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ABSTRACT

Maintenance costs are a main cost driver for offshore wind

energy. Prediction of failure and particularly failure understand-

ing can help to bring these costs down significantly. Since the

wind turbine is subjected to a large number of dynamic events

it is important to fully understand the turbine response to these

events. Pattern mining has been used successfully for different

applications. We believe it to have large potential for under-

standing turbine behavior based on turbine status logs. These

logs record all turbine actions and can be used as input for pat-

tern mining algorithms. This paper proposes the use of a multi-

level pattern mining approach in order to minimize the number

of uninteresting patterns and facilitate response understanding.

The paper mainly focuses on the extraction of patterns and asso-

ciation rules linked to certain alarms and how they can be anno-

tated for further use in the multi-level pattern mining approach.

Several years of wind turbine data is used. The use of the ap-

proach is illustrated by detecting the characteristic pattern linked

to turbine response to an Extremely High Wind Speed Alert.

1 INTRODUCTION

Wind energy is one of the main renewable energy sources

used today. Since open space is limited and in order to maxi-

mize wind farm performance most European countries are stim-

ulating wind farm developers to construct new farms offshore.

From an energy production point of view this definitely brings

added value. However, new logistical challenges arise. Due to

bad weather conditions it can happen that turbines are inaccessi-

ble for long periods of time. Therefore, predictability of turbine

failure is essential for an optimized maintenance strategy.

Dedicated vibration based condition monitoring can predict

failures linked to the rotating components of the turbine. Ma-

chine learning offers increasingly popular techniques for mon-

itoring the performance of all sorts of machines. These ap-

proaches are particularly useful for modeling and anomaly de-

tection on operational machine parameters, such as temperature.

If an anomaly is detected using one of these techniques, it is nec-

essary to link it to the operational response of a turbine. In other

words, to go beyond failure detection and towards failure progno-

sis and failure understanding, it is necessary to unveil the link be-

tween failure and turbine response to environmental loads. Link-

ing failure initiation to the loads introduced by dynamic events

can help in gaining a deeper understanding of the failure mode
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and its potential origin. Doing so requires a way to find the un-

derlying mechanisms of typical system responses and allows to

embed domain expert knowledge about these events. This paper

will investigate the potential of pattern mining for performing

this task.

Pattern mining is a core discipline within Data Mining,

which is often defined as an activity to extract new nontrivial in-

formation contained in large quantities of data. The simplest type

of pattern is an itemset, consisting of a frequently co-occurring

set of items. A large number of algorithms have been developed

for finding frequent itemsets, and extended to other types of more

complex patterns, such as sequences (where events are ordered)

or episodes (partial orders) in sequential data [1]. Patterns can be

used to derive association or prediction rules, but even on their

own, unlike the output of many other techniques such as neural

networks, they can also be inspected by domain experts, and be

used as an intermediate tool for gaining insight into a variety of

problems [2]. Pattern mining is used in a wide range of applica-

tions, even in, at first sight, less obvious domains, such as image

classification [3] or bio-informatics [4]. Association rule mining

was first proposed by Agrawal et.al. in 1993 [5]. The original

motivation for mining association rules came from market bas-

ket analysis, where customer behavior could be described by as-

sociation rules. A classical example is an association rule that

tells us that customers that buy beer, in 80% of cases, also buy

chips. Association rules give deeper insight into the correlation

between items.

The remainder of this paper is organized as followed. In

Section 2 we review existing pattern mining approaches. In Sec-

tion 3 we outline the main properties of our dataset (status logs

of the wind turbines) and describe the necessary pre-processing

steps we applied. In Section 4 we propose our method for multi-

level pattern mining, while in Section 5 we present and discuss

the discovered patterns. Finally, we summarize our conclusions

in Section 6.

2 PATTERN MINING APPROACHES

In this section we introduce some preliminary pattern min-

ing terminology, by defining concepts such as frequent itemsets,

transactional databases, and explaining the difference between

frequent, closed and maximal itemsets. We also briefly explain

association rules, and other pattern types, such as sequences and

episodes. Finally we provide a brief overview of several algo-

rithms used for discovering frequent patterns.

2.1 Frequent Itemsets

Let I = {i1, i2, ..., in} be a set of all items. An itemset is a

subset of I. In frequent itemset mining a transaction is defined

as a unique tuple, consisting of a transaction identifier and a set

of items. We define a transaction Ti = (tid,X) where tid is a

unique transaction identifier (i.e., row number), and X ⊆ I. A

transaction database is the set of all such transactions. We define

the transaction database as D = {(tid,X)| X ⊆ I,1 ≤ tid ≤ |D|}.

For example, in the context of market basket analysis, one

can think of a transaction as the set of items bought by each cus-

tomer, and the transaction database as the set of all transactions

at one supermarket. In the context of turbine event logs, one can

consider each type of a logged event as an item, and a transac-

tion can represent a small period (or window) in time, in which

several types of events may occur.

The support of an itemset is defined as the number of trans-

actions in the database in which the itemset occurs. Formally,

support(Y ) = |{(tid,X)| Y ⊆ X ,(tid,X) ∈ D}|. An itemset is

considered frequent if its support is larger than some pre-defined

threshold min sup. Thus the pattern mining process starts with

setting the min sup threshold parameter (defined either relative

to the size of the database or in absolute terms) and running an

algorithm that returns all frequent itemsets.

An additional problem with pattern mining is that the num-

ber of frequent patterns (itemsets, sequences or episodes) can

grow extremely high, a problem often described as pattern ex-

plosion. This is a direct consequence of the definition of support,

which has the property that if an itemset is frequent, then all its

subsets must also be frequent. Since an itemset of size n has

2n subsets, it is easy to see how this can lead to massive redun-

dancy in the output. Several techniques have been proposed to

reduce the number of redundant patterns. A frequent itemset is

closed, if no superset has the same support. A frequent item-

set is maximal if no superset is frequent. For example if itemset

{i1, i2} has a support of 10, itemset {i1, i2, i3} has a support of

10, and {i1, i2, i3, i4} has a support of 9, we would filter the first

itemset when mining for closed patterns, since it has the same

support as the second itemset. When mining for maximal pat-

terns, we would also filter the second itemset, and only keep the

third itemset, if the minimum support is set to at least 9.

2.2 Association Rules

Mining frequent itemsets was originally developed as a first

step in discovering interesting relationships between items. Min-

ing association rules can be described as a second step, which

attempts to quantify the strength of such relationships. An asso-

ciation rules is of the form X ⇒ Y , where X and Y are itemsets.

For example, {bread,butter}⇒ {milk} with con f idence = 80%

tells us that 80% of customers that bought both bread and but-

ter also bought milk. Formally, the confidence of an associa-

tion rule is defined as the proportion of transactions that contains

X which also contain Y , that is, con f (X ⇒ Y ) = support(X ∪
Y )/support(X).

2.3 Richer Pattern Types: Sequences and Episodes

A sequence is an ordered list of itemsets. A sequence s is

denoted by 〈s1s2...sk〉, where each of the k elements s j is an item-

set, thus s j ⊆ I. For each element we write (i1i2...im), or if the
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element consist of a single item, we omit the the brackets. For

example 〈i1(i2i3)i4i2〉 is a sequence where i1 is followed in time

by i2 or i3, which occur simultaneously, and are then followed by

i4 and finally i2 again. Frequent sequence discovery aims to find

all (sub)sequences that occur frequently in a database of input se-

quences. Note that, in this context, we consider sequence 〈i1i3i2〉
to be a subsequence of 〈i1(i2i3)i4i2〉, i.e., gaps are allowed be-

tween items making up a pattern. If gaps are not allowed, the data

mining literature typically refers to frequent (sub)string mining,

and not (sub)sequence discovery.

An episode is a further specialization of an itemset. Here

we consider frequent occurrences, with a partial sequential or-

der imposed on the items. For example, we might discover the

frequent episode {i1, i2}→ i3, meaning i3 occurs both after i1 and

i2, but the order between i1 and i2 is unspecified (this could mean

that i1 sometimes occurs before i2, sometimes after i2, or some-

times even simultaneously). A corresponding itemset {i1, i2, i3}
does not capture any order, while frequent sequences 〈i1i3〉 and

〈i2i3〉 would not be able to represent the fact that all three items

occur together. Both sequential and episodal patterns have sim-

ilar definitions for support, and allow for the mining of both

closed and maximal patterns.

In the remainder of this paper, we will focus on closed item-

set mining, as this limits the search-space considerably. How-

ever, in our turbine event log, some itemsets might be better rep-

resented using sequences or episodes.

2.4 Frequent Pattern Algorithms

Frequent Itemset Mining (FIM) algorithms discover all item-

sets that occur in at least min sup transactions in the database.

This is not a trivial computation, since a brute-force algorithm

that would enumerate all possible subsets, and then check how

many times these subsets occur in the database, would result in

enumerating 2|I| subsets, which is clearly infeasible.

Most FIM algorithms therefore exploit the anti-monotonic

property of itemset support, in the design of a branch-and-bound

algorithm. We will briefly explain the intuition behind the anti-

monotonic property by an illustrative example.

Assume item a occurs in 10 transactions, item b occurs 5

times, and item c occurs 2 times. Suppose we want to find all

frequent itemsets, where min sup = 4. Itemsets of size 1 that

are frequent are {a} and {b}. Item {c} is not frequent. Next

we enumerate the itemsets of size 2: {a,b}, {b,c} and {a,c}.

To compute the support for {a,b}, we must count the number of

transactions (tid,X) where a ∈ X ∧ b ∈ X . Obviously the sup-

port for {a,b} is smaller than or equal to both support({a})
and support({b}), but since b occurs in 5 transactions, it could

be the case that a is also in each 5 of those transaction, thus

making {a,b} frequent. However, already at this stage, it is

clear that the subsets of length 2 containing c do not have to

be investigated any further. In general terms, it holds that for

any superset Z of Y where support(Y ) < min sup, it holds that

support(Z)< min sup.

This key ingredient is implemented in most types of FIM al-

gorithms. Three of the most popular itemset mining algorithms

are Apriori [6], Eclat [7] and FP-Growth [8]. Specialized

algorithms exist to mine only closed or maximal patterns. The

Apriori algorithm was introduced by Agrawal et al. and uses a

breadth-first approach similar to our illustrative example. Eclat

was introduced by Zaki et al. and uses a depth-first approach,

by first re-organizing the transactional databases and computing

the set of transactions for each item. Using this representation,

support can be computed by computing set intersections, in a

depth-first manner. Finally, FP-Growth by Han et al., uses

a divide-and-conquer strategy by maintaining an efficient data

structure, that represents the database. At each recursive step

this data structure represents the database filtered by the current

itemset prefix, thus shrinking in size, and speeding up the support

computation.

Specialized algorithms for mining sequences, such as

PrefixSpan by Han et al. [9], and episodes, such as Winepi

by Mannila et al. [10] are often based on FIM algorithms.

3 DATA DESCRIPTION AND PRE-PROCESSING

The dataset contains status log data registered by the Super-

visory Control and Data Acquisition (SCADA) system of one

wind turbine, collected over a period of 3 years. A status log typ-

ically consists of a characteristic numerical id, a detection time

and a duration for which the code was active. The messages con-

tained in the status logs are mostly operational parameters of the

turbine, but also warning, alarm and system events. The status

logs linked to the warning, alarm and system events of the tur-

bine are collected at the time of occurrence of each individual

event. This results in unequal spacing of the data. In addition,

the operational status of the turbine, containing wind resource

parameters and energy conversion, are typically logged every 30

minutes. Therefore, most of the registered status logs are related

to the operational status of the turbine. The details of the pre-

processing are discussed in the following sections.

3.1 SCADA Data

An example of the cleaned input data is shown in Table 1.

In the dataset, 114 distinct event codes were found. As illus-

trated in Table 1 a single status log can contain multiple oper-

ational parameters. In total, 41 event codes contained multiple

descriptions, and thus might be considered as separate events.

An example is a status log that contains a value both for the wind

speed and the rotor speed. Such a log event should be considered

as two separate events characterized by numerical values. The

frequency of occurrences of values of the different status codes

forms a long tail distribution. Some operational codes make up

99% of the data, while some alarm/warning/system events may

occur only 10 times (or even only once).
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TABLE 1. EXAMPLE OF WIND TURBINE STATUS LOG

Code Description Detected Type

572 Wind Speed: 4.4 Generator Speed:1048 03/01 07:40 Op

672 Pitch Angle: -1.3 Power Production: 113.4 03/01 07:40 Op

068 Set Point: 750 03/01 08:07 Op

572 Wind Speed: 5.7 Generator Speed:1074 03/01 08:10 Op

672 Pitch Angle: -2.6 Power Production: 332.0 03/01 08:10 Op

132 ERROR Occurred: 03/01 08:25 Op

432 Turbine in Pause State: 03/01 08:25 Op

913 System in Pause State: C= 13 03/01 08:25 Alarm

521 Generator Configuration Changed: 03/01 08:26 Op

3.2 Alarm Codes

We are particularly interested in the alarm related events,

since these potentially give insights in the operational state that

has resulted in the failure. The dataset contains 29 distinct alarm

codes. We neglect those alarm codes that only occur once or

twice, leaving us with 11 alarm codes. The reason we neglect

them is to first gain confidence in the approach. If an alarm has

multiple occurrences it is possible to validate consistency of the

discovered patterns. This can help support our conclusions and

boost confidence in our approach. For each of these codes, we

are interested in finding frequent patterns occurring near these

alarm codes, that can characterize each failure.

3.3 Extracting Items From Events

As shown in Table 1 input data is stored in a semi-structured

way where the description for certain event codes contains a tem-

plate string filled with certain values, such as wind speed and

turbine rpm for code 572. As such, the log consists of a mix of

both single and multi-valued categorical events, such as ’Error’

or ’Generator configuration 2’ and events with associated contin-

uous values, of which wind speed, rotor rpm, power output, and

blade pitch angle are the most frequent. The latter is the angle

over which the blades are rotated in order to optimize the an-

gle of attack. The values shown in the description are numerical

values. For pattern mining these absolute values for the opera-

tional parameters are less useful. Since there is a very low prob-

ability that exactly the same value will be recorded for, e.g., the

wind speed at different time points, the pattern-mining algorithm

would not be able to detect re-occurring operating ranges. To

overcome this, the continuous operational parameter values were

discretized into five equal intervals. For example, the power val-

ues were discretized into five equal bins between zero and nomi-

nal turbine power.

For other events, that might be split into several items, ac-

cording to additional parameters found in the template string, we

try to balance the support of each item on one hand, and cardi-

TABLE 2. EXAMPLE WIND TURBINE STATUS LOG TRANS-

FORMED TO A SEQUENCE OF ITEMSETS

Detected Itemset

03-01 07:40 {speed-vlow, pitch-low, pow-low

rpm-median}

03-01 08:07 {remote-command}

03-01 08:10 {speed-vlow, pitch-low, pow-median,

rpm-median}

03-01 08:25 {error, pause, continuous-pause}

03-01 08:26 {generator-configuration-changed}

nality of the total itemset on the other. We made an empirical

choice: for events that occur fewer than 10 times, we do not

generate multiple items for each description, as the support then

becomes too low to be relevant for extracting patterns around

alarms. On the other hand, for events with more than 20 different

descriptions, we do not add sub-items, since this would possibly

also result in having too many additional (possibly low-support)

items. We considered this technique as sufficient in this case. We

remark that more advanced techniques could also be applicable

here, such as automatic extraction of variables for each template,

and enumerating all possible sub-items up to a certain minimum

support threshold.

During pre-processing the status events are transformed into

items. In this step, each event is converted into an itemset.

This conversion results in a sequence of tuples of the form

〈datetime,X〉 where X is an itemset, containing more than 1 item

if two or more items occur at the same time. For example, the

input sample shown in Table 1 is transformed into the sequence

shown in Table 2.

4 PROPOSED METHODOLOGY

In this section we first outline our general multi-level ap-

proach towards characterizing turbine behavior, and then explain

how we can create an appropriate transactional database, mine

all patterns, and, in particular, mine patterns near alarms.

4.1 Multi-level Pattern Mining

From a wind turbine application point of view, we intend to

use status logs to understand how different turbine response se-

quences can be linked to failure events. We ultimately attempt

to identify turbine response to external triggers by means of a

multi-level approach, shown in Figure 1. A turbine response pat-

tern can be defined as a consistent way of turbine response action

to an external event or trigger. Such a trigger is, for example, an

extremely high wind alarm. After the triggering of such an alarm
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the turbine will perform actions to bring the turbine back to a safe

state. For example, in the extremely high wind case, the turbine

will perform a stop event. The different turbine actions the tur-

bine performs during the stop should be reproducible, since the

turbine is a machine. In our multi-level approach this is located

at Level 1, the Turbine State Event Stream. On the time signal of

the event logs pattern mining techniques are used to identify the

different turbine state patterns. These patterns describe a con-

sistent turbine response. Only patterns with a sufficiently high

support, possibly relative to a local alarm event, are kept. A do-

main expert annotates each of the identified patterns in order to

link them to a turbine action. The different turbine events are

given specific names. These are the turbine state events shown

on Level 1.

At Level 2, the Event stream, these annotated turbine state

events are combined with the External triggers to form a new

time series of annotated events. These time series will be sig-

nificantly reduced in complexity compared to the original Raw

status log stream (Level 0). The goal is to reduce the number of

present items by an order of magnitude. One important challenge

in pattern mining is to be able to distinguish between interesting

and less interesting patterns. Pattern mining techniques will de-

liver a significant amount of potential patterns that can be bigger

than the original dataset. Therefore, a reduction in the absolute

number of status logs to process can help in making this filtering

step easier without the potential loss of important information. A

second advantage of using these annotated patterns is readability.

The Turbine Event Stream is a lot easier to understand and more

logical to a domain expert.

Similar to the Raw status log stream, these annotated events

time series can serve as the input for a pattern mining algorithm.

This will allow to link turbine responses to external triggers. If

maintenance data is used as external trigger information, then

the patterns in turbine state sequences prior to failure will indi-

cate the sequence of turbine events that has potentially led to the

failure. Again, the driving patterns can be determined. If rules

based on these patterns occur with high confidence it would even

be possible to use them as a failure predictor.

This work takes the first steps in this approach and focuses

on Level 0, and as discussed in the next sections. The approach

will be illustrated by an example: turbine response to high wind

trigger.

4.2 Creating the Transaction Database

Given the Raw status log stream, we apply a sliding window

to convert our sequence of itemsets into a sequence of itemsets

in overlapping periods. This step is crucial, since we are in-

terested in finding items that co-occur in transactions, within a

given period, not at exactly the same time. We define a parame-

ter par window that defines how far apart two events may occur

and still be considered correlated. In our experiments we used

par window = 60m, since crucial parameters such as windspeed

or power are logged every 30 minutes.

Remark that when computing the support of an itemset, after

the sliding window transformation, we over-count each itemset,

as windows overlap. For example, the itemset at 8:10 in our ex-

ample will be in at least in 5 windows. We added a parameter

is overlapping to our sliding window algorithm that can be used

to re-compute support using non-overlapping windows. This pa-

rameter is set to f alse when computing the support of itemsets

or association rules, but set to true when used for reporting.

4.3 Mining Itemsets in the Entire Sequence
Now that we have our transaction database, we can start

searching for patterns. We use the publicly available PyFim im-

plementation of Eclat by Borgelt1. PyFim includes all men-

tioned FIM algorithms, implemented in C++, with an interface

available to python. In our experiments, we first set the relative

support threshold min sup to 0.01, meaning that each discovered

itemset must occur in at least 1% of the 98350 transactions of tur-

bine 1 (or in at least 983 instances). We vary the parameters to

produce either closed or maximal itemsets that occur frequently

in 60-minute transactions.

A selection of discovered patterns is shown in Table 3. We

found 921 closed itemsets, and 110 maximal itemsets. We se-

lected some of the most frequent itemsets, as well as some less

frequent itemsets that contain an alarm item. Maximal itemsets

condense the pattern set the most, however more frequent sub-

sets, such as the top 4 patterns in Table 3, are pruned. The dis-

covered frequent patterns provide an overview of the event log,

since there are 230 distinct events in 98350 transactions, it is not

trivial to inspect the relations between all of these events.

4.4 Mining Patterns near Alarms
One drawback of mining all patterns is that frequency only

is often not a good proxy for interestingness. Several metrics

have been introduced in pattern mining research to rank patterns

on different criteria.

In our setting, we want to discover events, possibly (and

often likely) with low support, but that occur consistently near

each type of alarm. One straightforward strategy would be to

first lower the absolute minimum support parameter to almost 1

when using Eclat, and then, as a post-processing step, filter

out all itemsets that contain a certain type of alarm code. How-

ever, this would be extremely inefficient, as lowering the support

to extremely low values would take exponentially more time to

compute.

Therefore, we propose an alternative method. We assume

that the alarms trigger the turbine to respond. We are interested

in this response. Therefore we apply pattern mining in the time

window around the alarm, as schematically shown in Figure 2.

Assuming a target alarm item itarget , we filter the transaction

1http://www.borgelt.net/pyfim.html
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FIGURE 1. SCHEMA OF SUGGESTED MULTI-LEVEL PATTERN MINING APPROACH

FIGURE 2. SCHEMA OF PATTERN MINING APPROACH AT TIME WINDOWS AROUND TRIGGER EVENT
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FIGURE 3. OVERVIEW FOR 1 MONTH. PARAMETERS ARE:

WIND SPEED (speed), GENERATOR RPM (rpm), PITCH ANGLE

(pitch) AND POWER PRODUCTION (power)

database, leaving only the transactions that contain this item,

and then we run Eclat with min sup relatively high on such

a projected database. The projected databases will be very small,

compared to the original database, since even the most frequent

alarm code occurs just 144 times for turbine 1, and occurs in

about ten times as many transactions. In our experiments we set

min sup = 0.5. The result is that we find all frequent itemsets Z

occurring together with itarget .

Next, we mine all association rules and keep rules that have

confidence higher than some threshold min con f . We are in-

terested in two types of association rules, namely Z ⇒ itarget and

itarget ⇒ Z. The first type of rule is useful to predict alarm events.

Note that the first type requires computing the support of Z using

a scan of the entire database. Also note that itemsets that are fre-

quent in the entire database, can never be on the left-hand side,

as the confidence would be extremely low. In turbine 1, we did

not find many rules useful in predicting an alarm code directly.

The second type of association rules can be computed using only

the projected database. We found this second type of association

rules useful to characterize different response patterns, as dis-

cussed in the next section. Note that in our experiments we set

min con f = 0.9 for both types of rules.

5 RESULTS
In this section we illustrate the utility of our method by

showing patterns and association rules linked to turbine response

during an Extremely High Wind Speed Alert.

5.1 Event Description
An example of an alarm is Extremely High Wind Speed Alert.

When the wind speed exceeds the speed of normal operation the

turbine will stop producing electricity and turn itself out of the

wind. Since this is an intuitive turbine state sequence we use
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TABLE 3. FREQUENT ITEMSETS FOUND IN 3 YEAR STATUS

LOG OF TURBINE 1

Support Itemset

52% {speed-vlow, pitch-vlow, pow-vlow}

28% {speed-vlow, pitch-vlow, pow-vlow, rpm-low}

27% {speed-low, pitch-vlow, pow-median,

rpm-median }

16% {speed-vlow, pitch-vlow, pow-vlow,

generator-configuration-1,

generator-configuration-2}

1.5% {speed-median, pitch-vlow, pow-median

rpm-median }

1.1% {speed-vlow, pow-vlow, manual-stop,

error, emergency, pause }

1.0% {extreme-high-windspeed-alarm, error

auto-restart}

this one to illustrate our approach. Figure 3 shows the visual-

ization of the operational status codes for one month. Opera-

tional parameters are: wind speed, power, generator speed, and

pitch angle. We extracted the values from the operational sta-

tus log messages as was explained in Section 3.3. Continuous

parameters where scaled to 0.0-1.0 range. During this month in

the winter period the turbine experienced several very high wind

speed periods. Stops after alarm events are indicated by means

of green dots and are triggered by Extremely High Wind Speed

Alerts, where duplicate events within a window are removed.

Data was smoothed using an average window of size 100 for

visualization purposes. This month was chosen because several

stops were seen. Intuitively the user can see that in case the wind

speed (dark blue curve) exceeds the threshold, the turbine will

start a stop event. At that moment the power produced (light or-

ange curve) is brought down. At the same time the turbine is

decelerating towards zero. This is seen in the rpm signal (light

blue curve). Deceleration is achieved by pitching the blades to-

wards a 90 degree angle, as can be seen in the dark orange sig-

nal. This sequence of events characterizes the turbine response

to high wind and is the one we want to characterize by a cor-

responding pattern. This pattern could then be annotated with

the label Stop after extremely high wind speed alarm and added

as event to Level 1 in our multi-level mining approach shown in

Figure 1.

TABLE 4. FREQUENT ITEMS NEAR HIGH WIND SPEED

ALARM

no in fig. Status code description

1 Extremely High Wind Speed Alert

2 ERROR Occurred

3 Paused State

4 Power drop from Value A to Value B

5 Generator configuration changed

6 Attempt to restart

5.2 Event Pattern Characterization

Now the approach discussed in Section 4.4 will be used to

try to characterize the turbine state pattern linked to the turbine

response to the Extremely High Wind Speed Alert. This alarm

was located within the whole dataset. For clarity reasons, how-

ever, we only show one month of data (the month of data shown

in Figure 3). Zooms about these three Extremely High Wind

Speed Alert related stop events are shown in Figures 4, 5 and 6.

We mined frequent itemsets in a window between -30m and

+30m around the alarm. We have set 0.5 as threshold for the min-

imal relative support. We found in total 49 closed itemsets. In

these different itemsets the majority is highly similar and a varia-

tion of a general theme. This theme contains the most important

status logs linked to stop events and are intuitively the ones to

expect for this type of event. Table 4 shows the 6 status codes

that we generally saw in the closed itemsets and that we expect

to be characteristic for the event. The numbers in Table 4 are also

shown in Figures 4, 5 and 6. Since we mine itemsets, the order

in which the events occur is not considered. Based on the figures

we see that the order changes a bit. However, these codes are

always linked together for the response to the Extremely High

Wind Speed Alert. We can therefore annotate this itemset with

the label Stop after extremely high wind speed alarm and use it

as input for Level 1 pattern mining. These codes are logical in

the characterization of the turbine response. After the Extremely

High Wind Speed Alert is triggered the turbine will trigger an er-

ror response (ERROR Occurred). The general response will be

to perform a shutdown. Similar to the response discussed in Sec-

tion 5.1, this will be done by changing the pitch such that the

turbine drops in speed, reducing the power production (Power

drop from Value A to Value B), decoupling the generator from

the grid (Generator configuration changed) and, after the stop,

attempting to restart the turbine (Attempt to restart). These se-

quences are always present in the discovered itemsets. From

these itemsets we derived association rules where the confidence

should exceed 0.5. These rules can be used to predict turbine

response and define a confidence level for the prediction. In our

case we found 11 association rules. The association rules with a

7 Copyright © 2017 by ASME
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confidence level close to one are linked to shorter patterns: e.g.,

1-2-3 from Table 4. This is logical since these codes are linked

to the most basic response of the wind turbine. The most logi-

cal association rule we found is this one: Extremely High Wind

Speed → { Alert, ERROR Occurred, Paused State, Attempt to

restart, rpm very low, pitch median, power very low }. It has

a confidence level of 70 percent. This rule perfectly describes

the sequence described by the domain expert in Section 5.1. It

can therefore be concluded that the pattern mining approach can

discover itemsets of logical items for describing the turbine re-

sponse of a turbine to a dynamic event. In the next level of our

multi-level pattern mining approach this itemset can be anno-

tated with the turbine state action name. Since pattern mining

techniques are used it is possible to automatically detect these

itemsets from the raw data stream in future and perform the an-

notation automatically.

6 CONCLUSIONS

We investigated the use of pattern mining techniques for

identifying the wind turbine response to dynamic events the tur-

bine might encounter. Both the use of frequent itemsets and asso-

ciation rules approaches were tested. In a first step the complete

dataset was taken into account. However, this resulted in a mas-

sive amount of itemsets and correspondingly an even bigger set

of association rules. In theory, these association rules could pre-

dict certain failures of interest, however by doing this directly on

all data the prediction of failure is doubtful.

To overcome this we suggested the use of a multi-level pat-

tern mining approach. Events were used as a trigger for per-

forming pattern mining in a window around the specific event.

We illustrated the example of the Extremely High Wind Speed

Alert. The mined itemsets found a consistently re-occurring set

of codes after the triggering of this alert. The derived associa-

tion rule for this itemset showed high confidence and a prediction

level of 70 percent. The set corresponded to the domain expert

description of the event. Therefore, this set could be recognized

automatically and annotated for use on Level 1 of our multi-level

pattern mining approach. In the future, we intend to extend this

approach for other types of alarms. Additional service logs, and

domain-expert review of existing data, is needed in order to have

more accurate labels, that might be used for inferring more accu-

rate rules to predict different classes of failures, as mentioned in

related work [11].
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