
MotiPlus and MotiSet: Discovering the Best Set
of Motiflets in Time Series

Len Feremans1, Patrick Schäfer2, and Wannes Meert3

University of Antwerp, Department of Computer science, Antwerpen, Belgium
Humboldt-Universität zu Berlin, Department of Computer Science, Berlin, Germany

KU Leuven, Department of Computer Science, Leuven, Belgium
len.feremans@uantwerpen.be, patrick.schaefer@hu-berlin.de,

wannes.meert@kuleuven.be

Abstract. Motif discovery algorithms find repeating patterns in time
series with high similarity. Many methods exist for this important task,
which has numerous applications. This work is guided by the following two
ambitious questions: What is the “perfect” motif? What is the “perfect”
set of motifs? To answer the first question, we consider all motifs of
a certain size and rank them based on a robust measure of similarity.
To determine the optimal size of a motif, we assess the quality of a
motif relative to a lattice of sub- and supermotifs and define two novel
quality constraints. To answer the second question, we balance multiple
contrastive quality criteria for a set of motifs. The set of motifs should be
diverse, non-redundant, and include highly similar motifs of varying sizes.
Due to the exponential search space, the exact search for the best motif
and set of motifs is a major concern. We leverage the lattice structure
of time series and prune most candidate motifs and sets of motifs. For
discovering a set of motifs, we propose two variations. The first is based on
a greedy search and filters using the aforementioned quality constraints.
The second algorithm is based on A* search, by directly measuring
the quality of thousands of candidate sets of motifs. We evaluate our
method qualitatively on music datasets and quantitatively on a time
series motif discovery benchmark. The proposed algorithms achieve state-
of-the-art results, improving precision by 27.9% and recall by 10.1%
over LoCoMotif, and significantly outperforming strong baselines like
Grammarviz, MMotif, and Motiflets.

1 Introduction

Time series (TS) consist of sequences of continuous values that are typically
recorded over time. In the last two decades, research has focused on the au-
tomatic discovery of motifs, i.e. identifying a set of repeating subsequences in
TS [8]. Motif discovery algorithms efficiently enumerate frequently occurring
patterns and provide these insights to experts, enhancing interpretability in AI
systems. Furthermore, motifs are used for downstream tasks such as TS clustering,
classification, segmentation, and anomaly detection, and have applications in
smart devices, financial monitoring, healthcare, studying natural phenomena

1

mailto:len.feremans@uantwerpen.be
mailto:patrick.schaefer@hu-berlin.de
mailto:wannes.meert@kuleuven.be

in astronomy, and more [1, 3]. Unlike clustering, motif discovery does not aim
to comprehensively describe the entire TS; instead, it seeks to identify multi-
ple relevant patterns, distinguishing them from the remaining TS. Many motif
discovery algorithms have been proposed. A natural trade-off arises between
reporting a few large (i.e., frequently repeating) motifs with lower similarity
and many smaller motifs with higher similarity. Evaluating a single method is
challenging because changing hyperparameters produces multiple alternative sets
of motifs. A common practice is to perform a qualitative evaluation, however
authors can cherry-pick parameters and present favorable examples of motifs on
only a few TS. Recently, a benchmark and evaluation measure for comparing
motif discovery methods was introduced, the tsmd-benchmark [15]. It provides
a more comprehensive evaluation than existing metrics, and more challenging
benchmark than earlier ones. The authors compare 11 different methods based
on F1-score, precision, and recall across 14 datasets. They find that LoCoMotif
performs best, followed by Motiflets, MMotif, and GrammarViz [6,13,14].

In this context, we introduce two novel algorithms for identifying a high-quality
set of highly similar motifs: MotiPlus and MotiSet. Both methods address the
limitation that most motif discovery methods rely on heuristics and identify only
a single set of motifs. Depending on the parameter settings and heuristics used,
the quality and robustness of the resulting set can vary significantly. MotiPlus
and MotiSet first identify local motiflets, which are motifs of a certain size
with the highest overall similarity. We define two key quality constraints for
motifs: k-closedness and self-sufficiency. Both constraints help determining the
correct size of the motifs. Specifically, if adding a subsequence leads to only a
minor increase in similarity, the motif is not k-closed. Likewise, if a motif can
be decomposed into two distinguishable smaller motifs, it is not self-sufficient.
MotiPlus uses greedy search and in Fig. 1 we present an example output of
MotiPlus and Motiflets [12]. MotiSet searches for the optimal set of motifs
thereby evaluating thousands of candidate sets using A* search [4]. Using A*
search, we prioritize sets of motifs with the highest value, allowing us to stop
MotiSet at any time and report the best solution found so far. We compute the

TS
m
ot
ifl
et
s

M1.1

M2.1

M2.2

m
ot
ifl
et
s+
+

M2.3

M2.4

M2.5

Fig. 1: An example of motifs discovered by Motiflets and MotiPlus. Moti-
flets identifies a single motiflet of size 7 (M1.1), which lacks self-sufficiency and
should be split. In contrast, MotiPlus finds three similar local motiflets of size 4
(M2.1–3), which Motiflets cannot detect due to its one-motif-per-size limitation.

2

value by balancing high intra-motif similarity with low inter-motif similarity. In
the search for the “perfect” motif and the “perfect” motif size, a major challenge
is the exponential size of the search space. Given n subsequences of length l
in a time series, there are nk possible motifs of size k. For sets of motifs, the
search space is even larger, with nk¨m possible sets of motifs of size m. We design
efficient algorithms that leverage the lattice structure of the time series to prune
most candidate motifs and sets of motifs, reducing the number of possibilities by
an order of magnitude. In summary, we make the following key contributions:

– We identify the best motifs, referred to as local motiflets, which are defined
as motifs with the highest local similarity, measured by extent. Additionally,
we introduce two new quality constraints, k-closedness and self-sufficiency,
to select the best motif of varying size.

– We present a tighter approximate algorithm and a more efficient exact algo-
rithm to discover high-quality motifs.

– We introduce a novel greedy algorithm, MotiPlus, which efficiently identifies
the top-m non-redundant motifs across various motif sizes.

– We develop a novel A*-based algorithm MotiSet that optimizes the selection
of a diverse, non-redundant motif set with high intra-motif and low inter-motif
similarity.

– We conduct a case study on music datasets and find that MotiPlus identifies
more motifs with higher similarity, and outperforms existing motif discovery
methods on detecting repeating lyrical segments.

– We demonstrate that MotiPlus and MotiSet achieve state-of-the-art
accuracy on the tsmd-benchmark, attaining the highest F1 score, precision,
and recall [15].

The paper is organized as follows. Section 2 reviews related work; Section 3
introduces preliminaries. Sections 4 and 5 describe MotiPlus and MotiSet,
respectively. Section 6 presents the experimental evaluation, and Section 7 con-
cludes.

2 Related work

Challenges addressed by recent motif discovery methods include: (i) eliminating
hyperparameters, such as the length and distance thresholds, (ii) reporting
varying-length motifs, (iii) reporting larger motifs instead of motif pairs, (iv)
adopting alternatives to Euclidean distance, such as Dynamic Time Warping,
and (v) clustering motifs to increase accuracy. Recent motif discovery methods
include MMotif, Grammarviz, Motiflets, LoCoMotif, Snippets, Hime,
Swamp, Spikelet, Valmod, and Frm-Miner [1, 6, 11,12,13,14]. Many motif
discovery methods have complementary quality objectives and definitions of motif
representations, which makes it difficult to compare all methods.

GrammarViz, Emma, and Frm-Miner first convert TS to discrete sequences
and use discrete pattern mining to enumerate candidate motifs [11,13]. Discretisa-
tion can impede the exact discovery of high-quality continuous motifs and require

3

carefully selection of parameters such as alphabet size and word length. Many
recent methods are based on the Matrix Profile [17]. MMotif finds the most
similar subsequence pairs under z-normalized Euclidean distance (z-ED) [6, 8].
Next, larger motifs are created by selecting all subsequences within a specified
radius. Motiflets searches for the top-1 motif, or motiflet, with the lowest
extent while varying the size of the motif. A disadvantage of Motiflets is that
it discovers fewer motifs and does not search recursively for non-redundant motifs.
More recently, LoCoMotif proposed discovering varying-length motifs using
Dynamic Time Warping. A disadvantage of LoCoMotif and MMotif is that
they are sensitive to the distance threshold parameter, which leads to variability
in the quality of the resulting set of motifs.

MotiPlus is related to MMotif because we perform a recursive search,
thereby excluding regions in the TS covered by previously discovered motifs.
MotiPlus is also related to the TS clustering that uses Minimum Description
Length to evaluate motifs during search [10]. However, the self-sufficiency measure
is not based on information theory. The concept of closed motifs was defined
earlier, but relates motifs of different subsequence lengths, not of different sizes [9].
MotiPlus and MotiSet both search for motifs with low extent, similar to
Motiflets. Our algorithm for finding the exact motiflet is related to frequent
pattern mining in transaction databases, such as Apriori and Eclat [18].
In contrast to the aforementioned greedy motif discovery methods, MotiSet
evaluates many possible sets of motifs. The proposed value function is related to
clustering algorithms such as K-means and Dbscan. However, we consider a
variable number of clusters and do not aim to cluster all points in the TS [2, 5].

3 Background and definitions

In this section, we introduce some background terminology for time series analysis
and motif discovery.

3.1 Time series and motifs

A continuous time series T is a sequence of n real-valued measurements
px1, x2, . . . , xnq. A subsequence Ti,l “ pxi, xi`1, . . . , xi`l´1q consists of l mea-
surements starting at index i. A subsequence Ti,l overlaps, or trivially matches,
another subsequence Tj,l if ri ´ l ¨ αs ď j ď ri ` l ¨ αs where α P r0, 1s. By default,
we set α “ 0.5, ignoring subsequences that share more than l{2 values. We
enumerate all subsequences using a sliding window of size l over T , denoted as
P l “ tTi,l | 1 ď i ď n ´ l ` 1u. The normalized Euclidean distance between two
subsequences Ti,l and Tj,l, with means µ and standard deviations σ, is:

z-EDpTi,l, Tj,lq “

g

f

f

e

l
ÿ

t“1

ˆ

xi`t´1 ´ µi

σi ` ϵ
´

xj`t´1 ´ µj

σj ` ϵ

˙2

.

4

Where we add ϵ to the denominator to avoid division by zero. Given a TS T
and length l, a motif Sk is a subset of k non-overlapping subsequences, i.e.,
Sk “ tTi1,l, Ti2,l, . . . , Tik,lu Ď PpP lq, where k ě 2. We note that there are
n̂ “ n ´ l ` 1 subsequences and n̂k motifs of size k, assuming trivial matching
subsequences are ignored.

3.2 Motiflets

We search for the most similar motif of a given size and provide the following
relevant definitions from Motiflets [12]. The main idea behind Motiflets is
straightforward: it searches for motiflets of varying sizes up to kmax and selects
the maximal motiflets, typically fewer than three.

Definition 1. Extent: The extent of a motif Sk with motif length l is defined
as the maximum pairwise distance between any two subsequences in Sk, i.e.,
extentpSkq “ max ptz-EDpTi,l, Tj,lq | pTi,l, Tj,lq P Sk ˆ Skuq.

Extent measures the cluster diameter in normalized space, and is at most twice
the radius to a subsequence.

Definition 2. k-motiflet: A k-motiflet is the motif of size k with the lowest
extent: Sk is the k-motiflet ðñ ES1

k Ď PpP lq : extentpS1
kq ă extentpSkq.

The extent function is used to compare motiflets of different sizes and to tune
the motif length l.

Definition 3. Extent function: Given a TS T and length l, let Sk be the k-
motiflet. The extent function of T is defined as EFpkq “ extentpSkq where k ě 2,
i.e. EF l

“ extentpSl
2q, extentpSl

3q, . . . , extentpSl
kmax

q.

Definition 4. A k-motiflet is maximal if there is an elbow point at k in the EF:

elbowpkq “
EFpk ` 1q ´ EFpkq ` ϵ

EFpkq ´ EFpk ´ 1q ` ϵ
ą β.

Here, ϵ is a small constant used to prevent division by zero, and β is a hyperpa-
rameter that governs the sensitivity of detecting elbow points, which we set to 1
by default.

4 MotiPlus: Discovering the top-m motifs in time series

In this section, we define the desirable properties of motifs and sets of motifs.
Next, we introduce MotiPlus, a greedy algorithm designed to discover a set of
m motifs. Finally, we present both an approximate and an exact algorithm for
identifying motifs with the highest local similarity.

5

4.1 Desirable properties motifs and set of motifs

We define the optimal motifs as local motiflets, which have the smallest extent
among all non-redundant motifs. Next, we introduce a quality constraint on
a motif and examine whether adding or removing a subsequence affects its
similarity, i.e., whether the motif is k-closed. Additionally, we check if a motif
can be decomposed into smaller submotifs, each with higher similarity, i.e., if the
motif is self-sufficient. These concepts are illustrated in Fig. 2.

Definition 5. Local k-motiflet: Given a candidate motif Sk and a set of motifs
S, Sk is the local k-motiflet if it has the lowest extent of all non-redundant motifs:

Sk P Ck is the local k-motiflet ðñ ES1
k P Ck : extentpS1

kq ă extentpSkq where

Ck “ tSi|Si P PpP lq ^ |Si| “ k ^ not-redundantpSi,Squ

Two motifs Si and Sj are redundant if a subsequence Tk,l P Si trivially matches
with any subsequence in Sj.

We note that a known blind spot in Motiflets is that it discovers only a single
highly similar motif repeating k times. A second goal is to determine the optimal
size of a motif.

Definition 6. Submotif and supermotif: For a motif, we define a submotif S1 Ă

Sk of Sk “ tTi1,l, . . . , Tik,lu as any proper subset of subsequences. Likewise, we
define a supermotif as any proper superset.

Definition 7. Maximal submotif and supermotif: The maximal supermotif Sk`1

of a motif Sk is the supermotif with the lowest extent. Formally, Sk Ă Sk`1 is
maximal ðñ ES1

k`1 : Sk Ă S1
k`1 ^ extentpS1

k`1q ă extentpSk`1q. A similar
definition holds for submotifs.

By suppressing motifs that are not k-closed, we avoid reporting motifs that are
either too small or too large, as illustrated in Fig. 2.

0 20 40 60 80 100 120

0.0

0.5

1.0

Fig. 2: A synthetic TS with two motifs, each of size 3, in red and green. Both
motifs are local motiflets, i.e. the green motif has the lowest extent, and the
red non-redundant motif the second lowest extent. Both motifs are k-closed, i.e.
the extent increases significantly upon any addition of a non-trivially matching
subsequence. Finally, we note that the union of both motifs of size 6 is k-closed,
but not self-sufficient.

6

Definition 8. k-closed: A motif Sk is k-closed if there is a maximal submotif
Sk´1 and maximal supermotif Sk`1 such that

elbowpSkq “
extentpSk`1q ´ extentpSkq ` ϵ

extentpSkq ´ extentpSk´1q ` ϵ
ą β.

Another issue, illustrated in Figs. 1 and 2, occurs when motif discovery methods
mistakenly combine discernible smaller motifs into a single supermotif. Therefore,
we define self-sufficient motifs, inspired by a quality measure used in discrete
pattern mining [16].

Definition 9. Self-sufficient motif: A motif S of size 4 or higher is self-sufficient
if there is no partitioning of S into two disjoint subsets S “ SA Y SB of size 2
or higher such that extentpSAq ` extentpSBq ă extentpSq.

To verify self-sufficient motifs, we use an approximate solution based on the Mini-
mum Spanning Tree (MST). The MST is a tree where each of the k subsequences
in a motif represents a node, and the k nodes are connected by adding edges with
the smallest distances. Using the MST enables efficient enumeration of partitions
consisting of two submotifs with high similarity. A limitation of using the MST
for verifying self-sufficiency is that it may result in false positives, where a motif
that is not self-sufficient is erroneously included in the discovered set of motifs.
The algorithm for verifying self-sufficiency is described in Appendix A.3. Finally,
the task of enumerating the top-m non-redundant motifs within a TS is defined
as follows:

Definition 10. Top-m enumeration: Given a TS T , a top-m enumeration aims
to identify the top-m set of non-redundant motifs S “ tS1, S2, . . . , Smu, having
high similarity.

4.2 Enumerating top-m motifs in a time series

In this section, we define MotiPlus, a greedy algorithm for discovering the m
best motifs. The algorithm iteratively searches for the best motif that: (i) has
the locally lowest extent, (ii) is not redundant, (iii) satisfies the k-closed and
self-sufficiency constraints, and (iv) has the maximal elbow value for varying size.
We note that the algorithm is efficient by using an index of local motiflets, which
is pruned at each iteration. It has hyperparameters l, the length of subsequence
occurrences; the maximum motif size kmax ; and m, the maximum number of
motifs to return. The worst-case time complexity is Opk2 ¨ n2q.

Algorithm. In Algorithm 1, we present the procedures MotiPlus and BestMo-
tiflet. We begin by computing the distance matrixD P Rn̂ˆn̂, where n̂ “ n´l`1
(line 2). In the distance matrix, each cell Di,j contains the z-ED between subse-
quences starting at indices i and j of length l. Next, we compute local motiflets
using the algorithm described in Section 4.3. That is, we call k motiflets heap
once with the maximum size of a motif (kmax) and return an index with at most

7

Algorithm 1: MotiPlus: Discovering the top-m motifs

Input :A time series T , motif length l, number of motifs m, the maximum
motif size kmax

Result: Set S with up to m motifs

1 procedure MotiPluspT, l,m, kmaxq

2 D Ð calc distance matrixpT, lq
3 index Ð k motiflets heappT,D, l, kmaxq

4 S Ð tu

5 for i Ð 1 to m do
6 Si Ð BestMotifletpT, index,S, kmaxq

7 if Si “ H then
8 break
9 S Ð S Y tSiu

10 return S

11 procedure BestMotifletpT, index,S, kmaxq

12 C Ð tu

13 for k Ð 2 to kmax do
14 for Sk P indexrks sorted on extent do
15 if non-redundantpSk,Sq ^ k-closedpSkq ^ self-sufficientpSkq then
16 C Ð C Y tSku

17 break

18 else
19 indexrks Ð indexrksztSku

20 if C “ tu then
21 return H

22 S Ð argmax
SkPC

elbowpkq

23 return S

n̂ ˆ kmax varying-sized local motiflets. The main loop in MotiPlus calls the
subroutine BestMotiflet at most m times (lines 5-9). Early termination is
possible if no additional motif is discovered (line 7). BestMotiflet has two
additional parameters: the index of candidate motiflets and the current set of
motifs, S. We iterate over each value of k and retrieve candidate motifs ordered
by extent from the index (lines 13-14). Next, we iterate over at most n̂ motifs
and verify whether each motif is not redundant and satisfies the k-closed and
self-sufficiency constraints (line 15). The first motif of size k that satisfies the
constraints is added to the list of local motiflets of varying size (line 16). Motifs
that do not satisfy the constraints are pruned from the index. Finally, we use the
elbow-based heuristic to return the maximal local motiflet (line 22). As a special
case, we return H if no motif satisfying the constraints is discovered.

Time complexity. The complexity of MotiPlus is dominated by calling
k motiflets heap once, which has a complexity of Opk2 ¨ n2q, and computing
the distance matrix. The time complexity for computing the distance matrix
naively is Opl ¨ n2q. Using MASS [17], this can be reduced to Opn ¨ log nq. In the

8

worst case, we verify the constraints of all candidates in the index, regardless of
the value of m, where there are at most Opn ¨ kq candidates in the index. The
overall worst-case complexity is thus given by Opk2 ¨ n2 ` n ¨ k ¨ nq “ Opk2 ¨ n2q.

4.3 Discover the motif with the overall highest similarity

In this section, we discuss both an approximate and exact algorithm for local
motiflet discovery. The approximate algorithm directly optimizes extent, resulting
in higher fidelity to the exact solution, and returns many motifs of the same
size with the lowest extent. The exact algorithm applies admissible pruning
of supermotifs based on the monotonicity of extent inspired by related work
in discrete pattern mining [18]. We note this is the first feasible solution that
considers all nk motifs.

A tighter approximate k-motiflets algorithm For local motiflets discovery
we return a list of n motifs of size k ranked by extent. We use greedy search with
extent as a heuristic. We note that greedy search evaluates k ˆ n̂ subsequence
candidates, whereas related work focuses on the non-trivially matching nearest
subsequences [6,12]. An advantage is that by evaluating extent we take all pairwise
distances into account, leading to lower extent. An interesting property of greedy
search, is that any submotif of size 2, . . . , kmax ´ 1 also has the lowest extent.
Hence, we only have to search for the local motiflets once with size kmax. For
brevity, we discuss the pseudo-code in Appendix A.1. The proposed greedy search
optimization using extent requires Opk2 ¨ nq time and the total complexity is
Opk2 ¨ n2q. In contrast, the nearest-neighbor search has a complexity of Opk ¨ n2q.

An efficient exact k-motiflets algorithm Next, we present a novel exact
algorithm for the discovery of k-motiflets. The main goal is to design an algorithm
that is efficient in time and space by applying pruning using the lattice of motifs.
We represent a motif Sk “ tTi1,l, Ti2,l, . . . , Tik,lu as Ŝk “ ti1, i2, . . ., iku where
each subsequence Ti,l is represented by its starting index i P r1, n̂s. Using this
representation we enumerate all subsets of size 1, 2, . . . k, and finally return the
subset of size k having the lowest extent. The following theorem is used to prune
motifs during exact search.

Theorem 1. Given a motif Ŝ1 and supermotif Ŝ, we find that extent is mono-
tonically increasing, that is, for all Ŝ : Ŝ1 Ă Ŝ: extentpŜ1q ď extentpŜq.

Proof: The proof is trivial, i.e. extentpŜq “ max pz-EDpTa,l, Tb,lq| a, b P Ŝuq “

max ptz-EDpTa,l, Tb,lq| a, b P Ŝ1u Y tz-EDpTa,l, Tb,lq| a P ŜzŜ1 ^ b P Ŝuq ě

extentpŜ1q.

We leverage depth-first search to create candidate motifs of growing size bottom-
up and prunes all supermotifs based on Theorem 1. We initialise the lower bound
of extent using the approximate solution. If any motif subset (possible of small
size) already has an extent higher than the approximate solution, we do not have
to evaluate any supermotif. Additionally, we make use of a second theorem for
initial pruning of motif pairs having a large distance. For brevity, the pseudo-code
is discussed in Section A.2.

9

5 MotiSet: Discover the best set of motifs

One disadvantage of most motif discovery methods is that greedy search is
suboptimal. In contrast, MotiSet searches for an optimal solution using A* and
measures the value of thousands of candidate sets of motifs. To evaluate a set
of motifs, we propose a new value function that balances contrasting aspects of
motifs. MotiSet has the same hyper-parameters as MotiPlus, however the
maximal number of motifs to return (m) is optional. In theory, the worst-case
complexity of MotiSet is Oppn̂ ¨ kmaxqmq. However, we prune redundant motifs
thereby achieving an order-of-magnitude reduction in the number of possible
candidate sets. Moreover, the A* search is an anytime algorithm and we suggest
to stopping after a fixed number of candidate sets of motifs have been evaluated.

Definition 11. Optimal set of motifs: Given a set of candidate motifs S Ď

PpP lq, and a value function f , we define that the set of motifs S is optimal
ðñ @ S1 Ď S : fpSq ď fpS1q.

Definition 12. For a set of motifs, S “ tS1, S2, . . . , Smu, we seek high intra-
motif and low inter-motif similarity. We define the value as the difference between
the sum of the minimal pairwise distances (smpd), and the sum of the minimal
outer distances (smod):

fpSq “normpsmpdpSqq ´ γ ¨ normpsmodpSqq

smpdpSq “

řm
k“1

ř|Sk|

i“1 min dist inpTi,l, Skq2
řm

k“1 |Sk|

smodpSq “

m
ÿ

k“1

min dist outpSk, T q2

min dist inpTi,l, Skq “minptz-EDpTi,l, Tj,lq | Tj,l P Sk ^ Ti,l ‰ Tj,luq

min dist outpSk, T q “minptz-EDpTi,l, Tj,lq | Ti,l P Sk ^ Tj,l P T uq

For smaller motifs the intra-motif similarity (smpd) will be high, while for larger
motifs that inter-motif similarity (smod) will be low. The rationale behind the
value function is that we want larger motifs, at least if they are semantically
similar. Smpd compute the squared minimal distance between each subsequence
Ti,l and every other subsequence Tj,l within each motif. The rationale for ag-
gregating minimal distances inter-motif is that the extent (and radius) ignores
the variability in distances within a motif. We normalize the smpd values by the
total number of subsequences in the set of motifs. For smod we compute the
minimal distance between any subsequence Ti,l in a motif and any non-trivially
matching subsequence Tj,l outside the motif. Finally, we normalize the smpd and
smod values across all candidate sets of motifs between 0 and 1. Based on our
experiments, we found that setting γ “ 0.2 yields good performance.

Algorithm. Using A* search we prioritize the expansion for sets of motifs with
the current lowest value. To limit the search space, we start with local motiflets,

10

which are restricted to n̂ ˆ kmax motifs (see Section 4.3). In the first phase,
vertical pruning is applied, because many local motiflets of the same size are
redundant, i.e., they share trivially matching subsequences. During search, we
apply horizontal pruning, because many motifs of different sizes are submotifs,
supermotifs or partially overlapping. Additionally, we enforce an ordering between
motifs to avoid enumeration of all possible orders of motifs within each candidate
set. By combining both types of pruning, we achieve an order-of-magnitude
reduction in the number of possible candidate sets of motifs. For brevity, we
define the pseudo-code for the A* algorithm in Appendix A.4.

6 Experiments

In this section, we answer the following research questions1: Q1: What is the
quality of the approximate algorithm and the runtime of the exact algorithm
for discovering motiflets? Q2: How does MotiPlus compare to existing motif
discovery methods qualitatively on music datasets? Q3: How do MotiPlus and
MotiSet compare to existing motif discovery methods on the tsmd-benchmark?

6.1 The runtime and the quality for discovering motiflets using the
exact and approximate algorithm (Q1)

In the first experiment, we measure the quality of the approximate solution and
the runtime of the exact algorithm against the brute-force algorithm. We use a
benchmark dataset of 12 pairs of univariate TS of the same class from [7].

Quality of the approximate algorithm. We compare the approximate al-
gorithm proposed in Section 4.3 with the original algorithm from Motiflets
which finds the nearest subsequences to the core. The goal of both methods
is to achieve high fidelity to the exact solution at a fraction of the cost. We
measure the quality of the approximate solutions as the ratio of the extents of
the approximate to the exact solution (i.e. values close to 1 indicate the extent
is close to the exact solution). The motif length l P r25, 200s is selected based
on the minimum area under the curve of the extent function, and we set k to 7.
The proposed approximate algorithm discovers a k-motiflet in all 12 time series,
achieving an extent ratio of 0.9 or higher. The approximate algorithm from [12]
achieves an extent ratio of 0.9 or higher in only 8 out of 12 time series.

Runtime of the exact algorithm. We compare the runtimes for discovering
the exact k-motiflet using the algorithm proposed in Section 4.3 against the brute-
force algorithm from Motiflets. We vary k between 2 and 15 and stop execution
if computation exceeds 30 minutes. As expected, the brute-force algorithm fails
for relatively small values of k (as low as 6) due to the exponential number of
candidates. In contrast, the exact algorithm based on depth-first search completes

1 MotiPlus and MotiSet are implemented in Python; motiflet search is in Java.
Data and code are available at https://bitbucket.org/len_feremans/kmotiflets

11

https://bitbucket.org/len_feremans/kmotiflets

execution within 30 minutes for all TS for k up to 15. We conclude that the
proposed exact algorithm is an order-of-magnitude more efficient and feasible
to run in practice for reasonable values of k. However, given the additional
computational cost, and the high quality of the approximate method, we prefer
the approximate method in further experiments. For brevity, we report detailed
plots in Appendix A.5.

6.2 How does MotiPlus qualitatively compare to existing motif
discovery methods on music data? (Q2)

In this experiment, we compare MotiPlus with MMotif, LoCoMotif, and
Motiflets. We collected six songs with synchronized lyrics from an online audio
streaming platform. We evaluate the discovered set of motifs by measuring the
Jaccard similarity between each ground truth (GT) motif and its best-matching
counterpart.

Experimental setup. We preprocess raw audio samples using the second Mel-
Frequency Cepstral Coefficient (MFCC) channel sampled at 100Hz [17]. Each
song is about four minutes long. After preprocessing, a time series (TS) consists
of approximately n “ 50, 000 values, which is large. Each song contains between
3 and 12 repeating lyric segments synchronized to the TS, which we use as GT
motifs. For MMotif, we use the implementation from stumpy [6]. For each
method, we selected the best parameters using grid search. For MMotif, the
radius is set to 2. For LoCoMotif, we set the minimum and maximum lengths to
the same value, rho to 0.5, and warping to False. For MotiPlus and Motiflets,
we set the maximum motif size kmax to 15. For all methods we set the number of
motifs, m, to 50. We select the motif length l P r100, 400s based on the minimum
area under the curve of the extent function.

Results. In Table 1, we report the mean Jaccard similarity with ground-truth
lyrics and statistics such as the mean extent, and coverage, the percentage of
time series values covered by motif subsequences. We find that MotiPlus has a
higher Jaccard similarity than MMotif on four out of six datasets. MMotif
achieves higher accuracy on two datasets. However, MMotif primarily searches
for top motif pairs and only secondarily for larger motifs, resulting in lower extent.
Motiflets has the lowest average extent, which we expect since it finds the
top-1 motiflets. However, it fails to detect many GT motifs. For LoCoMotif, the
accuracy is quite low, and the average extent is highest, which is surprising. We
inspected whether discovered motifs align with meaningful lyrical or instrumental
phrases. MotiPlus generally produces motifs that better follow musical structure.
Its coverage is also more evenly distributed across songs. In contrast, LoCoMotif
andMMotif sometimes return repetitive background patterns—such as sustained
chords or rhythmic noise—that do not correspond to meaningful musical or lyrical
segments2. Regarding run-time, we find that MMotif and Motiflets are the

2 For brevity, we report all discovered motifs, including instrumental motifs, on our
website

12

Dataset LoCoMotif MMotif Motiflets MotiPlus

Ice ice baby 0.118 0.336 0.092 0.271
Beverly hills 0.185 0.538 0.331 0.570
La Isla Bonita 0.105 0.451 0.069 0.326
Billie Jean 0.123 0.000 0.011 0.442
The Chain 0.085 0.175 0.012 0.204
The Pretender 0.178 0.275 0.152 0.358

Mean Jaccard Sim. 0.132 0.296 0.113 0.362
Mean extent 17.4 13.0 7.6 10.0
Mean coverage 45.4% 83.2% 15.3% 76.4%

Table 1: Comparing the mean Jaccard similarity between known lyrics and
discovered counterpart motifs for each method on the music datasets. We also
report the extent and coverage averaged across all datasets.

fastest, requiring approximately 30 seconds per dataset. The bottleneck is the
computation of the distance matrix, which is required by all methods. MotiPlus
requires approximately 60 seconds per dataset. Finally, we note that LoCoMotif
is somewhat slower and has a high memory consumption, taking several minutes
and exceeding the 16GB limit.

6.3 How do MotiPlus and MotiSet compare to existing motif
discovery methods on the tsmd-benchmark? (Q3)

We adopt the evaluation metrics, labeled TS datasets, and experimental setup
from the tsdm-benchmark [15]. We compare MotiPlus and MotiSet with the
four best-performing methods in the tsdm-benchmark, namely LoCoMotif,
MMotif, Grammarviz, and Motiflets3. We evaluate on TS datasets with
fixed-length GT motifs namely Ecg5000, Fungi, Mallat, Plane and Symbols.
Each dataset consists of 200 TS instances with a variable number of GT motifs
that differ in length and size. We evaluate the F1 score, precision and recall using
the PROM matrix. We penalize off-target motifs, i.e., methods that discover
more motifs than are present in the GT set.

Experimental setup. We make the following adjustments to the experimental
setup in the tsdm-benchmark. We include a Mixed dataset, which constitutes a
heterogeneous collection by combining TS instances from the aforementioned
datasets (excluding Mallat due to its longer motif length). We combine test and
validation TS instances and add noise to TS segments not covered by any GT
motif resulting in TS datasets having a longer length and a larger set of GT
motifs, making the task more challenging 4. We tune parameters using grid search,
thereby using the last 50 TS instances for validation and report the accuracy on

3 We do not compare with motif discovery methods that performed worse, namely
Emma, MrMotif, SetFinder, LatentMotifs, Valmod, and Vonsem

4 The generator from the tsmd-benchmark creates motifs based on different TS classes
within each TS dataset. However, it uses distinct subsets of the available classes to
generate test and validation instances.

13

0.0 0.2 0.4 0.6 0.8 1.0

Grammarviz

MMotif

Motiflets

LoCoMotif

MotiPlus

MotiSet

ecg5000

0.0 0.2 0.4 0.6 0.8 1.0

fungi

0.0 0.2 0.4 0.6 0.8 1.0

mallat

0.0 0.2 0.4 0.6 0.8 1.0

Grammarviz

MMotif

Motiflets

LoCoMotif

MotiPlus

MotiSet

plane

0.0 0.2 0.4 0.6 0.8 1.0

symbols

0.0 0.2 0.4 0.6 0.8 1.0

mixed

Fig. 3: The distribution of F1-scores for each method on the tsmd-benchmark
datasets shows that either LoCoMotif or MotiSet performs best on each
dataset. MotiPlus improves upon Motiflets. Grammarviz and MMotif
perform significantly worse.

the first 50 TS instances. For LoCoMotif, we set warping to True and search
for the optimal value of rho. For Grammarviz and MMotif we search for the
best parameters as suggested in [15]. For Motiflets, MotiPlus and MotiSet
we optimize the maximal motif size kmax within the range rkgt ´ 3, kgt ` 3s,
where kgt is the maximum size of GT motifs. For MotiSet we set the maximum
number of iterations to 10 000. Finally, we set the motif length l and number of
motifs m to match the GT length and maximum count.

Results. Our study replicates the findings of the original study. We report two
major differences in reported accuracy. First, we observe a much lower accuracy
for Grammarviz. Grammarviz typically discovers a much larger set of motifs
than other methods since it does not have a parameter m, resulting in an unfair

Dataset F1 Precision Recall

Grammarviz 0.234 (+-0.097) 0.264 (+-0.196) 0.321 (+-0.088)
MMotif 0.314 (+-0.058) 0.400 (+-0.106) 0.323 (+-0.061)
Motiflets 0.498 (+-0.104) 0.719 (+-0.125) 0.403 (+-0.094)
LoCoMotif 0.565 (+-0.232) 0.604 (+-0.268) 0.564 (+-0.195)

MotiPlus 0.552 (+-0.094) 0.543 (+-0.125) 0.621 (+-0.087)
MotiSet 0.586 (+-0.097) 0.773 (+-0.068) 0.531 (+-0.108)

Table 2: We report the average F1-score, precision, recall, and standard deviation
across six datasets from the tsmd-benchmark. We find that MotiSet achieves
the highest F1-score and precision, while MotiPlus attains the highest recall.

14

advantage, which we correct by penalizing off-target motifs. Secondly, we find
that tuning kmax increases the accuracy of Motiflets substantially. The average
F1 score, precision, and recall across all datasets are shown in Table 2. We find
that MotiSet achieves the highest overall F1 score and precision. MotiPlus
achieves the highest overall recall, but has lower precision than LoCoMotif and
Motiflets. In Figure 3, we show the distribution of F1 scores for each dataset.
We find that LoCoMotif performs best on Plane, Fungi, and Symbols, while
MotiSet performs best on Ecg5000, Mallat, and Mixed, suggesting that both
methods are complementary in terms of F1 score. We argue that the increased
performance of LoCoMotif on certain datasets, such as Plane, is likely due to
the use of Dynamic Time Warping, which is known to be more accurate than
Euclidean distance on certain TS datasets [1]. We find that MotiPlus improves
on LoCoMotif in 3 out of 6 datasets and in 5 out of 6 datasets compared to
Motiflets. We observe that the increase in accuracy compared to Motiflets
is correlated with the number of GT motifs in each dataset, i.e., Fungi has
the most motifs. MotiPlus requires setting the maximum motif size, however
this parameter mainly affects runtime. In contrast, LoCoMotif and MMotif
rely on sensitive distance thresholds, which vary across datasets and hinder
reproducibility, leading to high variability on the Mixed dataset. Concerning
runtime, we find that Grammarviz, MMotif, Motiflets, and MotiPlus
are generally faster, completing each dataset under two minutes. The runtime
of LoCoMotif is slightly longer, taking approximately 10 minutes. Finally, we
note that MotiSet requires about 30 minutes. The runtime varies significantly
for each time series (TS) instance and depends on the number of iterations, which
ranges from 100 to the upper limit of 10,000.

7 Conclusion

In this paper, we presented MotiPlus and MotiSet, two novel motif discovery
methods that identify the top-m motifs in time series data across varying motif
sizes, ensuring high internal similarity. Both methods are supported by efficient
algorithms for scalable motif discovery. We approximate local motiflets using
extent as a heuristic and propose an exact method for k-motiflet discovery that is
significantly faster than existing approaches. MotiPlus iteratively searches for
diverse, high-quality motiflets by filtering for k-closed and self-sufficient motifs,
while MotiSet uses A* search to optimize motif set selection. We qualitatively
evaluated MotiPlus on six music datasets with synchronized lyrics as ground
truth and found it uncovers lyrical segments missed by Motiflets, MMotif,
and LoCoMotif. On the tsmd-benchmark, both methods outperform state-of-
the-art baselines, with MotiSet and MotiPlus improving precision by 27.9%
and recall by 10.1% over LoCoMotif. While MotiPlus runs comparably to
baselines, MotiSet is up to three times slower depending on the number of
iterations. In future work, we aim to explore variable-length motiflets, improve
robustness, and study ensemble methods and their use in downstream time series
tasks.

15

Acknowledgements L.F. is funded on project 12B0V24N by Research Fund
Flanders.

References

1. Alaee, S., Mercer, R., Kamgar, K., Keogh, E.: Time series motifs discovery under dtw
allows more robust discovery of conserved structure. Data Mining and Knowledge
Discovery 35, 863–910 (2021)

2. El-Sonbaty, Y., Ismail, M.A., Farouk, M.: An efficient density based clustering
algorithm for large databases. In: 16th IEEE international conference on tools with
artificial intelligence. pp. 673–677. IEEE (2004)

3. Feremans, L., Cule, B., Goethals, B.: Petsc: pattern-based embedding for time series
classification. Data Mining and Knowledge Discovery 36(3), 1015–1061 (2022)

4. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics
4(2), 100–107 (1968)

5. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall, Inc. (1988)
6. Law, S.M.: Stumpy: A powerful and scalable python library for time series data

mining. Journal of Open Source Software 4(39), 1504 (2019)
7. Lin, J., Khade, R., Li, Y.: Rotation-invariant similarity in time series using bag-of-

patterns representation. Journal of Intelligent Information Systems 39, 287–315
(2012)

8. Lonardi, J., Patel, P.: Finding motifs in time series. In: 2nd Workshop on Temporal
Data Mining. pp. 53–68 (2002)

9. Nguyen, H.L., Ng, W.K., Woon, Y.K.: Closed motifs for streaming time series
classification. Knowledge and information systems 41(1), 101–125 (2014)

10. Rakthanmanon, T., Keogh, E.J., Lonardi, S., Evans, S.: Time series epenthesis:
Clustering time series streams requires ignoring some data. In: 2011 IEEE 11th
international conference on data mining. pp. 547–556. IEEE (2011)

11. Rotman, S., Čule, B., Feremans, L.: Efficiently mining frequent representative
motifs in large collections of time series. In: BigDataprocee. pp. 66–75. IEEE (2023)

12. Schäfer, P., Leser, U.: Motiflets: Simple and accurate detection of motifs in time
series. PVLDB 16(4), 725–737 (2022)

13. Senin, P., Lin, J., Wang, X., Oates, T., Gandhi, S., Boedihardjo, A.P., Chen, C.,
Frankenstein, S.: Grammarviz 3.0: Interactive discovery of variable-length time
series patterns. TKDD 12(1), 1–28 (2018)

14. Van Wesenbeeck, D., Yurtman, A., Meert, W., Blockeel, H.: Locomotif: Discovering
time-warped motifs in time series. Data Mining and Knowledge Discovery pp. 1–30
(2024)

15. Van Wesenbeeck, D., Yurtman, A., Meert, W., Blockeel, H.: Quantitative evaluation
of motif sets in time series. arXiv preprint arXiv:2412.09346 (2024)

16. Webb, G.I.: Self-sufficient itemsets: An approach to screening potentially interesting
associations between items. TKDD 4(1), 1–20 (2010)

17. Yeh, C.C.M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H.A., Zimmerman, Z.,
Silva, D.F., Mueen, A., Keogh, E.: Time series joins, motifs, discords and shapelets:
a unifying view that exploits the matrix profile. Data Mining and Knowledge
Discovery 32, 83–123 (2018)

18. Zaki, M.J., Meira, W.: Data mining and analysis: fundamental concepts and
algorithms. Cambridge University Press (2014)

16

A Appendix

A.1 A tighter approximate k-motiflets algorithm

We discuss the pseudo-code of the proposed approximate local motiflet discovery
algorithm. The algorithm uses a greedy search and evaluates candidate motiflets
using extent, while Motiflets uses a radius-based metric with leads to lower-
quality results as illustrated in Fig. 4.

Algorithm. The procedure k motiflets heap is shown in Algorithm 2. We
represent a motif Sk “ tTi1,l, Ti2,l, . . . , Tik,lu as Sk “ ti1, i2, . . ., iku where each
subsequence Ti,l is represented by its starting index. The output R consists of at
most n̂ “ n ´ l ` 1 motifs ranked by extent to enable local k-motiflet discovery
(see Section 4.2). We start by iterating n̂ times over each possible subsequence
i (line 3). In each iteration, we aim to find the k ´ 1 subsequences that result
in the lowest maximal pairwise distance (lines 4–10). During the k ´ 1 greedy
search iterations, we select the next candidate subsequence that minimises extent
and discard trivial-matching subsequences (lines 7-8). We filter out duplicate
k-motiflets, i.e. different cores leading to an identical motif set (line 10). Finally,
we return the list of k-motiflets sorted by extent.

Time complexity. The main loop is executed Opnq times. Greedy search
optimising the extent requires Opk2 ¨ nq-time. The total complexity is Opk2 ¨ n2q.

Algorithm 2: Discover Local k-Motiflets

Input :A time series T , distance matrix D, motif length l, motif size k
Result: List of at most n̂ motifs sorted by extent.

1 procedure k motiflets heappT,D, l, kq

2 R Ð tu

3 for i Ð 1 to n ´ l ` 1 do
4 S Ð tiu
5 C Ð remove trivial matchespt1, 2, . . . , n ´ l ` 1u, iq
6 for iter Ð 2 to k do
7 jk Ð argmin

jPC
extentpS Y tjuq

8 C Ð remove trivial matchespC, jkq

9 S Ð S Y tjku

10 R Ð R Y tSu

11 R Ð sort R on extent
12 return R

A.2 An efficient exact k-motiflets algorithm

We present the pseudo-code of an exact algorithm for discovering k-motiflets.
First, we introduce a second theorem.

17

Theorem 2. For each candidate motif of size k, Sk “ tTi,l, . . . , Tk,lu with extent
d the following holds: if |tTj,l | Tj,l P T : z-EDpTi,l, Tj,lq ă du| ă k ðñ

extentpSkq ą d.

Proof : If fewer than k non-trivially matching subsequences have a distance to
the core Ti,l smaller than d, then at least one subsequence in the candidate
motif Sk has a distance larger than d. Consequently, the radius to the core
and the maximal pairwise distance, or extent, must have a distance greater than d.

The exact algorithm employs depth-first search to construct candidate motif sets
incrementally from the bottom up, pruning supermotifs based on Theorem 1.
Additionally, we apply Theorem 2 for initial pruning. For simplicity, we assume
the algorithm discovers the top-1 k-motiflet.

Algorithm. The main and auxiliary procedure are shown in Algorithm 3. First,
we initialise the best motiflet and its extent d using the approximate k-motiflet
solution (lines 2-3). Next, we initiate a recursive depth-first search over all motifs
smaller or equal to size k (line 5). During recursion, we track the current candidate
motif S, its extent, and the set C of candidate subsequences that can be added to
S. In motiflets dfs, we first check if the size of S is k and if its extent is smaller
than the current best extent, thereby possibly improving on the approximate
solution and decreasing the upper bound for pruning future candidates (lines 9-
10). Next, we prune candidate motifs of size ď k if the current extent is greater
or equal than d using Theorem 1 (line 12). For singleton motifs we update C by
filtering candidate subsequences with a distance less than d and apply Theorem 2
for pruning (lines 14-17) Next, we get the next candidate subsequence i from C
that does not trivially match any subsequence in S (line 18). We then compute

rr

2nd	=	2-NN

1st	=	1-NN

Extent

1st

Minimizing	
extent	of	the	set

2nd

Extent

Minimizing	
radius	around	core

3-Mo2flet

core core

3-Mo2flet
core core

Fig. 4: Approximate k-motiflet discovery using the same 4 data points and either
(left) radius to the core (right) extent of the set. Left: For a core subsequence (in
red) the two nearest subsequences are retrieved [12]. Right: For a core subsequence
we perform greedy search such that the maximal pairwise distance is minimal.
Bottom: The resulting 3-motiflet on the right has a lower extent.

18

Algorithm 3: Discover Exact k-Motiflets

Input :A time series T , distance matrix D, motif length l, motif size k
Result: k-motiflet, extent

1 procedure k motiflets exactpT,D, l, kq

2 L Ð k motiflets heappT,D, l, kq

3 pmotiflet, dq Ð Lr0s

4 C Ð t1, 2, . . . , n ´ l ` 1u

5 motiflets dfsptu, inf , Cq

6 return pmotiflet, dq

7 procedure motiflets dfspS, extent, Cq

8 if |S| “ k then
9 if extent ă d then // Update lower bound for extent

10 pmotiflets, dq Ð pS, extentq

11 else
12 if extent ě d or |C| “ 0 then // Prune using theorem 1

13 return
14 if |S| “ 1 then
15 C Ð tTi,l | Ti,l P T : z-EDpTi,l, Sr0sq ă du

16 if |C| ă k then // Prune using theorem 2

17 continue

18 i Ð next indexpCq

19 inc extent Ð max ptDi,j | @j P Su Y textentuq

20 motiflets dfspS Y tiu, inc extent, Cztiuq

21 motiflets dfspS, extent, Cztiuq

the extent of S Y tiu incrementally (line 19). Finally, we recursively search for all
supermotifs with and without the next non-trivially matching subsequence in C
(lines 20-21).

Time complexity. The worst-case time complexity is Opnkq, assuming trivial
matches are ignored. The algorithm is memory-efficient by keeping at most k
motifs in memory. In Section 6, we demonstrate that the algorithm is an order of
magnitude faster.

A.3 An approximate algorithm for verifying self-sufficient motifs

To verify self-sufficient motifs, we employ an approximate solution based on the
Minimum Spanning Tree (MST), thereby avoiding the costly generation of all
possible subsets of a motif.

Algorithm. We begin by constructing an MST using Prim’s algorithm, which
adds edges between nodes one by one while avoiding cycles. In this MST, each
node represents a subsequence, and each edge corresponds to the z-normalized
Euclidean distance between subsequences. Next, we generate the k-1 possible
partitions of the MST by removing each edge in turn, ensuring that each partition
contains at least two nodes (or subsequences). Finally, we verify whether the sum

19

of the extents of each partition is smaller than the extent of the candidate motif
Sk.

Time complexity. The time complexity for generating the MST using Prim’s
algorithm is Opk log kq. The approximate solution for verifying self-sufficiency
has a time complexity of Opk3q. In contrast, an exact solution requires Op2kq

time.

A.4 MotiSet algorithm for discovering the best set of motifs

We present the pseudo-code of the proposed MotiSet algorithm, which uses A*
search to enumerate all sets of motifs and select the set with the lowest value.

Algorithm. Algorithm 4 presents the MotiSet algorithm. We begin by com-
puting the distance matrix and identifying local motiflets using the algorithm
described in Section 4.3. Specifically, we call k motiflets heap once with the
maximum motif size kmax and obtain an index containing local motiflets of
varying sizes. We iterate over motif sizes from 2 to kmax and remove vertically
redundant motifs, i.e., motifs of the same size that are redundant (lines 7–9). The
final set of candidate motifs is used by AStarMotif. AStarMotif intializes
an empty queue with each candidate motif as a singleton set. We prune candidate
motifs before adding them to this singleton set by removing all horizontally re-
dundant candidates, i.e., motifs of different sizes that are redundant. Additionally,
we enforce an ordering among motifs, denoted by ă, to prevent generating motif
sequences instead of sets (line 15). We determine a global ordering by sorting all
motifs based on the index of their first subsequence. Next, we start the A* search
(lines 18–27). In the main loop, we take the candidate set of motifs S with the
lowest value fpSq (see Def. 12) and the set of possible motifs for expansion, CS.
Next, we check boundary conditions and terminate the current branch if there
are no more candidate motifs to add. We also stop if the current set contains m
motifs if the optional parameter m is defined (line 20-22). If no stopping condition
apply, we continue the search. We expand the current set of motifs by adding
the first motif from the remaining candidate motifs and adding the new set to
the priority queue. As before, we also prune possible future candidate motifs on
horizontal redundancy and using the global ordering (line 25). Finally, we return
the set of motifs with the overall lowest value (28).

Time complexity. The computational complexity of constructing the distance
matrix and identifying motiflets is the same as in MotiPlus. The complexity of
A* search depends on the cardinality of C and the effectiveness of vertical and
horizontal pruning. In the worst case, there are Opk ¨ nq candidate motifs in C.
Checking vertically and horizontal non-redundant motifs takes linear time for
each motif. Evaluating the value function takes Opm ¨ pk2 ` nqq-time but can be
trivially cached for each motif. The theoretical worst-case time complexity of A*
is Oppk ¨ nqmq. We note that in practice, we suggest to stop after n iterations,
e.g. n “ 10 000.

20

Algorithm 4: MotiSet: Discovering the best set of m motifs

Input :A time series T , motif length l, number of motifs m (optional), the
maximum motif size kmax

Result: Set S with up to m motifs

1 procedure MotiSetpT, l,m, kmaxq

2 D Ð calc distance matrixpT, lq
3 index Ð k motiflets heappT,D, l, kmaxq

4 C Ð tu

5 for k Ð 2 to kmax do
6 Ck Ð tu

7 for Sk P indexrks sorted on extent do
8 if not-vert-redundantpSk, Ckq then
9 Ck Ð Ck Y tSku

10 C Ð C Y Ck

11 return AStarMotifspT, C,mq

12 procedure AStarMotifspT, C,mq

13 Q Ð create empty priority queue
14 for S P C do
15 CS Ð tS1

P C | S ă S1
^ not-hor-redundantpS1, Squ

16 pushpQ, xtSu, fpSq, CSyq

17 R Ð tu

18 while Q ‰ H do
19 xS, fpSq, CSy Ð poppQq

20 if CS “ H or |S| “ m then
21 R Ð R Y tSu

22 continue

23 Ŝ Ð firstpCSq

24 Ŝ Ð S Y tŜu

25 ĈS Ð tS1
P CS | Ŝ ă S1

^ not-hor-redundantpS1, Ŝqu

26 pushpQ, xS, fpSq, CSztŜuyq

27 pushpQ, xŜ, fpŜq, ĈSyq

28 return argmax
SPR

fpSq

A.5 The runtime and the quality for discovering motiflets using the
exact and approximate algorithm

In this section, we report detailed results comparing the approximate and exact
algorithms for discovering motiflets. The results concerning quality are reported
in Fig. 5. We note that on these smaller datasets (n “ 1000), the difference in
runtime is negligible, with both methods completing in under one second. We
conclude that the proposed approximate algorithm closely approximates the
exact solution for discovering k-motiflets, which becomes intractable for larger
values of k and n.

21

In a second experiment, we evaluate the runtime of the exact algorithm for
discovering motiflets. We ran this experiment on a laptop with a 8-Core Intel
CPU and 16 GB of RAM. The runtime in seconds for varying k of the first three
datasets is shown in Fig. 6. The original exact algorithm enumerates all possible
nk subsets if pruning fails using Theorem 2 [12]. As a result, the original algorithm
takes several days to complete and runs out of memory for k “ 15. We find that
the proposed exact k-motiflet algorithm completes within a reasonable time for
k up to 15. We note that in real-world time series, the maximal cardinality of

0 2 4 6 8 10
time series

0.0
0.2
0.4
0.6
0.8
1.0

ra
tio

motiflets++ approx
motiflets approx

Fig. 5: Comparing the quality of the approximate k-motiflet discovery algorithms
on 12 benchmark TS [7]. We report the ratio of the extent of the top-1 motif
found by the approximate algorithm to that of the exact algorithm. We find that
the proposed algorithm discovers motiflets that closely match those found by the
exact algorithm in all TS instances.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

100

101

102

103

ti
m

e
 /

 s

Time series 0

motiflets exact

motiflets++ exact

2 3 4 5 6 7 8 9 10 11 12 13 14 15

100

101

102

103

ti
m

e
 /

 s

Time series 2

motiflets exact

motiflets++ exact

2 3 4 5 6 7 8 9 10 11 12 13 14 15

100

101

102

103

ti
m

e
 /

 s

Time series 4

motiflets exact

motiflets++ exact

Fig. 6: Comparison of the runtime for the discovery of k-motiflets for increasing
values of k using the proposed exact method and the brute-force baseline on the
first three datasets from [7]. The baseline method takes more than 30 minutes
for k “ 6 on TS 2 and 4, whereas the proposed exact method completes for all
values of k.

22

motifs is often limited. For example, in the tsdm-benchmark, a maximum value
of k “ 10 is sufficient.

A.6 Selecting hyper-parameters on the TSMD-benchmark

In Table 3, we summarize the parameter settings for each motif discovery method,
optimized via grid search. We use lgt, kgt, and mgt to denote the fixed motif
length, maximum motif size, and maximum motif count from the ground truth,
respectively. Default parameters were chosen based on preliminary experiments
to maximize accuracy. For each dataset, we use the same free parameter settings
across all time series instances, identified through grid search on validation data
following [15].

LoCoMotif and MMotif depend on sensitive distance thresholds, while
Grammarviz requires selecting an optimal alphabet and word size for discretiza-
tion—both of which require careful tuning per dataset. In contrast, MotiPlus
and MotiSet need only three parameters: motif length, (optional) number of
motifs, and maximum motif size. The window length is selected automatically
by maximizing the area under the curve, and the maximum size mainly impacts
runtime. A default value of kmax “ 10 performs well across datasets. Finally,
we note that exhaustive tuning is generally infeasible in unsupervised motif
discovery.

Dataset Free parameters Default parameters Fixed parameters

Grammarviz a P t2, 4, 8, 16u,
w P 2, . . . , l

2

l “ lgt

MMotif r P t1, 2, 3, 4, 5u m “ mgt, l “ lgt
LocoMotif ρ P t0.1, 0.2, . . . , 0.9u warping “ True m “ mgt, l “ lgt
Motiflets kmax P rkgt ´3, kgt `3s m “ mgt, l “ lgt
MotiPlus kmax P rkgt ´3, kgt `3s self sufficient “ True,

k closed “ True
m “ mgt, l “ lgt

MotiSet kmax P rkgt´3, kgt`3s, n “ 10 000, γ “ 0.2 m “ mgt, l “ lgt

Table 3: Parameter ranges for grid search in experiments.

23

	MotiPlus and MotiSet: Discovering the Best Set of Motiflets in Time Series

