof. If every node of the input sequence has a left of right sibling
then the n'* ancestors (with n > 1) remain the same after following
respectively the preceding-sibling and following-sibling axis. Else the
nth ancestors of the output sequence is a subset of the nth ancestors
from the input sequence, for which the P property holds. Hence it
follows by Lemma 2.1.1 that also the P property holds for the n!”
ancestors of the output sequence and hence P, holds for the output
sequence. O

2.2 Completeness Rules

In this section and the next one, we show that the set of rules we presented in Section 2.1 is
complete. We do this by proving that for each evaluation plan ¢ for which we cannot derive the
ord and nodup properties, there exists at least one document D such that for some node n of D it
holds that [¢]p(n) is out of document order or contains duplicates; i.e. that the evaluation plan
has the —ord or —nodup property.

2.2.1 Inference Rules

In order to be able to derive possible unorderedness or duplicate generation for an evaluation plan
we will need an additional set of inference rules that enable us to derive the required negative
properties. Again, we first present the rules and prove their soundness afterwards.

22

Rules for —ord

q : ~no2d q : —unrel
ae{«_a—»aT*vT+} ae{l)l*7l+}
NOT-ORD-NO2D-FPA —————————— NOT-ORD-UNREL-DOWN
q;a : —ord q;a : —ord
q : —norc,ord qg:nsib a€ {«, >}
———————— NOT-ORD-NORC-PRN NOT-ORD-NSIB-SIB
q; 7 :—ord q;a: —ord

q : ~unrel,ord
————————— NOT-ORD-UNREL-FLS
q; —» : —ord

Rules for —nodup

q : —no2d q : ~unrel
a€ {1717} ae{l" 1"}
NOT-NODUP-NO2D-FPA ——————— NOT-NODUP-UNREL-DSC
q; a : —~nodup q; a : ~nodup
q : nsib

a€{l,«, >}

NOT-NODUP-NSIB-PRNSIB
q; a : —nodup

Rules for niree

ae{l*7l+a«;a*»} q:ntree ac A
NTREE-SINK NTREE-STEP
q;a : ntree q;a : ntree

Rules for —unrel

ac{1*,77} q : ~unrel a€c{l,1}
———————— NOT-UNREL-ANC NOT-UNREL-PRNCHL
q;a: —unrel q; a: ~unrel
q : norc q : “nolc
———————— NOT-UNREL-NORC-PRS ———————— NOT-UNREL-NOLC-FLS
q; « : —unrel q; — : —unrel
q : niree

———— NOT-UNREL-NTREE
q : —unrel

Rules for —no2d

ac {117} q : —mo2d>q a€A
—————————— NOT-NO2D-ANC = NOT-NO2D-STEP
q;a : no2ds>g g;a : "no2dxg

q : nsib

——— NOT-NO2D-NSIB
q : —no2d

Rules for nsib

a € {l,«, >} q : nhat, n>0

- NSIB-CHLSIB , NSIB-NHAT
q;a: nsib q : nsiby,

23

Rules for —mnolc
q : nhat,, n>0

q : —nolc,

NOT-NOLC-NHAT

q : —nolc
———————— NOT-NOLC-PRS
q; « : —nolc
Rules for —norc

q : nhat,, n>0

q : —norcy,

NOT-NORC-NHAT

q : “nore
—————————— NOT-NORC-FLS
q; —» : —norc
Rules for nhat
q : ~unrel
q;] : nhat

NHAT-UNREL-CHL

q : —nolc
——————— NHAT-NOLC-FLS
q; — : nhat

q : nsiby, n>1

- NHAT-NSIB-AOS
¢; 1" : nhaty, 1

q : ~unrel

q; —» : —morc

. NOT-NOLC-UNREL-PRS
q; « : —nolc

q : unrel
NOT-NORC-UNREL-FLS

q:nhat a€ {«, >}

q; « : nhat

NHAT-SIB
q;a: nhat

q : —norc
NHAT-NORC-PRS

q : nsiby, n>2

- NHAT-NSIB-ANC
¢; 17 : nhat,—2

q : ntree
—————— NHAT-NTREE
q : nhat

Rules for Negative Set Properties

In order to avoid having separate rules for all negative set properties with an index, we provide some
general properties that apply to all negative set properties. Hence if NP € {—no2d, ~unrel, nsib,linebreak—norc, nhat,
then following rules hold:

q: NP, n>0 q: NP, ac{T,1"} n>1
NP-CHL NP-PRNANC
¢l NPpya g;a: NP,
q: NP, n>0 q: NP, a € {«, >} n>1
NP-AOS NP-SIB
1" NP, q;a: NP,

2.2.2 Proof of Inference Rules

Definition 2.2.1 (Anti-monotonicity of properties). A property 7 is said to be anti-monotonous
if for for all evaluation plans q,q' € T it holds that if q : © and ¢' dominates q then it follows that

/
qg:m

Lemma 2.2.1 (Anti-monotonicity of negative set properties). All negative set properties
are anti-monotone.

Proof. Since negative set properties require that certain configurations sometimes appear in the
result of an evaluation plan, it holds that if ¢ has such property and ¢’ always returns a superset
of the result of ¢, then ¢’ will also have this property. O

24

Rules for —ord

NOT-ORD-NO2D-FPA
(2.2.1)

q : —no2d
a < {"Pa_»7T*7T+}

q;a: —ord

NOT-ORD-UNREL-DOWN
(2.2.1)

q : ~unrel
ae{l,1*1"}

q;a: —ord

NOT-ORD-NORC-PRN
(2.2.1)

q : —morc,ord

q; T : —ord

Proof. Suppose that —no2d holds for an evaluation plan. Then there
is a document such that result of the evaluation plan is a sequence
that contains two distinct nodes a and b. Since a document is a tree,
each pair of distinct nodes have a sequence (¢, d, ...) of ancestors in
common and hence after following the 7* or 71 axis, this sequence
occurs at least twice, without being merged. Suppose (without loss
of generality) that ¢ < d. Since the sequence occurs at least twice
in the output, the first d comes before the second c¢ in the result
and hence the result is not in document order. Furthermore there
is a document in which d has two left siblings (e and f). These left
siblings are preceding nodes of a and b and hence there is an a that
comes before a b which in turn comes before another occurence of
a in the result sequence of «-. Hence the sequence after following
the « axis is not in document order. Analogously, following the —
axis results in a sequence that is not in document order if the input
contains two or more distinct nodes. O

Proof. Since the ~unrel property holds for the input, there is a docu-
ment such that the input sequence contains two related nodes a and b
(let a be an ancestor of b). Hence there is a node ¢ which is ancestor-
or-self of b and child of a and the document can also contain a left
and a right sibling of ¢, resp. d and e. Hence a <d < ¢ < b < e.
Since the e is a follower of every child f of b, we know for every f
(child of b) that b < f < e. If a comes before b in the input sequence
then e (which is a child of a) comes before f in the output sequence
and hence the output sequence is not in document order. Else if b
comes before a in the input sequence then f comes before d (which
is a child of a) and also in this case the output sequence is not in
document order. Hence —ord holds for the output of |, |*, and | T,
if —unrel holds for the input. O

Proof. The —norc property implies that there is a document such
that after following ¢ the input sequence contains two nodes b and c,
which are structured as follows:

®

Since ¢ < b and the ord property holds for the input, we know that
¢ comes before b in the input sequence. Suppose the parent of ¢ is
e. Then e comes before d (which is the parent of b) in the output
sequence, but from the fact that e is a descendant of d follows that
d < e. Hence the output sequence is not in document order. O

25

NOT-ORD-NSIB-SIB (2.2.1)

qg:nsib a€{«, >}

q;a: —ord

NOT-ORD-UNREL-FLS
(2.2.1)

q : ~unrel,ord

q;—» : —ord

Rules for —nodup

NOT-NODUP-NO2D-FPA
(2.2.1)

q : —no2d
a E {«;’ *»’ T*7 T+}
q; a : "nodup

NOT-NODUP-UNREL-DSC
(2.2.1)

q : ~unrel
a€{l" 1"}

q; a : ~nodup

Proof. Since ¢ has the nsib property, there is a document for which
the evaluation of the evaluation plan g results in a sequence contain-
ing a node a with n siblings (for any n). Now suppose that a has
three right siblings, b, ¢ and d (in this order), in the input sequence.
Then after following the « axis, the output sequence will contain
the nodes a, a, b, a, b, ¢ in that order and hence the output sequence
is not in document order (since the last a comes before the first b).
Analogously the result is not in document order after following the
—» axis. O

Proof. From the —unrel property we know that there is a document
such that the evaluation of ¢ contains two nodes a and b where a is an
ancestor of b. Hence a comes before b in document order, and since
ord holds also in the input sequence. Therefore after following the —
axis the right siblings of a come before the right siblings of b in the
output sequence. But since the siblings of b are also descendants of
a, those nodes come in document order before the the next sibling of
a. Hence the result sequence is not in document order. O

Proof. Suppose that —no2d holds for an evaluation plan. Then there
is a document such that result of the evaluation plan is a sequence
that contains two distinct nodes a and b. Since a document is a tree,
each pair of distinct nodes have ancestors in common and hence after
following the 7* or 1T axis the —nodup property holds. Suppose c is
a common ancestor of a and b. Then there is a document in which ¢
has a left sibling. This left sibling is a preceding node of a and b and
hence —modup holds after following the « axis. Analogously, there
is a document with a right sibling of ¢ which is obviously a following
node of both a and b. O

Proof. Since in the input the —unrel property holds, we know that it
is possible to have an input sequence such that there are two different
nodes a and b that are related. Suppose (without loss of generality)
that a is an ancestor of b. Then all descendants of b are also descen-
dants of a and hence these descendants appear twice in the output
sequence. O

26

NOT-NODUP-NSIB-PRNSIB
(2.2.1)

q : nsib
a€{l,«, ~>}

q; a : —nodup

Rules for niree

NTREE-SINK (2.2.1)

ac {l*a l+1 “ _»}

q;a : ntree

NTREE-STEP (2.2.1)

q : ntree a€ A

q;a : ntree

Rules for —unrel

NOT-UNREL-ANC (2.2.1)

a€ {11}

q; a: —~unrel

Proof. Since ¢ has the nsib property, there is a document for which
the evaluation of the evaluation plan g results in a sequence containing
a node a with n siblings (for any n). Now suppose that a has two
right siblings, b and ¢ (in that order), in the input sequence. Then
after following the « axis, a will occur at least twice in the result
sequence and after following the —» axis, ¢ will occur at least twice
in the result sequence. Furthermore, since siblings have the same
parent, it is obvious that duplicates occur after following the T axis.
Hence, if the nsib property holds for the input evaluation plan, then
—nodup holds after following the], < or —» axis. O

Proof. For each evaluation plan ¢ there is a document with a node
a in the result of ¢ that has a left and a right sibling (respectively
b and ¢) in the document such that a, b, and ¢ have a tree of size
n beneath (which both do not have to be in the result of ¢). Hence
after following the |* or | T axis the ntree property holds (since there
is a tree of size n beneath a) and also after following the « or —
axis the ntree property holds (since there is a tree of size n beneath
respectively b and c¢). O

Proof. For the |*, |7, « and —» axis it clearly holds by Rule NTREE-
SINK that the ntree property holds afterwards. Since the ntree prop-
erty holds, there is a document such that the evaluation of g contains
a tree of size n. After following the |, T,1*,17,« and —» axis we
then get a tree of size n — 1 and hence the ntree property holds after
following these axis, since we assumed that for any n there was a
document such that there is a tree of size n in the result of ¢ (and
hence also for n + 1). O

Proof. All ancestors of a node are related and hence —unrel holds
after following the 1* of 1T axis. O

27

NOT-UNREL-PRNCHL
(2.2.1)

q : —unrel

ac{l,1}

q; a : ~unrel

NOT-UNREL-NOLC-FLS
(2.2.1)

q : —nolc

q; — : —unrel

NOT-UNREL-NORC-PRS
(2.2.1)

q : —norc

q; « : —unrel

NOT-UNREL-NTREE
(2.2.1)

q : niree

q : ~unrel

Rules for —no2d

Proof. Suppose that —unrel holds in the input. Then there is an
XML document such that there are two related and distinct nodes
a and b in the input sequence. Suppose (without loss of generality)
that a is an ancestor of b. If we follow the T axis then it is obvious
that the parent of b is a or an ancestor of a and hence the parent of
a is an ancestor of the parent of b. If we follow the | axis then the
there is a child of a that is b or an ancestor of b and hence an ancestor
of every child of b. In both cases we have at least two related nodes
after following the axis and hence —unrel holds. O

Proof. Suppose —nolc holds in the input. Then there is an XML
document such that the input sequence contains at least two nodes b
and ¢ which are positioned as follows:

©

After following the —» axis, we get the node a in the result sequence
and all right siblings of ¢ (possibly among other nodes). But since
siblings have the same ancestors, we know that all right siblings of ¢
are descendants of a and hence there are two nodes a and e (where e
is a right sibling of ¢) which are related. Hence —unrel holds in the
result sequence. O

Proof. Analogous to the proof of NOT-UNREL-NOLC-FLS (2.2.1). O

Proof. If the ntree property holds for an evaluation plan then for any
n there is a document such that after applying the path expression the
result contains a tree of size n. It then follows from the definition of a
tree that there are related nodes (i.e., —unrel holds), since otherwise
we have n roots and hence a forest. O

28

NOT-NO2D-ANC (2.2.1)

ae{1*,1%}

g;a : "no2d>q

NOT-NO2D-STEP (2.2.1)

q : ~no2d>q a€A

g;a : "no2d>o

NOT-NO2D-NSIB (2.2.1)

q : nsib

q : —no2d

Rules for nsib

NSIB-CHLSIB (2.2.1)

a€{l,«, >}

q;a: nsib

NSIB-NHAT (2.2.1)

q : nhat, n>0

q : nsiby,

Rules for —nolc

Proof. For each g there is a document such that a node a is in the
result of ¢ and a has parent b and grandparent ¢ (not necessarily in
the result of ¢). Then b and ¢ are both in the result of 7* and T+
for this document. Since c is the parent of b, the n” ancestor of b
is the (n — 1)*" ancestor of ¢. Hence there is no n such that the n'®
ancestors of b and ¢ are equal, and hence —no2d,, holds for all n. [

Proof. Since —no2d>q holds for g, there is a document D such that
the evaluation of ¢ contains two nodes a and b with different n'”
ancestors for every n. If n > 0 then clearly the n*" ancestors of a and
b, which were supposed to be different, can be both in the result. Else
if n = 0 then it is obvious that, since a and b can have in number of
siblings in D, —no2d holds. Hence —no2d>¢ holds for ¢; = and g; «-.
Furthermore, since for each n > 0 the nt" ancestors of a and b are
not equal, also the children and the parents of a and b have different
nth ancestors. Hence —no2d>(holds for ¢;] and ¢;T. Finally, it’s
also easy to see that after following the 7%, 7%, |*, | T, «- and — axes
it is possible to have nodes from a different level in the result, which
implies that =no2d>¢ holds after following these axes. O

Proof. Since the nsib property holds for ¢, there is for each n a docu-
ment such that there is a node a which has at least n distinct siblings
in the result. Hence each such document (for n > 2) has two (or
more) distinct nodes, which implies that —no2d holds for g. O

Proof. For every node a there exists a document such that a has n
children. Hence nsib holds after following the | axis. Analogously,
for every node a there exists a document such that a has n left (right)
siblings and hence nsib holds after following the «— (—») aixs. O

Proof. The nhat property implies that there is a document such that
the evaluation of ¢ results in a sequence containing a node a for
which an ancestor b has at least n distinct left siblings and n distinct
right siblings in the result sequence (for every m). Hence b has at
least n distinct siblings in the result sequence (for every m), which
is the definition of the nsib property. Now suppose nhat,, for n > 0
holds for q. Then for the n*" ancestors the nhat and hence the nsib
property holds. This implies that the nsib, property holds for q. [

29

NOT-NOLC-NHAT (2.2.1)

q : nhat,, n>0

q : —nolc,

NOT-NOLC-UNREL-PRS
(2.2.1)

q : ~unrel

q; < : —molc

NOT-NOLC-PRS (2.2.1)

q : —nolc

q; « : —molc

Rules for —nore

NOT-NORC-NHAT (2.2.1)

q : nhat, n>0

q : —norcy,

Proof. If nhat holds for an evaluation plan then for any n there is
a document for which the result of the evaluation plan is containing
a node ¢ with an ancestor a such that a has at least n distinct left
siblings and n distinct right siblings. Hence —nolc holds, since there
is a document for which the result of the evaluation plan contains
following structure:

(d)
® @
©)

Proof. Suppose —unrel holds in the input. Then there is a document
such that there are two related nodes a and b, a descendant of a, in
the input sequence. Suppose ¢ and d are left siblings of respectively
a and b. Then clearly ¢ and d are in the output sequence and d has
an ancestor a for which there is a left sibling (i.e. ¢) in the output
sequence. Hence —nolc holds in the result sequence. O

Proof. Suppose —nolc holds in the input. Then there is a document
such that there are two nodes b and c¢ in the input sequence which
are positioned as follows:

©

Now suppose the e is a left sibling of b and f is a left sibling of c.
Then e and f are in the result and hence —nolc holds in the output
sequence (since a is an ancestor of f and e is a left sibling of a). O

Proof. Analogous to the proof of NOT-NOLC-NHAT (2.2.1). O

30

NOT-NORC-UNREL-FLS
(2.2.1)

q : —unrel

q; = : —morc

NOT-NORC-FLS (2.2.1)
q : norc

q; —» : —norc

Rules for nhat

NHAT-UNREL-CHL (2.2.1)

q : —unrel
q;] : nhat

NHAT-SIB (2.2.1)

q:nhat a€{«, >}

q;a : nhat

NHAT-NOLC-FLS (2.2.1)

q : —nolc

q; — : nhat

Proof. Analogous to the proof of NOT-NOLC-UNREL-PRS (2.2.1). [

Proof. Analogous to the proof of NOT-NOLC-PRS (2.2.1). O

Proof. Suppose that for ¢ the —unrel property holds. Then there is
a document such that ¢ has two related nodes a and b in the result
where a is an ancestor of b. Hence there is a child ¢ of a that is b or
an ancestor of b and therefore ¢ is an ancestor of every child d of b.
Since a can have any number of children (both on the left hand and
the right hand side of ¢), ¢ can have at least n distinct left siblings
and n distinct right siblings. Since all siblings of ¢ and all children
d of b are in the result after following the | axis, the nhat property
holds. O

Proof. The fact that nhat holds for ¢ implies that for each n there
is a document such that after the evaluation of ¢ the result sequence
contains a node a, which has an ancestor b such that at least n left
siblings and at least n right siblings of b are also in the result sequence.
Suppose n = m + 1. Then after following the «- and —» axis it holds
that b has as least n —1 = m left siblings and at least n —1 = m right
siblings for any n and hence for any m. Since the siblings of a have b
as an ancestor too, it follows that nhat still holds after following the
« or —» axis. O

Proof. Since —nolc holds for ¢, we know that there is a document D
such that the result of ¢ contains two nodes a and b where a is a left
sibling of an ancestor of b. Let ¢ be the sibling of a that is an ancestor
of b. Then there can be any number n of siblings between a and c.
Furthermore ¢ can have any number of right siblings in the document
D. Hence after following the —» axis there are at least n left siblings
of ¢ and at least n right siblings of ¢ in the result sequence. Since ¢
is an ancestor of every right sibling of b (which are also in the result
sequence of g; —»), the nhat property holds for g; —». O

31

NHAT-NORC-PRS (2.2.1)
q : —norc

q; « : nhat

NHAT-NSIB-AOS (2.2.1)

q : nsiby, n>1

¢; 1" : nhat,

NHAT-NSIB-ANC (2.2.1)

q : nsiby, n>2
¢: 1" nhat,_o

NHAT-NTREE (2.2.1)

q : niree

q : nhat

Proof. Analogous to the proof of NHAT-NOLC-FLS (2.2.1). O

Proof. If q has the nsib; property, then there is a document such
that after evaluating ¢; T there exists a node with n siblings for any
n. Therefore the children of this node and children of all the siblings
of n have to be in the result after evaluating ¢. Hence in the result
of ¢ there are nodes ng3, ns, ny which are positioned as follows:

We may assume that ny has at least n left siblings with children and
at least n right siblings with children, since the nsib; property holds
for q. After following the 1* axis, the result contains ns, ns and also
at least n left siblings and n right siblings (since the result set of 1*
is a superset of the result set of 7). Hence after following the 1* axis,
the nhat property holds.

Finally, if the nsib,,;1 property holds for ¢, then we know that for ¢
followed by m parent steps the nsib; holds. Hence after following n
times the T axis and then the T* axis, we get nhat. But the result
of following n times the T axis and afterwards the T* axis is equal to
the result of following the T* axis and afterwards n times the T axis.
Hence nhat,, holds for gq. O

Proof. We know that 1T can be simulated by T;7*. If the nsib,
property holds for ¢ then the nsib,_1 holds for property holds for
¢; T (this follows from Rule NP-PRNANC (2.2.1)). Rule NHAT-NSIB-
AOS (2.2.1) then implies that nhat, o holds for ¢; T; 7* and hence for
1. O

Proof. Suppose that ntree holds for ¢, then there is a document such
that we can have a tree of size 2n + 1 in the result (for any n). Let a
be the (n + 1) child of the the root of this tree and b the (n + 1)
child of a. These nodes a and b exist in this document, since each
node has at least 2n + 1 children. We know that a is an ancestor of
b and b has n left siblings and at least n right siblings. Hence (since
n can be any positive integer) the nhat property holds for g. O

Rules for Negative Set Properties

32

NP-CHL (2.2.1) Proof. Suppose D is a document which is used in showing that N P,
holds after the evaluation of q. Then we know that every extension

q: NP, n =0 of D can be used instead of D to show that NP, holds after the
q¢; | : NP, evaluation of ¢q. This is because every extension of D will result in

a supersequence for the evaluation of ¢ and it can be proven (analo-

gously to the proof of Lemma 2.2.1) that this extended document is

also an example. Therefore we will extend each document D in the

proof of ¢ : NP, to a new document D’ by giving every node in D

an extra child. By doing this, it follows that the sequence [g; |; 1] p-

is a supersequence of [¢]p/ (it may contain some extra duplicates).

From ¢ : NP, follows by Lemma 2.2.1 that ¢; |;T : NP, and hence

q; | : NP,11 holds (Definition 1.2.10). O

NP-PRNANC (2.2.1) Proof. The fact that for g; T the property N P,_;1 holds, follows from

Definition 1.2.10. Since the result of ¢; 7" is a supersequence of ¢; T,

q: NP, the property NP, _; also holds for ¢; 1. O
ac{l,1"} n>1

g;a: NP,

NP-AOS (2.2.1) Proof. Since the result of ¢ is a subsequence of the result of ¢; 1%,

we know by Lemma 2.2.1 that NP, holds for ¢; T* if NP, holds for

q: NP, n>0 q. O

1" NP,

NP-SIB (2.2.1) Proof. From the proof of Rule NP-CHL (2.2.1) we know that if D is

used in showing that N P, holds after the evaluation of ¢ then it can

q: Nl?n) be replaced in the proof of ¢ : NP, by an extension of D. Therefore

a € {«, >} n=1 we will extend each document D in the proof of ¢ : NP, to a new

q;a: NP, document D’ by giving every node in D a left sibling. By doing

this, it follows that the sequence [g¢;«;1]ps is a supersequence of
lg; T]p (it may contain some extra duplicates). From the fact that
q : NP, follows that ¢; T : NP,_; (Definition 1.2.10) and hence (by
Lemma 2.2.1) also ¢; «—; T : NP,,_1. By Definition 1.2.10 then follows
that q; «~ : NP,. The proof for - is analogous. O

2.3 The A" Automaton

From the inference rules, we can construct a deterministic automaton that decides whether ord
and/or nodup hold after a certain tidy evaluation plan. The automaton serves two purposes: It is
used to prove completeness, and it serves as the foundation for an evaluation plan.

Figure 2.1 and 2.2 present the (infinite) automaton, which we will call A**@Y. The start state
is the state that contains no2d. The automaton should be thought of as continuing to the right
indefinitely. Some states contain a name in brackets, such as lg, I; lynlu lynru and s, which is
used to duplicate them elsewhere in the diagram for readability. The state with name s is also
referred to as the sink state.

The automaton should be used as follows. For a certain tidy evaluation plan we start in the
initial state, which is labeled with no2d. Then we follow the transitions that correspond with
the axes that are encountered in the evaluation plan from left to right. For example, for the tidy

33

evaluation plan |;0;4; |;0;6;1T; we start in the state labeled with no2d, then we follow the |
transition to the state with no2d;. After that we follow the | transition to the state with no2ds
and finally we follow the T transition to the state with lin;, norc and nolc.

The properties that are contained in each state indicate which properties hold for the tidy
evaluation plan that leads to that state. So for the example above, ¢ = |;0;d;];0:8;1T, we can
read from its final state that it holds that ¢ : liny, q : norc, q : nole, q : ~unrel, q : —ord>o and
q : nsib. Also note that the automaton has an infinite number of states: From left to right, states
are labeled with a m; property where i strictly increases. Recall from Section 1.2.3 that if m;11
holds for an evaluation plan ¢, then m; holds for ¢; 7. For example, applying | in the lin state
yields an expression in the ling state, then applying T in the lin; state returns to the lin state.

The type of the last edge (solid, dashed, dash-dotted or dotted) that is followed for the eval-
uation plan indicates whether the properties ord (dashed), nodup (dash-dotted), both (solid)
or neither (dotted) hold. For example, we can read from the automaton that | : ord, nodup,
l;0;68;] : ord, nodup but |;0;68;|;0;; 1" : —ord, —nodup. Consequently the type of the last edge
indicates whether the tidy evaluation plan in question is correct up to ordering and correct up to
duplicates.

The automaton confirms some intuitions about common path expressions. For instance, an
arbitrary path of only child axes always yields results that are ordered and duplicate free. Recall
the expression $sur/procedure/desc::incision from Section 1. A corresponding tidy evaluation
plan is |;0;0; | T. Every transition for this evaluation plan is labeled by a solid arrow, meaning
that none of the o and J operations are required. That is, the result |;o0;8;|7;0;6 is always
equivalent to that of |;]T and has the same intermediate results after each axis step. The au-
tomaton also shows that the // idiom, which denotes the desc-or-self::node() axis, quickly
leads to intermediate results that must be sorted. Consider the expression $doc//a/b, which
abbreviates $doc/desc-or-self::node()/child::a/child::b. A corresponding evaluation plan is
1*;0:0;];0;6;];0;0. From the automaton, we see the |* transition from the no2d state to the
sink state (labeled with (s)) yields a result that is ord and nodup, but all subsequent | transitions
in the sink state require sorting. So this evaluation plan can be rewritten as |*; |;0; |; 0, elimi-
nating the first o;¢6 and all subsequent ds. In Section 6, we discuss techniques for handling the
desc-or-self axis.

2.3.1 Proving Soundness and Completeness

The automaton A% allows us to easily prove the completeness of the set of inference rules for
deriving the ord and nodup properties for tidy evaluation plans. The first step in this proof consists
of showing that the nodes in the diagram of A*% are labeled with the “correct” properties and
the edges in the diagram have the right type.

Theorem 2.3.1. If for a tidy evaluation plan q the corresponding path in automaton AP ends
in a state that contains the property m then q : m.

Proof. For each transition from state s; to state so, labeled with axis a, it can be shown that if
the properties in s; hold for an evaluation plan ¢ then the properties in sy can be derived with
the reasoning rules presented in Section 2.1 and Section 2.2 for ¢;a, as is shown in Appendix A.
Since all these properties are set properties it follows that if they hold for an evaluation plan ¢
then they also hold for ¢;o;6. It follows that if the properties in s; hold for a tidy evaluation
plan ¢ then the properties in so hold for the tidy evaluation plan ¢;o;d;a. It then follows with
induction upon the number of axis in the tidy evaluation plan ¢ that all the properties in the final
state for ¢ hold for q. O

Theorem 2.3.2. If for a tidy evaluation plan q the corresponding path in automaton AH%
ends with a solid (dashed, dash-dotted, dotted) edge then q : ord,nodup (q : ord,—modup, q :
—ord,nodup, q : —ord, —nodup).

Proof. For each transition from state s; to state so, labeled with axis a, it can be shown that if
the properties in s; and ord and nodup hold for an evaluation plan ¢ then it can be derived with

34

the reasoning rules presented in Section 2.1 and Section 2.2 that for ¢;a the properties ord and
nodup hold or not, as is indicated by the type of the edge that represents the transition. If this
was the last transition for a tidy evaluation plan ¢’;o;d;a then by Theorem 2.3.1 it follows that
the properties in s; hold for ¢/, and since they are set properties also for ¢’; ;8. Moreover, since
it trivially holds that ord and nodup hold for this evaluation plan it follows that the type of the
edge indeed correctly indicates whether ord and nodup hold for ¢'; o; §; a. O

Theorem 2.3.3. The rules presented in Section 2.1 are complete for deriving the ord and nodup
property for tidy evaluation plans.

Proof. In A% there is in each state a transition for each axis. Thus the automaton is indeed
complete for deciding ord and nodup and therefore also the rules in Section 2.1 and Section 2.2.
Moreover, the rules in Section 2.2 only derive negative set properties, and since none of the rules
that derive positive set properties, ord and nodup depend upon negative set properties it follow
that these do not lead to extra derivations of ord and nodup. O

35

1il’l3
norcc<o

linz
norcc<q

unrel; unrels

___________ —\’ILOZdZQ = —\no2d20

nsib<q nsib<o

\—nolcy \—nolca

lin3
norcs
—unrel
—no2d>o
nsibs
nhat<

—nolcs

A 4

(@

~._p ntree ... T

Figure 2.1: The Automaton A"% (Part I)

36

L«
ling PR
—no2d>q
—unrel
nhat<s
A
D
linz R Sl
nolc; \7* nolcy \7*
—no2d>o |_ _._._. J; _______ —no2dsg
—unrel |q... —unrel
nsiby T+ 1 nsibo
—norcy —norcy
nhat nhat<q

ling
nolcy

unrel;
norc
—no2dxo

nsib<y

Figure 2.2: The Automaton A% (Part II)

37

Chapter 3

Sloppy Evaluation Plans

3.1 Soundness and Completeness

3.1.1 Additional Inference Rules

Rules for ord

q : ord,lin
—————— ORD-LIN
q : ord>q

q:ordy, n>1
a € {«, >}

q;a: ordy,

ORD-SIB

q:ord, n>0

¢l ordny

ORD-CHL

Rules for —ord
n>0

q : ordy,ntree

NOT-ORD-NTREE-GT
q:—ord>pi1

q : nsib
a € {TJrv T*a e «*}
g;a: —ordsg

NOT-ORD-NSIB-FPA

q : —ordy, n >0

ae{«—,ﬂ,an«—

NOT-ORD-FPSIB
q: —ord,

q : —nodup
a 6 {«;’ *»’ i*7 \L+’ T*7 T+}
g;a: mordsg

q:—ord<y n>0

ac{l,l"1"}

g;a: mord<ni1

NOT-ORD-DOWN

NOT-ORD-NODUP-REC

38

q : ord, gen

ORD-GEN
q : ord>q

n>1

q:ord,

ORD-PRN
¢;1:ordn—

n>1

q : ordy,ntree

NOT-ORD-NTREE-LT
q:—ord<p_1

q : —unrel
a€{l"]", > «}

a€{l,«,~>}

NOT-ORD-UNREL-FPD
q: —\0sz0

q : —nodup

NOT-ORD-NODUP-CHLSIB
q;a: —ord

q : —ordy, n>1

ae{l, 1,17}

NOT-ORD-UP
q;a: —ord,_1

q : —no2d
ac {117, «,—}

NOT-ORD-NO2D-REC

g;a: —ordsq

Rules for —nodup

q : ~nodup a€A

NOT-NODUP-STEP
q; a : ~nodup

Rules for gen
q : no2d
q:gen

Rules for unrel

q:gen
q : unrel

Rules for —no2d
q : ~unrel

q : —mo2d

GEN-NO2D

UNREL-GEN

NOT-NO2D-UNREL

q:gen ae{l7T7«._7_.»}
q:gen

GEN-STEP

3.1.2 Proofs for the Additional Rules

Lemma 3.1.1 (Unordered related nodes). If an input sequence S contains two related nodes
n1 and ny then evaluating the parent axis for this sequence will again yield two unrelated, unordered

nodes.

Rules for ord

ORD-LIN (3.1.1)

q :ord,lin

g :ordsg

ORD-GEN (3.1.1)

q : ord, gen

q : ord>q

Proof. From the soundness rules of the tidy automaton we know that
if ¢ : liny, (n > 0) holds, also ¢ : lin,4+1 holds (LIN-UP). Additionally,
we know that if ¢ : lin the also ¢ : norc (NORC-LIN). From these
two rules we know that if ¢ : lin is true then also g : norc>(holds.
Finally the rule ORD-NORC-PRN shows that if a query g has the the
norc and ord properties, then ¢; T : ord also holds. So, since both ord
and norc are preserved by the T axis, we know that ¢ : ord>o. O

Proof. The gen property states that every node in the result of a path
expression has the same distance to the root. Clearly, this property
is preserved after following the T axis (i.e., if ¢ : gen, then ¢ : gen>o).
There are never related nodes in the result of an evaluation plan that
has the gen property, since two related nodes have a different distance
to the document root. From this we know that if ¢ : gen holds, then
also ¢ : norc is true. From the rule ORD-NORC-PRN we now know
that if ¢ has both the ord and the gen property, ¢;T also has these
two properties. By consequence, ¢ has the ord>o property. O

39

ORD-SIB (3.1.1)

q:ordy, n>1
a € {«, >}

q;a:ordy,

ORD-PRN (3.1.1)

q:ordy, n>1
¢;1:ordn—1

ORD-CHL (3.1.1)

q:ordy,
n>0

——— — ORD-CHL
¢; | ordnqq

Rules for —ord

Proof. Following the —» or « axis from a sequence results in a se-
quence, containing groups of child node from the same parent. There-
fore, following the parent axis from that sequence will yield the same
sequence as following it from the original sequence. The only two
differences are that

1. the result sequence may contain duplicate nodes if there is more
than one sibling of the same node in the input set, and

2. the result sequence does not contain the parent node of
those nodes in the input sequence that do not have follow-
ing/preceding siblings.

The order of the nodes in both sequences is the same and thus, the
order of the output after following the parent axis any number of
times will also be preserved. O

Proof. This holds by definition 1.2.10. O

Proof. For any query ¢, any document D and a node m in D,
[g; 1; 1] p(n) will produce a sequence with the following properties:

e Every node in [¢]p(n) occurs exactly k times in [g; |; 1]p(n)
where k is the amount of its children;

e All duplicate occurrences of a node in [g¢; |; T]p(n) are grouped;
i.e., the order of the node remains unchanged;

This implies that if ¢ has the ord property, so will ¢; |; T, and thus
by definition 1.2.10, ¢; | has the ord; property.

Suppose that a query ¢ has the ord, property. We know that
[g; 1;1]p(n) contains a subset of the nodes in [¢]p(n), in the same
order, possibly with duplicates. Since every node has at most one
parent, the sequence [g¢;|;T;1"]p(n) also contains a subset of the
nodes in [¢; 1"]p(n) in the same order, possibly with duplicates (prn™
stands for applying the T axis n times). And thus, [g; |;]p(n) has
the ord,, 1 property. O

40

NOT-ORD-NTREE-GT
(3.1.1)

q : ordy,ntree n>0

q: ﬁOTdanLl

NOT-ORD-NTREE-LT
(3.1.1)

q : ordy,,ntree n>1

q: —‘O’I“dgn_l

NOT-ORD-NSIB-FPA
(3.1.1)

q : nsib
ac{l",1", > «}

g;a : —~ordsq

NOT-ORD-UNREL-FPD
(3.1.1)

q : ~unrel
a < {l*> l+a -, <'P}

q : —ord>g

NOT-ORD-FPSIB (3.1.1)

q : —ordy, n>0

a 6 {é.&’ 4’ Hé’ éH}

q : —ord,

NOT-ORD-NODUP-CHLSIB
(3.1.1)

q : —nodup
a€{l],«,~»}

q;a: —ord

Proof. Since ntree holds for g, the rules NHAT-NTREE and NOT-NORC-
NHAT allow us to deduce that g : —norcsg. So, ¢; 7" has both the ord
and the —norc property and thus ¢; 1™ has the —ord, property. The
result now contains two related nodes that are out of document order
and lemma 3.1.1 says that if this will remain the case after following
any amount of parent axes. [

Proof. Same reasoning as for NOT-ORD-NTREE-GT. O

Proof. Let q be a query and D a document with n, ny and ny nodes
in D. If ¢ : nsib then let ny and ny be two siblings in [¢]p(n). It
is easy to see that in following the T axis, first all ancestors of n
will occur in the result, which are then followed by all ancestors of
ns. Since the intersection of both sets of ancestors is not empty, the
result can never be in document order. A similar reasoning can be
used for the 1%, - and « axes. O

Proof. Let q be a query and D a document with n, n; and no nodes in
D. If ¢ : ~unrel then let n; and ne be two related nodes in [¢] p(n).
It is easy to see that in following the | Taxis, first all descendants of
ny will occur in the result, which are then followed by all descendants
of ny. Since the intersection of both sets of descendants is not empty
(because the two nodes are related), the result can never be in doc-
ument order. A similar reasoning can be used for the |*, — and «
axes. O

Proof. Let ¢ be a query and D a document with n, n; and ns nodes
in D. If ¢ : —ord, then let n; and ny be nodes in [¢]p(n) whose
n'h parents are out of document order. Since siblings have the exact
same set of ancestors, also the n'h parents of those will be out of
document order (i.e. ¢;—» : —ord,, and q;« : —ord,). Since the —»
and « axes produce subsets of the —» and « axes, this reasoning
also holds for the latter. O

Proof. Repetitions of sequences are never in document order, if the
sequences have more than one different node. O

41

NOT-ORD-NODUP-REC
(3.1.1)

q : —nodup

a 6 {«_’ —»’ l*7 J/Jr’ T*7 T+}

g;a : ~ordso

NOT-ORD-UP (3.1.1)

q: —ordy, n>1
ae{l,1%,1"}

q;a: —ord,_1

NOT-ORD-DOWN (3.1.1)

q:—ord<y n>0

ae{l, " 1"}

g;a:mord<ni1

NOT-ORD-NO2D-REC
(3.1.1)

q : no2d

a 6 {l*7 \l«+) T*’ TJF, k’ _»}

g;a: nord>q

Rules for —nodup

NOT-NODUP-STEP (3.1.1)

a€ A

q; a : ~nodup

q : —"nodup

Rules for gen

Proof. Since following any of the axes in {«,—», |*, |7, 1% 17} more
than once from the same node will produce an arbitrarily long repe-
tition of the same sequence, there will exist no n for which the result
of ¢; 1™ is in document order. O

Proof. For the T axis the soundness of this rule follwos from the
definition 1.2.10 of indexed properties. Since the parent axis produces
a subset of both the |t and 1* axes, we can extend this rule with
those. O

Proof. For the | axis, this rule holds by definition 1.2.10. Since the
T* and |* axis produce a superset of the | axis it also holds for those
two axes. O

Proof. [For |*, |*, —», «] After following any one of these axes,
rule says that the ntree property holds. The rules NHAT-NTREE and
NOT-NORC-NHAT allow us to deduce that ¢ : —noresg. So, ¢; 1" has
both the ord and the —norc property and thus ¢; 1" has the —ord;
property. The result now contains two related nodes that are out of
document order and lemma 3.1.1 says that if this will remain the case
after following any amount of parent axes.

[For 1T, 1*] The sequences that result from following these axes
from two different nodes share an arbitrarily long subsequence of
nodes. The result sequence thus contains two identical subsequences
of arbitrary length, which implies that there can be two related nodes
that are not in document order, no matter how many times you follow
the parent axis. O

Proof. Axes evaluted more than once for the same context node pro-
duce duplicate results. O

42

GEN-NO2D (3.1.1) Proof. 1dentical nodes always belong to the same generation. O

q : no2d

q:gen

GEN-STEP (3.1.1) Proof. Obviously, following the axes |, T, « or —» from a set of
context nodes that have the same distance to the root results in a

g-gen new set of node that all have the same distance to the root. O

ac {l) T7 “«, _»}

——————— GEN-STEP

q:gen
Rules for unrel

UNREL-GEN (3.1.1) Proof. Nodes that have the same distance to the root cannot be re-

lated. O
q:gen
q : unrel

Rules for —no2d

NOT-NO2D-UNREL (3.1.1) Proof. If two nodes have a different distance to the root then it is

impossible that the two nodes in fact denote the same node. O

q : ~unrel
———————— NOT-NO2D-UNREL
q : mo2d

3.2 Automata for Sloppy Evaluation Plans

3.2.1 The A%’ Automaton

ord

The rules in R allow us to construct a deterministic automaton that decides whether or not the
result of a sloppy evaluation plan can contain duplicates and/or be out of document order. To
indicate that the algorithm can be easily implemented, we consider two separate automata: one
for deriving the nodup property (Afllsggg) and one for deriving the ordg property (Azlr‘:ip PY). Both
automata accept expressions p that have the ord (nodup) property, in a time that is linear to the
length of p; i.e., the number of step expressions in p.

In this infinite automaton (see Figures 3.2 and 3.3) accept states are indicated by a double
border. Each state is labeled with the properties that hold in that state. The three-dot symbols
indicate that the automaton has an infinite number of subsequent states with transitions from
and to it that are the same as those of the last state before the symbol. The states are labeled
with the same properties unless that property has an index. In this case, the index ascends in the
subsequent states.

Note that the prefix of a path that has the ord property does not necessarily have the ord
property itself; i.e., it is possible to return from an unordered state back into an ordered one.

3.2.2 The A®"Y Automaton

nodup

NB: We actually need to check this .

43

1t

1
T

“— —»

“— —» “—

Figure 3.1: The A%'?PPY Automaton

nodup

This finite automaton (see Figure 3.1) shows that, unlike the ord property, once the nodup
property is lost, it never recurs; i.e., if a sloppy path evaluation plan g has the nodup property,
then so will any sloppy path evaluation plan that has g as a prefix.

3.2.3 Proving Soundness and Completeness

sloppy
ord

Theorem 3.2.1. A%'PPY s sound for the ord property; i.e., A

ord

plans that have the ord property.

accepts only sloppy evaluation

Proof. For each transition from state s; to state sy, labeled with axis a, it holds that there is a
set of inference rules in R that justifies it; i.e., for every property that holds in s, the inference
rules in R derive this property for a. Soundness now follows from the soundness of R. O

Theorem 3.2.2. Azlr‘;ppy is complete for the ord property; i.c., every sloppy evaluation plan that

sloppy
jiord

has the ord property is accepted by
Proof. ... U

Theorem 3.2.3. Afﬁé’fi’ is sound for the nodup property. ; i.e., Ailgggg accepts only sloppy

evaluation plans that have the nodup property.

Proof. Analogous to proof of Theorem 3.2.1. O

44

an
—ord<:

—nodup

ord-
ﬁOTdSl

(00)
ord
—ordsi
ntree

ﬁOTd23
nitree

“ —»

SLO; I
Figure 3.2: The A%'°"PY Automaton (Part I)

45

ords>s
Hn3

—ord<a
—nodup

ords
gen

—ord<i

—nodup

ords
ﬁOTdSQ
—0rd>4
ntree

(01l3d)
OI‘dzl

lin3 P
unrel,
o
T+ l+

“— —»

Figure 3.3: The A*'°""Y Automaton (Part IT)

46

Chapter 4

Implementation

In this section, we describe how the automaton in Chapter 2.3 is implemented in the Galax XQuery
engine [7].

4.1 Galax Architecture

Static
Typing

XQuery XQuery Q
Expression Syntax Tree Query XQuery Core Query
— ™ Normalization = ™ Rewriting

. Optimized
e e Kuery ian itk J
Algebra) W
- Evaluation (Que - . Query . Simplified
Engine Optimizer Compiler XQuery Core
I\

Document Access
(File, XML Storage, etc.)

Figure 4.1: Galax Compilation Architecture

Galax [7] is an implementation of the family of XQuery 1.0 specifications [3] designed for
completeness and conformance with the W3C standard. To achieve these goals, its architecture
parallels the processing model described in the XQuery Formal Semantics [5]. Figure 4.1 depicts
the complete Galax architecture. The upper half of the picture corresponds to the processes
described in the XQuery Formal Semantics, and the lower half corresponds to a typical query
compiler, which is not discussed here.

In Galax, the query is first parsed to produce an abstract syntax tree (AST). This AST
is then normalized into an equivalent expression in the XQuery Core language [5], which is a
simpler subset of the complete language. Normalization serves two purposes. First, it makes the
implicit semantics of XQuery expressions explicit by expanding every expression (e.g., existential
quantification in predicates, casting of arithmetic operands, etc.). Second, normalization simplifies
subsequent compilation steps (e.g., static typing and rewriting), because those steps operate on
the small, simpler Core language instead of the complete language.

47

To illustrate, here is the actual normalized expression for the expression $sur/procedure/incision/. .
in Section 1.1:

fs:distinct-docorder(
let $fs:sequence :=
fs:distinct-docorder(
let $fs:sequence :=
fs:distinct-docorder(
let $fs:sequence := $sur return
let $fs:last := count($fs:sequence) return
for $fs:dot at $fs:position in $fs:sequence
return child::procedure)
return
let $fs:last := count($fs:sequence) return
for $fs:dot at $fs:position in $fs:sequence
return child::incision)
return
let $fs:last := count($fs:sequence) return
for $fs:dot at $fs:position in $fs:sequence
return parent::node())

The normalized expression is extremely tidy: It sorts by document order at every step, ensuring
a proper semantics for the query. It also binds variables that model the implicit context of each
step in a path expression: $fs:sequence denotes the context sequence, $fs:dot denotes the
context node, $fs:1last denotes the length of the context sequence, and $fs:position denotes
the position of the context node in the context sequence. Because normalization occurs top-down,
these variables are bound even if they are not used in subsequent expressions. The rewriting phase
(last step in upper half of Figure 4.1), which follows static typing, removes unused variables.

The static-typing phase takes a Core expression and, if the expression is well typed, annotates
each sub-expression with its inferred type. The DDO optimization uses type annotations to infer
the maxone property, which is required by the automaton’s start state. The maxone property is
easily derived from the inferred types. For example, the $sur variable and all variables bound in
a for iteration (e.g., $fs:dot) have the maxone property, because their type is always a single
item.

In Galax, static typing is the preferred method for deriving the mazone property. Static
typing, however, is an optional feature of XQuery, and other implementations may prefer a simpler
technique to derive the maxone property. If static typing is disabled, we use a variant of XQuery’s
static typing that we call weak typing. With weak typing, each sub-type check, which might fail
statically, is replaced by a type coercion, which never fails statically. Sub-type checks occur in
the semantics of function calls, built-in operators, and many other expressions. For example, the
type assertion in the following let expression requires that the type of Exzpr be a sub-type of
element (surgery). If the sub-type check succeeds, then the type of $sur is guaranteed to be one
surgery element.

let $sur as element(surgery) := Ezpr
return $sur/procedure/incision/..

Weak typing replaces the type assertion by a type coercion (the treat as expression), which does
not require a static sub-type check. Instead, we can immediately infer that the type of $sur is
element (surgery):

let $sur := Ezpr treat as element(surgery)
return $sur/procedure/incision/..

Weak typing is easy to implement, because it does not require sub-type checking, and it has the
important property that if an expression does not fail at run time, then the value of the expression
is guaranteed to have the type to which the expression was coerced.

Type annotations are illustrated below on our example.

48

fs:distinct-docorder(
for $fs:dot [element incision] in
fs:distinct-docorder(
for $fs:dot [element procedure] in
fs:distinct-docorder(
for $fs:dot in $sur [element surgery]
return child::procedure [element procedure*]
) [element procedure¥*]
return child::incision [element incision]
) [element incision*]
return parent::node() [element]
) [element*]

The rewriting phase follows static typing. This phase takes as input a Core expression, a
set of rewriting rules, and applies the rules recursively to each sub-expression until it reaches a
fixed point. Current rewriting rules include: type-based optimizations to eliminate dynamic type
checks; conversion of dynamically dispatched operators to statically dispatched; removal of unused
variables, and others [4]. After eliminating unused variables, our example expression is:

fs:distinct-docorder(
for $fs:dot in
fs:distinct-docorder(
for $fs:dot in
fs:distinct-docorder(
for $fs:dot in $sur return
child: :procedure)
return child::incision)
return parent::node())

4.2 Applying the DDO Optimization

The DDO optimization described in Chapter 2 is applied as part of the rewriting phase. It is
implemented in three steps:

1. Since the automaton operates on the path-expression fragment of XQuery, the first step
identifies path expressions by applying pattern matching during a top-down traversal of the
core AST.

2. The automaton is applied to each path expression identified in the first step, and each step
expression is annotated with the ord and nodup properties inferred during the application
of the automaton.

3. The last step applies a rewrite rule that removes redundant ddo operations or replaces them
with fs:docorder or fs:distinct operators, using the annotations derived in the second
step. The rewrite rule is applied by the general Galax rewriting phase, in conjunction with
other rewrite rules.

Here is the core expression with the annotations inferred by the automaton:

fs:distinct-docorder(
for $fs:dot in
fs:distinct-docorder(
for $fs:dot in
fs:distinct-docorder(
for $fs:dot in $sur
return child::procedure [nodup,ord])
return child::incision [nodup,ord])
return parent::node() [ord])

49

And here is the final optimized expression:

fs:distinct(
for $fs:dot in
for $fs:dot in
for $fs:dot in $sur return child::procedure
return child::incision
return parent::node())

4.3 Evaluating Core XQuery

The core XQuery expression which results from normalization can be seen as a simple kind
of a query plan. In fact, Galax currently evaluates such core queries in a very literal way,
in a top-down fashion. In the context which interests us, the most important operation is
fs:distinct-docorder, which is a special built-in function' that sorts nodes in document order
and removes duplicate nodes. In Galax, this operation is implemented as a merge sort followed
by a linear duplicate removal on the sorted list.

However efficient the implementation of sorting might be, applying it numerous times to large
collections will degrade performances. Moreover, this is a blocking operation. Its evaluation
requires to materialize all of the nodes in memory and prevents the use of a pipelined evaluation
for the XPath expression. Note that we use of normalized expressions as a convenient way to
express the more general problem related to the need of sorting by document order and duplicate
removal. It is indeed not specific to Galax as any implementation would have to decide when it is
necessary to perform sorting and if so, sorting would prevent the use of pipelined query plans.

n the fs namespace, for “Formal Semantics”.

a0

Chapter 5

The DDO Optimization in Context

So far, we have described the DDO optimization and explained its implementation in isolation from
any other optimization. In practice, its benefits can be maximized by doing some appropriate
preparatory work on the query, and by exploiting the result of DDO optimization in further query
processing steps. In this section, we explore possible preparation steps, and advanced optimizations
enabled by the DDO approach.

5.1 Preparing the DDO Optimization

One of the most typical problems, as we have seen from the automaton in Chapter 2, is that
applications of the descendant axis (used notably in the // operator) will lead to a sink state. As
a direct consequence, the algorithm will not be able to remove most of the ddo operations beyond
the first descendant step. Consider for instance the following simple path expression which uses
both XPath predicates and the descendant axis.

$sur//procedure[1] /anesthesia

Applying the DDO optimization on that query directly results in the following optimized core
expression.

fs:docorder(
for $fs:dot in (
fs:docorder(
for $fs:dot in (
for $fs:dot in $sur
return descendant-or-self::node()
)
return
for $fs:dot at $fs:position in
child: :procedure
return
if (op:equal($fs:position,1))
then ($fs:dot)
else ()
)

return child::anesthesia

As expected, only the two first sorting operations for the first two steps' can be removed.
The reason for this limitation is that the nodes selected after the application of a descendant
axis can be related (e.g., through a descendant-ancestor relationship). As a result, we cannot infer

1Recall that //a is equivalent to /descendant-or-self::node()/child::a.

ol

the norc or unrel properties in those cases. However, we may know from the the schema that
there is no recursive type involved in the query [16]. This is the case for this query for the DTD
given at the beginning of the paper. This enables us to rewrite the query using only child steps,
as follows:

$sur/procedure[1] /anesthesia

This, in turn, allows the complete removal of all sorting by document order and duplicate removal
operations. The main idea is that schema information can be used to rewrite the query into an
equivalent one which uses only the axis for which the automaton algorithm is the most effective
(notably children and parent).

5.1.1 Further Optimizations

The presence of sorting operations within the query plan prevents the use of some other important
optimization techniques. After the DDO optimization is applied, some of those optimizations may
be enabled again and provide additional gains. This is true of important standard optimizations
such as loop-fusion or the use of pipe-lined evaluation.

Loop fusion is well known from database and programming languages optimizations [8], and
eliminates the need for storing intermediate data. The left associativeness of XPath expressions
naturally results in normalized queries that involve consecutive loops which materialize interme-
diate result sequences after each step. For instance, consider one our previous example query:
$sur/preocedure/incision/... After applying the DDO optimization, this results in the follow-
ing core expression.

fs:distinct(
for $fs:dot in
for $fs:dot in
for $fs:dot in $sur
return child: :procedure
return child::incision
return parent::node()

)

A naive evaluation strategy based for that expression would materialize the intermediate result
sequences before iterating on the next step. However, in the absence of intermediate sorting
operation, this expression can be rewritten using loop fusion to avoid materialization, as follows.

fs:distinct(
for $fs:dot in $sur return
for $fs:dot in child::procedure return
for $fs:dot in child::incision return
parent: :node ()

As we will see in the next section, this query plan performs significantly faster and with much
less memory than the original query plan.

92

Chapter 6

Experimental Results

The DDO optimization is implemented in the development version of Galax, which can be accessed
from Galax’s public CVS repository!. This section reports on experimental results using the
development implementation. The experiments consist of the XMark benchmark suite [19] applied
to documents of various sizes. The XMark benchmark consists of twenty queries applied to a
document consisting of auctions, bidders, and items. The queries exercise most of XQuery’s
features (selection, aggregation, grouping, joins, and element construction, etc.) and all contain
at least one path expression.

6.1 Analysis of XMark Queries

Of the 82 path expressions in the XMark suite, 75 path expressions use only the child axis. From
Section 2.3, we know that both the ord and nodup properties hold for every step in paths containing
only child axes, and as expected, our algorithm indeed removes every ddo operation in these 75
path expressions.

The remaining seven path expressions (in Queries 6, 7, 14, and 19) each contain one descendant-
or-self step due to the use of //. From the automaton in Section 2.3, we know that all child steps
following a descendant-or-self axis require intervening sort operations. In these cases, our algorithm
replaces each ddo operation by a fs:docorder (sort by document order) operation.

The XMark input documents have a corresponding DTD, which is used by Galax to infer the
types of expressions during static analysis. As described in Section 5.1, type information can
be used to rewrite each descendant-or-self step in into a sequence of child steps. This rewriting
applies to all the descendant-or-self steps in XMark queries, which subsequently permits all ddo
operations to be eliminated.

6.2 Performance of the DD0 Optimization

We measured query evaluation time and total live-memory usage for each XMark query without
optimization (normal) and with the DDO optimization (optimized). Query evaluation time excludes
static analysis and document-loading time, which is negligible compared to query evaluation time.
Our platform was an Intel Pentium 4, 2.26GHz CPU, 512 KB cache, with 512 MB main mem-
ory running Debian GNU/Linux. The input document of 20 MB was generated by the XMark
document generator.

We partition the XMark queries into two groups: those that contain joins and therefore do not
scale well with the size of the input document (Queries 8-12), and those that do not contain joins
and do scale well (Queries 1-7,13-20). Because measurable improvements were more significant
for the non-scalable queries than for the scalable ones, we focus on the non-scalable queries.

Ihttp://ncc.research.bell-labs.com:8081/cgi-bin/cvsweb/

93

XMark 10 MB XMark 20 MB

normal | optimized normal | optimized
Qo1 0.249 0.277 0.532 0.481
Q02 0.344 0.376 0.867 0.861
Q03 0.795 0.777 1.663 1.558
Q04 0.716 0.654 1.405 1.310
Q05 0.278 0.260 0.566 0.511
QO08 | 354.447 327.039 | 1,462.012 1,339.132
Q09 | 436.658 404.055 | 1,809.613 1,648.991
Q10 59.106 46.186 231.376 175.301
Q11 | 913.394 785.322 | 3,742.743 3,205.567
Q12 | 257.275 231.528 | 1,044.357 949.338
Q13 0.780 0.910 2.428 2.310
Q15 0.216 0.164 0.480 0.369
Q16 0.292 0.598 0.598 0.419
Q17 0.392 0.310 0.837 0.653
Q20 2.178 1.888 4.319 3.907

Figure 6.1: Time results for the XMark queries on a 10 MB and a 20 MB document.

All optimized queries not containing the descendant-or-self axis have faster evaluation times
than the non-optimized variants. The evaluation times of scalable queries range from 0.5 to 4.5
seconds, and the optimized variants run from 6-30% faster. The improvements here are modest,
because the scalable queries tend to have high selectivity and correspondingly small intermediate
results, therefore, removing the ddo operations does not have a large absolute impact.

The effect of the DDO optimization on non-scalable queries is more significant. Figure 6.2 shows
query evaluation times and Figure 6.1 shows live-memory usage for the non-scalable queries. Query
10 shows the biggest improvement in evaluation time: 24%. These and other tests show that the
relative improvement in evaluation time of the DDO optimization grows with the size of the input
documents. For a 45 MB XMark document, Query 8 shows an improvement of 46% compared
with an 8% on a 20MB document. Note that Galax evaluates normalized expressions top-down
over an in-memory representation of input documents, and consequently, joins are implemented
by computing cartesian products, which accounts for the long evaluation times of the non-scalable
queries on a 20MB document.

All optimized queries have substantially smaller memory usage than their non-optimized vari-
ants. For scalable queries, memory usage is reduced from approximately 30-60%, and for non-
scalable queries in Figure 6.2, the memory usage is reduced by 46-67%. In Galax, the ddo
operation is implemented as a merge sort followed by linear-time duplicate elimination on the
sorted sequence. The merge sort uses constant heap space and logarithmic stack space [17], so
the time gained is not due to an inefficient implementation of the sorting algorithm. Instead, the
improvement is due to the large number of ddo operations performed in the non-optimized variant.
For example, on a 10 MB document, more than 2,550 ddo operations are applied in Query 8, and
all these operations are eliminated by our algorithm.

6.3 Applying Further Optimizations

The previous experiments measured the effectiveness of the DDO optimization in isolation, but as
discussed in Section 5, it is most effective when applied in the context of other optimizations.

To illustrate the interactions of optimizations, we applied the following query, which selects
the names of all bidders in Belgiums in open auctions, to a XMark-generated document of 10 MB.

$auction//person[$auction//bidder/personref/@person= Qid] [address/country="Belgium"]/name

o4

XMark 10 MB

XMark 20 MB

normal | optimized normal optimized
Q01 245.695 125.609 730.654 294.008
Q02 989.738 983.199 2,113.598 1,929.492
Q03 236.551 188.414 579.125 395.426
Q04 118.449 60.660 346.219 149.648
Q05 75.715 50.102 213.926 107.555
QO08 | 197,015.215 | 71,633.125 | 1,010,620.578 334,070.398
Q09 | 236,302.141 | 86,914.245 | 1,207,978.199 404,084.164
Q10 | 55,463.738 | 35,728.940 211,343.633 113,640.184
Q11 | 603,942.090 | 261,674.828 | 3,053,431.836 | 1,278,016.062
Q12 | 121,213.586 | 56,694.789 602,205.074 274,118.262
Q13 7,234.121 7,233.789 11,880.789 11,868.188
Q15 366.684 130.457 1,095.237 480.664
Q16 72.609 27.746 196.609 77.164
Q17 624.906 429.962 1,464.176 921.242
Q20 1,397.039 626.840 3,442.734 1,5645.578

Figure 6.2: Memory results for the XMark queries on a 10 MB and a 20 MB document.

Figure 6.3 shows the evaluation time and memory consumption for the query evaluated with
schema-based optimization, the additional DDO optimization, and with loop fusion.

schema-based J11.1

+ DDO optim |6.9
+loopoptim [6.1
T T T T T T 1
Time (minutes) 0 2 4 6 8 10 12 14
schema-based |6176
+DDOoptim []2862
+ loop optim 933
T T T T 1
Memory (MB) 0 1500 3000 4500 6000 7500

Figure 6.3: Performance of usecase query on 10 MB document

In addition to reducing evaluation time by one third, the DDO optimization reduces memory us-
age by more than half. The DDO optimization further enables application of loop fusion, which also
reduces evaluation time and reduces memory usage by more than two-thirds. Further experiments
are necessary to measure the general impact of loop fusion.

%)

Chapter 7

Related Work and Discussion

Numerous papers address the semantics and efficient evaluation of XPath. Many address sorting
and duplicate elimination, which is a strong indication of the importance of this problem. Duplicate
elimination and avoiding sorting is particularly important in streaming evaluation strategies [18].
Helmer et al [13] present an evaluation technique that avoids the generation of duplicates, which
is crucial for pipelining steps of a path expression. Grust [11] proposes a similar but more holistic
approach, which uses a preorder and postorder numbering for XML documents to accelerate the
evaluation of path location steps in XML-enabled relational databases. The preorder and postorder
numbering of nodes can substantially accelerate the evaluation of several axes by using B-tree
indices. In subsequent work, Grust [12] introduces the ‘staircase join’, a tree-aware operator that
can further speed up XPath evaluation. By pruning the context list, the generation of duplicates
and out-of-order nodes in the intermediate results is avoided, clearing the way for full pipelining.
Most of this work however tightly contrains the supported language. In contrast, the techniques
presented in this work support the entire XQuery language.

Other work considers the efficient evaluation of XPath in more general terms. In experimental
results, Gottlob et al [9] show that naive implementations of XPath are unscalable. They present a
bottom-up approach that uses context-value tables for XPath evaluation with complexity O(|D|* x
|Q|?), where D the size of the data and @ the size of the query. They also present a top-
down algorithm that applies axes and functions to context tuples in bulk, but that relies on very
efficient evaluation of axes. In subsequent work [10], the complexity bounds are improved to
O(|D|? x |Q|?), an important improvement since document size dominates. This work however
avoids the confrontation with the problem of document order whereas our work focusses on it.

Our technique complements much of this research, and we believe is a necessary first step in
any complete implementation of XPath. The DDO optimization applies to the entire XPath 2.0
language and produces semantically correct and simplified expressions that can be input to query
planners that implement various evaluation strategies. Aside from that, the completeness of our
approach ensures optimal results for a considerable part of the language.

In our own work, we will continue to improve logical rewritings early in the compilation pipeline
as well as implement more sophisticated evaluation strategies later in the compilation pipeline.
Currently, the DDO optimization is limited to path expressions, but we plan to extend the technique
to all of XQuery. Simple improvements include propogating properties computed within a path
expression to subsequent uses of the expression, e.g., let-bound variables, across function calls,
etc., and using static typing properties (e.g., mazone) not just for the head of the path expression,
but for intermediate steps. More difficult is determining the interaction of document order and
duplicates with FLWOR expressions that include order-by clauses, the unordered expression, and
aggregation functions.

In ongoing research, which is discussed in [14], we also plan to establish more efficient im-
plementation strategies for XPath expressions. Unlike this work the approach is based on smart
pipeline-enabling algorithms that are not based on the formal semantics.

96

Appendix A

Correctness of the A%
Automaton

o7

o3ed jxou uO panurjuo))

NMOA-TIUNN

dISNU-LISN LVHN-4ISN [qrsu]
-aQYO-LON [puao]
-dNAON-LON [dnpou] THO-IN LIVHN
Vdd-agoN dIs OSA-TAUNA OSA-THUNA THO “OHON-LON Puou-]
¢ -€ISN-QHO-LON [puao] o e K < IVHN
-dNAON-LON [dnpou] -dNAON-LON [dnpou] -dNAON-LON [dnpouw] ~TEUNN-LON [T>1Dyu]
4IS-LVHN [10yu] g -DTON-LON [prou]
Vdd-dgON STa-OTON NMOA-TEUNN NMOA-THUNN THONHUd - [cuaq]
-Q¥0-1ON [puao] -QY0-1ON [puo] -Q40-1ON [puao] -TEUNN-LON [194unc] :
~THUNN-LON [12aunc] h i YU
SINIS-HEYLN [09u47u] LS AHLS-HELIN [po.uqu] SINIS-EENLN [29uqu] daLS B 0Zprote.
= -AgON-LON [0<pgou-] pe
-AZON-LON [0<pgou-] THO-NTON [dnpou] 194uUn—
Als-d] THO-d _Wﬁsz tuy
41S A
-dISN-QYO-LON [puao] NAMOA-TANND
.muumﬂwwwwmm [puou] -aYO-LON [pao]
) . THO NIT-DUON [puou]
Vda-agOoN AISTHO-GISN [qesu] OSA-TAUNN OSA-TAUNN HUNA-LON [soy] NIT-OTON [rou]
-dNAON-LON [dnpou] dHLs B -dNAON-LON [dnpou] -dNAON-LON [dnpou] THONYA 4 an-Nr1 TNS I
Vdd-agON -AZON-LON [0<pgou-] NMOA-TEUNN NMOA-THYNA TENA-LON [1o4unn] 0z o?m
-QYO-LON [pao] dISNUd -QYO-LON [puao] -Q4O-LON [pao-] . ! WWﬁsr
SINTS-THHLN [p2uqu] -NI'T-dNdON [dnpou] JHALS-HAULN [p2uqu] SINIS-AHH.LN [9949u] .Dmoz-u“oz [0Zpgous] 1 wrt
s THO-dNAON [dnpou])
-OTON-THUNA [124un] THO-d [tuzg]
$14-0TON [pj0u] ‘1
d1s-d [Tuz]
dISN
-AZON-LON [pgou]
! HTYIN
Vdd-dgoN dISNYJ-EISN OSA-THUNA OSA-THYNA :
. NMOQ-THUNA ~TEUNN-LON [124un—)
-dNJON-LON [dnpou] -dNdON-LON [dnpou] -dNAON-LON [dnpouc] -dNdON-LON [dnpour] HO-LON [paon] LVHN
Vdd-agoN 418 NMOQ-TTINN NMOQ-TTYNA p A
JALS-HIYLN [p2u49u] -DYON-LON [puou]
-qQ¥0-LON [puao] -dISN-AQ¥0-LON [puo] -aQY0-LON [pLo] -qQ¥0-LON [puao] THO-4NAON [dnpou] VHN-ISN [q5]
ddLS-HAULN [p949u] dELS-HIULN [p249u] JHLS-HAYLN [9949u] dELS-HAULN [2949u] : P * q!
HAYIN-LVHN [ayu]
204U
()
ISTHO-4ISN [q1su] dISTHO-4ISN [qesu]
SINIS-HEHLN [2249u] i SINIS-HAULN [2249u] MNIS-HITHLN [p9uqu] . 40-0ZON [tpgou]
daLs -agON-dNdON [dnpou] AELLS | dais -AgON-dNdON [dnpou] dN-NI'T [Tug]
-AgON-dNdON [dnpou] s -AZON-dNdON [dnpou] -AgON-dNdON [dnpou] Jo1s QZON-NIT (2]
.DNOZWMMM [puo] ~dgoN-duo [po] .DNOZWMMM [pto] .QmozmMMM [puo] ~dgOoN-aHO [p1o] pzou
q18-d [tpgou] THO-d [tpgou]

a8

a8ed jxou UO panuIjuo))

dISNYd-4ISN

NMOQ-TIUNN

-QY0-LON 4O LVHN-4ISN 15U
-dNAON-LON [dnpouc] [p-10-] [qzsu]
as THO-dN LVHN
THO -DYON-LON [puour]
-€gISN-QHO-LON [pao— :
. -THUNN-LVHN [taoyu LVHN
Vdd-agOoN 4IS-LYHN [poyu DSA-TAYINN DSA-TAINN
. THO-dN [Couou -DTON-LON [ppou]
-dNAON-LON [dnpou] 41S-dN [Touou— -dNAON-LON [dnpou] -dNAON-LON [dnpou] THO-N [cqusu oy
Vdd-AgoN 41S-dN [Tqrsu NMOQ-TIUNA NMOU-THUNN ,mmem : oot
-Q4O-LON [pao] d4Ls -QYO-LON [puo] -Q4O-LON [pao-] =
z -AZON-LON [0<pgou.] Tqisu
SINIS-HEULN [p2uqu] -AgON-LON [0<pgou-] JALS-AHHLN [p2uqu] SINIS-HEULN [9949u] -
THONUd 0<pgou-—
STA-D'TON
~TIINN-LON [12aun— 1o4UN—
~TIUNN-LON [paunc
THO-dNAON [dnpou Tojou
ST4-D'TON [Toj0u
THO-d [eoj0u zury
d1s-d [2uzp !
THO-d [Eu)
dISNUd-LISN NMOA-TAUNA
-dNdON-LON [dnpou] -qQ¥O-LON [puao]
d1s THO
~4ISN-A¥O-LON [puao] -TIINN-LVHN 1oy Dou
vdd-dZON STA-TAUNN DSA-TAYINN DSA-TAENA THO-dN [Tououc st
-dNAON-LON [dnpou] -DYON-LON [puouc] -dNAON-LON [dnpou] -dNAON-LON [dnpou] THO-dN [Tqusu oN@mM.:r
Vdd-AgoN €1S-9ISN [qesu] NMOQ-TIUNA NMOA-THUNN THONYd o
-QYO-LON [pao] d4Ls B -QYO-LON [puo] -Q4O-LON [pao-] ~TEUNN-LON [1paunc] ! orou
SINIS-THU.LN [p2uqu] -AZON-LON [0<pzou-] JALS-HAULN [2249u] SINIS-AHH.LN [p9uqu] JELS B m:-
ST1d -AZON-LON [0<pgou-— '
-OTON-THUNA [124un] THO-dNAON [dnpou
STA-DTON [p70u] THO-d [to0u
d15-d [Tuz] THO-d [euy
dISNYd-9ISN NMOQ-TIUNN LVHN-€ISN [T~ *>qusu]
-dNAON-LON [dnpou] -qQ¥O-LON [puao] 55,4 9
41s THO-dN OHON-TON [T=*Souour]
Vdd-dgON -dISN-qQ¥0-LON [puo] OSA-TEUNA DSA-TAUNA THO _ LVIN
-dNAON-LON [dnpou] 41S-dN B -dNAON-LON [dnpou| -dNAON-LON [dnpour] ~TEUNN-LON [*>90yu)] ION-LON [1=1S00uc]
Vdd-dgON dIS-LVHN [T=*>3pyu] NMOA-TIUNN NMOA-THINN THONYJ nS.E,q _TNSS]
-Q40-LON [pao] §T14-DTON -QYO-LON [pro-] -Q40-LON [pao-] ~THUNN-LON [1paunc] -5 Ws
SINIS-AHY.LN [2249u] -TAINN-LON [12aun<] JALS-HALLN [2249u] SINIS-AHH.LN [2249u] JELLS _ 0z mcmr
da1s _ ~dgON-LON [0<pgou-] NW,SSF
-AZON-LON [0<pgou-] THO-dNAON [dnpou] (1< T
d15-d [Pu2] THO-d [T+ua) : '
< ~ +1 1

o3ed snorasid wogj panuljuo))

99

o8ed Jxou UO panuIuo))

dISNYd-4ISN

THO-dN [eouou]
-dNAON-LON [dnpouc]
as THO-dN B
AISTHO-EISN [2>qisu]
-dISN-AHO-LON [puao—] s NMOa
415-dN [Touou] 0z -THUNA [1p4un]
Vdda-a - ot - -AZON-LON [0<pgou.] E
TON 4a18-dN SINIS-HEU.LN [EEXZI) SINIS-AHH.LN [p2uqu] DuouU
> THO-dNAON [dnpou] -
-dNAON-LON [dnpou] AISTHO-EISN [T>qisu] NMOa NMOa NAOU-ANTON I>qisu
Vda-AgoN dULS B -THUNN-dNAON [dnpou] -THUNN-dNAON [dnpou] TTINOTHO [po] 0<pgou—
-Q¥O-LON [pao] -AZON-LON [0<pgou-] NMOd-dNAON NMOd-dNAON THO-d [egouun] T[oaun
SINIS-HHY.LN [pouqu] ST14 -TIINN-AHO [puo] -THINN-AYO [puo] THo-d ! saou
-OTON-THUNN [T794un] THo Tojou
41s < Zur
~TAUNO-DUON [T>ou0u] 1
- TEUNN-DUON [puou
THO-d [eog0u]
STA-D'TON [Toj0u
THO-d [Eu]]
d15-d [2uzp ?
THO-dN [Tououc]
4ISNUJ-HISN
THO-dN
-dNAON-LON [dnpou] _
q1s AISTHO-EISN [T>qisu]
dELS
-4ISN-QHO-LON [pao— = ououU—
Vdd-AgoN MNIS-HEYLN [9949u] MNIS-HEYLN [9949u] -AZON-LON [0<pgou-]
STA-DYON-LON [Puou qQisu
-dNAON-LON [dnpou] NMOa NmoOa THO-dNAON [dnpou] 0=
dISTHD-4ISN [q150) <pgou—
Vdd-agON i -THINN-dNAON [dnpou] -THUINN-dNAON [dnpou] NMOd-dNAON oqum
-q90-LON [pao-] 0= NMOd-dNdON NMOQ-dNdoON -TITUNA-AYO [puo] I
- -AZON-LON [0<pgou-] B B N B . . oou
SINIS-AHULN [p249u] o THUNN-AYO [puo] THUNN-AYO [puo] THO-d [t1pu4un] Tu
) THO :
-OTON-THUNN [124un)
-THINN-OYON [puou]
STA-DTON [210u §
3 T THO-d [Tojou]
a1s-d [tuy) 2
THO-d [Gu]
NMOQ-TAUNN
dISNYJ-9ISN o
-qQ¥O-LON [puao] LVHN-MISN [¢7!>qis5u]
-dNAON-LON [dnpou] THO-dN LVHN
418 VAR .=
THO -DYON-ION [¢~*>2uouc]
-4ISN-QHO-LON [puao— SIENN-IVEN [T Sgoyu
— . (y LVHN
Vdd-AgoN dIS-LVHN [e=*>10yu DSA-TAUNN DSA-THUNN N =S
. N THD-dAN [*ouou -OTON-LON [¢~*>Dj0uw]
-dNdON-LON [dnpou] d1S-dN [T—*ouou -dNAON-LON [dnpou] -dNdON-LON [dnpou] THO-N [qisu R
vdd-dgON 418-dN [T—*qisu NMOQ-TIUNA NMOQ-TIUNN LS gt Hlosomr
-Q40-LON [pao-] dALS -QYO-LON [puao] -Q40-LON [puao-] 0= =
02 -AZON-LON [0<pgou-] 'Qrsu
SMINIS-AHULN [p249u] -AgZON-LON [0<pgou-] SMINIS-HHULN [2249u] MINIS-HHYLN [2249u]) =
$14-DTON THONYUd 0Zpgou
i ~THUNN-LON [12aunc 124U
~TIINN-LON [1puaun— o
—2 THO-dNAON [dnpou I—Iojou
STA-DTON [T—*270u ! 1
. THO-d [*o10u (z <) furg
€1s-d [Fuz)) 4o
THO-d [T+uy
< ~ +1 1

o3ed snorasid wogj panuljuo))

60

o8ed Jxou UO panuIuo))

AISNUd-LISN THD-dN [@oj0u]
-dNAON-LON [dnpou] THO-dN
41s AISTHO-EISN [e>qsu]
-dISN-AHO-LON [pao—] JELS B Torou
Vdd-agoN 41S-dN [Tojou] JALS-HAULN [P2u7u] SINIS-HHYLN [pouqu] -AZON-LON [0<pgou-] HWN vsu
-dNAON-LON [dnpou] 41S-dN _ NMOd NMOa THO-dNAON [dnpou] 0z M.:r
Vdd-agoN AISTHO-GISN [T>qrsu] ~TIUNN-dNAON [dnpou] ~TAUNN-dNAON [dnpou] NMOQ-dNdON WM.E:
-qQ¥0-LON [puo] dELS B NMOd-dNdON NMOQ-dNdON ~TAUINN-AUO [puo] Hw_ogo:
MNIS-HEYLN [p9.49u] -AZON-LON [0<pgou-] ~THUNN-AYO [puo] ~TEUNN-AYO [puo] THO-d [21p4un] zuy
a1s-d THO-d)
41s THO
-TTHEINN-DHON [T—*>ou0u] -TAUNN-OUON [e>0u0u]
d15-d [fuz] THO-d [Fu]
THO-dN [Toj0uL]
dISNUJ-9ISN THO-dN
-dNAON-LON [dnpou] dISTHO-4ISN [T>qusu]
d1s daLs
Vdd-dZON -dISN-QHO-LON [puao] SMNIS-AHULN [2249u] SINIS-HHULN [9949u] -AZON-LON [0<pgou-] SOMMM
-dNAON-LON [dnpou] S1d NMOd NMOd THO-dNAON [dnpou] 0z M.:r
Vda-agoN -OTON-LVHN [apyu] -THINN-dNAON [dnpou] ~THUINN-dNAON [dnpou] NMOd-dNAON @Mﬁ.:
-qQUO-LON [pao—] STA-DTON NMOU-dNAON NMOA-dNdON -TAUNN-AYO [puo] _oao:
SINIS-THY.LN [p2uqu] ~TIINN-LON [12aunc] -TIINN-AHO [puo] -TIINN-AHO [puo] THO-d [T794un] -
daLs THO-d :
-AZON-LON [0<pgou-] THO
415-d [Tu2g] ~TEUNA-DUON [T>0u0u]
THO-d [2u]
dISNYd-9ISN
-dNdON-LON [dnpou] THO-dN [*ouou]
418 THO-dN
-4ISN-QHO-LON [puao] 4ISTHO-LISN [*>qusu] MO
ais-dn - [Fosou] dELS = “TuNn [Tt paaun]
d1S-dN -AgON-LON [0<pgou-] ' .
Vdd-agoN ., _.s MNIS-HHYLN [p2u49u] MNIS-HEHLN [p9uqu] T—*u0U
AISTHO-EISN [T=*>qisu] THO-dNAON [dnpou] .=
-dNAON-LON [dnpou] NMOa NMOd T—*>qis5u
Vdd-agoN AELS 0z -THINN-dNAON [dnpou] ~THEINN-dNAON [dnpou] NAOA-dNAON 0<pgou—
-Q4O-LON [pao] “ACON-LON [0<pgou-] NMOQ-dNAON NMOQ-dNAON “THUNA-AHO) [pso] T—Haaun
SINIS-HEHLN [p2uqu] S . ~TAUNN-AHO [puo] -THUNN-AHO [puo] HO=d [*72-4un] z2—1>510u
-DTON-THUNN [T—*puun] THO-d T-ioou
d15-d THO
q1s ~THUNN-DYON [T—*>ou0u] (e<9) farg
- THUNN-DUON [e=*>ou0u] THO-d [*o70u]
$14-DTON [T—*2j0u] THO-d [THru)
a18-d [Pu2]
< ~ +1 1

o3ed snorasid wogj panuljuo))

61

o3ed jxou uO panurjuo))

dISNYd-4ISN

NMOA-THYNN

-dNAON-LON [dnpou] -qQ¥O-LON [puao] LVHN-€ISN [qsu]
41s THO-dN IVHN
-dISN-QHO-LON [pao— THO _ -OTON-LON [ojou-]
4IS-LVHN DYyu ~TIUNN-LVEN I>0yu LIVHN
Vda-agoN [roy OSA-TAYUNA 0SA-TTUNA [t =0y
dIS-dN Towoﬁr THDO-dN _NSOEF -DHON-LON Tsoﬁf_
-dNAON-LON [dnpou] HIS-dN [lqrsu -dNAON-LON [dnpou-] -dNAON-LON [dnpouw] THO-dN [Cqusu Tor0uL
Vdd-agoN SLL-OTON ! NMOQ-TIUNN NMOQ-TIYNA THONA 4! wd “
“MO-LON [po-] ~ TN -LON [1paunc] “IHO-LON [p10-] ~IHO-LON [p-10-] ~TEUNN-LON [jp4unc] Hﬁm:
SINIS-AHH.LN [9949u] s MNIS-HAYLN [9949u] MNIS-HEAHILN [p247u] JALS oNﬁmc.:r
-AZON-LON [0<pgou— -AZON-LON [0<pgou— jpaunc
SINIS-HEHLN [22.49u THO-dNAON [dnpou Tozou
STA-DTON [Touou THO-d [@ouou zury
4a15-d [Guz) THO-d [Euy)
NMOQ-TIUNA
dISNUd-LISN QHO-LON [pao-]
-dNAON-LON [dnpouc) B, p
418
-dISN-QHO-LON [pao -THUNN-LVHN [aoyu
pao-] . 290U
Vda-agoN OSA-TAUNN 0SA-TAUNA THO-dN [toj0u
-dNAON-LON [dnpou HIS-LVHN [0y u] - . it B - a . k _ qusu
pou-] q1S-dN [to0u] dNAON-LON [dnpou] dNAON-LON [dnpouw] THO-dN [Tqesu 0Zpgour
Vdd-agOoN NMOQ-TIUNN NMOA-TIUNA THONYUJ
dIS-dN [Tqrsu] 1o4UN—
-aQUO-LON [pso-] S1-OTON -QUO-LON [pso] -aQ¥O-LON [p1o-] ~THUNN-LON [1p4unc] i
MNIS-HEYLN [p9.49u] S MNIS-HEYLN [99.49u] SINIS-HHYLN [9949u] ddLS
~TIUNN-LON [12aun<] ~ZON-TON [0Zpgouc Turp
LS = THO-dNAON _wﬁﬁo:
“AGON-LON [0<pgou-] THO-d [ouou
d1s-d [Tuz]
THO-d [Guz)
dISNUd-9ISN THO-dN [*oj0uc
-dNAON-LON [dnpou] THD-dN B
4a1s AISTHO-EISN [*>qusu]
-4ISN-QHO-LON [pao] J— Nmod B
) _, ; = -TEUNA [P P>pouun)
Vdd-dZON dIS-dN [T—*op0u-] SINIS-HHYLN [p2u47u] SINIS-HHE.LN [22u47u] -AgZON-LON [0<pzou-] =10t
-dNAON-LON [dnpou] 41S-dN _ NMOd NMOd THO-dNAON [dnpou] T.szﬁm:
Vda-agoN AISTHO-EISN [T—*>qusu] -THINN-dNAON [dnpou] ~THUINN-dNAON [dnpou] NMOd-dNAON 0Zpgouc
-Q0-10N [puao] JALS N NMOQ-dNAON NMOQ-dNdON -THUNN-AYO [puo] H\.@w.:us
SINIS-HHHLN [9949u] -agON-LON [0<pgou-] ~THUNN-AYO [puo] ~TEUNN-AYO [puo] THO-d [#124un] leogo:
41s-d THO-d
7 fur
1S B THO B (e <) 1
-TTEUNN-DUON [T=*>0u0u] ~TIUNN-DYON [*>0ou0u]
d15-d [Pu2] THO-d [T+ua)
< ~ +1 1

o3ed snorasid wogj panuljuo))

62

oged 1xou UO panuIuO))

dISN
AISNYd-9ISN THO-dN -AgON-LON [pgou-]
Vdd-agoN -dNdON-LON [dnpou] SINIS-HEY.LN [9949u] SINIS-AEH.LN [p2uqu] IS THO-SIISN [*Sqsu] AZON-DYON [0<ouou]
-dNAON-LON [dnpour] 418 NMoa NMoa THO-1NAON E:ﬂoi AZON-DTON [0<9)0u]
Vdd-dgON -4ISN-AHO-LON [puao] -THUNN-dNAON [dnpou] -TIUNN-dNAON [dnpou] NAOU-ANTON AZON-NIT [Fu2g]
-QYO-LON [puao] 41S-dN NMOd-dNdON NMOU-dNAON agoN
—S -TIYNN-AHO [puo]
SINIS-HHH.LN [9949u] dISTHO-4ISN [T—*>qisu] ~THUNN-AYO [puo] ~TEUNN-AYO [puo] THO-a [t+pgou] ~TEUNN [124un]
d1s-d [*pgou] p T—t>qisu
(&< ‘pgou
dISN
AISNUd-FISN THO-dN -AZON-LON [pgou-]
Vda-AgoN -dNAON-LON [dnpou] SINIS-HHULN [p249u] SINIS-AEULN [p249u] IS THO-FISN [e5 qusu] AZON-DYON [0<ou0u]
-dNAON-LON [dnpou] a1s NMOa NMOd qmo-m:omz [dn .o£ AgON-OTON [0<0j0u]
VdJI-agoN ~dISN-Q¥O-LON [pao] -THINN-dNAON [dnpou] -THUINN-dNAON [dnpou] NAMOT-dNAON p AZON-NIT [2uag]
-Q40-LON [pao—] 41S-dN NMOd-dNdON NMOQ-dNdoN ’ agoN
= ~TIYNN-AHO [puo]
SINIS-HEHLN [p2uqu] dISTHD-4ISN [t>qesu] -TIUNN-AHO [puo] -THUNN-AHO [puo] THO - [epgou] -TIUNA [194un]
s [epgou] P 1S qusu
Zpgou
dISN
-AZON-LON [pgou]
dISNUJ-9ISN . THO-dN : =
Vdd-agON SINIS-HEU.LN [p2uqu] SINIS-AHH.LN [p2uqu] = AZON-DYON [0<ouou]
-dNAON-LON [dnpou] dISTHO-4ISN [T>qrsu] 0=
-dNAON-LON [dnpou] NMOa NMOa agoN-DTON [0<02j0u]
d1s THD-dNAON [dnpou]
Vda-AgoN -THUNN-dNAON [dnpou] -THUNN-dNAON [dnpou] AZON-NI'T [tug]
-dISN-QHO-LON [puao] NMOd-dNAON
-QYO-LON [puo] NMOQ-dNAON NMOd-dNdON agoN
ISTHD-4ISN [q15u]) -TIINN-AHO [puo]
SINIS-HHY.LN [pouqu] ~TIINN-A¥O [puo] -THINN-A¥O [puo] ~THENA [1p4un]
d15-d [*pgou] THO-d [epgou] .
Tpgou
AISNUd-EISN NAOA-TIINA -
-QYO-LON [puao] LIVHN-MISN [¢~!>qisu]
-dNAON-LON [dnpou] THO-dN LVHN A
418 ! -
THO -OTON-LON [¢7*>0j0uc]
-4ISN-QHO-LON [pao— ; 115
s ! -TEUNA-IVEN [T~ ">0yu LVHN
Vdd-AgoN dIS-LVHN [E7*>goyu OSA-TAUNN DSA-THUNN THO-N [*o0uc OHON-ION [¢=*Sosou]
-dNdON-LON [dnpou] d1S-dN [T—*oj0u— -dNAON-LON [dnpou] -dNdON-LON [dnpou] : B
THD-dN [*qesu T—%0uc
vdd-dgON 418-dN [T—*qusu NMOQ-TIUNA NMOQ-TIUNN ’ e
1>
THONYd YU
-qQ¥0-LON [pao-] §T14-DTON -QYO-LON [puao] -Q40-LON [puao-] .,
~TIINN-LON [1paun<] 1-tqisu
SMINIS-AHULN [p249u] ~THUNN-LON [1paunc] SMINIS-HHULN [2249u] MINIS-HHYLN [2249u] LS 0Zpgouc
daLs) =
b3 -agON-LON 0<pgou— UM
-agON-LON [0<pgou— 4 [o<pz N\.
by THO-dNAON [dnpou I-1baou
STA-DTON [T—*ouou " !
. THO-d [*ou0u (z <) furg
qa1s-d [Fuz) B Tte
THO-d [T+uy

o3ed snorasid wogj panuljuo))

63

dISNYJ-dISN

NMOQ-TIUNN

-aYO-LON [pao] LVHN-GISN [¢*>qusu]
-dNAON-LON [dnpou] THD-dN IVHN
q1s A —:S
THD -DYON-LON [2~*>Du0uc]
-dISN-Q¥0-LON [puao—) 1—2S
—iS : -TIUNN-LVHN [T=*>3pyu)] IVHN
Vdd-AdgON dIS-LVHN [e=*>10yu DSA-TAYNN DSA-THUNN N =S
. B THO-dN [*q2su] -DTON-LON [¢7*>0j0uw]
-dNAON-LON [dnpou] 41S-dN [T—*qusu -dNAON-LON [dnpou] -dNAON-LON [dnpour] ais a5y
vdd-dgON ddLS NMOQ-TAUNN NMOQ-TIUNN . =) b
z -AZON-LON 0<pgour] T=tqisu
-A40-LON [pao—] -AZON-LON [0<pgou.] -q40-LON [pao] -A40-LON [pao] THONA 0Zpgouc
SINIS-HEYLN [p2u7u] STI-DTON SINIS-HHY.LN [p2u7u] SINIS-HEULN [p2u47u] P
~THUNA-LON [12aun<] 124UN—
~THYNN-LON [ppaunc— 12-
. . THO-dNAON [dnpoul] I—haou
da15-d [T—*ouou . .
—2 THO-d [*ouou] I—Iojou
qa1s-d [T—*270u . h
f THO-d [*270u] (z <) tury
daIs-d [Puz) e,
THO-d [T+2ua)
NMOQ-TAUNN
4ISNUJ-FISN
-Q¥O-LON [puao] LVHN-4ISN [qesu]
-dNAON-LON [dnpou] HomdN VI
d1s A
THO -O¥ON-LON [puouc]
-gISN-QHO-LON [pao— -
. ~THUNN-LVHN [T>90yu] LVHN
Vdd-agOoN 4IS-LYHN [poyu 0SA-TAYINN OSA-TAUNN
. THD-dN [2qrsu] -D'TON-LON [ppou]
-dNAON-LON [dnpou] 41S-dN [Tqsu -dNAON-LON [dnpou] -dNAON-LON [dnpou] LS oy
Vdd-AgoN ddLs NMOA~TEUNN NMOA-THUNN . =
z -AZON-LON 0<pgou.] TqQesu
-qQUO-LON [puao] -AgON-LON [0<pzou-] -Q¥O-LON [pao] -qQYO-LON [puao] HON 0ZpgouL
MNIS-HTHLIN [p2uqu] STA-OTON MNIS-HAULN [p2uqu] SINIS-HEULN [pouqu] * p
~THUNN-LON [1paunc] 194UN
-TIUNN-LON [puaunc
THO-dNAON [dnpou] Toaou
dIS-d [Touou
THO-d [@ouou] Tojou
d1s-d [To0u
THO-d [eog0u] Turg
d1s-d [2uzp !
THO=d [Euy]
dISNUd-9ISN NMOA-TAUNN
-dNAON-LON [dnpou] -qQ¥O-LON [pao]
d1s THO
-GISN-QHO-LON [puao] -THEINN-LVHN [1pyu] .
vdd-dzON STA-TAUNN 0SA-TAINN DSA-TAENA THO-dN [1qesu] 0= mw.:r
-dNAON-LON [dnpou] -DYON-LON [puouc] -dNAON-LON [dnpou] -dNAON-LON [dnpou] Eich i _ NW,SSF
Vdd-AgoN dISTHO-4ISN [qesu] NMOQ-TIUNA NMOU-THUNN -AgON-LON 0<pgour| otou
-aQ40-LON [pao—] dALS B -aQ40-LON [pao-] -aQ40-LON [pao] THONYd -
SINIS-HHAYLN [22u47u] -agON-LON [0<pzou-] SINIS-HHULN [p2u7u] SINIS-HHAE.LN [2249u] ~TEUNN-LON [ppuaunc] mﬂ:
ST THO-dNAON [dnpou] 1
-DTON-THUNA [1p4un] THO-d [Touou]
STA-DTON [p70u] THO-d [Toj0u]
d15-d [Tuz] THO-d [2u]
“ v) ol T

o3ed snorasid wogj panuljuo))

64

o3ed jxou uO panurjuo))

dISNUd-9ISN Vda-agoN LVHN-€ISN [qesu]
Vdd-agoN) ISNUd-FISN
-dNAON-LON [dnpou] -dNAON-LON [dnpour] LVHN
-dNAON-LON [dnpou] -dNAON-LON [dnpou]
a1s Vdd-AgON -DYON-LON [puou]
Vdd-dgON Vdd-AgON NUd-DYON
-dISN-Q¥O-LON [puao] -Q¥O-LON [pao] LVHN
-dNAON-LON [dnpou] -qQ¥O-LON [puo] -qQ¥O-LON [puao]
dIS-LVHN [apyu] SOV-dN [a0yu] -DTON-LON [prou]
Vdd-dgON SUd-DUYON daLS = dALS dALS = dN-NIT [Buag]
-Q¥O-LON [pao] -AZON-LON [0<pgou-] e = -AZON-LON [0<pgou-] :
~TEUNA-LON [1paunc] -AgON-LON [0<pgou-] wyu
SINIS-HTUIN [p249u] s ONV . THONYUJ 0Zprou.
- = ~THUNN-LON [josunc] “TEUNN-LON [jpaunc] pe
-AZON-LON [0<pgou-] ~TEUINN-LON [12a4un<] 124UN—
DNV-NIT [u21] Ndd-d [u21]
d1S-d [Tuy] SOV-NI'T [Tu2] Turg
SUd-TATUNN
“OTON-LON Prou-] Vda-aZON Vdd-agON
a1s EQ.MMMM [qesu] -dNAON-TON [dnpou] -dNAON-LON [dnpou] .qmmmmm.vwwm (oaune] O o]
Vdd-dgON = Vdd-AgON Vdd-agoN !) A
-AgON-LON [0<pzou-] JHLS NIT-DTON [p10u]
-dNAON-LON [dnpou] qrsNud -QYO-LON [puo] -QYO-LON [puo] A7ON-LON [0Zpzouc] dnNTT [tug]
Vda-agoN ONV DNV ¢ pe = i
-NIT-dNdON [dnpou] ISNUd 0<pgou—
-Q40-LON [pao-] . ~TEUNN-LON [124unc] ~TAYNN-LON [120unc]
SMNIS-AAHIN [22.49u] SUd-NIT-QUOo [p-0] dFLS JALS “NI'T-dNdON [dnpou] [paun—
’ sud - R = NYd-DHON-AHO [puo] urg
-AgON-LON [0<pgou-] -AZON-LON [0<pgou-]
“OHON-TIIND [24un] ONV-NI'T [u2)] SOV-NIT [u2] NHd-d [ua1]
SUI-DYON [puou] : !
dis-d [Fuq]
4ISN
-AZON-LON [pgou-]
HTULN
vdd-dgON 4ISNUd-FISN Vda-AgoN Vdd-dzON 4ISNUd-FISN EUNA-LON [rouun]
-dNAON-LON [dnpou] -dNAON-LON [dnpou] -dNAON-LON [dnpou| -dNAON-LON [dnpou] -dNdON-LON [dnpouv] LVHN
Vda-agoN 418 Vdd-agoN Vda-agoN NY¥d-DUON MON-LON [uour]
-QUO-LON [pao—] ~dISN-Q¥O-LON [puao] -qQ¥O-LON [pao] -QUO-LON [pao] -qQ¥O-LON [pao-] R
LVHN-€ISN [qesu]
SINIS-THH.LN [p2uqu] JHALS-HTLLN [9247u] JALS-HAULIN [p2u9u] JHALS-HAYLN [p9uqu] JHALS-ATHLIN [EERZ1 MR LN-LVEN Tﬁdz_
29.49U
(s)
ONV-AZON-LON [0<pgou-] DONV-AZON-LON [0<pgou-]
dISTHO-EISN [qesu] ONV ONV .
SINIS-HEMLN [p2uqu] JELS
dOLLS -THUINN-LON [1paunc] -THUNO-LON [124unc] dN-AgoN [Tpgou]
deLLS -AZON-dNAON [dnpou] daLS ddLS “TeON-dnaoN [dnpou] dN-NI'T [Tuzg]
-AZON-dNAON [dnpou] ¢ P dALS 1
daLs -AgON-dNAdON [dnpou] -AgON-dNAON [dnpou] i AZON-NIT [ug]
dars -AgON-a¥O [puo]
-AgON-a¥0 [puo] dALS dELS pzou
-AgON-q¥O [puo] Nud-d [pgou]
d1S-d [tpgou] -AZON-ad0 [puo] -AZON-A™O [puo]
DNV-NIT [u2q] SOV-NIT [u2]]

65

a8ed jxou UO panuIjuo))

dISNHYd-9ISN Vdd-dgoN vdd-dZON 1SN A-SISN IvHN-ISN et Squsu]
-dNAON-LON [dnpou] -dNAON-LON [dnpou-] -dNAON-LON [dnpouw] dNAON-LON [dnpou] LVHN :
s vdA-dgON vdd-dgOoN NUd-DHON -DYON-LON [¢~*>ou0uc]
-gISN-Q¥0-LON [pao— -Qy0-LON [po— -qQ¥0-LON [po— HO-TON [puo LVHN
Vda-dgoN dAISIVEN . [ET 2oy u i e Sov-AN - [ET¢ =gy ONVNUd-dN [e—tououc OTON-ION [e—*>op0uw]
-dNAON-LON [dnpou] d1S-dN [T—*ououw ONV-dN [e—*ououw SOV-dN [T—*ouou— DNV NUA-dN [e—tqusu : e—1>gmyu
VdA-AgON 4aIS-dN [T—*qi5u ONV-dN [e—tqisu SOV-dN [T—*qr5u THONA a Hluscmr
“HO-LON [pio-] SUAOUON ONV ONV ~THYNN-LON [12aun<] I—!qisu
SINIS-HEULN [p949u] ~THUNN-LON [paunc] ~THUNN-LON [1oaunc] ~THUNN-LON [124un—] gL 0ZpgouL
ddLs B ddLs _ ddLs B AZON-LON [0Zpgour Jodunc
-AgON-LON [0<pgou-— -AgON-LON [0<pgou-— -dgZON-LON [0<pgou-— Ndd [e—toj0u - tor0u
4a18-d [T—*20u ONV-NIT-DTON [e—to70u SOV-NIT-OTON [T—*270u Nded TLNSN (2 <) _~:.
dIs-d [fuy ONV-NIT [T—tuz) SOV-NIT [Pu2) ’ ’ 1
ISNUd-LISN vdd-dZON
4 Vdd-dgON az d ISNU-LISN LVHN-GISN [qrsu]
~dNAON-LON [dnpou] -dNAON-LON [dnpou] ~dNAON-LON [dnpou-] -dNAON-LON [dnpou] LVHN
a1s P Vdd-agoN p !
Vdd-dgoN N¥d-DYON -DUON-LON Du0U—
-dISN-QHO-LON [pao— ¢ -aQ40-LON [pao— [I
-QUO-LON [pao— -qQUO-LON [pao— LVHN
VdA-agON AIS-LVHN 1oy e _ SOV-dN [1oyu . _ B : L
ONV-dN [puou DONVNUd-dN [puou DTON-LON [pjou]
-dNAON-LON [dnpou—] AIS-dN [Tosour . SOV-dN [Tououc ;
ONV-dN [qesu ONVNUJ-dN [qr51 YU
Vda-AgoN 41S-dN [Tqsu : SOV-dN [Tqisu
P ONV THONYJ Touou—
“qHO-LON [po-] Sud-OUON -THINN-LON [1paun<] ONV -THINN-LON [12aunc] Q15U
SINIS-HEULN [pouqu] ~TEUNN-LON [12aun<] : ~THUNN-LON [1paunc] _ 1
P daLs _ - ddLs _ 0<pgou—
; 0z -AgON-LON [0<pgou-— . 0z -AgON-LON [0<pgou— 194uUn—
-AgZON-LON [0<pgou— ONV-NIT-OTON b -AZON-LON [0<pgou— g N
10U Nud-d [prou orou
d1s-d [Fogou SOV-NIT-DTON [to70u
ONV-NIT [Tuzp Ndd-d [Tuzp zurg
d1s-d [euy SOV-NIT [Euy
Vdd-AgoN
-dNAON-LON [dnpou]
dISNUd-9ISN Vda-dgoN
vdd-dzON
-dNAON-LON [dnpou] -dNAON-LON [dnpou|
-aQYO-LON [pao— 2u0U
vdd-dgON d1s Vdd-dgoN SOV-dN ot THONYd Qs
-dNAON-LON dnpou— -dISN-QHO-LON 4O -QYO-LON Lo ~TEUNN-LON NI = b
(dnp] p] g [P] SOV-dN [qrsu n] 0<pzou—
vdd-dZON e ONV ONY JELS _ Podune
-QUO-LON [pao—] -OYON-LVHN [apyu] -THUINN-LON [1paunc] -AZON-LON [0<pgou.]
-TIUNN-LON [12a4unc] o[ou
SINIS-HEULN [9949u] JOLS JALS Nud-d [u]
= = daLS Turg
-AZON-LON [0<pgou-] -AZON-LON [0<pgou-] . - :
-(IZON-LON [0<pgou
d1s-d [Tuz] ONV-NIT [ua]
SOV-NIT-D'TON [pr0u
SOV-NI'T [Tuy
dISNYd-9ISN =
- dTON-LON [dnpou] Vda-dgoN Vdd-dgON 4ISNUd-HISN LVHN-MISN [F7!>qis5u]
) as p -dNAON-LON [dnpou] -dNAON-LON [dnpou) -dNAON-LON [dnpou| LVHN B
N Vdd-dgON Vdd-AgON NUd-DYON -DYON-LON [F~*>0u0uc]
Vdd-dgON -dISN-QHO-LON [puaoc])
NAON-TON [dnpouc] HIS-dN -qQ¥O-LON [pao-] -QUO-LON [puo-] -qQ¥O0-LON [pao-] LVHN _
. I—15 ONVNUd-dN [e=*>pyu] SOV-dN [T=*>pyu] ONVNHd-dN [E7*>3pyu] -OTON-LON [I=*>0j0uc]
Vdd-dzoN dISSIVAN [T goyu] daLs dars deLLS dn-NI1 [T+2ugg)
-Q¥O-LON [pao] dALS - = : = : = o
0= -AgON-LON [0<pgou-] -AgON-LON [0<pgou-] -AgON-LON [0<pgou-] T—>9pyu
SINIS-THH.LN [p2uqu] -AZON-LON [0<pgou.] g 0z
SUA-OUON DNV DNV THONYJ <pzou-—
-TIINN-LON [124unc] -THINN-LON [120un] -TIINN-LON [ppuunc] 1P4UN—
“IENA~LON f1o-4un-] ONV-NIT [T—ruy) SOV-NIT [ru2)] Nud-d [T—ruy) (1<2) rurg
q18-d [Pu2] !z 2 2 . .
< “ +1 N

o3ed snorasid wogj panuljuo))

66

a8ed jxou UO panuIjuo))

dISNYJ-4dISN

-dNAON-LON dnpou Vdd-agoN Vdd-agON
oN=to [dnpou] €O azo dISNUd-9ISN
d1s -dNAON-LON [dnpou] -dNAON-LON [dnpouw]
-dNAON-LON [dnpou— NMOa
-dISN-Q¥0-LON [puo] Vdd-AgON Vda-agoN N N
Vdd-azoN d1S-dN [T—*ouou] -QYO-LON [puo-] -QYO-LON [puo-] ,oz<zmm.mz [e—Squsu ’ 1o 0uc.
JNAON-TON [dnpouc] 41S-dN _ ONV-€ISN-LVHN [E=*>pyu] SOV-4ISN-LVHN [e=*>pyu] LS K =15 0000
V-7 ON p AISTHO-EISN [T=*>qusu] ONVNHd-dN [z~ *ououw] SOV-dN [T~ *ouou] a oz-woz [0Zpgouc 0= W:F
.Qmo.moz [pao—] diLS - ONVNH-dN (27> qusu] SOv-dN [*7*>qusu] zmm,omoz.omo @m_ 40 ﬁ\ww.::_
SINIS-HAMIN FMES ~UgON-LON [0<pgou-] ONV ONV Nud-d [e—? wW:: le_go:
i qa1s-d [T=*194un)] -THINN-LON [1paunc] ~THUNN-LON [1paunc] 1 _
z = Nud-d [E~*>ou0u T—Idjou
q18-d B ONV-AgON-LON [0<pgou-] ONV-AZON-LON [0<pgou-] N¥d-d [e-*op0u (&< fur
SUd-DUON [e*=>0uou] ONV-NIT-D'TON [e—*2)0u] SOV-NIT-O'TON [T—*270u] Nild-d Tlmﬁi ’ '
dI1S-d [T—*270u] DNV-NI'T [T—rug] SOV-NI'T [Pu2] :
€1S-d [tusq]
dISNUd-9ISN
vdd-dzON
-dNAON-LON [dnpouv] Vda-AgoN -maooz.moz [dnpou.] AISNUA-SISN
d1s -dNAON-LON [dnpou] NMOa
Vdd-dgON -dNAON-LON [dnpou]
-4ISN-QHO-LON [pao] vdd-dgON MO-1ON [paoe ONVNUA-dN [puouc] -TIUNA [124un]
- - oupou—] -Q¥0-1ON [pro-] P Touou—
Ve d-agoN fISdN ﬁ p SOV-4ISN-LVHN 1oy ONVNYUd-dN [qr5u] =
- - dnpou| 41S-dN ONVNYd-dN [puou] Y ik >qisu
JNAON-LON [dnp _ SOV-dN [rouou JALS -
Vdd-AgoN dISTHO-4ISN [T>qesu] DNVNYd-dN [qesu] SOV-dN [tqrsu ~AZON-LON [0<pgou~] 0<pzou
-QUO-LON [pao—] JALS B ONV ONY a NHd-OHON-THO p [pao] T[oaun
SINIS-HHULN [2249u] -AZON-LON [0<pzou-] ~TEUNN-LON [124un<] P daou
z ~THUNN-LON [ppaun— Nud-d [1p4un]
f15-d [}o-1un] ONV-AZON-LON [0<pgou-] ONV-AZON-LON [0<pgour NHd-d [o70u] torou
SUd-DUYON [puou] ONV-NIT-D'TON [o10u] P ! zurg
SOV-NIT-OTON [Tog0ou Nud-d [Tu)
qa1s-d [Tog0ou] ONV-NIT [Tuzg] SOV-NIT [Fu
a18-d [2u] :
dISNYJ-9ISN Vdd-dZON
-dNAON-LON [dnpou] Vad-A7ON -dNAON-LON [dnpour] AISNUd-9ISN
418 ¢ Vdd-AgOoN -dNAON-LON [dnpou]
-dNAON-LON [dnpou] DuouL
Vdd-dgON -dISN-AQ¥0-LON [puo] -qQ¥0-LON [puo— NUd-DYON
Vdd-dgoN qQusu
-dNAON-LON [dnpou] sud SOV-dN [puou— -qQ¥O-LON [pao] =
-qQ¥O-LON [pao] 0<pgou—
Vdda-dgoN -OUON-LVHN [1yu] 8 SOV-dN [qrsu THONYJ
ONV [eaun
-Q40-LON [pao-] SUd-DUON ONV ~TEUNN-LON [ppuaunc]
-THINN-LON [1paunc] orou
SINIS-HEHLN [p2uqu] -TIUNN-LON [12aun<] < ~TIYNN-LON [1paunc— dAaLS
ONV-AZON-LON [0<pgou-] e - Tury
dALS ONV-AZON-LON [0<pgou— -AZON-LON [0<pgou.] :
= ONV-NIT [u]]
-AZON-LON [0<pgou-] : SOV-NIT-OTON [ojou N¥d-d [uz]]
d15-d [Tuz] SOV-NI'T [Tuy

o3ed snorasid wogj panuljuo))

67

o3ed 9xau UO panurjuo))

dISNYd-4ISN

Vda-dgoN
- - dnpou
ANdoN HMHM [dnpou-] -dNAON-LON [dnpou]
Vda-agoN
Vdd-azoN -€GISN-QHO-LON [puao—] .amo.mwz [paoc THONYUJ Dj0uU—
dNAON-1ON [dnpour] SYd-DTON-LON [o10u] ONV SOV-dN Tﬁoﬁf ~THYNN-LON [12aun<] _qQsu
Em.o, Loz p ISTHD-ISN [q15u] -TIUNN-LON [121un—] COV-aN m .y dALS B 0<pgouc
-ch.moz [pao] JELS B DONV-UZON-LON [0<pgou-] ONV q -AZON-LON [0<pzou-] 124uUn—
-AZON-LON 0<pgou— ONV-NIT uz N¥d-DHON-AUO 40 oaou
SINIS-HAUIN [2249u] -TTUNA-ION [ppaunc
7 sud B z Nyd-d [u] Turg
- . ONV-AZON-LON [0<pgou—
TOHONTTEMNN [12.4un] SOV-NIT-OUON [puou
SHd-OUON [a0u] SOV-NIT [Tuz
d1s-d [Tuy] U
ISNUd-FISN Vdd-AgoN vdd-dZON
-dNAON-LON [dnpou] -dNAON-LON [dnpou] -dNAON-LON [dnpou] 4ISNUJ-HISN
41s Vdd-agOoN Vda-dgoN -dNAON-LON [dnpou Nmod _
Vdd-aZON -gISN-QHO-LON [pao] -qQ¥O-LON [pao— -QUO-LON [puao— DONVNUd-dN [e=*oj0u -TEUNN [T > p0aun]
-mbomz.hoz [dnpouc] dIS-dN [T—*op0u-] ONV-EISN-LVHN [E7*>gpyu SOV-EISN-LVEN ~ [¢7*>3pyu ONVNHd-dN [e=*>qisu I=*2j0u
Vd-GgON p 4a1S-dN B ONVNUd-dN [e—*oj0u SOV-dN [F—*oj0un JELLS B I—*>qisu
~qHO-LON [pto] 4ISTHO-EISN [T=*>qisu] ONVNUd-dN [e=*>qisu SOV-dN [T—*>qi5u -AZON-LON [0<pgou— 0<pgou—
SINIS-HEULN [22.49u] daLs ONV ONV NUd-DYON-QHO [puo I—loaun
S * -AgON-LON [0<pgou.] ~TEUNN-LON [prun— -THYNN-LON [1p4un— Ndd-d e=tpuun I->s510u
a1s-d DNV-AZON-LON [0<pgou-— ONV-AZON-LON [0<pgou-— Nud-d [e=*>ou0u (g <) furg
SU-DUON [T—*ouou] ONV-NIT-DHON [e—*ouou SOV-NIT-DUON [T—*ouou Nud-d [T—uzp
41S-d [Pu2] ONV-NIT [T—tuz) SOV-NI'T [Pu2p
dISNUd-LISN Vda-agoN
Vdd-agoN
-dNAON-LON [dnpou| .m:ooz.moz [dnpou] -dNAON-LON [dnpou] dISNUd-9ISN
d1s Vdd-aZON p Vdd-AgON -dNdON-LON [dnpou—
Vdd-AZON -€ISN-QHO-LON [puao] HO-TON [pusor -Q90-10N [puao— ONVNYUd-dN [pp0un 20U
a 41S-dN [Toj0u] SOV-EISN-LVHN [poyu ONVNYUd-dN [q2su >qisu
-dNAON-LON [dnpou] : ONVNYd-dN [prouc) . L 0= _
Vdd-agoN HIs~aN s ONVNUd-dN [qesu SOV-dXN [torou dALS _ peow
aHO-1ON [pio-] dISTHO-4ISN [T>qesu] - ONY ’ SOV-dN [T>qisu -AZON-LON [0<pgou— T[oaun
P JALS DNV NUd-DYON-AYO [pao I>o0a0u
SINIS-HIULN [2249u] } ° 0= ~TIUNN-LON [1paun—)) 3 -~
AZON-LON [0<pgou-] ONV-07ON-LON [0<pgouw TAUNN-LON [1p4un— Ndd-d [1p4un urg
q1s-d 4 . pe DNV-AZON-LON [0<pgou- Nud-d [puou
_ 1 ONV-NIT-DHON [puow e L) .
SUI-DUON [Touou] SOV-NIT-OYON [Touwou N¥d-d [Tuz)
DNV-NIT [Tuz)
d1s-d [2u] SOV-NI'T [Euyy
4ISNUd-LISN
-dNAON-LON [dnpouv] Vdd-AgoN
) -dNAON-LON [dnpouv]
418 Vdd-agoN ISNYd-FISN
Vdd-dgON
Vdd-agoN -€ISN-QHO-LON [pao] -dNAON-LON [dnpou] QHO-TON [paon -dNAON-LON [dnpou] 270U
INAON-LON [dnpour] SUd-DTON-LON [prou] Vda-AgoN SOV-dN T@o:r JELS _ _qsu
s p HISTHO-GISN [qusu] -qQ¥O-LON [pso] ovan m . ~AZON-LON [0<pgou~] 0Zpgouc
-QUO-LON [pao] daLs ONV ONY 9 THONYJ [eaun
P -AgZON-LON 0<pgou— -THUINA-ION uun— -TEUNA-LON uunc oaou
MNIS-HEULN [p949u] ¢ p u -T4YNN-LON [pouunc— l
sud ONV-AZON-LON [0<pzou-] ONV-UZON-LON TvNN zou Ndd-DUON-AHO [puo] Tur|
-OUON-THUNA [124un] ONV-NIT [u]] SOV-NIT-OUON ﬁ_usc: Nud-d [u2]]
SYd-DUON [puou] ’ no,«rzi [tu
41S-d [Tuz] 5)
< ~ +1 1

o3ed snorasid wogj panuljuo))

68

a8ed jxou UO panuIjuo))

Vda-agoN
Vdd-AgON ~ -
-dNAON-LON [dnpour] mﬂmﬂmvﬁewm [dnpou-] arsn
dISNU-9ISN Vdd-dgoN ¢ -AgON-LON [pzou-]
Vdd-agoN -dNdON-LON [dnpou] -qQ¥O-LON [pao] “IUO~LON [ps0-] AISNYJ-LISN AZON-DYON [0<ou0u]
’ SOV-4ISN-LVHN [10Yyu] i : R =
-dNAON-LON [dnpour] 418 ONVNUd-dN [q2su] COV-dN [qusu] -dNAON-LON [dnpou] AZON-DTON [0<2j0u]
Vdd-agoN -dISN-QHO-LON [puaoc] ONV i oNY a. ONVNUd-dN [qesu] AZON-NIT [2ug]
-QUO-LON [pao] 415-dN _ -THINN-LON [1osun] EUNA-LON [15stune] NUd-DYON-AUO [puo] agoN
SINIS-HEULN [9949u] AISTHD-4ISN [T>qisu] ONV-AZON-LON [0<pgou-] . L NYd-d [Tpgou] -TEUNA [124un]
DNV-UZON-LON [0<pgou-] 2.
daI1s-d [epgou] ONV-NIT-DUON [puou] SOV-NIT-OHON [19.001] 1>qisu
ONV-NIT-DTON [o70u] COV-NIT-O'TON [to10u] Zpgzou
ONV-NIT [Tu) SOV-NIT [euy]
vdd-dZON
Vd-a7ON -dNAON-LON [dnpour] 4ISN
AISNHUd-FISN i:ooz.moz [dnpou] Vdd-dzoN ~ICON-LON [pgou-]
Vdd-AgoN)) 4 -QYO-LON [pao] AZON-DYON [0<ouou]
~ ~ a _ -dNAON-LON [dnpou] Vdd-dgoN e 4ISNUd-LISN B 0=
dNAON-LON [dnpou] SOV-dN [qrsu] AgON-DTON [0<2j0u]
a1s -qQ¥O-LON [pao] -dNAON-LON [dnpouc]
vdI-azoN ~GISN-QHO-~ a0 ONV ONV NUd-DUON-AHO [puo] GEON-NIT [Fun]
-QUO-LON [pao—] HISN-AUO-LON p -THUINN-LON [1paunc] P agoN
~ AISTHO-4ISN [qrsu] -TEUNN-LON [1o1unw—] - - 02 NYd-d [pzou])
SINIS-SEMIN [p9uqu] T o< ONV-AZON-LON [0<pgou-] TEUNA [1p4un]
fsd [tpgou] ONV-AZON-LON [0<pgou-] SOV-NIT-DUON [puou] Qsu
ONV-NI'T [uz]] SOV-NIT-O'TON [o10u] Ipgzou
SOV-NIT [Tu2]
‘MMMMM.‘MMM [dnpouc] Vdd-AgON Vdd-dgON dISNUd-LISN LVHN-9ISN [e—*>qusu]
. s p -dNAON-LON [dnpou] -dNAON-LON [dnpou] -dNAON-LON [dnpou] LVHN _
—HISN-THO-LON [pioc Vdd-agON Vdd-agON NUd-DYON -OTON-LON [E7*>0j0uc]
§ mlwNU -Q¥O-LON [puo] -QUO-LON [pao] -qQ¥O-LON [puao] LVHN
Vdd-agoN dIS-LVHN [e=*>pyu . P y =15) . S B : =15
., ONVNU-dN [1Yy u] SOV-dN [1Y U] ONVNHUd-dN [e—*0j0u] DUON-LON [ouou]
“ANAON-LON (dnpo] fsan [t~ torous DNVNYd-dN [e—*2p0u] SOV-dN [T—*0j0u] DNVNYd-dN [e—*qusu] T=1j0uU
Vad"dgoN f18=dN [F7tqusu ONVNUA-dN [e—qusu] SOV-dN [1—qusu] THONYd . > oyu
~q¥Oo- . - L !
aYO-LON [pao—] SUI-DUON ONY oNY EMNO-LON [1940nn] I— 1015
MNIS-HEYLN [p9.49u] ~THUNN-LON [paunc] -qmmszoz [jpaunc] “TAUNA-LON [ppsunc] LS ! oN%mw.ﬁr
deLs = ONV-AZON-LON [0<pgou-] ONV-AZON-LON [0<pgou] -AZON-LON [0<pgou-] 1o4uUN—
-AZON-LON [o<pgou—
¢ 15-d TWWS: ONV-NIT-DYON [e—*ouou] SOV-NIT-D4ON [T—*ouou] Ndd-d [e—*ouou] I-aou
IS . [z ONV-NIT [T=ruag] SOV-NI'T [Fu2) N¥d-d [T=ru] (z <) furg
FISNHAEISN Vda-agoN I1SNUd-FISN LVHN-€ISN [qesu]
-dNAON-LON [dnpou] Vdd-agON 4NUON-LON [dn b A
pou-] dNAON-LON [dnpou] IVHN
d1s -dNAON-LON [dnpou]
Vdd-dgON N¥d-DYON -OTON-LON [pjou]
“AISN-aUO-LON [p10-- vdA"dgON -qQUO-LON [pson] -QUO-LON [pton] IVHN
Vdd-agoN 4IS-LVHN 1oy -qQ¥O-LON [puao] P p)
SOV-dN [#oyu] ONVNHd-dN [prou] -DYON-LON [puou]
-dNAON-LON [dnpou] 41S-dN [toj0u— DNVNUd-dN [prou])
SOV-dN [Tojou] ONVNHd-dN [qr5u] Tojou—
Vdd-AgoN d1S-dN [Tqusu DNVNYd-dN [qrsu] SOV-N [tqusu] —— oy
-aQ40-LON [pao—] SYd-DUON ONV 9 Y
DNV ~THUNN-LON [1paunc] qisu
SINIS-HTUIN [2249u] -TEUNA-LON [1paunc] -THUINA-ION [1p4un] RINA-LON (oaunc] s 0T prang
daLs _ ONV-AZON-LON [0<pgou-] - - oNN _ B ‘ 0= B pe _
DONV-AZON-LON [0<pgou-] AZON-LON [0<pgou-] 1o4UN
-AgZON-LON [0<pgou— ONV-NIT-DUON [ouou]
SOV-NIT-DHON [Touou] NYd-d [puou] Toaou
q1s-d [touou DONV-NIT [Tuz]
SOV-NI'T [2ua)) Nud-d [Tuz] zurg
d15-d [Cuzp !
“« “<) ol

o3ed snorasid wogj panuljuo))

69

a8ed jxou UO panuIjuo))

dISNYJ-4dISN

-dNAON-LON [dnpou] Vdd-AZON Vdd-agOoN ISNUJ-LISN LVHN-€ISN [qrsu]
: as p .m:ooz.moz [dnpou.] -dNAON-LON [dnpou] -dNAON-LON [dnpou] LVHN
_HISN-HO-LON [poto Veld-a7ON P Vdd-AgON NUd-DYON -DYON-LON [puou]
P d4-de -Q¥O-LON [pao] -qQ¥O-LON [puao] LVHN
Vdd-dgON dIS-LVHN [apyu -q¥O-LON [puo]
SOV-dN [1oyu] ONVNUd-dN [qesu] -O'TON-LON [pjou]
-dNAON-LON [dnpou] 41S-dN [Tqisu ONVNHd-dN [qesu] COV-dAN [tqssu] THONYA UL
vdd-dgON SUd-DYON ONV 4 o
DNV ~THUNN-LON [1paunc] Iqusu
[o-LoN [p-o-] TIHINASLON (12 -1um] CIEHNATLON [pun] ~THUNN-LON [jpsunc] deLLS 0<pgouc
SINIS-SEMIN [p9uqu] JOLLS ONV-AZON-LON [0<pgou-] . u § = be
= DNV-AZON-LON [0<pgou-] -AgON-LON [0<pgou.] 1P4uUN—
-AgON-LON [0<pgou— ONV-NIT-DUON [puou] e 8
Ny 1 w SOV-NIT-DHON [Touou] Nud-d [puou] Toaou
4a15-d [Touou ONV-NIT-D'TON [2701u] el N) .
SOV-NIT-OTON [Tog0u] Nud-d [p70u] o[ou
qa1s-d [Tojou DNV-NIT [Tua) :) K z
SOV-NI'T [2u] Ndd-d [Tu) urg
d1S-d [Guz) !
ISNUd-LISN
-dNAON-LON [dnpou] Vdd-agoN
d1s -dNAON-LON [dnpou]
Vdd-dgoN
-dISN-QHO-LON [pao-] ~dNAON-LON [dnpouv] Vdd-AgON THONHA
Vdd-agON SUI-TAUNN -Q¥O-LON [pao]
Vdd-dgoN ~THUNN-LON [1paunc]
-dNAON-LON [dnpou] -O'TON-LON [pr0u] MO-1ON [pao] SOV-dN [qsu] LS saou
Vda-AgON ISTHO-4ISN [q15u] g P ONV = o[ou
ONV -AZON-LON [0<pgou-] I
-Q¥O-LON [pao] JOLS B B R ~THUNN-LON [1p4un— o - urg
TEUNN-LON [1p4unc] NUd-DYON-AUO [puo]
SINIS-HEYLN [pouqu] -AZON-LON [0<pgou-] ONV-AZON-LON [0<pgouc] DONV-AZON-LON [0<pgou- N [ug]
sdd SOV-NIT-DHON [pwou :
DNV-NI'T [u]
-OUON-THUNN [124un] SOV-NIT-OTON [o10u
SUd-DUON ?kbﬁ; SOV-NIT Tﬁﬁ
d1S-d [Tuy]
Vdd-AZON Vdd-AgoN
-dNAON-LON [dnpou] -dNdON-LON [dnpour] arsn
AISNUJ-FISN VdA"agoN V4" azoN -AZON-LON [pgou]
Vdd-agON -dNAON-ION [dnpouc] “TUO~LON Jpao-] “HOLON Jpao- HISNUJ-GISN QAgON-DUON [0<0uou]
-dNAON-LON [dnpou] 41s ONV-HISN-IVHN - [£74 >0y u] SOV-HISN-IVHN - [€2 > pyu -dNAON-LON [dnpouw] AZON-DTON [0<90u]
Vdd-agoN ! -Emz-omoéoz [pao] PONV=dN [e=rqrsu] SOV-dN [t raesu ONVNUd-dN _lewﬁm:_ momow.zmq TN::_
-QUO-LON [pao—] €1S-dN ONV ONV zﬁ,.ozoz.ozo mus& agoN 4
» ounU B =15 s -TIINN-LON [124unc] ~TEUINN-LON [poaun— : = tprou) un
PINISHN (24314 WSTHOISN. | " @.o:g ONV-AZON-LON [0<pgou] ONV-AZON-LON [0<pgou— NHd-d [*~*peou] THINA chw @mh
d1s-d [*pgou] ONV-NIT-DMON [e=*ou0u] SOV-NIT-OUON [T—*ouou (T <) | Nw.o:
ONV-NIT-D'TON [e—*070u] SOV-NIT-O'TON [1—*270u C<! pz
DNV-NI'T [T—*u] SOV-NI'T [fun
“« “<) ol

o3ed snorasid wogj panuljuo))

70

4ISNUd-LISN Vda-AgoN Vda-agOoN . . i . =15
I1SNUd-FISN IVHN-MISN [¢7*>qisu]
-dNAON-LON [dnpou] -dNAON-LON [dnpou] -dNAON-LON [dnpou] ’
-dNAON-LON [dnpou] LVHN
418 Vdd-agoN Vda-agoN » ~ . =15
. . N¥d-DYON DYON-LON 2u0U—
-€ISN-QHO-LON [puao— -QY0-10N [puao— -Q40-10N [pao— ;
=S PR 1S -d¥O-LON [puao] IVHN
Vda-agoN dIS-LYHN ~ [2~*>1pyu ONVNHd-N [E7*>1pyu SOV-dN [e7*>3pyu ; e . Z—15-
_, . _, ONVNY¥d-dN [e—*qrsu] -DTON-LON [8~*>Dj0uv]
-dNAON-LON [dnpou] 415-dN [T—*qisu ONVNUd-dN [e—*qisu SOV-dN [T—*qusu) =13
THONYJ P> aoyu
Vdd-dgON SUd-DYON ONV DNV s
-TAUNN-LON TwL:\:L tqisu
-Q90-1ON [pao-] ~TEUNN-LON [1paunc] ~TEUNN-LON [124un<] ~THUNN-TON [124un—] o 0Zpgoun
SINIS-HTUIN [p249u] JELS JALS daLs = P
0= 0= . 0= -AZON-LON [0<pgou-] jpdun—
-AgZON-LON [0<pgou— -agON-LON [0<pgou-— -AZON-LON [0<pgou— o1 Tt
iy i i Nud-d [e—*0uou] Diou
d1s-d [T—*ouou ONV-NIT-DUON [e—*ouou SOV-NIT-DUON [T—*ouou _, -
. . . Ndd-d [e—*2j0u] Ibjou
418-d [T—*op0u ONV-NIT-D'TON [e—toj0u SOV-NIT-OTON [T—*op0u s .
: — v Nud-d [t tug) (e<?) farg
a1s-d [Pu2) ONV-NIT [T—*uz) SOV-NIT [fun :
“« <) ol

o3ed snorasid wogj panuljuo))

71

Appendix B

Correctness of the Automata for
Sloppy Evaluation Plans

B.1 Correctness of the Ajiofpy Automaton

72

o3ed jxou UO panuljuoy)

JALS JALS
dALS -dNAON-LON [dnpou] JALS dALS -dNAON-LON [dnpouc] NEID-aHO [Tpuo]
-dNAON-LON [dnpou] 4ISTHO-dNAON -dNAON-LON [dnpou] -dNAON-LON [dnpou] 4ISTHO-dNAON dnpou—
DEY-dNAON -QYO-LON [puao] DdY-dNAON DEY-dNAON -Q¥O-LON [puo] uod
-aQ40-LON [0<puo] dIS-aQu0 [Tpuo] -qQ40-LON [0<puo] -aQ40-LON [0<puo] THO-A¥0 [Tpuo] pio
JdELS-NED [uab] JdELS-NED [uab]
€ISN
-AgON-LON [pgou]
LO-HAULN LO-HAUIN LVHN-€GISN [q1su]
Vdd-AgoN -qu0-LON [Tt*<puoc] OSA-THUNN DSA-THUNN -QUO-LON [¢F!<puo] HAYLN-LYHN [apyu]
-dNdON-LON [dnpou] IT-AEUIN -dNAON-LON [dnpou] -dNAON-LON [dnpou] IT-AEULN HAYLN
vdd -QHO-LON [T*>puow] Qdd-TTUNA Qdd-TIUNN -QY0-1ON [*>puoc] -TEUNA-LON [124un)
~dISN-QHO-LON [0<p.o-] dELS-HIULN [2249u] -QYO-LON [0<puo-] -Q40-LON [0<puo-] JALS-HAYLN [p247u] 2943U
41S-aH0 [*puo] THO-AYO [T+*puo] T+ <puo
Hl.svww&c_!
T<? 'pio
€ISN
-AZON-LON [pgou]
LO-TAUIN LO-TTUIN LVHN-GISN [qrsu]
Vdd-dZON -QYO-LON [e<puo] DSA-TAUNN DSA-TAUNN -QYO-LON [E<puo] HAYLN-LYHN [#pyu]
-dNAON-LON [dnpou] IT-HEUIN -dNAON-LON [dnpou] -dNAON-LON [dnpou] IT-HEUIN HAUIN
vdd B -Q¥O-LON [puao] Add~-TaYNN B Add-TdUNN B -Q¥O-LON [T>puoc] ~THYNN-LON [paunc]
-dISN-QHO-LON [0<puo-] dALS-HIULN [EERZLY -QYO-LON [0<puo-] -Q40-LON [0<pu.o-] dALS-ATYLN [9247u] 2949U
da18-auo TE&& THO-AHO ﬁmﬁsg NN@&O_I
pPLO—
Tpao
dISN
[— -AZON-LON [pgou-]
Vdd-dgON HISNUA-EISN OSA-TAUNA DSA-TAUNA -Q¥Y0-LON [e<puaow] LVHN-€ISN [qusu]
-dNAON-LON [dnpou] - : N ATYLIN-LVHN [ayu]
-dNAON-LON [dnpou] 1S dd-THO-LON -dNAON-LON [dnpou| -dNAON-LON [dnpou] NMOQ-TIUNA N
vdd B as AdA-TIUNN _ AdA-TIUNN _ -qQ¥O-LON [pao] EMNA-LON [19un.]
THISNZAHOTLON [0<pao-] ~HISN-THO-LON [0<p.to-] TAHOSION [0<po-] “AHOTLON [0<pao-] AALS-HTULN [pogu] T<puo—
THO-AHO [Tpuo]
294U
pao
€ISN
ISNUJ-EISN AISTHO-GISN qisu -agON-LON prou—
Vdd-agoN -dNJON-LON [dnpou] LOHAULIN = LO-AAULIN = NMoa ﬁ ! NAD-q™O : [Tpao
-QYO-LON [T<puo-] -Q40-LON [T<puo-]
-dNAON-LON [dnpou] 4a1s ~THUNN-dNAON [dnpou] NAD-TIUNN [1paun
vad HISN-QHO-LON [po] MNIS-HAULN [p2u9u] SINIS-HEULN [p9uqu] NAOU-ANTON Qs
! = NMOd-dNAON NMOd-dNdON
-4ISN-AQ¥O-LON [0<puo-—] JHALS-NAD [uahb] ~THENN-AHO [puo] ua8
41S-QU0 [Tpuo] “TEINA-AHO [p40] “TEINA-AHO [p-10] dALS-NAD [uab] dnpou
pio
—d1s y [AZON-NAD [uab
LD-HIULN N EMMMO@MMM ﬁﬁwﬂ LD-TIULN B LD-HHULN B m?qmﬂwwm‘m ﬁﬁwﬁ dn-dgoN [tpgou
-a90-1ON [T<puo-] qas -a¥90-1ON [T<puo-] -q¥90-1ON [T<puao-] e dN-NIT [Ty
SINIS-HTUIN [2249u] ~AZON-NAON [dnpou] SINIS-HEULN [9249u] SINIS-HAUIN [2949u] ~AZON-dNdON [dnpou] AgON-NIT [u2
dALS JeLs JALS daLs JaLS pgou
“AEON-aO [p-10] -AZON-a¥O [puo] ~dgON-a¥o [p10] ~dgON-aHo [p10] -AgON-aHO [puo] &zﬂmw
-] T

“«

o1

73

o3ed 9xau UO panurjuo))

JALS
o dNAON-LON [dnpouc]
- - -
ddLs -dNAON-LON [dnpou] daLs d4Ls THO-dN P dnpou—
-dNAON-LON [dnpou] 4ISTHO-dNAON -dNAON-LON [dnpou] -dNAON-LON [dnpouw] AISTHO-dNAON puao—
OHY¥-dNAON -QY0-LON [puao— OHY-dNAON OHY-dNAON HO-LON [15pao Turg
_ P _ _ —a¥o- C _
-QY0-LON [0<puo-] 41S-q40 [*<puo -QYO-LON [0<puo-] -QY0-LON [0<p.o-] THO-GHO _NW o 1<puio
d1s-d [fun P
THO-d [Guz)
daLs JELLS
dALS -dNdON-LON [dnpouc] dALS dALS -dNdON-LON [dnpou] dN-NI'T [Tueg]
-dNAON-LON [dnpou] 4ISTHO-dNAON -dNAON-LON [dnpou] -dNAON-LON [dnpou] dISTHO-dNAON dnpou
OHY-dNAON N -QY0-1ON [puo— DHY-dNAON B DHY-dNAON -QY0-1ON [puao— ur|
-Q40-LON [0<puo-] 4IS-ad0 [T<puo -QYO-LON [0<puo-] -Q40-LON [0<puo-] THO-AHO [T<puo 0<pao
d1s-d [Tuy THD-d [Tuy
41S-9ISN THO-dN B gISN
SINIS-AHY.LN [p2uqu] -dNAON-LON [dnpou] SINIS-EEULN [22.49u] SINIS-AHU.LN [99.49] AISTHO-EISN [*>qusu] -AZON-LON [pgou-]
DHY-AZON dI1SdA-AYO-LON OHY-AZON DHY-AZON NMOA I=*>qisu
-qQ40-LON dai1s _ -q¥0-LON -q40-LON -q¥0-LON [*>puao— T='>puo—
Vda-dgON -~ -gISN-QHO-LON [T—*>puo— NMOd Nmoa THO-AYO [T+:<puo dnpou
-Q¥O-LON [0<puo-—] 41S-aQuo [*<puo -Q¥O-LON [0<puo] -Q¥O-LON [0<puo-] THO-dNAON [dnpou furg
d15-d [fuz THO-d [THruy (1<) '<pio
THO-dN gISN
€1S-9ISN <
SMNIS-EEHYLN [2249u] dNTON-LON [dnpou] SINIS-HHY.LN [p2u7u] SINIS-HAULN [p2u47u] dISTHO-EISN [T>qesu] -AgON-LON [pgou-]
DHYU-AZON ’ as DEY-AZON DHY-AZON Nmod qQsu
-Q40-10N -QY0-10N -Q90-10N -QY0-1ON I>puaoc 40
~4ISN-QO-LON [puo— [r=p pLo—
vdd-dgON . 0z NMOd NMOa THO-A¥O [epuao dnpou
N 0z 41S-a¥0 [*<puo 0= 0=
dYO-LON [0<puo-] a1S-a [uz -Q¥O-LON [0<puo] -QHO-LON [0<puo-] THO-dNAON [dnpou Turg
i ! THO-d [Zuz) 1<pio
TN
HISTHO"ATSN [zsu] dISTHO-4ISN [qesu] agON MM“ [pgou-]
— - - C
SN NMOG-TaNA v mﬁ.omo.a ﬂmugo:_
SINIS-AHULN [p249u] -QYO-LON [puao] SMINIS-AHULN [p249u] SINIS-HHYLN [22.49u] : ! '
z . -Q¥O-LON [pao— dN-NI'T [Tug]
Add-THINN dI1S-a¥o [T<puo] Add-THINN AdA-TIUNN THO-O [TZpao AU,
_ _ o- C
-Q4O-LON [0°Fpuo] dISNUd -QYO-LON [0<puo-] -Q4O-LON [0<pu.o-] THO-ANTON Esﬁoﬁ W: ou
-NI'T-dNdON [dnpou] THO-d ﬁw:s vﬂ:
qa1s-d [Tuz]) _un
OA~U.~O
daLS JELS
-dNAON-LON [dnpou]
dALS dALS dALS -dNdON-LON [dnpouc] dnpou—
4ISdd-aQY0-LON s
-dNAON-LON [dnpou] IS THO-dNTON -dNAON-LON [dnpou| -dNAON-LON [dnpour] Nmod T=t>puoc
DAY-dNAON ’ -3 DEY-dNAON DAY-dNAON -qQ¥0-LON [*>puao— ual
—qYO- 02 -QuO-LON [T=*>puow 0< 0< + k
a™40-LON [0<puo] HIS-0 [*puo -AQYO-LON [0<puo] -Q40-LON [0<puo-] THO-AHO [T+tpao (1<) 'pio
dHLS-NED [uab
JALS-NAD [uab
JALS JALS
JALS -dNdON-LON [dnpou] JALS JALS -dNdON-LON [dnpou] dnpou—
-dNAON-LON [dnpou] dISTHO-dNAON -dNAON-LON [dnpou] -dNAON-LON [dnpouw] NMOda puao—
DHY¥-dNAON _ -QYO-LON [puao— DHY-dNAON DHY-dNAON -QY0-LON [T>puo uo8
-QYO-LON [0<puo-] 41S-q40 [Tpuo -AYO-LON [0<puo] -QY0-LON [0<puo] THO-AHO [epuo Ipio
JdALS-NED [uab dALS-NED [uab
< < +1)

o3ed snorasid wogj panuljuo))

74

o3ed 9xou UO panurjuo))

JELLS JELLS
Nmoa
-dNAON-LON [dnpou] -dNdON-LON [dnpou] .
dALS JALS JdALS ~THUNA [124un]
4ISTHO-dNAON ! 4ISTHO-dNAON
-dNAON-LON [dnpou] -dNAON-LON [dnpou-] -dNAON-LON [dnpou] dnpou—
-Q¥O-LON [pao— -Q¥O-LON [pao—
DHY¥-dNAON B IS-d [1poun DHY-dNAON _ DHY-dNAON B THo-d [egoaun Taaun
-Q¥0-1ON [0<puo-] . -QY0-1ON [0<puo-] -Q¥0-1ON [0<puo-] . cur|
dI1s-d [eur THO-d [suz 0Zpio
d1S-auo [T<puo THO-AUO [T<puo
JELS
JALS
-dNAON-LON [dnpouc]
JdALS -dNdON-LON [dnpou] JALS JHLS AISTHO-dATON dnpou—
-dNAON-LON [dnpou] 4ISTHO-dNAON -dNAON-LON [dnpou] -dNAON-LON [dnpou] [eaun
DEU-dNAON -AHO-LON [puo— OEYU-dNAON DEU-dNAON “THO-LON [p-s0-- Turg
= i : = = THO-d Tpauun -
-QYO-LON [0<puo] d1s-d [Tuy -QYO-LON [0<puo-] -QYO-LON [0<puo-] (' 0<pao
41S-q40 [T<puo THO-d [eug
) THO-AHO [1<puo
dISN
AISNHd-GISN AISTHO-MISN [qsu -IZON-LON [pgou-]
vad -dNAON-LON [dnpou] LD-TTUIN B LD-TTULN N THO-dAAON [dnpou NMoa
-Emz.omo.hoz [0Zpaon] q1s -QYO-LON [T<puo-] -Q40-LON [T<puo-] THO-d [#124un ~TEUNN [1p4un]
V4d-GZON -dISN-AHO-LON [pao] SINIS-HEULN [p2u9u] SINIS-AHH.LN [p9uqu] THO-d [TH+ruy qQLsu
-dNAON-LON [dnpou] dIs-d [T—*puun] NMOd-dNdON NMOd-dNdON THO-AYO dnpou
q1s-d [rug] ~TIUNN-AHO [puo] -THINN-AYO [puo] NMOd-dNAON B I—Ipaun
d1S-ado [T<puo] -TEUNN-AHYO [0<puo] _tung
(g <) 0<puao
€ISN
dISNYd-FISN AISTHO-AISN [q15u] -AgON-LON [pgou]
Vi -dNAON-LON [dnpouc] LD-IIULN _ LO-AHULN B THO-dNAON [dnpou] NMOd
: = d1s -AYO-LON [T<puo-] -QYO-LON [T<puo-] THO-d [21p4un] ~TEUNN [1p4un]
-4ISN-AQHO-LON [0<puo-—]
Vdd-aZON ~dISN-QHO-LON [puao] SMNIS-EEYLN [99.49u] SINIS-HHY.LN [9949u] THO-d [8u] qQusu
4NUON-LON [dnpouc] q15-d [T72u4un] NMOQ-dNAON NMOQ-dNdoN THO-Q¥O dnpou
p qa1s-d [eu] -TIUNN-AHO [puo] -THUNN-AHO [puo] NMOA-dNAON B T[oaun
41S-q40 [T<puo] ~THUNN-A™O [0<puo] _Zurp
OAHZO
Pp— AISTHO-EISN [qesu] dISN
. .m.goozéoz [dnpous] LD-GHIULN B LO-GEYLN B THO-dNAON [dnpou] -AZON-LON [pgou-]
! =) p -QYO-LON [T<puo-] -Q40-LON [T<puo-] THO-d [Tppaun] qsu
-GISN-QHO-LON [0<puo] 418
Vd-a7ON HISN-HO-LON [paoc] SINIS-HAULN [p2u7u] SINIS-HEULN [p9uqu] THO-d [2u) dnpou
¢ a . @H NMOd-dNdON NMOA-dNdON THO-A¥O [eaun
~ANAON-TON [dnpou-] f1s-d [Furi] ~THUNN-AUO [pao] ~THUNN-AHO [p-10] NMOA-dNAON Turg
418-auo [T<puo] { ! N Tup
~TEYNN-AYO [0<puo0] 0<pao
dELS daLS
daLs “dAAON-LON [dnpou-] daLs dars ~dNAON~LON [dnpou.] dnpouc
4ISdd-QY0-LON . THO-dN .5
-dNAON-LON [dnpou] -dNAON-LON [dnpou] -dNAON-LON [dnpour] T=*>puo
4ISTHO-dNAON AISTHO-dNAON .
OHY-dNAON . DHY-dNAON DHY-dNAON < tury
MO-LON [0Zpuaoc] -Q¥O-LON [1—*>puo-] —MO-1ON [0<paow] ~qYO-LON [0<puo] -a¥0-LON [*>pao-] (1<) 1Zpao
41S-q40 [*<puo] THO-AHO [T+¢<puo] :
d15-d [Pu2] THO-d [T+ua)
< < +1)

o3ed snorasid wogj panuljuo))

(6]

LVHN-€4ISN [qrsu]

dALS-HAULN [p9uqu]
JHALS-HAYLN [9247u] IS O-LON JHALS-HAULN [p2ugu] JHALS-HALLN [p247u] JHALS-ATLLN [p9u3u] HAYIN-LVHN [#oyu]
vdd B as NMOd B NMOd - Nmod _ 223U
-dISN-QHO-LON [0<puobau] i = -qQ¥O-LON [0<puobou] -QUO-LON [0<p.obau] -qQ¥O-LON [0<puobou] 0<puo
-dISN-AHO-LON [0<puobou] oo
L
JELLS
dALS -dNAON-LON [dnpouc] dALS dALS JELS o
-dNAON-LON [dnpou] d1Sdd -dNdON-LON [dnpou] -dNAON-LON [dnpour] -dNdON-LON [dnpouc] oNﬂZor
OHY-dNAON B -q40-10N DHY-dNAON B DHY-dNAON B Nmod B (s)
-Q¥O-LON [0<puobou] AISTHO-dNAON B -qQ¥0-LON [0<puobou] -Q¥O-LON [0<puobou] -qQ¥O-LON [0<puobou]
-qQHO-LON [0<puobou]
JALS
daLs
-dNAON-LON [dnpou] dnpou—
-dNAON-LON [dnpou] e
dALS 41Sdd-QU0-LON daLS dALS mod T—f>puo
-dNAON-LON [dnpou] 4ISTHO-dNAON B -dNAON-LON [dnpou| -dNAON-LON [dnpour] -omouyoz [£Spuoe T—foaun
DHY-dNAON B -q40-1ON [T—f>puoc DHY-dNAON B DAY-dNAON _ THO-d [* WES furg
-qQUO-LON [0<puo-] q18-d [T—*pouun -AQHO-LON [0<puo-] -QUO-LON [0<puow] THO-d Tﬁi:i (r
dI1S-d *ur e [« 2 fZpio
m_ “ THO-AHO [T+f<puo <fe<y P
41S-AHO0 [“<puo
JELS dELS
-dNAON-LON [dnpou] -dNdON-LON [dnpou] dnpou—
dALS dELS dALS
AISTHO-d1AON : NMod pao—
-dNAON-LON [dnpou] -dNAON-LON [dnpou] -dNAON-LON [dnpou] = .
-aQ4O-LON [pao— -aQ4O-LON [T>puao— T—Haaun
DHY-dNAON . DHY-dNAON DHY-dNAON . .
= da1s-d [T—*puun = = THO-d [*194un furg
-Q¥O-LON [0<puo—] Y -d¥O-LON [0<puo—] -Q¥O-LON [0<puo] i =
d15-d [run THO-d [Ttruy (z <) T<pio
415-auo [F<puo THD-AUO [e<puo
dELS dELS NMOd
-dNdON-LON [dnpou] -dNdON-LON [dnpou] ~THUNA [1p4un]
dALS dALS dALS
dISTHO-dNAON : NmOa dnpou—
-dNAON-LON [dnpou] -dNAON-LON [dnpou] -dNAON-LON [dnpou] =
-qQ¥O-LON [pao— -qQ¥O-LON [T>puo— PO
OHY-dNAON DHY-dNAON DHY-dNAON
] = €a18-d [T79aun] =] = THO-d [T794un Toaun
-Q4O-LON [0<puo-—] -QYO-LON [0<puo-] -Q40-LON [0<puo-]
q18-d [euy THO-d [euy _Zuyp
41S-q¥0 [F<puo THO-AHO [e<puo I<pao
dELS daLS
NMOd
-dNAON-LON [dnpou] -dNAON-LON [dnpou]
dHLS dHLS dELS ~THUNA [124un]
AISTHO-dNAON . AISTHO-dNAON
-dNAON-LON [dnpou] -dNAON-LON [dnpou] -dNAON-LON [dnpour] dnpou
-A¥O-LON [pao— -AYO-LON [pao— .
OHY-dNAON ., DHY-dNAON DHY-dNAON) T—loaun
= 41S-d [T=*ppuaun = = THO-d [*ppaun .
-Q¥O-LON [0<puo-—] N -qQ¥O-LON [0<puo] -Q¥O-LON [0<puo-] 1 furg
da1s-d H:.i THO-d [r truyy @< 0Zpr10
dIS-aQu0 [T<puo THO-A™O [T<puo : P

o3ed snorasid wogj panuljuo))

76

a8ed jxou UO panuIjuo))

€ISN
-AZON-LON [pgou-]
€ISdd-QUO-LON [TH*<puo] LD-TYIN LVHN-€ISN [qesu]
Vda-agoN 41SdA-QY0-LON Vdd-AgON Vda-agoN -aQY0-LON [*<puo-] HEIYLN-LYHN [apyu]
-dNAON-LON [dnpou] 41s -dNdON-LON [dnpou] -dNAON-LON [dnpour] LD-ATULN HEULN
Vdd -dISN-Q¥O-LON [T~ *>puoc] Vdd vdd -QUO-LON [87*>puoc] ~THUNA-LON [1p4unw]
-4ISN-A¥O-LON [0<puo] JALS-TTYLN [p2u43u] -4ISN-Q¥O-LON [0<puo] -dISN-A¥O-LON [0<puo] JALS-HTYLN [p2u49u] 294U
4IS-ad0 [*puo] Nud-a¥0 [T=*puo] T+1<puo
I=*>puo—
1< fpio
dISN
-AZON-LON [pgou-]
LVHN-€ISN [qrsu]
Vdd-agoN = Vdd-azON Vdd-agON LD-ATUIN HEUIN-LVHN YU
~d1JON-LON [dnpou-] mHmmm-o,mo-Hoz [e=puo-] -dNAON-LON [dnpou] -dNJON-LON [dnpour] -Q¥O-LON [T<puo] HAULN _ _
JALS-TTLLN [p243u] ;
vdd B 15— [1p.o] vdd N vdd N JHLS-HAYLIN [p249u] ~THUNN-LON [1paunc]
-gdISN-Q¥O0-LON [0<puo-] -4ISN-Q¥0-LON [0<puo] -gISN-Q¥O0-LON [0<puo] NYd-q40 [puo] 99u43u
T<puo—
pLO—
Tpao
€ISN
-AZON-LON [pgouc]
Vdd-agoN NISNU-€ISN VdA-AgoON Vdd-agoN LVHN-€ISN [qesu]
-dNAON-LON [dnpou] i AISNUJ-GISN AAUIN-IVHN [ayu]
-dNAON-LON [dnpou] -dNAON-LON [dnpou] -dNAON-LON [dnpou]
Vi 4ISdd-QY0-LON Ve Vi -dNAON-LON Eowﬁoﬁrg ATYIN
THISN-AHO-LON [0<paow] .Emz-azo.ﬁm%m [0<p.o-] “AISN-AHO-LON [0<puo-] ~HISN-Q¥0-LON [0<puo-] draHomoN [7<pao-] TN :wmwworr_
204U
pao
€ISN
qa1s -dZON-LON [pgou]
Vdd-agOoN -gISN-AQ¥0-LON [puao-] Vdd-agON Vdd-agON AISNUd-9ISN NAD-AUO [Tpuo]
-dNAON-LON [dnpou] AISNUJ-EISN -dNAON-LON [dnpou| -dNAON-LON [dnpour] -dNAON-LON [dnpouc] NEID-THUNA [194un]
vdd -dNdON-LON [dnpou] vdd vdd N¥d-QHO [puo] qQsu
-gISN-QY0-LON [0<puo] dELS-NID [uab] -gISN-QYO-LON [0<puo] -4ISN-QY0-LON [0<puo] dELS-NID [uab] uo3
4a1S-qQuo0 [Tpuo] dnpou
pJIo
ONV ONV AZON-NED [uab]
dISTHD-4ISN [q15u] -THUNN-LON [1paunc] ~TIYNN-LON [124unc] .
LO-TAUIN dALS dN-agoN [Tpgou]
-Q40-LON [T<puo-] dELLS dELS daLS -agON-dNAON [dnpou] dN-NI'T [Tug]
-AZON-dNdON [dnpou] -AgON-dNdON [dnpoul] -AZON-dNAON [dnpou] :
SINIS-HAYLN T.wkwﬁ_ 3) dALLS AZON-NIT ?Sz
JALS NIT-Q¥O0 NI'T-Q¥0 :
dALS -AgON-auo [puo] pgou
-AgON-aQ¥0 [puo] ~dZON-aHO [pso] dALS - deLLS = N¥d-d [pgou] dnpou
JELS-NAD [uahb] -AZON-ad0 [0<puo] -AZON-A™O [0<puo]
DNV-NIT [u2q] SOV-NIT [u2]] pro

7

o3ded jxou UO ponurjuo))

JELS
JELS -dNAON-LON [dnpou] JELS dELS JeLS dN-NIT [T
-dNAON-LON [dnpou] 4ISTHO-dNAON -dNAON-LON [dnpou] -dNAON-LON [dnpou] -dNAON-LON [dnpou— dnpou
OHY-dNAON B -Q90-LON [puo-] DHY-dNAON B OHY-dNAON B N¥d-qd0 [0<puo _ugg
-Q¥O-LON [0<puo-—] 41S-auo [T<puo] -Q¥O-LON [0<puo] -QYO-LON [0<puo-] Nud-d [uyg 0<pao
dIs-d [Tuz]]
AISNUd-9ISN 1SN
Vdd-dgoN Vdd-AgON Vdd-dgON
4 -dNAON-LON [dnpou] 4 ‘ 4 AISNUJ-AISN -AgON-LON [pgouc]
“ANGON-LON [dnpou-] d1Sdd-AY0-LON ~AATON=TON [dnpou] “ANGON-LON (dnpou-] -dNAON-LON [dnpou— I=>qusu
OHYU-AZON as DEY-AZON OHYU-AZON A N-NO-LON ?lwﬂ;or Hl‘sw%&r
-Q¥0-LON = -aQy0-LON -qQ¥0-LON =
-dISN-AQHO-LON T=t>puo— NHd-q90 I—t<puo dnpou
Vdd-agON [e Vdd-AgON Vdd-dgON [N P
= 41S-ad0 [*<puo = = Nud-d [T—uzy tuyg

-Q4O-LON [0<puo] B -QYO-LON [0<puo-] -QY0-LON [0<puo-] 2y
d15-d [fuz 1<y f<pio

gISN

Vdd-agoN ISNYJ-EISN Vdd-AgON Vdd-agoON

-AZON-LON ou
-dNdON-LON [dnpou] -dNdON-LON [dnpou] -dNAON-LON [dnpou] -dNAON-LON [dnpou] AISNYJ-LISN ¢ [z ﬁﬂw

DHYU-AZON 41s DEY-AZON OHY-AZON -dNAON-LON [dnpou] ol

-QYO-LON -dISN-QHO-LON [puo— -QYO-LON -QYO-LON N¥d-a¥0 [0<puo] Q.ﬂuo:

Vda-AgZON B d1S-ay¥o [T<puo Vdd-agoN B Vda-AgoN B Nud-d [u] Tar

-Q4O-LON [0<puo-—] d1S-d [Tuy -QYO-LON [0<puo-] -Q40-LON [0<puo-] HNmZ.nm

TAUNN
AISTHO-GISN 15U
Vdd-agON 1S-a0 [azsu] Vdd-AgON Vdd-dgON THONYUd -AgON-LON [pgou-]
-dNAON-LON [dnpou] SUNIT-0HO [0Zpuo] -dNAON-LON [dnpou] -dNAON-LON [dnpour] -TAUNN-LON [1o4un] NIT-OMON [puou]

DAY-AZON SN p 0Od¥-AZON DAY-AZON Nud-a¥0 [0<puo] dN-NI'T [Tug]

-@¥0-1ON AIT-d0ION [dnpou] -aQy0-LON -q¥0-LON dISNYd [PAuUn—

Vdd-agOoN Vdd-agoN Vdd-agOoN -NI'T-dNdON [dnpou] dnpou

z SUI-DUON [124un] - _

-QUO-LON [0<puo] -qQ¥O-LON [0<puo] -Q¥O-LON [0<p.o-] Nud-d [u] urg
daI1s-d [Tuzg] 0Zpio
dELS

-dNAON-LON [dnpou] dALS
daLS 4ISdd-QY0-LON daLS daLs -dNAON-LON [dnpou— dnpou—
-dNdON-LON [dnpou] i —— -dNAON-LON [dnpou] -dNdON-LON [dnpou] 40-HO-1ON FLW@SF T—>puoc
OHAY-dNAON =S OHY-dNAON OHAY-dNAON Tﬁs uo8
. -Q4O-ION [T7*>puow 0z 0z N¥d-a¥0 [t=*puo .
-Q40-LON [0<p.o-] AIS-CO [*pao -QYO-LON [0<puo] -Q40-LON [0<puo-] JALLS-NT [uab (1<2) 'pao
dELS-NED [uab
dALS
dALS -dNAON-LON [dnpou] JALS dALS JELS dnpou—
-dNAON-LON [dnpou] dISTHO-dNAON -dNAON-LON [dnpou] -dNAON-LON [dnpouw] -dNAON-LON [dnpou— pao—
DHY-dNAON _ -QYO-LON [puao— DHY-dNAON B DHYU-dNAON B NYd-ad0 [puo ue8
-QUO-LON [0<puo] 415-aHuo [Tpuao -qQ¥O-LON [0<puo-] -Q¥O-LON [0<p.o-] JHLS-NAD [uab Ipao
JALS-NAD [uab
dALS
JALS -dNdON-LON [dnpou] JALS JALS JALS NAD-A™O [Tpuo]
-dNAON-LON [dnpou] d1s -dNAON-LON [dnpou-] -dNAON-LON [dnpouw] -dNAON-LON [dnpou— dnpou—
DHY¥-dNAON _ -dISN-Q¥0-LON [puao— DHY-dNAON B DHY-dNAON N N¥d-ad0 [puo ue8
-QYO-LON [0<puo-] 41S-q¥0 [tpuao -QYO-LON [0<puo-] -QYO-LON [0<p.o-] dELS-NED [uab pao
JHLS-NTD [uab
< b +1 N

o3ed snorasid wogj panuljuo))

78

oged 1xou UO panuIu0))

dELS
ddLs -dNAON-LON [dnpou] ddLs ddLs dALS dnpou—
-dNAON-LON [dnpou] 4ISTHO-dNAON -dNAON-LON [dnpou] -dNAON-LON [dnpou] -dNAON-LON [dnpou] [eaun
OHY-dNAON B -QY0-LON [puo] DAY-dNAON _ DAY-dNAON _ Nud-d [uy] _Turg
-QY0-LON [0<puo-] q18-d [Tu] -QYO-LON [0<puo] -QY0-LON [0<puo-] N¥d-q¥0 [0<puo] 0<pao
d1S-a¥0 [T<puo]

dISN

AISNYd-9ISN -AgON-LON [pgou-]
Vdd-agoN o h i Vdd-agON Vda-agOoN o

dNAON-LON [dnpou]) I1SNUd-FISN NMOa
-dNAON-LON [dnpou] s -dNAON-LON [dnpou] -dNAON-LON [dnpou] dDAON-TON [dnpou] NG [19un)

DHAU-AZON i OHY-AZON DHU-AZON -,)

) -gISN-AQHO-LON [pao])) NUd-d [e—*puun] qQisu
-Q40-10N s -Q40-10N -Q40-10N i d
VeI q18-d [T=*124un)] N N Nud-d [T~ ue npou

TON) Vdd-agON vdd-dgON 0= It
-QYO-LON [0<puo] d1s-d [rug] QUO-1ON [0Zpaow] QHO-1ON [0Zpuoe] N¥d-q¥0 [0<puo] Hoaun
. :
dIS-aQu0 [T<puo] turg
(e<?) 0<pao
€ISN
ISNUd-FISN -AZON-LON ouw
Vda-agoN .) Vdd-agoN Vda-agoN . ¢ [z]
dNAON-LON [dnpouc]) dISNUd-FISN NMOd
-dNAON-LON [dnpou] as -dNAON-LON [dnpou] -dNAON-LON [dnpou] INAON-LON [dnpouc] —TTYNA [jp1un]
OHYU-AZON DEY-AZON OHYU-AZON p !
-4ISN-QHO-LON [pao] Nud-d [124un] qQrsu
-qQ¥0-LON T -QY0-LON -q¥0-LON T d
Ved-a d1s-d [T794un] N N Nud-d [rueg] npou
ZON z Vdd-agoN Vda-dgoN 0s 1
N - 0= dI1S-d [eu] I 0= N B 0= NUd-ad0 [0<puo] [eaun
aY0-LON [0<puo-] QY0-LON [0<puo-] a40-LON [0<puo-]
41S-q40 [T<puo] zurg
ON@&O
dISN
vdd-dgON ISNUd-FISN Vdd-dgoN vdd-dzOoN
: -AZON-LON [pgou]
-dNAON-LON [dnpou] -dNAON-LON [dnpou] -dNAON-LON [dnpou] -dNAON-LON [dnpou] ISNUJ-LISN wsu
DHYU-AZON 41s DEY-AZON DHY-AZON -dNdON-LON [dnpou— Q:Wo:
-aQ40-LON -dISN-QHO-LON [pao] -qQ40-LON -aQ40-LON NYd-d [uy oxun
Vda-agoN B q15-d [Tu] Vdd-dgoN _ vdd-dzON _ N¥d-a¥0 [0<puo I Tar
-QUO-LON [0<puo-—] 41S-auo [T<puo] -qQ¥O-LON [0<puo] -QYO-LON [0<puo-] oN«Z.nM
JELS
-dNAON-LON [dnpou] dALS
daLS 4ISdd-a¥90-LON deLS daLs -dNAON-LON [dnpou— dnpou—
-dNAON-LON [dnpou] m.zqmoioaoz -dNAON-LON [dnpou] -dNAON-LON [dnpou] d0-QHO-TION [6=*5poc 1=>puoc
OHY-dNAON ’ . DHY-dNAON OHY-dNAON P furg
-Q¥0-LON [0<puo-] SAMOION [T po- -QU0-LON [0<puo-] -¥0-LON [0Zpao] NHEAto [Spuo (1<) <puio
41S-aHuo [*<puo Nud-d [T—*uzp :
d18-d [Puzp
JALS
daLS -dNAON-LON [dnpou] dALS daLs dELS dnpou—
-dNAON-LON [dnpou] dISTHO-dNAON -dNAON-LON [dnpou] -dNAON-LON [dnpouw] -dNAON-LON [dnpou— puao—
DHY¥-dNAON _ -QY0-LON [puo— DHY-dNAON B DHY-dNAON N N¥d-ad0 [0<puo _Tugg
-QYO-LON [0<puo-] 41S-a¥0 [T<puo -QYO-LON [0<puo-] -QYO-LON [0<p.o-] Ndd-d [uyg 1<puio
a18-d [Tuz)
< ~ +1 1

o3ed snorasid wogj panuljuo))

79

LVHN-4ISN [qrsu]
dHLS-HAYLN [2249u]
JALS-HALLN [9247u] JALS-HAULN [p2ugu] JALS-HALLN [p247u] HHYIN-LVHN [#pyu]
Ve 4ISdd-QY0-LON v Vi dELS-HEYIN [p23u] 204U
. = a1s = = dN-A¥O-LON [0<puobou] 0=
-4ISN-QHO-LON [0<p.obau] - -dISN-QHO-1LON [0<pu.obau] -4ISN-QHO-LON [0<pu.obaul] <p.o—
-dISN-AHO-LON [0<puobou] (o
L
JALS
JALS -dNAON-LON [dnpou] JELS JELS
dALS dnpou—
-dNAON-LON [dnpou—] d1Sd. -dNAON-LON [dnpou] -dNAON-LON [dnpou] P
) -dNAON-LON [dnpou] 0<puo
OHY-dNAON -qQ40-1ON DHY-dNAON DHYU-dNAON <
< z = dN-q¥0-LON [0<pu.obau] (s)
-Q¥O-LON [0<puobau] FISTHO-dNAON _ -qQ¥O-LON [0<puobou] -Q¥O-LON [0<puobou]
-qQHO-LON [0<puobou]
JALS
-dNdON-LON [dnpou] JELLS dnpou—
dALS 41Sda-QUY0-LON JaLS dALS -dNAON-LON [dnpou— 1—fS>puoc
-dNAON-LON [dnpou] dISTHO-dNAON B -dNAON-LON [dnpou] -dNAON-LON [dnpour] dN-q¥0-LON e=f>puo I—!eaun
DAY-dNAON B -q40-1ON [T~ >puoc DAY-dNAON B DAY-dNAON B N¥d-d [e=*jpaun furg
-a90-1ON [0<puo—] qa1s-d [T=*jpuun -a90-10ON [0<puo—] -q90-1ON [0<puo] NYd-d [T-tuy (1 B
41S-d [ruy N¥d-a40 [1—Ff<puo < lg <) <pao
d1S-aH0 [f<puao
daLs
-dNAON-LON [dnpou] JeLS dnpou—
JALS JALS JALS
4ISTHO-dNAON : -dNdON-LON [dnpou— pao—
-dNAON-LON [dnpou] -dNAON-LON [dnpou-] -dNAON-LON [dnpou] e .
-aQ4O-LON [pao— NYd-d [e—*puun T—Hoaaun
DHY-dNAON . DHY-dNAON DHY-dNAON = .
= dI1s-d [T—*puun = = Nud-d [T—ruzp furg
-QYO-LON [0<puo-] 3 -QYO-LON [0<puo-] -QYO-LON [0<p.o-] = =
q15-d [tur N¥d-a40 [0<puo (z<2) 1<puio
41S-AHO0 [T<puo
dELS NMOa
-dNAON-LON [dnpou] ddLS - THUNA [194un]
JaLS JALS daLS
AISTHO-dNAON ! -dNdON-LON [dnpou— dnpou—
-dNAON-LON [dnpou] -dNAON-LON [dnpou-] -dNAON-LON [dnpour]]
-aQ4O-LON [pao— NYd-d [124un pao—
DHY-dNAON DHY-dNAON DHY-dNAON
= q1s-d [Tppuun = = NYd-d [Tuy Toaun
-Q¥O-LON [0<puo—] -d¥O-LON [0<puo—] -Q¥O-LON [0<puo] 0Z
q1S-d [eur NUd-AHO [0<puo _Zurp
41S-q40 [F<puo 1<pio
dELS NMOa
-dNdON-LON [dnpou] LS
dALS dALS dALS -THUNA [124un]
AISTHO-d1AON : -dNdON-LON [dnpou—
-dNAON-LON [dnpou] -dNAON-LON [dnpouv] -dNAON-LON [dnpou] . dnpou
-A¥O-1ON [pao— Nud-d [e=*paun .
OHY-dNAON . DHY-dNAON DHY-dNAON - T—foaun
) = 415-d [T—*puun) -] — Nd-d [T—uy ;
-Q4O-LON [0<puo-—]) -QYO-LON [0<puo-] -Q40-LON [0<puo-] = fuyg
dIs-d I_.E.S NUI-THO [0<p.o @< 0Zpao
41S-a¥0 [F<puo ¢
dELS NMOa
-dNAON-LON [dnpou] dALS
dHLS dHLS dELS ~THUNA [124un]
AISTHO-dAAON ! -dNAON-LON [dnpou—
-dNAON-LON [dnpou] -dNAON-LON [dnpou] -dNAON-LON [dnpour] dnpou
-QUO-LON [pao— Nud-d [124un
OHY-dNAON DHY-dNAON DHY-dNAON Toaun
-qQU0-LON [0<p.o-] s [fr2.4un -QY0-LON [0<puo-] -QYO-LON [0<puo] Nd=d [tun zuyy
da1s-d W:.i N¥d-A40 [0<p.o 0Zpr10
dIS-aQu0 [T<puo P

o3ed snorasid wogj panuljuo))

80

B.2 Correctness of the Aiﬁ)ﬁg Automaton

81

daLs dELS dELs daLs dELLS
. dnpou—
-dNAON-LON [dnpou—] -dNJON-LON [dnpou] -dNAON-LON [dnpou] -dNAON-LON [dnpou] -dNJON-LON [dnpou]
HAULN HEIULN
~TEUNN-LON ~TEYNN-LON 1SN
SMNIS-EEYLN [1paunc] SINIS-HHH.LN [1paunc] dISTHO-4ISN [qesu] z
-AZON-LON [pgouc]
vdd-dgON dISNHYd-LISN LVHN-€ISN LVHN-€ISN THO-dNAON [dnpou] 5t
-dNAON-LON [dnpou] -dNAON-LON [dnpou] HAYLN-LYHN HAYLN-LYHN NMOQ-TAUNN &:90:
SMINIS-HHULN [qrsu] MINIS-HHYLN [qsu] THO-d [124un] _mw:s
NMOd NMOa
-THINN-dNAON [dnpou] ~THUNN-dNAON [dnpou]
NI'T-O¥ON [ouou]
NIT-DTON [o0u]
dISTHD-4ISN [qesu]
SN THONYd TAUNN
Vda-agoN DSA-TAUNN DSA-TAUNA ~THUNN-LON [ppaun— -AgON-ION [pzou-]
-NI'T-dNdON [dnpou] :
-dNAON-LON [dnpou] . -dNdON-LON [dnpou] -dNAON-LON [dnpour] dISTHO-EISN [q2su dN-NIT [Tuz]
. THO-dNAON [dnpou joduUnC
-DTON-THYUNN [124un] dnpou
urr
TAUNA
THONYd
\ ’ -AgON-LON [pgou]
vdd-dgON dISNYd-9ISN 0SA~TAUNN DSA-TdYNN -TEUNA-LON [paunc— e
-dNAON-LON [dnpou] -dNAON-LON [dnpou] -dNAON-LON [dnpou] -dNAON-LON [dnpou] AISTHO-EISN [qesu ! 5w
THD-dNAON [dnpou &:Wo:
HIULN HAULN
~TEUNN-LON ~TEYNN-LON a1SN
SINIS-HAULN [1paun<] SINIS-HEULN [124unc] R
AISTHO-FISN [qsu -AgON-LON [pgou]
Vdd-dgON 4ISNUJ-FISN LVHN-€ISN LVHN-€ISN
THO-dNAON [dnpou qQsu
-dNAON-LON [dnpou] -dNAON-LON [dnpou] HAYLN-LVHN HEYLN-LVHN
JHLS-NTD [uab dnpou
SINIS-HEULN [qrsu] SINIS-HEULN [qrsu] w03
NMoa NMOa
-THUINN-dNAON [dnpou] -TEINN-dNAON [dnpou]
HIULN HAULN
F— -THUNN-LON -TEINN-LON dN-NIT [tug]
AISTHO-€ISN [qrsu] SINIS-HEMLN [1paunc] SINIS-SEMIN [124unc] AZON-NIT [u]
-THEINN-LON AISTHO-EISN [qesu]
JALS IVHN-9ISN LVHN-4ISN dn-dgoN [Tpgou]
MINIS-HHULN [12a4unc]) THO-dNAON [dnpoul]
-AZON-dNAON [dnpou] HAYLN-LVHN HEULN-LVHN AZON-NID [uab)
daLs dELS-NED [uab)
JALS-NTD [uahb] SINIS-HAULN [qzsu] SINIS-HEULN [qr5u] dnpou
-AZON-dNAON [dnpou]
daLs dALS pzou
-AgON-dNAON [dnpou] -AZON-dNAON [dnpou]
ha =) W1

82

o3ed jxou uO panurjuo))

dISNUd-9ISN
-dNAON-LON [dnpou]
a1s
-€ISN-Q¥O-LON [pao—
dIS-LVHN 1oy dISN
qIS-dN [Tq25u -AZON-LON [pgouc]
Vdd-agOoN Vdd-agON Vdd-agON AISNUd-9ISN
~dNdON-LON [dnpou] SUATOUON -dNAON-LON [dnpou] -dNAON-LON [dnpour] -dNAON-LON [dnpou] qQisu
~TIINN-LON [12aun<] dnpou
daLs B [eaun
-AgON-LON [0<pgou—
dIs-d [Touou
d1s-d [To0u
a18-d [Guzp
NI'T-D¥ON [ouou]
NIT-OTON [or0u]
dISNUJ-EISN [qzsu] THONYUd N
dISNUd ~THYNN-LON [1paunc] .
Vda-agoN Vdd-AgON Vda-agoN) -AZON-LON [pgou-]
-NIT-dNAON [dnpou] X dISNUd
-dNAON-LON [dnpou] -dNAON-LON [dnpou] -dNAON-LON [dnpou] dN-NI'T [Tuag]
sud -NI'T-dNdON [dnpou] e
-OYON-THUNN [124un] Nud-d [u] wu:vo:
ul
TAUNN
-AZON-LON [pgouc]
Vdd-agON AISNYd-9ISN Vdd-agON Vdd-agON AISNUd-9ISN S une
-dNAON-LON [dnpou] -dNAON-LON [dnpou-] -dNAON-LON [dnpou] -dNAON-LON [dnpouw] -dNAON-LON [dnpou] ! Qe
dnpou
gISN
-AZON-LON [pgou]
Vdd-AZON dISNUd-LISN Vdd-AgON Vdd-AZON €ISNUd-LISN S
-dNdON-LON [dnpou] -dNdON-LON [dnpou] -dNAON-LON [dnpou] -dNdON-LON [dnpou] -dNAON-LON [dnpou] asz:
ua3
! dN-NIT [Tuz]
HIULN ONV ONV
AISTHO-EISN [qesu] AZON-NIT [u2]]
~TAUNN-LON -THUNA-LON [1p0unc] ~TAUINN-LON [1p1un] JELS
aqLs dn-agoN [Tpgou]
SINIS-HEULN [1paunc] daLs daLS -AgON-dNAON [dnpou]
-dgZON-dNAON [dnpou] . AZON-NID [uab)
ddLs -AgON-dNdON [dnpou] -AZON-dNAON [dnpou] Nyd-d [pgou]
JALS-NID [uahb] dnpou
-AZON-dNAON [dnpou] ONV-NIT [u]] SOV-NI'T [u2] pzou

83

dALS
-dNAON-LON [dnpou]
AISNUJ-EISN
-dNAON-LON [dnpou]
1S
-gISN-QHO-LON [pao—
: qIS-IVEN ['>oyu]
s dIS-dN [T—*qisu daLs ddLs Eich i dnpour
~dNdON-LON [dnpou-] SU-DUON ’ -dNAON-LON [dnpouv] -dNAON-LON [dnpouw] -dNAON-LON [dnpouw]
~THUNN-LON [1paunc]
dALS
-agON-LON [0<pgou—
d1S-d [T—*ou0u
d1s-d [T1—*0u
dI1s-d [Pu2)
= b +1 1

o3ed snorasid wogj panuljuo))

84

Bibliography

[1]

2]

M. Benedikt, W. Fan, and G. Kuper. Structural properties of XPath fragments. In Proc. of
ICDT’03, 2003., 2003.

A. Berglund, S. Boag, D. Chamberlin, M. F. Ferndndez, M. Kay, J. Robie, and J. Siméon.
XML Path Language (XPath) 2.0, W3C Working Draft, Nov 2003. http://www.w3.org/TR/
xpath20.

S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, and J. Siméon. XQuery 1.0
An XML Query Language, W3C Working Draft, Nov 2003. http://www.w3.org/TR/xquery.

B. Choi, M. Fernandez, and J. Siméon. The XQuery Formal Semantics: A Foundation
for Implementation and Optimization. Internal Working Document at AT&T and Lucent.
http://www.cis.upenn.edu/~kkchoi/galax.pdf, 2002.

D. Draper, P. Fankhauser, M. Ferndndez, A. Malhotra, K. Rose, M. Rys, J. Siméon, and
P. Wadler. XQuery 1.0 and XPath 2.0 formal semantics, W3C Working Draft, Feb 2004.
http://www.w3.org/TR/query-semantics.

M. Fernandez and J. Siméon. Galaz, the XQuery implementation for discriminating hackers.
Lucent Technologies — Bell Labs, v0.3 edition, 2003. http://www-db-out.bell-1labs.com/
galax.

M. Fernandez, J. Siméon, B. Choi, A. Marian, and G. Sur. Implementing XQuery 1.0:
The Galax Experience. In Proceedings of International Conference on Very Large Databases
(VLDB), pages 1077-1080, Berlin, Germany, Sept. 2003.

A. GoldBerg and R. Paige. Stream Processing. In Proceedings of the ACM Symposium on
LISP and Functional Programming Languages, pages 53—62, 1984.

G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for Processing XPath Queries. In
Proc. of the 28th International Conference on Very Large Data Bases (VLDB 2002), Hong
Kong, 2002.

G. Gottlob, C. Koch, and R. Pichler. The Complexity of XPath Query Evaluation. In Proc.
of the 22nd ACM SIGACT-SIGMOD-GIGART Symposium on Priciples of Database Systems
(PODS), San Diego (CA), 2003.

T. Grust. Accelerating XPath location steps. In Proceedings of the 2002 ACM SIGMOD
international conference on Management of data, pages 109-120, Madison, 2002.

T. Grust, M. van Keulen, and J. Teubner. Staircase Join: Teach a Relational DBMS to Watch
its (Axis) Steps. In VLDB 2003, 2003.

S. Helmer, C.-C. Kanne, and G. Moerkotte. Optimized Translation of XPath into Algebraic
Expressions Parameterized by Programs Containing Navigational Primitives. In Proc. of the
3rd International Conference on Web Information Systems Engineering (WISE 2002), pages
215-224, Singapore, 2002.

85

[14]

[15]
[16]

[17]

[18]

J. Hidders and P. Michiels. Efficient xpath axis evaluation for dom data structures. In
PLAN-X, Venice, Italia, 2004.

M. Kay. XSL transformations (XSLT) version 2.0, 2003. http://www.w3.org/TR/xs1t20.

A. Kwong and M. Gertz. Schema-based optimization of XPath expressions. Technical report,
Univ. of California, dept. of Computer Science, 2001.

X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon). The Objective Caml sys-
tem, Documentation and user’s manual, release 3.07 edition, 2003. http://caml.inria.fr/
ocaml/htmlman.

F. Peng and S. S. Chawathe. Xpath queries on streaming data. In Proc. of the 22nd ACM
SIGACT-SIGMOD-GIGART Symposium on Priciples of Database Systems (PODS), San
Diego (CA), 2003.

A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu, and R. Busse. XMark: A
benchmark for XML data management. In Proceedings of International Conference on
Very Large Databases (VLDB), pages 974-985, Hong Kong, China, Aug. 2002. http:
//monetdb.cwi.nl/xml/.

86

