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Abstract

We define a standard of eflectioene.ss for a database calculus

relative to a query language. Effectiveness judges suitability

to serve as a processing framework for the query language,

and comprises aspects of coverage, manipulability y and

efficient evaluation, We present the monoid calculus, and

argue its effectiveness for object-oriented query languages,

exemplified by OQL of ODMG-93. The monoid calculus

readily captures such features as multiple collection types,

aggregations, arbitrary composition oftype constructors and

nested query expressions. We also show how to extend

the monoid calculus to deal with vectors and arrays in

more expressive ways than current query languages do, and

illustrate how it can handle identity and updates.

1 Introduction

A much-touted advantage of the relational data model is

the existence of a formal calculus and algebra to model

database queries. In practice, these formalisms fail to

model many of the features present in commercial query

languages (e.g., SQL): grouping, aggregation, duplicate

values and sort orders, to name a few. Such features

end up being handled in an ad hoc manner by query

processors. The gap only widens as one moves to object-

oriented query languages, such as OQL of ODMG-

93 [9], which must deal with multiple bulk (collection)

types, arbitrary nesting of type constructors, methods

and embedded query expressions permitted whenever a

collection may appear (not just in the where clause).

(Such features are also making their way into relational

query languages.) We seek a more effective formalism to

model object query languages — one that represents the

constructs actually found in those languages and that

provides a suitable framework for the query processing

component of a DBMS. We present a calculus, based
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on monoid comprehensions, that we believe meets those

needs.

1.1 What is an Effective Calculus?

There is already a sizable body of proposals for database

calculi and algebras, Why add another to the pile?

In answering that question, it helps to separate the

proposals by their purpose. Some have been used to

study issues of computational complexity and relative

expressive power of different language features [19, 1].

Other have been proposed to extend the relational

model to handle one extension or another, such as

duplicates [14], aggregate computation [24], nested

structures [25, 12], temporal expressions [18], and path

expressions [20]. Our interest, however, is finding

a query model that provides an adequate basis for

defining, translating and evaluating actual DBMS query

languages. To that end, we describe what we mean by a

database calculus C being effectiue for a query language

Effectiveness has several aspects:

Coverage: The calculus should have sufficient ex-

pressive power to represent all the language con-

structs of L. We want the calculus to serve as the

initial internal represent ation of queries in L. To the

extent that C does not cover L, the query processor

will deal with the gap on an ad hoc basis. In addi-

tion to being an initial translation target, we would

like to use the calculus to give a precise semantics to

the query language. Having a precise semantics is

a precondition if we ever want to demonstrate that

certain query transformations do not alter the mean-

ing of a query. Typical relational query formalisms

fail to cover the features of current commercial query

languages.

Manipulable: Expressions in C’ should lend them-

selves to easy manipulation by programs for pur-

poses of type checking, in-lining views, simplifica-

tion, determining interactions with constraints and

triggers, and translation into query plans.

Evaluable: Here we mean not just that there is

some means to evaluate an expression in C over a
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database, but there is a wide space of alternative

query plans accessible from a given calculus expres-

sion. Typically, we would imagine that a calculus ex-

pression could be translated into a companion logical

algebra, that the algebra can be automatically trans-

formed into equivalent expressions, and that those

algebra expressions can be rendered into terms of

specific physical operators or evaluation code. Note

that a query formalism that expresses queries at a

low level of abstraction can be a barrier to efficient

evaluation. For example, a model that required nest-

ing and combination orders of iterators to be explic-

itly listed could obscure the high-level intent of the

query,

Given that the requirements above can be met,

on what basis might one choose between alternative

calculi for a language L? For the languages we

are interested in, uniformity is a prime consideration.

Object query languages typically deal with three or four

different collections types (such as sets, bags, lists and

arrays). A query model that exploits the similarities

of these types and permits them to be operated upon

in uniform ways can aid in the optimization process by

cutting down on the number of different transformation

rules or techniques needed to deal with the repertoire

of operators, Another form of uniformity is how

well the query model can integrate operations on

database structures with general computation. Object

databases provide powerful behavioral encapsulation

with methods, but many prohibit method invocation

in queries (or permit them but switch off optimization

on queries with methods).

Our claim is that a query model based on monoid

comprehensions meets the requirements of an effective

calculus for real object query languages, and exhibits

more uniformity than other current proposals.

1.2 Case Study: ODMG-93

To support our claims, it is useful to focus on a

particular object query language, We have chosen to

concentrate on the OQL language of the ODMG-93

standard proposal, which closely resembles the query

language of the 02 00DBMS [15]. We chose OQL

for two main reasons. One is that essentially all U.S.

00DB companies have committed to supporting an

OQL interface to their systems in the near term. The

second is that it is a small language, hence easier

to comprehend, but contains most of the language

features that are showing up in other object query

languages and proposed relational extensions, such as

SQL3 [2]. Those features include multiple collection

types, arbitrary nesting of type constructors, method

invocation, complex object state, path expressions,

object identity, subqueries at arbitrary

expressions, and a subtype hierarchy.

points in query

If we are able

to handle OQL, we believe our work will be widely

applicable to other query languages.

1.3 Our Contribution

Our calculus is based on monoids, a general template

for a data type, that can capture most collection and

aggregate operators currently in use for relational and

object-oriented databases. Monoid comprehensions —

similar to set former notation but applicable to types

other than sets — give us a uniform way to express

queries that simultaneously deal with more than one

collection type and also naturally compose in a way that

mirrors the allowable query nesting in OQL. Further,

comprehension expressions permit easy integration of

functional subexpressions. We demonstrate coverage

by showing how to map the major features of OQL

into monoid calculus. In order to make expressions

easier to operate upon, we use a formalism where

type constructors are independent (similarly to the

approach of Vandenberg and DeWitt [28]), rather than

providing indivisible combinations of constructors, as

in nested relational models, We give evidence of

manipulability by exhibiting a simple normalization

system for putting expressions into a canonical form

that maximizes opportunities for pipelining. We believe

the monoid calculus is amenable to efficient evaluation.

We sketch a translation into a logical algebra and a

companion paper [17] presents a framework for mapping

to physical operators.

2 The Monoid Comprehension

Calculus

Several recent proposals for object-oriented database

languages, including OQL, support multiple collection

types, such as sets, bags, lists, and arrays, These ap-

proaches define a language syntax, but they frequently

fail to provide a concrete semantics. For example, is

the join of a list with a set meaningful? If so, what is

the result type of this join? More generally, what are

the precise semantics of queries over multiple collection

types? To answer these questions we need to form a

theory that generalizes all collection types and their op-

erations in a natural way. This theory must capture the

differences between the collection types in such a way

that no inconsistencies are introduced, and, more im-

portantly, must abstract their similarities. By abstract-

ing common semantic feat ures, we derive a framework

that treats collections uniformly in a simple and exten-

sible language. The primary focus of such a framework

is the bulk manipulation of collection types. Bulk op-

erations are both the source of expressiveness and the

basis for efficient execution.

Consider lists and sets. What are the semantic prop-

erties that make lists different from sets? Intuitively,

one may exchange two elements of a set or insert a set
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element twice into a set without changing the set. These

properties do not hold for lists, To formalize these ob-

servat ions, we need to see how sets and lists are con-

structed and then impose these properties on the set

and list constructors. One way of constructing sets is to

union together a number of singleton set elements, e.g.,

{1} U {2} U {3} constructs the set {1,2, 3}. Similarly,

one way of constructing lists is to append singleton list

elements, e.g., [1]-1+[2]+1-[3] constructs the list [1, 2, 3]

(where ++ is the list append function). Both U and -I+

are associative operations, but only U is commutative

and idempotent (i.e., VC : z U z = z). It is the commu-

tativity and idempotence properties of U that make sets

different from lists. As to their similarities, both the set

and list constructors have an identity, The empty set

{} is the identity of U, while the empty list [] is the

identity of -H-. Using terminology from abstract alge-

bra, we say that both (set, {}, U) and (Jist, [], -H-) are

monoz’ds, and, in particular, (set, {}, U) is a commuta-

tive and idempotent monoid.

Primitive types, such as integers and booleans, can

be represented as monoids too, but with possibly a

choice of monoid. For example, both (znt, O, +) and

(int, 1, *) are integer monoids and both (6001, false, V)

and (bool, true, A) are boolean monoids. We call the

monoids for collection types collection monoids, and the

monoids for primitive types primitive monoids.

Each collection monoid has a unit function that takes

an element of some type as input and constructs a

singleton value of the collection type. For example, the

list unit function takes an element a and constructs the

singleton list [a]. Any list can be generated from the

three list monoid primitives: the empty list [], the list

unit function, and the list append -I+.

Since all types are represented as monoids, a query

in our framework is a map from some monoids to a

particular monoid. These maps are called monoid ho-

momorphisms. For example, a monoid homomorphism

from lists to sets in our framework is captured by an

operation of the form

hom~i’t+set(f) A

where A is a list and ~ is a function that takes an

element ~ of A and returns the set ~(z). Basically,

this monoid homomorphism performs the following

computation:

result := {};

foreach x in A do

result := result U f(x);

return result;

In other words, homti’t+get (~) A replaces [] in A by

{], I+ by U, and the singleton list [z] by ~(z). That

is, if A is the list [al, . . . . an], which is generated by

[al]++ ~. . i+[a~], then the result is the set f(al) u. . . u

f (am). A monoid homomorphism captures a divide-

and-conquer computation since any list A = [al, . . . . an]

can be divided into two lists Al and A2 such that A =

A1++A2. In that case, the operation hem{’’t+’et(f) A

is equal to (homtast+$et(f) Al) u (hom~ist+$e~(f) A2).

Unfortunately, not all monoid homomorphisms are

well-formed. For example, sets cannot be converted

into lists as this would introduce nondeterminism.

(However, sets can be converted into sorted lists.)

This semantic restriction is purely syntactic in our

framework (i.e., it depends on the static properties of

the monoids involved in a homomorphism, such as the

commutativity and the idempotence properties).

The monoid homomorphism is the only form of bulk

manipulation of collection types supported in our al-

gebra. But, as we will demonstrate, monoid homo-

morphisms are very expressive. In fact, a small sub-

set of these functions, namely the monoid homomor-

phisms from sets to sets, captures precisely the nested

relational algebra (since they are equivalent to the set

extension operator ext ( f ), which has been shown to

capture the nested relational algebra [5] ). But monoid

homomorphisms go beyond that to capture operations

over multiple collection types, such as the join of a list

with a bag that returns a set, plus predicates and ag-

gregates. For example, an existential predicate over a

set is a monoid homomorphism from the set monoid to

the monoid (bool, false, V), while an aggregation, such as

summing all elements of a list, is a monoid homomor-

phism from the list monoid to the monoid (int, O, +).

We will also define a new calculus for this algebra,

called the monoid comprehension calculus, that cap-

tures operations involving multiple collection types in

declarative form. Monoid comprehensions are defined

in terms of monoid homomorphisms, but any monoid

homomorphism can be expressed in terms of a monoid

comprehension. Programs expressed in our calculus are

far easier to understand and manipulate than the equiv-

alent algebraic forms. In a way, monoid comprehensions

resemble the tuple relational calculus, but here query

variables may range over multiple collection types while

the output of the comprehension may yet be of a differ-

ent collection type.

For example, the following monoid comprehension

set{ (a)b) I a@[l,2,3], 6+-{4,5}}

joins the list [1, 2,3] with the bag {4, 5} and returns

the following set (it is a set because the comprehension

is tagged by the word set):

{(1,4),(1,5)

Another example is

sum{ a

(2,4),(2,5),(3,4),(3,5)}

a+-[l,2,3], a>2}

49



monoid type T zero unit (a) merge

last list (a) [1 [a] -H

set set(a) {} {a} u

bag bag(a) fy ::; M

oset list (a) u

string list (char) ““ “a” concat

sorted[f] list (a) [1 [a] merge[f]

Table 1: Examples of Collection Monoids

1
C/I

CI

c

I

CI

monoid type T zero unit (a) merge C/I

sum int o a + c
prod int 1 a * c
max int o a max CI

some bool false a v CI

all bool true a A CI

Table 2: Examples of Primitive Monoids

where sum is the monoid (int, O,+). This expression

returns 5, the sum of all list elements greater than or

equal to 2.

The rest of this section gives a formal definition of

the monoids and the monoid operations.

2.1 The Formal Framework

Definition 1 (Monoid) The trzple M = (T, zero, merge)

is a monoid of type T if merge (of type T x T+T) is as-

sociative with identity zero (’i. e., Y% : merge(zero, z) =

x = merge (z, zero),).

In addition, a monoid M = (T, zero, merge) may be

a commutative monoid (i.e., when merge is commuta-

tive) and/or an idempotent monoid (i.e., when VX :

merge(x, z) = z). For example, sum = (int, O, +) is

a commutative monoid, while set = (set(a), {}, U) is a

commutative and an idempot ent monoid.

Definition 2 (Collection Monoid) Let T(cr) be a

type determined by the type parameter a (t. e., T is a

type constructor) and M = (T(a), zero, merge) be a

monoid, The quadruple (T(a), zero, unit, merge), where

unit is a Junction of type a + T(cY), is a collection

monozcl.

Later, we will be defining operations that involve

multiple monoids. When necessary to distinguish the

components of a particular monoid M we qualify them

as zeroM, unitM, and mergeM.

Table 1 presents some examples of collection monoids.

The C/I column indicates whether the monoid is a

commutative or idempotent monoid. The monoids list,

bag, and set capture the well-known collection types

for linear lists, bags, and sets (where u is the additive

union for bags). The monoid oset captures lists with

no duplicates. The operator u is defined as follows:

*uy= ZH-(y-Z), where g - z is the list y without any

elements from z, e.g., [2,5,3, 1]u[3,2,6] = [2,5,3, 1,6].

The monoid string captures character strings. The

monoid sorted[f] is parameterized by the function f

whose range is associated with a partial order <, The

merge function of this monoid merges two sorted lists

into a sorted list. If z appears before y in a sorted[f]

list, then ~(o) < f(y). This monoid was chosen to be

idempotent (i.e., duplicates are removed) so it would be

isomorphic to the set monoid.

We will use the shorthand M{ el, . . . . en } to repre-

sent the following construction over the monoid M:

merge(unit(el), . . . . merge(unit(en-l), unit(en)))

In particular, we will use the following shorthands:

[cl,...,en] = list{ el, . . .. en}

{cl,...,en} = bag{el,..., en}

{cl,,..,en} = sef{el,..., en}

Definition 3 (Primitive Monoid) The quadruple

(T, zero, unit, merge), where M = (T, zero, merge) is

a monoid and unit is the identity function (t. e., Va :

unit(a) = a), ts a prtmittve monoid.

Table 2 presents some examples of primitive monoids.

Note that instances of a primitive monoid M cannot

be generated from the monoid operations alone; instead

they need values oft ype T to generate new values.

We define the mapping @ from monoids to the set

{C, 1} as: C G @(M) iff M is commutative and 1 c

@(M) iff M is idempotent. The partial order between

monoid names ~ is defined as:

N < M = +(N) G V(M)

For example, list < bag < set since set is commutative-

idempotent, bag is commutative but not idempotent,

and list is neither commutative nor idempotent. See

Figure 1 for a representation of the partial order ~ for

some of the monoids.

We now define our algebraic operator, which is

parameterized by input and output monoids.

Definition 4 (~.~oid Homomorphism) A homo-

morphism horn (f) A from the collection monoid

M = (T(~), zero~, unitM, mergex) to any monoid

N = (S, zero~, mergeN), where M ~ N, is defined by

the following inductave equations:

hom””N (f) (zero”) = zeroN

homM+N (f) (unitM (a)) = f(a)

hom””N (.0 (mergeM (Z) Y))

= mergeN( homM+N(f ) ~, hornM+N(f) ~ )
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CI (set)

(bag, sum) c
/\, ,.,,,,

\/

(M)

Figure 1: Restriction Lattice for Homomorphisms

Basically, the expression homM+N (j) A replaces the

zeroM in A by zero N, the mergeM by mergeN, and

the unitM by f. That is, function ~ must have the

same type as unitN. For example, if A is the list

[al,..., a~], then hom~;’$+’e~ (f) A computes the set

~(a~)UU~(an).

The condition M < N in Definition 4 is impor-

tant. If the collection monoid Ad is a commuta-

tive or idempotent monoid, then N must be too.

For example, bag cardinalityl hom~ag+’”~ (Az. 1) A is

a well-formed homomorphism, while set cardinality

hom’e’+’um (h. 1) A is not (since + is commutative

but not idempotent). Without this restriction we would

have (see also [6]):

1 = hom’et+’”~ (kc, 1) {a}

= horn ‘e’+s”~(kz. 1) ({a} U {a}) = 1 + 1 = 2

This restriction also prohibits the conversion of sets into

lists (since set fi list), but allows the conversion of sets

into sorted lists.

The following are examples of well-formed monoid

homomorphisms:

image(f) x = hom’et+’et(kz. {f(a)}) z

Xxy = homset+set (k. hom’et+se’ (M. {(a, b)]) ?J)z

e~x = homse’+’o~e (Au, (a= e))z

filter(p) x = horn’’’+’” (As. ifp(a) then {a} else {}) z

length(a) = homlC’’+s”~(Aa. 1) x

where image(~) z maps the function ~ over all elements

of the set x, ~ x y computes the cartesian product of

the sets z and y, and filter(p) x selects all elements a of

the set x that satisfy the predicate p(a).

Queries in our calculus are expressed in terms of

monoid comprehensions. Informally, a monoid compre-

hension over the monoid M takes the form M{ e I ~}.

Expression e is called the head of the comprehension.

Each term q, in the term sequence Z = gl, . . . . q~, n ~ O,

is called a qualijier, and is either

● a generator of the form v & et, where v is a variable

and e’ is an expression, or

1Expression ,!z. e is the function .f such that .f(~) = e.

● a jilter pred, where pred is a predicate.

Formally, monoid comprehensions are defined in terms

of monoid homomorphisms. In particular, all qualifiers

in the comprehensions are eliminated from left to right

until no qualifier is left:

Definition 5 (Monoid Comprehension) A monoid

comprehension over a primitzue or collection monoid M

is defined by the following inductwe equations:

M{e I } = unit” (e)

~+ M(k. M{e I Ti})uM{elm+-u,?} = horn

M{e I pred, if} = ifpred then M{e I ~}

else zeroM

where u in x t- u is an expression that computes an

instance of the collection monoid N, where N s M.

While the monoid M of the output is specified explic-

itly, the collection monoid N associated with the ex-

pression u in z e u is inferred. (Details of this type

inference process can be found elsewhere [16].)

We will use the following convention to represent

variable bindings in a comprehension:

where e[u/z] is the expression e with u substituted for

all free occurrences of x. That is, we substitute u for z in

all qualifiers q (assuming that there is no other generator

over z in q) and in term e. Terms of the form z = u

are called bimhngs since they bind the variable z to

the expression u. For example, set{ b. D I a ~ x, b ~ y,

a. B=b. C } is equal to set{ y.D I a +-x, a. B=y. C }.

Note that list{ x I x + {1,2} } is not a well-formed

comprehension, since it is translated into a homomor-

phism from set to list, while sum{ x 1 x + {1,2} } is.

That is, if one of the generators in a monoid compre-

hension is over a commutative or idempotent monoid,

then the comprehension must be over a commutative or

idempotent monoid. This condition can be checked stat-

ically, since the commutativity and idempotence prop-

erties of a monoid are specified explicitly when this

monoid is defined.

Relational joins can be represented directly as com-

prehensions. The join of two sets x and y is:

set{ f(a, b) I a +x, b + y, p(a, b) }

where p is the join predicate and function f const ructs an

output set element given two elements from x and y. For

example, if p(a, b) = (a. C=b. C) A (a. D > 10) and f(a,b)

= ( C=a.C, D=b.D ) (i.e., a record construction), then

this comprehension becomes:

set{ ( C=a. C, D=b. D ) I a +x, b- y,

a. C=b.C, a.D >10 }
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If we use the rules in Definition 5, this comprehension

is translated into algebraic form as

horn ‘e’+s”’(Aa. horn ‘e’+ Se’(Ab. if (a. C=b.C) A (a.D > 10)
then {( C=a.C, D=b.D )}
else {}) y) x

But comprehensions can be used to join different col-

lection types. For example, set{ (x, y) I ~+- [1, 2], y -

{3,4,3}} is equal to {(1,3),(1,4),(2,3),(2,4)}. An-

other example is nest(k) z equal to set{ ( KEY =

k(e), P = set{a I a+-z, k(e) = k(a)} ) I e+-z}, which

is the nesting operator for nested relations. Similarly,

unnest(z) = set{ e I s+- z, e k s.P }. The last compre-

hension is an example of a dependent join in which the

value of the second collection s.P depends on the value

of s, an element of the first relation c. Dependent joins

are a convenient way of traversing nested collections.

Other examples:

filter(p) * = set{el e~z, p(e)}

flatten(a) = set{elskz, ees}

Xny = set{eleez, eEy}

length(x) = sum{lle~z}

sum(x) = sum{ele+-z}

count(.r, a) = surrs{lle~x, e=a}

3a Ex:e = .sorne{ela+-z}

‘da Ex:e = ail{ela~z}

aEx = sorne{a=eleez}

The expression sum(z) adds the elements of any non-

idempotent monoid x, e.g., sum([l, 2, 3]) = 6. The

expression count (x, a) counts the number of occurrences

of a in the bag z, e.g., count (~l,2, 1},1)= 2.

From Definition 5 and from the equations

homM+N (~)A = Jff{YIx+A, Y+.f(x)}

if N is a collection monoid and

homM+N (~)A = ~{.f(x)lx+A}

if N is a primitive monoicl, we conclude that all

monoid homomorphisms can be expressed as monoid

comprehensions and vice versa.

2.2 The Monoid Comprehension Calculus

In our treatment of queries we will consider only the

following types to be valid:

Definition 6 (Monoid Type) A monoid type has one

of the following forms:

class name (a reference to a class)

T (T is a primitive type)

T(type) (T is a collect~on type)

(AI: t,,..., An: tn ) (a record type)

where type and tl, ... , tn are monoid types.

That is, collection types can be freely nested.

An 00DB schema is a set of potentially mutually

recursive class definitions. A class definition takes the

form:

class class-name = type extent : extentname

where type is a monoid type. The extent.name is an

optional collection (a set) of all instances of this class.

There are two ways of accessing inst antes of a class: via

the class extent, and via the persistent variables, which

are also part of the 00DB schema.

For example, the following is an 00DB schema in our

language

class person = ( name: string, address: string, spouse person )

extent: persons;

class hotel = ( name: string, address: string,

facilities: set(string), employees: set(person),

rooms: set(( bed#: int, price: int )) )

extent: hotels;

class city = ( name: string, hotels: bag(hotel),

places_to-visit: Iist(( name: string,

address: string )) )

extent: cities;

var my-city: city = ( name= ”Portland”, . . . );

where my-city is a persistent variable.

Definition 7 (Monoid Comprehension Calculus)

The monoid calculus consists of the following syntactic

forms:

v variable

c constant

e.A projection

(Al = el, . . . . An = en ) record construction

el @ ez 8G{=, <,>, s,2, #}

zeroM

unitM (e)

merge~ (el, ez)

M{elql, . . ..q~} comprehension

wheree, cl, ..., en are terms in the monoid calculus, v

is a variable, and ql, . . . . qn are qualifiers of the form

v+e ore.

For example, the following is a valid expression in the

calculus:

bag{ h.name I hl + bag{ c.hotels I c +- Cities,

2.3

One of

monoid

c.name= “Portland” },

h + hl, some{ r. bed#=3 I r + h.rooms } }

Translating ODMG-93 OQL to the

Monoid Calculus

our main claims for the effectiveness of the

calculus is that it gives better coverage of
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language features of real query languages. Nearly all

OQL expressions have a direct translation into the

monoid calculus, with the exception of indexed OQL

collections. (In Section 4 we present a monoid for

indexed collections as well as a comprehension syntax

to capture complex vector and array operations.) Here

we illustrate how to translate the main constructs of

OQL in the monoid calculus.

A select-from-where OQL statement of the form:

select e

from xlinel, . . ..zn inen

where pred

is translated into:

bag{el ol~el, . . ..xn+-en. pred}

Note that e, the e~ and pred could all contain nested

comprehension expressions, which supports the capabil-

ity in OQL to have nested queries in the select, where,

and from clauses. For example, the following nested

OQL query:

select haddress
from hl in (select c.hotels

from c in Cities

where c.name= “Portland”),

h in hl
where h.name= “Hilton”

is expressed in the comprehension syntax as follows:

bag{ h.address I hl +- bag{ c.hotels I c + Cities,

c,name= “Portland” },

h e hl, h.name=’’Hikon” }

The select-distinct OQL statement is translated

into a set comprehension in a similar way. For example,

consider the following query against the previous 00DB

schema that finds all hotels ;n

interesting places to visit:

select distinct h.name
from c in Cities,

h in c.hotels,

Portland that are also

p in c.places-to_visit

where c.name= “Portland” and h.name=p. name

This query is translated into the following comprehen-

sion:

set{ h.name I c + db.cities, h +- c.hotels, p + c.places-to.visit,

c,name= “Portland”, h,name=p.name }

The OQL group-by operator takes two forms. The

simplest form is:

group zineby (Al :el(*),, ... Am :en(z))

This operation partitions the collection e according to

the partition functions el, . . . . en in the by clause. For

each different combination of values el (~), . . . . en(t), it

creates a partition that contains all elements of e that

are mapped to these values, This form is translated

into:

set{( AI = cl(x), . . . ,An = en(z),

partition = set{cf I a+e, cl(a) = cl(z),...,

en(a) =en(z)} ) I z+e}

The more general form is:

group xineby (Al :el(z), . . ..A~ : en(z))

with (Bl : U1 (z, partition), . . . . l?~ : u~ (x, partition))

which is translated into:

set{{ Al = cl(z),...,A~ = e~(z),

BI = U1(z, partition),..., l?m = um(z, partition) )

I z-e, partition ~ set{a I a~e, cl(a) =el(z),...,
en(a) = en(z)}}

The following table gives the translation of other OQL

expressions into the monoid calculus:

el intersect ez ~ Set{zlz+-el, zinez}

for all z in e : pred ---+ all{ pred I r+e }

exists z in e : pred + sorne{pred I x+--e}

el in ez --+ sorne{a=ellzee2}

count(e) --+ sum{ll x+-e}

sum(e) + surn{clz+-e}

flatten(e) + set{zls+--e, z+s}

sort z in el by e2 + sorted[f]{x I z+el }

where in the last example, ~(z) = e2, For example, the

following OQL query finds all hotels in Portland that

have at least one room with three beds:

select h.name
from hl in (select c.hotels

from c in Cities
where c.name= “Portland”),

h in hl
where exists r in h.rooms: (r. bed#=3)

This query is expressed in the comprehension syntax as

follows:

bag{ h.name I hl ~ bag{ c.hotels I c ~ Cities,
c.name= “Portland” },

h @ hl, some{ r.bed#=3 I r + h.rooms } }

The restriction on monoid comprehensions relating

idempotence and commutativity of the monoids in-

volved turns out not to be a limitation in translation.

OQL select statements always return sets or bags, and

the only explicit conversion function on collections is

listtoset, which the calculus allows.
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A4{elij, vezero N,3} ~ zeroM (1)

M{e 11, ueunit~(e’), F} ---+ M{e Iv, v= e’, ~} (2)

M{e I F, v+-merge~(e~, ez), 3} ---+ merge” (M{el~, v+-el, F}, M{e 1~, vee2, F}) (3)

(if M is commutative)

(A~=e~,..., A~=e~AiAi ---+ e, (4)

M{elij, v+-~{e’

M{ e I r, some{ pred

Table 3: The Normalization Algorithm

3 Program Normalization

Another claim for the monoid calculus is that it

supports easy manipulation of query expressions. It is

amenable to pattern-based rewriting. Here we illustrate

one such transformation on the monoid calculus, which

we have implemented on an earlier version of the

calculus.

The monoid calculus can be put into a canonical form

by an efficient rewrite algorithm, called the normaliza-

tion algortthm. The evaluation of these canonical forms

generally produces fewer intermediate data structures

than the initial unnormalized programs. Moreover, the

normalization algorithm improves program performance

in many cases. It generalizes many optimization tech-

niques already used in relational algebra, such as push-

ing a selection before a join.

Table 3 gives the normalization rules. Rule 5 is the

most important: it flattens a nested comprehension

(i.e., a comprehension that contains a generator whose

domain is another comprehension). Rule 6 unnests an

existential quantification. There are other cases of query

unnesting that are not covered here, but for which we

are currently extending the normalization algorithm.

One advantage of the normalization algorithm, or

any algorithm on calculus expressions expressed via

pattern-based rewrite, is that it can be shown to

correctly preserve meaning by proving each rewrite

transformation is correct. Proofs of correctness for the

rules in Table 3 are given elsewhere [16].

Rules 5 and 6 may require some variable renaming to

avoid name conflicts. If there is a generator v’ +- el in ~

and a generator v’ e e2 in F then variable v’ in F should

be renamed. For example, filter(p) (filter(q) x) is

set{ a I a +-set{ a I a +-x, q(a) }, p(a) }

=set{a I a+-set{b I b+-x, q(b) }, p(a)}

(by renaming the inner variable a to b) and it is

normalized into:

set{ a I b+x, q(b), a~b, p(a) }

= set{ b I be-x, q(b), p(b) }

(by Rule 5 and by definition of ~) which is a filter whose

predicate is the conjunction of p and q. As another

example of normalization, consider the following nested

OQL query:

select distinct r

from r in R

where r.B in (select distinct s.D

from s in S

where r. C=s.C)

which is expressed in the monoid calculus as follows:

set{r I reR,
some{ x=r.B I x+set{ s.D I s +S, r, C=s.C } } }

and it is normalized into:

set{ r I r+ R, x+ set{ s.D I s+ S, r. C=s.C ], x=r.B }

= set{ r I r+- R, s- S, r.C=s.C, x~s. D, x=r. B }
= set{ r I rw R, s +- S, r,C=s C, s.D=r. B }

(by rules 6 and 5 and by definition of -.) Consider now

the query, presented in Section 2.3, that finds all hotels

in Portland that have at least one room with three beds:

bag{ h.name I hl +- bag{ c.hotels I c +- Cities,
c.name= “Portland” },

h + hl, some{ r. bed#=3 I r + h.rooms } }

This query is normalized into:

bag{ h.name I c e Cities, c.name= ’’Portland” ,
hl s c.hotels,
h +- hlr r e h.rooms, r.bed#=3 }

= bag{ h.name I c k Cities, c.name= “Portland”,
h e c,hotels, r ~ h.rooms, r.bed#=3 }

(by rules 4 and 5 and by definition of ~.)
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The normalization algorithm can also be used for

handling the inefficiencies introduced when new pro-

gramming language constructs are incorporated into re-

lational languages, such as in SQL3 [2]. (SQL3 con-

tains many new proposed relational extensions such as

user-defined types, multiple collections types, routines,

and triggers. ) In particular! the begin-end statement

in SQL3 may introduce inefficiencies when it contains

bindings to large intermediate results. For example,

begin declare hs SQL_set(hotel); addr string;

select hotels into hs from cities where name= ’C’;

select address into addr from hs where name=’ H’;

return addr;
end;

Notice that hs (a set of hotels) is generated by the first

select statement only to be used in the second select

statement. This query is translated in comprehension

form as follows:

set{ addr I hs e set{ c.hotels I c + cities, c,name= “C” },

addr +- set{ h.address I h +- hs, h.name=”H” ] }

If we normalize this expression, we derive a program

that does not materialize any intermediate result.

A path path is a name (the identifier of a bound

variable, or the identifier of a persistent variable, or the

name of a class extent) or an expression path’ .name

(where name is an attribute name of a record and path’

is a path). If the generator domains in a comprehension

do not contain any non-commutative merges (such as

the list append), then these domains can be normalized

into paths, That is, monoid comprehensions can be put

into the following canonical form. (We assume that all

predicates are pushed to the end of the comprehension,

forming a conjunction pred of predicates.):

M{e I vl+--pathl, . . ..v~+-path~. pred}

where each pathi is a path. The proof of this statement

is easy: if the domain of a generator in a monoid

comprehension is a form other than a path, then

this domain is reduced to a simpler form by the

normalization algorithm.

In addition to the normalization rules, there are other

important program transformations that explore the

commutativity properties of monoids. In particular, if

M is a commutative monoid, then we have the following

join commutativity rule:

which holds only when term ez does not depend on VI.

The following transformation, which is valid for any

monoid M, pushes a selection before a join if predicate

p does not depend on u:

M{ell, v+el, p,T} ---+ M{el~, p,v+-el, F}

4 Language Extensions

While the monoid calculus is capable of directly repre-

senting the main features of a language such as OQL,

it is in fact capable of expressing queries that are not

expressible in OQL. For example, comprehensions can

yield values for any monoid type, whereas the OQL se-

lect statement always yields sets or bags. We would like

to see OQL extended with select statements that return

collections other than sets or bags, such as:

select list e.B

from e in (sort s in x by s.A)

which sorts x by A and then projects over B preserving

the order.

Here we examine a monoid for vectors, which could

be a basis for extending the expressiveness of OQL. We

also show how to handle identity and updates in the

calculus,

4,1 Vectors and Arrays

Vectors and arrays are important collection types for

scientific and other applications [22]. In contrast to

other collection types, there is no obvious monoid that

captures vectors effectively. Vector operations should

provide random access through indexing as well as bulk

manipulation. We will first propose an effective form

of vector comprehensions and then describe a monoid

that captures these comprehensions. An example of a

vector manipulation is vector reverse, which computes

z[n–i–l] fori=O, l,.,., n — 1 from a vector z of size

n. This function can be computed by

vec[n]{a[n – i – 1] I a[i]+--z }

where vec[n] is the anticipated monoid for vectors of

size n [7]. Note that we want to access both the value

a and the associated index i from the vector x, but

we do not want to impose any order on the way a[i]

is accessed. The generator a[i] ~ z accesses the pairs

(a, i) in some unspecified order, much as elements of

a set or a list z are retrieved in a comprehension by

the generator a R *. But the constructed element of

the vector comprehension above is a[n – i – 1], which

means that we should be able to store an element at

any position in the resulting vector. That is, even

though vector elements are accessed in bulk fashion (in

pairs of value-index values), vectors are constructed in

random fashion by specifying which value is stored at

what place. But there is a problem here: what if we

have two different values stored in the same place in

a vector? We need to perform a merge operation on

vectors. One solution is to merge the vector elements

individually. That is, when two elements are stored at

the same place in a vector, the resulting vector value

is computed by merging these two elements. Another

solution, which is not considered here, is to choose the
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last of the two values if this value is not zero, otherwise

to choose the first. That way, the last non-zero value

overwrites the previous values.

We will now formalize these observations. We

introduce a new collection monoid M [n], for some

monoid M and some constant integer n, to denote all

vectors of size n with elements of type M. This monoid

has the following primitives: (The unit function here is

binary, but in functional languages any n-ary function

can be considered as a unary applied to a tuple.)

zeroM[n] = ~zero”, . . . ,zero”)

unit”Inl(a, k) = (eO, . . .,en-l D

where e%=
{

unitM (a) if i = (k mod n)

zero M otherwise

merge ‘[n]((lao, ~G-ID,U~O, ,~n-ID)
~merge”(aO, bO), . . . . merge” (a~–l, ~~-l))

where (lea, . . . . en_ 1D constructs a vector of n elements.

Thus, the zero element of M [n] is a vector of n zeros; the

unit takes two values a : M and k : int and constructs

‘h element is set to a;a vector of n zeros, except the k

the merge function uses merge M to merge the two input

vectors element-wise. For example,

zeToswn[4] = (jo, o,o, o)

unitSU@4](8,2) = [0,0,8,0)

mergesU~141 (((), I,2,0D, (13,0,2, ID)
= (0+3,1+0,2+2,0+1)

Note that the monoid M [n] is not

from M, as is the case for the

= (J3,1,4,1)

freely generated

other collection

monoids. Instead, the M [n] operations depend on the

M operations.

When there is no ambiguity, we will use mergeM for

merging vectors instead of merge M[nl. For example,

(11,2 ~+(3,4) = 04,6)

(j[l,2], [3])++ ~[4], [5,6]D = ([1,2,4], [3,5,6]D

The matrix sum of two matrices z and y of type mat =

sum[n] [m] is then x + y, since merge~at is merge’ ”~[nl,

which is merges”m, namely +.

The following are examples of vector manipulations.

To make the comprehensions more readable, we repre-

sent a pair of the form (a, i) as a[i].

sum.all (z) = sum{ala[t] -z}

subseq(z, n, 1) = surn[l]{a[2 – n] I a[i]+z, 2> n}

permute(z, p) = Smn[n]{a[b] I U[i] +x, b[j]+p, 2 = j }

concat (z, y) = (surn[n + m]{a[i] I a[2] +-z })

+(surn[n. + m]{b[n + 2] I b[i] 4-Y})

that is, subseq(x, n, 1) returns the vector z[i], i =

n , . ...1 + n – 1 and permute (z, p) returns the vector

z~[i]], i = 1,...,n, If mat = surn[n][rn], i.e., mat is

the type of n x m integer matrices, then the following

are examples of matrix operations:

map(f) x = mat{ (f(b) )[j][i] I a[i] ~x, b[j]~a }

transpose(z) = mat{ b[i][j] I a[i] ~x, b[j] ea }

inner(x, g) = sum{ala[i]ez *g}

multiply (z, y) = mat{ v[j][t] I a[i] 4- x, b[~] ~ transpose (g),

u ❑ inner(a, b) }

To understand map, notice that the resulting ma-

trix is formed by merging the values of the form

unit~”t((~(b))[j] [i]) = unitsu~[nl[~l ((~(b), j), i), which

is all zeros, except the ijt~ element, which is $(b). In

an OQL-like syntax, map(~) ~ could be expressed as:

select sum[n] [m] (f(b) )[~][i]

from a[i] in x,

b[]] in a

4.2 Object Identity and Database Updates

The monoid calculus can be extended to capture object

identity. We introduce a new type constructor obj(a)

that represents all objects with states represented by

values of type a. In addition, we extend the monoid

calculus with the following operations [23]:

● new(s) that creates a new object with state .s;

. !e that dereferences the object e (returns the state

of e);

● e := s that changes the state of the object e to s and

returns true.

For example, one valid object-oriented comprehension

is

list{ !Z I z+[new(l), new(2)], z := !Z + 1 }

which first creates a list oft ype list (obj (in-t)) containing

two new objects (new (1) and new(2)). Variable z ranges

over this list (i.e., z is of type obj (int) ) and the state of

x is incremented by one (by 8 := !~ + 1). The result of

this computation is the list [2, 3], Other examples are:

some{ z = y I z s new(l), y ❑ new(1) } ~ false

some{ !Z =!y I z = new(l), y S new(1) } ~ true

some{ .z=ylz=new(l), y =z, y:=2} ~ true

sum{! xlz~new(l), y~x, y:= 2} -+- 2

set{e I z ~new([]), z := [1,2], eR!x} + {1,2}
list{ !xlz~new(0), eK[l,2,3,4], z:=!x+e}

~ [1,3,6, 10]

The first example indicates that different objects are

distinct while the second indicates that objects can have

equal states.

We have defined a monoid with higher-order primi-

tives that captures these object-oriented computations

as state transformers [16]. These state transformers

propagate the object heap (which contains bindings
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from OIDS to object states) through all operations in

an expression, and change it in response to any opera-

tion that creates a new object or modifies an existing

object. This translation using state transformers cap-

tures precisely the semantics of object identity without

the need of extending the base model. It also provides

an equational theory that allows us to do valid opti-

mization for object-oriented queries.

Database updates can be captured by extending

Definition 5 with the following comprehension qualifiers:

Qualifier path := u destructively replaces the value

stored at path with u, qualifier path += u merges the

singleton u with path, and qualifier path -= u deletes

all elements of path equal to u. For example, the SQL3

program that inserts a new hotel is:

select * into c from cities where name= city _name;

insert into c.. hoteis values(hotel-name, hoteliiddress,
seto, seto, seto);

set c., hotel# = c.. hotel#+l;

This program has the following comprehension form:

set{ c I c e set{ c I c + db.cities, c name= city -.name },
c,hotels += ( name= hotel .name,

address= hotel~ddress, facilities={},
employees={}, rooms={} ),

c.hotel# += 1 }

5 Related Work

There are many proposals for object query algebras

(see for example [21, 13, 11, 3, 25]). In contrast

to our algebra, these algebras support multiple bulk

operators. But, as we have demonstrated in this paper,

we get enough expressive power with just one operator,

namely the monoid homomorphism. Supporting a

small number of operators is highly desirable, since the

more bulk operations an algebra supports, the more

transformation rules it needs and, therefore, the harder

the optimization task becomes.

Our framework is based on monoid homomorphisms,

which were first introduced as an effective way to cap-

ture database queries by V. Tannen, et al. [4, 6, 5].

Their form of monoid homomorphism (also called struc-

tural recursion over the union presentation — SRU) is

more expressive than ours. Operations of the SRU form,

though, require the validation of the associativity, com-

mutativity, and idempotence properties of the monoid

associated with the output of this operation. These

properties are hard to check by a compiler [6], which

makes the SRU operation impractical. They first rec-

ognized that there are some special cases where these

conditions are automatically satisfied, such as for the

ext (~) operation (which is equivalent to hornM+M (f)

for a monoid M). In our view, SRU is too expressive,

since inconsistent programs cannot always be detected

in that form. Moreover, the SRU operator can capture

non-polynomial operations, such as the powerset, which

complicate query optimization. In fact, to our knowl-

edge, there is no normalization algorithm for SRU forms

in general (i.e., SRU forms cannot be put in canoni-

cal form). On the other hand, ext (~) is not expressive

enough, since it does not capture operations that in-

volve different collection types and it cannot express

predicates and aggregates. We believe that our monoid

homomorphism algebra is the most expressive subset

of SRU where inconsistencies can always be detected

at compile time, and, more importantly, where all pro-

grams can be put in canonical form.

Monad comprehensions were first introduced by

P. Wadler [29] as a generalization of list comprehen-

sions (which already exist in some functional languages).

Monoid comprehensions are related to monad compre-

hensions, but they are considerably more expressive. In

particular, monoid comprehensions can mix inputs from

different collection types and may return output of a

different type. This is not possible for monad compre-

hensions, since they restrict the inputs and the output

of a comprehension to be of the same type. Monad

comprehensions were first proposed as a convenient and

practical database language by P. Trinder [27, 26, 10],

who also presented many algebraic transformations over

these forms as well as methods for converting compre-

hensions into joins. The monad comprehension syntax

was also adopted by P. Buneman, et al. [8] as an alter-

native syntax to monoid homomorphisms. The compre-

hension syntax was used for capturing operations that

involve collections of the same type while structural re-

cursion was used for expressing the rest of the operations

(such as converting one collection type to another, pred-

icates, and aggregates).

Our normalization algorithm is highly influenced by

L. Wong’s work on normalization of monad comprehen-

sions [30]. He presented some powerful rules for flatten-

ing nested comprehensions into canonical comprehen-

sions whose generators are over simple paths. These

canonical forms are equivalent to our canonical forms

for monoid homomorphisms.

6 Conclusion

We believe the monoid calculus provides an effective

framework for processing object-oriented query lan-

guages such as OQL, The only significant area of cover-

age left to deal with is method invocation, and our ini-

tial studies indicate no insurmountable problems there.

We would also like to turn this work around, and use

the monoid calculus to improve query languages. One

area is in ensuring languages such as OQL have a well-

founded semantics. Another is to put features into such

languages to match the expressive capabilities of the

monoid calculus, such as selects that return lists and

more comprehensive manipulations on arrays.
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