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Abstract. Many techniques for cleaning dirty data are based on enforc-
ing some set of integrity constraints. Conditional functional dependencies
(CFDs) are a combination of traditional Functional dependencies (FDs)
and association rules, and are widely used as a constraint formalism for
data cleaning. However, the discovery of such CFDs has received limited
attention. In this paper, we regard CFDs as an extension of association
rules, and present three general methodologies for (approximate) CFD
discovery, each using a different way of combining pattern mining for dis-
covering the conditions (the “C” in CFD) with FD discovery. We discuss
how existing algorithms fit into these three methodologies, and introduce
new techniques to improve the discovery process. We show that the right
choice of methodology improves performance over the traditional CFD
discovery method CTane.

1 Introduction

Many organizations are faced with problems arising from poor data quality, such
as inaccurate or inconsistent values. In order to clean such dirty data, many
techniques make use of logical rules called integrity constraints, such that values
are dirty if and only if they violate a rule. These constraints are typically supplied
by human experts, or discovered from the data by algorithms. Dedicated repair
algorithms then modify the data such that all constraints are satisfied. In this
paper we focus on the automatic discovery of constraints.

Among the variety of proposed constraints, Conditional functional depen-
dencies (CFDs) have been used extensively for data cleaning. Such CFDs are a
generalization of traditional functional dependencies (FDs) and association rules
(ARs). CFDs are more flexible than FDs, since they can capture dependencies
that hold only on a subset of the data, and more expressive and succinct than
ARs, since a CFD can also identify associations that hold on the attribute level.

To discover CFDs for data cleaning, when typically only dirty data is avail-
able, it is necessary to discover approximate CFDs. That is, to discover CFDs
that allow a certain amount of violations, in line with discovering confident
association rules. To discover approximate CFDs, two algorithms have been pro-
posed, based on the concept of equivalence partitions: CTane [1] and an un-
named method which we dub FindCFD [2]. These algorithms combine existing
techniques for discovering FDs and ARs. While research on discovering tradi-
tional FDs has resurged in recent years, especially in the database community,



the discovery of approximate CFDs has received less attention.
In this paper, we recast CFDs as an extension of association rules, and dis-

cuss CFD discovery from a more general perspective. We distinguish three gen-
eral methodologies for discovering confident CFDs1, as typically used for data
cleaning, based on distinct ways of combining FD discovery with itemset min-
ing. The first methodology is used by the CTane algorithm [1], and performs
an integrated traversal of the lattice containing all possible CFDs. Addition-
ally, we introduce two new methodologies, which explicitly consider CFD dis-
covery as a combination of FD discovery and pattern mining. We introduce an
itemset-centric approach, where patterns are mined at the top level, and FDs
are subsequently discovered on the corresponding subsets of the data; and an
FD-centric approach, which at the top level traverses the search space of FDs,
and then mines those patterns for which the FD holds, generalizing the approach
taken in FindCFD [2]. Moreover, in the FD-centric approach, we identify tech-
niques for speeding up the pattern mining process, using information from the
FD discovery process at the top level.

Both new methodologies are described in a flexible way, enabling the use
of any FD discovery method based on equivalence partitions, and any itemset
mining method based on tidlists, for each of the separate steps. As such, the
methodologies we describe, represent in fact a family of algorithms. This has as
a direct advantage that CFD discovery can benefit directly from advances in FD
and itemset discovery. We also present a general pruning strategy for CFDs, such
that each methodology can use an arbitrary strategy for traversing the search
space of CFDs, e.g., breadth-first or depth-first. Both CTane and FindCFD were
originally presented using a breadth-first strategy, because of pruning.

We show experimentally that both of our proposed methods typically out-
perform the integrated approach to CFD discovery, which is used by CTane. The
FD-centric approach performs substantially better in most cases, especially on
data with a higher number of attributes. We also identify situations in which
the itemset-centric approach provides the best performance, namely when using
a very low minimum support threshold. Moreover, the appropriate use of depth-
first search strategies further improve runtime for the different methodologies.

2 Related Work

Conditional functional dependencies (CFDs) are widely used in the context of
constraint-based data quality (see [3,4] for recent surveys). CFDs were intro-
duced in [5] as an extension of Functional dependencies (FDs), and three discov-
ery algorithms have been proposed since: CTane and FastCFD [1]2, and Find-
CFD [2]. Other work considers constant CFDs only [6]. Each of these discovery
methods is rooted in FD discovery. Our three general approaches to CFD discov-
ery can incorporate any FD discovery method making use of equivalence parti-

1 Other interestingness measures can be plugged in, if they can be computed from
equivalence partitions. This is the case for most popular measures.

2 FastCFD does not support the discovery of approximate CFDs



tions, e.g., Tane [7], FUN [8], FD Mine [9], and DFD [10]. Such methods support
the discovery of approximate dependencies, and are well suited for integration
with pattern mining. An overview and experimental evaluation of functional de-
pendency discovery is presented in [11], where it is shown that Tane is the most
performant algorithm on a considerable range of data sizes. CFD discovery can
also be viewed as the discovery of special conjunctive queries [12], but at the
cost of a more time-consuming discovery process.

Although interesting measures for FDs based on statistical tests have recently
been proposed [13], we consider approximate CFDs defined in terms of support
and confidence as these are most widely used in the data quality context.

Association rules (ARs) were first introduced in [14] for supermarket basket
analysis. Discovery of ARs is based on mining frequent patterns, which has re-
ceived much attention since. Of particular interest to our approaches for CFD
discovery are so-called vertical itemset mining algorithms, which employ a ver-
tical data layout for efficient frequency computation, such as Eclat [15]. Such
algorithms are well-suited for integration with FD discovery, since the vertical
data layout relates naturally to the equivalence partitions used in FD discovery,
as shown in the following sections. For an overview of itemset and association
rule mining, we refer to [16]. We view CFDs as a kind of ARs. An in-depth
discussion relating FDs, CFDs, and ARs can be found in [17].

3 Preliminaries

We consider a relation schema R defined over a set A of attributes, where each
attribute A ∈ A has a finite domain dom(A). For an instance D of R, and tuple
t ∈ D, we denote the projection of t onto a set of attributes X by t[X]. Each
tuple t ∈ D is assumed to have a unique identifier tid, e.g., a natural number.

A conditional functional dependency (CFD) [5] ϕ over R is a pair (X→ A, tp),
where (i) X is a set of attributes in A, and A is a single attribute in A; (ii) X→ A
is a standard functional dependency (FD); and (iii) tp is a pattern tuple with
attributes in X and A, where for each B in X ∪ {A}, tp[B] is either a constant
‘b’ in dom(B), or an unnamed variable ‘ ’. A CFD ϕ = (X → A, tp) in which
tp[A] = ‘ ’ is called variable, otherwise it is constant. For constant CFDs, tp[X]
consists of constants only. Such a constant CFD is equivalent to a traditional
association rule, and an FD is a CFD with tp consisting solely of variables ‘ ’.

The semantics of a CFD ϕ = (X → A, tp) on an instance D is defined as
follows. A tuple t ∈ D is said to match a pattern tuple tp in attributes X,
denoted by t[X] � tp[X], if for all B ∈ X, either tp[B] = ‘ ’, or t[B] = tp[B]. The
tuple t violates a variable CFD ϕ = (X → A, tp) if t[X] � tp[X] and there exists
another tuple t′ in D such that t[X] = t′[X] and t[A] 6= t′[A]. A tuple t violates
a constant CFD ϕ = (X → A, tp) if t[X] = tp[X] and t[A] 6= tp[A] hold. The
set of all tids of tuples in D that violate a CFD ϕ is denoted by VIO(ϕ,D). If
VIO(ϕ,D) = ∅, then D satisfies ϕ, which is also denoted by D |= ϕ.

We present CFD discovery algorithms in this paper using concepts from
itemset mining. We consider itemsets as sets of attribute-value pairs of the form



(A, v), with A ∈ A, and v a value in dom(A) or ‘ ’. An instance D thus corre-
sponds to a transaction database, with each tuple corresponding to a transaction
of length |A|. An item (A, v) with v ∈ dom(A) is supported in a tuple t if t[A] = v.
Items (A, ) are supported by every transaction. A tuple supports an itemset I
in D if it supports all items i ∈ I. The cover of an itemset I in D, denoted by
cov(I,D) and also called I’s tidlist, is the set of tids of tuples in D that support
I. The support of I in D, denoted by supp(I,D), is equal to the number of tids
in I’s cover in D.

We can now write a CFD ϕ = (X→ A, tp) compactly as an association rule
I → j, between an itemset I and a single item j, where I =

⋃
B∈X{(B, tp[B])}

and j = (A, tp[A]). In line with the notion of approximate FDs [7], we define

the confidence of a CFD ϕ = I → j as conf(ϕ,D) = 1 − |D′|
supp(I,D) , where

D′ ⊂ D is a minimal subset such that D \D′ |= ϕ. For a constant CFD, |D′| =
|VIO(ϕ,D)|, and hence conf(ϕ,D) = (supp(I,D) − |VIO(ϕ,D)|)/supp(I,D) =
supp(I ∪{j}, D)/supp(I,D) reduces to the standard confidence of an association
rule. For variable CFDs, |D′| is the minimum number of tuples that need to
be altered or removed for ϕ to be satisfied. For example, if a violation set for
a variable CFD contains two tuples with different A-values, the CFD can be
made to hold by altering just one of the tuples. A CFD ϕ is called exact if
conf(ϕ,D) = 1, and approximate otherwise.

Finally, we consider CFD discovery algorithms based on the concept of equiv-
alence partitions, as used in the Tane algorithm [7]. More specifically, given an
itemset I consisting of attribute-value pairs, we say that two tuples s and t in
D are equivalent relative to I if, for all (B, v) ∈ I, s[B] = t[B] � v. For a tu-
ple s ∈ D, [s]I denotes the equivalence class consisting of the tids of all tuples
t ∈ D that are equivalent with s relative to I. The (equivalence) partition of I,
denoted by Π(I), is the collection of [s]I for s ∈ D 3. For a single constant item,
Π((A, v)) = {cov((A, v), D)}, i.e., it consists of (A, v)’s tidlist. For a single vari-
able item, Π((A, )) = {cov((A, v)) | v ∈ dom(A)}, i.e., it consists of all tidlists
grouped together with regards to the A-values of the corresponding tuples. For
an itemset I, Π(I) =

⋂
i∈I Π(i) in which equivalence classes are pairwise inter-

sected. The size of Π(I), denoted by |Π(I)|, is the number of equivalence classes
in Π(I). We use ‖Π(I)‖ to denote the number of tids in Π(I), equal to the sup-
port of I. Finally, we note that the CFD I → j holds iff |Π(I)| = |Π(I ∪ {j})|.

Problem Statement. Given an instance D of a schema R, support threshold
δ, and confidence threshold ε, the approximate CFD discovery problem is to find
all CFDs ϕ over R with supp(ϕ,D) ≥ δ and conf(ϕ,D) ≥ 1− ε.

Example 1. We use the “play tennis” dataset from [18], shown in Table 1. One
of the approximate CFDs ϕ on this dataset is

{
(Windy, false), (Outlook, )

}
→

(Play, ). Let I =
{

(Windy, false), (Outlook, ), (Play, )
}

and j = (Play, ). The

relevant equivalence partitions are Π(I\{j}) =
{
{1, 8, 9}, {3, 13}, {4, 5, 10}

}
and

Π(I) =
{
{1, 9}, {8}, {3, 13}, {4, 5, 10}

}
. The sizes of the equivalence partitions

3 Strictly speaking this is only a partition of D when I contains variable items (A, ).



are |Π(I \ {j})| = 3 and |Π(I)| = 4, and both partitions have support ||Π(I \
{j})|| = ||Π(I)|| = 8. The supported tuples t, i.e., where t[Windy] = false,
are shaded grey in Table 1, with different shades corresponding to the different
equivalence classes in Π(I). The CFD can be made to hold exactly by removing
the tuple with tid 8, such that Π(I \ {j}) = Π(I), and hence its confidence is
1− (|D′|/||Π(I)||) = 1− (1/8) = 0.875. Finally, VIO(ϕ,D) = {t1, t8, t9}. ♦

Table 1. Running example based on the play tennis dataset [18]

tid Outlook Temperature Humidity Windy Play

1 sunny hot high false dont
2 sunny hot high true dont
3 overcast hot high false play
4 rain mild high false play
5 rain cool normal false play
6 rain cool normal true dont
7 overcast cool normal true play
8 sunny mild high false dont
9 sunny cool normal false play
10 rain mild normal false play
11 sunny mild normal true play
12 overcast mild high true play
13 overcast hot normal false play
14 rain mild high true dont

4 Three approaches for CFD Discovery

We present three general approaches for the discovery of approximate CFDs
with high supports. These approaches differ in the way that the (itemset) search
lattice is explored. First, we generalize the integrated approach [1], in which the
combined search lattice of constant and variable (‘ ’) patterns is traversed at
once. For the other two, new approaches, we decouple the lattices for constant
and variable patterns. We present the Itemset-First approach, followed by the
FD-First approach. Both of these approaches consist of two separate algorithms,
which either explore a lattice containing only constant patterns, or containing
only variable patterns. After discussing the three methodologies, we derive the
general time complexity of CFD discovery. As mentioned in the introduction, we
describe our algorithms independent from the search strategy used. To achieve
uniform pruning across all approaches and search strategies, we present pruning
strategies based on a generalization of free itemsets [19] and a lookup table.

4.1 Integrated CFD discovery

We start by describing the integrated approach Mine-Integrated for discover-
ing CFDs, as implemented by CTane [1]. Its pseudocode is shown in Alg. 1. Al-



Algorithm 1 Integrated CFD discovery algorithm

1: procedure Mine-Integrated(D, δ, ε)
2: L ← {(A, v) | A ∈ A, v ∈ dom(A) ∪ { }, supp((A, v), D) ≥ δ}
3: Compute Π({i}, D) for all i ∈ L
4: Initialize fringe with L depending on search strategy
5: Σ ← ∅
6: while fringe not empty do
7: I ← Pop(fringe)
8: for all j ∈ I do
9: if conf(I \ {j} → j,D) ≥ 1− ε then

10: Σ ← Σ ∪ {I \ {j} → j}
11: insert children of I into fringe if supp(I,D) ≥ δ
12: return Σ

gorithms based on this methodology traverse the entire search lattice for CFDs,
consisting of both constant and variable patterns. The first level L of this lat-
tice is initialized on line 2. For each singleton item, its equivalence partition is
computed from the data; only sufficiently frequent constant items are retained.

The lattice is subsequently traversed, typically in either a breadth-first or
depth-first manner 4. Regardless of the choice of traversal, we refer to the set
of current lattice elements considered as the fringe. Whenever an itemset I in
the fringe is visited (line 4), all CFDs of the form I \ {j} → j, for j ∈ I,
are generated, and their confidence is computed from the equivalence partitions
Π(I \ {j}) and Π(I). If the confidence exceeds the threshold, then the CFD
is added to the result Σ. An efficient algorithm for computing confidence is
presented in Tane [7], and is based on the error of an equivalence class. More
precisely, for all eq ∈ Π(I \ {j}), let Π(I)eq denote those eq′ ∈ Π(I) with
eq′ ⊂ eq. In other words, Π(I)eq contains all equivalence classes over I that
match the same (constant) pattern as eq on the attributes I \ {j}. We define

error(eq, Π(I)) = ||Π(I)eq|| − max
eq′∈Π(I)eq

|eq′|.

Generalizing the argument given in [7] for variable patterns to arbitrary (con-
stant and variable) patterns, the confidence can then be computed as:

conf(I \ {j} → j) = 1−
∑

eq∈Π(I\{j}) error(eq, Π(I))

supp(I \ {j})
.

Example 2. We consider the CFD
{

(Windy, false), (Outlook, )
}
→ (Play, ) from

our running example, and let I =
{

(Windy, false), (Outlook, ), (Play, )
}

and
j = (Play, ). We compute the error for each of the 3 equivalence classes in Π(I \
{j}) =

{
{1, 8, 9}, {3, 13}, {4, 5, 10}

}
. For eq = {3, 13} and eq = {4, 5, 10}, we

have |Π(I)eq| = 1, since the tuples within these equivalence classes have the same
values for attribute Play. Hence, there is only one eq′ ∈ Π(I)eq, and ||Π(I)eq|| =
4 The CTane algorithm as presented in [1] employs a breadth-first traversal.



maxeq′∈Π(I)eq |eq′|, leading to an error of 0. This leaves us with eq = {1, 8, 9}, for

which Π(I)eq =
{
{1, 9}, {8}

}
. Indeed, this is the equivalence class containing

the violations of the CFD. We compute the error as error = ||
{
{1, 9}, {8}

}
|| −

max(|{1, 9}|, |{8}|) = 1, resulting in a confidence of 1 − (error/||Π(I)||) = 1 −
(1/8) = 0.875, as mentioned in Ex. 1. ♦

Finally, if I is sufficiently frequent, the children of I in the lattice are gen-
erated and inserted into the fringe (line 11). This is done by joining I with all
itemsets J in the fringe that are (i) at the same level in the lattice, i.e., |J | = |I|;
and (ii) such that J and I differ in only one item. A child M is then obtained
as I ∪ J , and Π(M) is computed by intersecting Π(I) with Π(J). The Tane al-
gorithm provides a linear algorithm for computing such an intersection, making
use of a lookup table. Using a similar technique, confidence can be computed in
linear time (see details in the appendix).

4.2 Itemset-First discovery

The second, and new, approach to CFD discovery starts with an itemset mining
step. The pseudocode of algorithm Mine-Itemset-First is shown in Alg. 2.
The search lattice L is initialized (line 2) using only items with constant values.
We therefore only require the cover of each item in L (the equivalence partition
of a constant item corresponds to its cover). The lattice is traversed using an
arbitrary search strategy and generated itemsets are inserted into the fringe.

When visiting itemset I in this approach, we initialize a separate FD search-
ing algorithm (line 8). The item lattice for this FD search (LFD) now consists
only of those items in D with a variable pattern (‘ ’), and whose attribute is not
already present in attrs(I), the set of attributes in the items in I. In other words,
we wish to extend the constant pattern I with variable patterns to obtain CFDs.
During the traversal of LFD the equivalence partition of each item is computed
on DI , the dataset D projected on I, i.e., using only those tuples with a tid in
cov(I,D). The algorithm Find-FDs is then invoked (line 10), which can be any
FD-discovery algorithm using equivalence partitions, to discover all FDs with
confidence ≥ 1 − ε on DI . The resulting FDs are augmented with the pattern
I, and added to the set Σ of CFDs (line 11). Note that Find-FDs is oblivious
to the support threshold δ, since an FD is supported by all tuples in DI , and
|DI | ≥ δ is already ensured by enforcing the support threshold on I. Pseudocode
of Find-FDs is available in the appendix.

Example 3. In the running example, the itemset step will, for instance, visit the
item (Windy, false), with cov((Windy, false), D) = {1, 3, 4, 5, 8, 9, 10, 13}. Subse-
quently, an FD search is performed using only those tids in cov((Windy, false), D).
Hence, within the FD search, the fringe is initialized with all variable items ex-
cept for (Windy, ), and the equivalence partitions of these single items are com-
puted only over the tids {1, 3, 4, 5, 8, 9, 10, 13}. The FD (Outlook, ) → (Play, )
is then found to hold, with sufficient confidence, and the CFD

{
(Windy, false),

(Outlook, )
}
→ (Play, ) is added to the result. After exhausting the FD lattice

for (Windy, false), the itemset mining step is resumed. ♦



Algorithm 2 Itemset-First CFD discovery algorithm

1: procedure Mine-Itemset-First(D, δ, ε)
2: L ← {(A, v) | A ∈ A, v ∈ dom(A), supp((A, v), D) ≥ δ}
3: Compute cov({i}, D) for all i ∈ L
4: Initialize fringe with L depending on search strategy
5: Σ ← ∅
6: while fringe not empty do
7: I ← Pop(fringe)
8: LFD ← {(A, ) | A ∈ A \ attrs(I)}
9: Compute Π({k}, DI) for all k ∈ LFD

10: ΣFD ← Find-FDs(LFD, DI , I, ε)
11: Σ ← Σ ∪ {I ∪ J → j | J → j ∈ ΣFD}
12: insert children of I into fringe if their support ≥ δ
13: return Σ

Similar to the integrated approach, the final step when visiting an itemset I
is to insert its children into the fringe, if they are sufficiently frequent. The only
difference, similar to the initialization of L, is that we again only consider con-
stant items, with equivalence partitions boiling down to the cover of the items.
The cover of each child itemset M can then be computed using a straightfor-
ward intersection of cov(I,D) and cov(J,D), for the itemsets J in the fringe
with |J | = |I|, and such that J and I differ in only one item.

4.3 FD-First discovery

The third and final approach to CFD discovery, Mine-FD-First, is shown in
pseudocode in Alg. 3. This approach is a generalization of the FindCFD algo-
rithm [2], which starts with FD discovery. The search lattice L is thus initialized
(line 2) using only variable items, i.e., one item (A, ) for each attribute A ∈ A.
As before, equivalence partitions are computed, after which a fringe is created
and a breadth or depth-first traversal of the lattice follows.

For every item I in the lattice, we now consider all FDs of the form I\{j} → j
for j ∈ I (line 8). If the FD is found to be sufficiently confident, it is added to
the result Σ. However, if the FD does not fully hold on the data, we additionally
run an itemset mining algorithm to find all constant patterns for which the FD
is sufficiently confident. During this itemset mining, the lattice LPat of constant
items is explored. This lattice is initialized on line 12.

The key to the Mine-FD-First method’s efficiency is that the support and
confidence of a considered CFD I \ {j} → j can be computed based on the
information contained in Π(I). Indeed, each equivalence class eq ∈ Π(I) corre-
sponds to a unique constant pattern over the attributes attrs(I). By assigning a
unique identifier to each class, we define the cover of an item(set) J w.r.t. the
equivalence partition of I, denoted as cov(J,Π(I)), as the set of identifiers of
equivalence classes in which the item occurs. We call such a cover a pidlist (for
partition id). Since typically |cov(J,Π(I))| � |cov(J,D)|, efficiency is increased.



Algorithm 3 FD-First CFD discovery algorithm

1: procedure Mine-FD-First(D, δ, ε)
2: L ← {(A, ) | A ∈ A}
3: Compute Π({i}, D) for all i ∈ L
4: Initialize fringe with L depending on search strategy
5: Σ ← ∅
6: while fringe not empty do
7: I ← Pop(fringe)
8: for all j ∈ I do
9: if conf(I \ {j} → j,D) ≥ 1− ε then

10: Σ ← Σ ∪ {I \ {j} → j}
11: if conf(I \ {j} → j,D) < 1 then
12: LPat ← {(A, v) | A ∈ attrs(I), v ∈ dom(A)}
13: Compute cov({i}, Π(I)) for all i ∈ LPat

14: Σ ← Σ ∪Mine-Patterns(LPat, I \ {j} → j,Π(I), δ, ε)

15: insert children of I into fringe

16: return Σ

Example 4. Consider the FD
{

(Windy, ), (Outlook, )
}
→ (Play, ) correspond-

ing to the itemset I =
{

(Windy, ), (Outlook, ), (Play, )
}

, with equivalence

class Π(I) =
{
{1, 9}, {2}, {3, 13}, {4, 5, 10}, {6, 14}, {7, 12}, {8}, {11}

}
. The con-

stant pattern (Windy, false) can now be represented by its pidlist. That is,
cov((Windy, false), Π(I)) = {1, 3, 4, 7}. Since supp((Windy, false), D) = 8, we
have reduced the size of its cover by half. ♦

The subprocedure Mine-Patterns now starts by initializing a fringe con-
taining all frequent single (constant) items over the attributes in I \ {j}. For
each item, its pidlist has been computed from Π(I) (line 13). Procedure Mine-
Patterns then traverses the constant itemset lattice, generating the pidlists of
new itemsets by intersecting the pidlists of two of their parents in the lattice.
The support of an itemset M can be easily computed from its pidlist as follows,

supp(M,Π(I)) =
∑

pid ∈ cov(M,Π(I))

|Π(I)[pid ]|,

where Π(I)[pid ] denotes the equivalence class with identifier pid . Only itemsets
M with supp(M,Π(I)) ≥ δ are considered as possible patterns for a CFD.
Whenever an itemset M is processed in Mine-Patterns, we validate the CFD
(I \{j})⊕M → j, where ⊕ replaces those variable items in (I \{j}) which have
a constant counterpart in M , i.e., (I \ {j}) ⊕M = M ∪

{
(A, ) ∈ I \ {j} | A 6∈

attrs(M)
}

. If the CFD is sufficiently confident, it is added to the result.
Pseudocode for algorithm Mine-Patterns is available in the appendix. As

before, any itemset mining algorithm based on tidlists and any search strategy
can be employed by Mine-Patterns. After the itemset mining step has finished,
Mine-FD-First continues by processing the remaining FDs in I, of the form
(I \ {l} → l) with l 6= j, one by one. Finally, after all FDs in I have been



processed, the children of I are added to the fringe. Since Mine-FD-First only
considers FDs at this level, a support check is not necessary.

We remark that the algorithm FindCFD [2] takes a similar approach, but,
to our knowledge, does not perform an exhaustive search through the pattern
lattice, i.e., the power set of LPat. Indeed, if an FD does not hold, this algo-
rithm examines the equivalence partitions to obtain a constant CFD, without
any variable patterns. As such, FindCFD discovers only FDs and constant CFDs,
whereas Mine-FD-First discovers general CFDs containing variables and con-
stants. The fact that FindCFD does not discover all CFDs is also noted in [20].

4.4 Time Complexity

With our three general methodologies in place, we now discuss the time com-
plexity of CFD discovery based on equivalence partitions and tidlists. Most of
the computation concerns two operations: computing equivalence partitions (or
tidlists), and validating CFDs. Both operations can be performed inO(|D|) time.
For every element I in the lattice, the equivalence partition is computed once,
and |I| CFDs are validated. We simplify this as |I| operations per lattice element.
Given that there are |A| attributes in the dataset, a total of 2|A| combinations

of attributes exist: at level i in the lattice, there are
(|A|
i

)
attribute combinations

of size i. Let d denote the average size of dom(A), for A ∈ A. Including variable
patterns, there are at most (d+1)i itemsets containing an attribute combination
of size i. The number of operations performed by the algorithms is then:

|A|∑
i=1

(
|A|
i

)
(d+ 1)ii

Computing this expression gives a total of |A|(d+1)(d+2)|A|−1 operations, each
of which is O(|D|). Hence, the time complexity of the algorithms is:

O(|A| × d|A| × |D|).

While each of our three methods performs roughly the same number of opera-
tions, the difference between them is in the time required to perform these op-
erations. Indeed, a tidlist intersection and an equivalence partition intersection
are both O(|D|), but in practice the tidlist intersection is faster. The Itemset-
First method most efficiently computes the projected databases on which it then
performs an FD-search, while the FD-First method performs much of its inter-
sections and validation on the pidlists, which are on average much smaller than
|D|. These differences account for the improved performance of Itemset-First and
FD-First over the Integrated approach, as experimentally shown in Section 5.

4.5 Pruning

We conclude by discussing pruning. Clearly, any CFD discovery algorithm can
exploit the anti-monotonicity of support, to prune away all infrequent itemsets



and their supersets. However, existing CFD discovery algorithms also provide
pruning based on redundancy with respect to the antecedent of CFDs. Redun-
dancy is defined using the concept of a preceding set:

Definition 1 (Preceding set). Consider a database instance D and an itemset
I containing attribute-value pairs. An itemset J is a preceding set of I, denoted
J ≺ I, if J 6= I and for all (A, v) ∈ J , either (A, v) ∈ I, or v = ‘ ’ and (A, a) ∈ I,
where a is a constant value in dom(A).

Example 5. In our running example, the itemsets
{

(Windy, false), (Outlook, )
}

and
{

(Windy, ), (Outlook, ), (Play, )
}

, among others, are preceding sets of the

itemset
{

(Windy, false), (Outlook, ), (Play, )
}

. ♦

Definition 2 (CFD Redundancy). Consider a database instance D and a
CFD ϕ : I → j with conf(ϕ,D) ≥ 1 − ε. Then, ϕ is redundant if there exists a
CFD ϕ′ : M → n with M ≺ I and {n} � {j}, and conf(ϕ′, D) = conf(ϕ,D).

Example 6. In our example, the CFD (Temperature,Cool)→ (Humidity,Normal)
holds exactly. This implies the redundancy of, for example, the CFDs{

(Temperature,Cool), (Humidity,Normal), (Windy, )
}
→ (Play, ){

(Temperature,Cool), (Windy, )
}
→ (Humidity, ). ♦

Such redundancy can be eliminated efficiently in CTane (and Tane), since it
employs a breadth-first traversal of the integrated search lattice, and hence all
immediately preceding sets of an itemset are directly available in the level above
the current one in the lattice. Pruning is then performed by associating with
every itemset I in the lattice a set C+(I) of candidate consequents for I and its
supersets. Initially, we set C+(I) = {(A, v) ∈ I | if (A, v′) ∈ I then v = v′}, i.e.,
all items except those for which I already contains a different item with the same
attribute. Whenever a CFD is found to hold, the relevant C+ sets are updated,
removing candidate consequents which will lead to redundant CFDs. Clearly, if
C+(I) = ∅, then I and all its supersets can be removed from the search space.
Updating the sets C+ is performed as follows in CTane:

1. If D |= I → j, set C+(M) = C+(M) ∩ I for all M with j ∈M and M � I;
2. When generating a new itemset X in the lattice, set C+(X) = C+(X)∩C+(I)

for all I ≺ X with |(X \ I)| = 1.

To generalize this strategy across our different approaches and search strate-
gies, where not all preceding sets may be readily available in the search lattice,
we introduce two techniques. Firstly, we use a lookup table indexed by the con-
sequent of a rule 5, and store a list of all CFDs with that consequent that hold
exactly on D. When a confident CFD I → j is found, it then suffices to verify
whether a preceding set of I is present in the table at index j. If a preceding
set M is found, the CFD is redundant, and pruning is performed by setting
C+(I ∪ {j}) = C+(I ∪ {j}) ∩M .

5 We store constant CFDs I → (A, v) both at indices (A, v) and (A, ).



Table 2. Statistics of the UCI datasets used in the experiments. We report the number
of tuples, distinct constant items, and attributes.

Dataset |D| |I| |A|

Adult 48842 202 11
Mushroom 8124 119 15
Nursery 12960 32 9

Our second pruning technique generalizes the concept of free itemsets [19]
(also called generators [21]). An itemset M is called free if, for all J ⊂ M , it
holds that supp(J,D) 6= supp(M,D). Moreover, it is known that all subsets of a
free set are also free. We extend this concept to equivalence classes:

Definition 3 (Eq-Free Itemset). An itemset I is Eq-Free in an instance D
if, for all J ⊂ I, |Π(I,D)| 6= |Π(J,D)| or ‖Π(I,D)‖ 6= ‖Π(J,D)‖.

We now observe that, if a CFD ϕ : I → j holds on D, then the itemset I∪{j}
is not Eq-Free. Indeed, it must necessarily hold that |Π(I,D)| = |Π((I∪{j}), D)|
and ‖Π(I,D)‖ = ‖Π((I ∪ {j}), D)‖. Hence, in order to obtain non-redundant
CFDs, we additionally need to verify the Eq-Freeness of the antecedent of every
considered CFD. To implement this check efficiently, we use a lookup table as
in the Talky-G algorithm for mining free itemsets [22].

5 Experiments

We experimentally validate the proposed techniques on real-life datasets from
the UCI repository (http://archive.ics.uci.edu/ml/), described in Table 2. The
mushroom dataset was restricted to its first 15 attributes, as runtimes became
too high when considering more attributes. The algorithms have been imple-
mented in C++, the source code and used datasets are available for research
purposes 6. The program was tested on an Intel Xeon Processor (3.8GHZ) with
32GB of memory running Ubuntu. Our algorithms run entirely in main memory.

In Sec. 4, we have described the three approaches to CFD discovery in full
generality, i.e., using any FD discovery algorithm based on equivalence partitions,
any itemset mining algorithm using tidlists, and any search strategy. We begin
the experimental section by describing specific instantiations of our approaches:

Integrated uses a depth-first implementation of the CTane algorithm
Itemset-First uses a breadth-first version of Eclat for the itemset mining step,

and a depth-first Tane implementation for the FD discovery step
FD-First uses both a depth-first Tane step and depth-first itemset mining

All our depth-first implementations use a reverse pre-order traversal. We
selected these three instantiations as the best ones – in terms of efficiency – out

6 https://bit.ly/2yFNksO
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Fig. 1. Scalability of three CFD discovery algorithms in number of tuples.
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Fig. 2. Scalability of three CFD discovery algorithms in number of attributes.

of a total of 18 different combinations. The runtime results of all instantiations
are available in the appendix.

Since CFD (and FD) discovery is inherently exponential in the number of at-
tributes of a dataset, we sometimes reduce the overall runtimes of the algorithms
by enforcing a limit on the size of rules, called the maximum antecedent size.
We compare the runtime of the three methodologies in function of the number
of tuples and attributes of the data, the minimum support threshold, and the
maximum antecedent size. The confidence threshold was found to have a negligi-
ble influence on runtime, and hence all experiments are run with ε = 0. Runtime
plots in function of confidence can be found in the appendix. We emphasize that
all methods return the exact same result in every experiment.

5.1 Number of Tuples

We first investigate the scalability of each approach in terms of the number of
tuples. For this experiment, we consider only the first X% tuples of each dataset,
with X ranging from 10% to 100%. The minimum support threshold was fixed
at 10% of the number of tuples considered, and the maximum antecedent size
was fixed at 6. The obtained runtimes are displayed in Fig. 1. We see that the
FD-First approach scales better than the other approaches, and is faster overall.
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Fig. 3. Scalability of three CFD discovery algorithms in minimum support threshold.
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Fig. 4. Scalability of Itemset-First and FD-First discovery algorithms for very low
minimum support thresholds.

5.2 Number of Attributes

Similar to the previous experiment, we now investigate the performance of the
three algorithms in terms of the number of attributes, by considering only the
firstX attributes. In Fig. 2, the runtimes are shown on each dataset for increasing
values of X. The minimum support threshold and maximum antecedent size were
again fixed at 10% and 6, respectively. While each of the algorithms shows an
exponential rise in runtime as the number of attributes increases, the FD-First
method clearly outperforms the other approaches. The Integrated method is the
slowest overall, and suffers most of all from the increasing number of attributes.

5.3 Minimum Support

We next fix the dimensionality of the data, using all tuples and attributes, and
study the influence of the minimum support threshold on runtime. The results
for the three datasets are shown in Fig. 3, for minimum support thresholds of
5%, 10%, and 15% of the total number of tuples. Overall, the support threshold
has less impact than the number of attributes. The FD-First method shows the
lowest increase in runtime as support decreases, and is clearly the fastest method,
while the other two methods show a somewhat similar increase.
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Fig. 5. Scalability of three CFD discovery algorithms in maximal size of antecedent.

However, the situation changes when considering very low support thresh-
olds. In Fig. 4, we show runtimes for the Itemset-First and FD-First methods
for minimum supports ranging of 0.1%, 0.5%, and 1%. We do not display the
Integrated approach, since it is much slower in this support range, distorting the
plot. As support becomes very low, the FD-First method shows a strong increase
in runtime, whereas the Itemset-First method is much less impacted. Indeed, for
such low supports, the pattern mining step becomes the most expensive part of
CFD discovery, which is handled most efficiently by the Itemset-First approach.

5.4 Maximal Antecedent Size

We conclude the experimental section by investigating the impact of the maximal
antecedent size threshold on the runtime of the algorithms. The results are shown
in Fig. 5. The minimum support threshold was again fixed at 10%. We see an
exponential increase in runtime, similar to that observed when the number of
attributes was increased. The FD-First approach again performs best on every
dataset, and shows the lowest increase in runtime as antecedent size increases.

6 Conclusion

We have presented the discovery of Conditional functional dependencies (CFDs)
as a form of association rule mining, and classified the possible approaches into
three categories, based on how these approaches combine pattern mining and
functional dependency discovery. Two of these approaches have not been con-
sidered before. Moreover, we discuss how discovery and pruning can be per-
formed independent of methodology and search strategy, either breadth-first or
depth-first. We show experimentally that both our new approaches outperform
the existing CTane algorithm, and identify situations in which either of these
methods achieve the best performance. Most crucially, we have shown that the
field of CFD discovery still offers opportunities for improvement. This is highly
relevant in view of the popularity of CFDs in data cleaning. As future work, we
plan to investigate parallelized or distributed discovery and develop incremental
discovery methods to accommodate for dynamic, changing data.
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Appendix A: Additional Experiments

A.1 Influence of Confidence Threshold

The runtime results in function of confidence are shown in Fig. 6. These results
were obtained with a minimum support of 10%, and a maximum antecedent
size of 6. As stated at the beginning of the experimental section, the confidence
threshold has a negligible impact the runtime of CFD discovery. This makes
sense: since no pruning occurs based on confidence, all these CFDs are validated
regardless of the threshold, and the only difference is whether they are added to
the result.
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Fig. 6. Influence of confidence threshold on runtime of three CFD discovery algorithms.

A.2 Number of CFDs

As additional information, we show the number of CFDs found for various sup-
port and confidence thresholds in Table 3. We only use very high confidence
thresholds, as such CFDs are typically used for data cleaning. The number of
CFDs increases quickly as the number of attributes increases, as on the Mush-
room dataset. Moreover, while the number is manageable for high confidence
thresholds, CFD discovery also suffers from pattern explosion on low confidence
thresholds. As noted in the experimental section, all algorithms returned the
same CFDs.

A.3 Search Strategy

We have compared the traditional breadth-first approach to CFD discovery with
a depth-first version of the three algorithms. We show the obtained runtimes,
in function of minimum support, in Fig. 7. The experiments were run with a
maximum antecedent size of 6. For the Itemset-first and FD-First methodologies,
we denote the strategy for the first level in capitals and the strategy for the



Table 3. Number of (approximate) cfds discovered for various support and confidence
thresholds.

Dataset Minsup Conf = 1.0 Conf = 0.99 Conf = 0.95

Adult
15% 3 8028 11426
10% 7 11841 19342
5% 32 22256 44962

Mushroom
15% 3739 219344 877583
10% 5842 314259 1240933
5% 11117 438325 1969904

Nursery
15% 2 2 80
10% 7 7 225
5% 25 57 836

second level in lowercase, e.g., BFSdfs on FD-First stands for a breadth-first FD
mining step and a depth-first itemset mining step.

For the Integrated method, the depth-first version is more efficient in all
cases, especially for lower support thresholds. The differences are smaller for
Itemset-First, but the combination breadth-first itemset mining and depth-first
FD mining generally performs slightly better than the others. In the FD-first
case, the different search strategies seem to have very little influence, but the
depth-first strategy for both steps is typically marginally faster than the oth-
ers. This leads to the implementation choices discussed at the beginning of the
experimental section.
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Fig. 7. Comparison of different search strategies for each of the three methodologies.



Appendix B: Pseudocodes of Algorithms

B.1 Intersection

The algorithm for computing the intersection of two equivalence partitions, Π(I)
and Π(J), as presented in [7], is shown using our terminology in Alg. 4. The
algorithm works as follows, a lookup table is created mapping every item in Π(J)
to the index of its equivalence class eq′ ∈ Π(J). Then, every equivalence class
eq ∈ Π(I) gets “split” according to the partition Π(J): for each of the items
in eq, its equivalence class index in Π(J) is looked up, in order to partition eq
into separate classes, grouping those items which are in the same class in Π(J).
Finally, all partitions in eq are added to Π(I ∪ J), and the next eq ∈ Π(I) is
processed.

Algorithm 4 Intersection algorithm for equivalence partitions

1: procedure Intersection(D,Π(I), Π(J))
2: pIndex← 0
3: Lookup← [ ]
4: for all eq′ ∈ Π(J) do
5: for all item ∈ eq′ do
6: Lookup[item]← pIndex

7: pIndex← pIndex+1

8: Π(I ∪ J)← ∅
9: pIndex← 0

10: for all eq ∈ Π(I) do
11: ΠpIndex ← [ ]
12: for all item ∈ eq do
13: ΠpIndex[Lookup[item]]← ΠpIndex[Lookup[item]] ∪ {item}
14: pIndex← pIndex + 1
15: for all eq′′ ∈ ΠpIndex do
16: Π(I ∪ J)← Π(I ∪ J) ∪ {eq′′}
17: return Π(I ∪ J)

B.2 Find-FDs

Pseudocode for the Find-FDs algorithm, which is used as the second step in the
Itemset-First CFD discovery method, is shown in Alg. 5. The algorithm takes
as input the first level in the lattice, the projected database DP for a constant
pattern P , and the confidence threshold ε. The lattice contains all variable items,
except those in attrs(P ), with their equivalence partitions computed on DP . As
in the other algorithms, a fringe is initialized using an arbitrary search strategy,
and then traversed. For each FD I \ {j} → j encountered, the confidence of the
FD I \ {j} → j on DP is validated. If the FD is found to be confident, the
corresponding CFD P ∪ (I \ {j})→ j, joined with the pattern, is added to the
result.



Algorithm 5 FD-discovery subroutine for Itemset-First algorithm

1: procedure Find-FDs(L, DP , P, ε)
2: Initialize fringe with L depending on search strategy
3: Σ ← ∅
4: while fringe not empty do
5: I ← Pop(fringe)
6: for all j ∈ I do
7: if conf(I \ {j} → j,DP ) ≥ 1− ε then
8: Σ ← Σ ∪ (P ∪ ({I \ {j}))→ j}
9: insert children of I into fringe

10: return Σ

B.3 Mine-Patterns

Pseudocode for the Mine-Patterns algorithm, which is used as the second step
in the FD-First CFD discovery method, is shown in Alg. 6. The algorithm takes
as input the first level of the lattice, an FD I \ {j} → j which does not fully
hold on the data, the equivalence partition Π(I) of the itemset I containing
the CFD, and the thresholds δ and ε. Here, the lattice contains only constant
items with attributes in attrs(I \ {j}), and their corresponding pidlists, i.e.,
their covers computed over the equivalence classes in Π(I). Next, a fringe is
initialized and traversed using an arbitrary search strategy. For every constant
pattern M processed during the lattice traversal, the confidence of the CFD
(I \{j})⊕M → j is verified (the variable items in I \{j} are replaced by ⊕ with
the constant items in M that have the same attribute, if such an item exists). If
the CFD is sufficiently confident, it is added to the result. Both confidence and
support are computed using the pidlists over Π(I).

Algorithm 6 Pattern mining subroutine for FD-First algorithm

1: procedure Mine-Patterns(L, I \ {j} → j,Π(I), δ, ε)
2: Initialize fringe with L depending on search strategy
3: Σ ← ∅
4: while fringe not empty do
5: M ← Pop(fringe)
6: cfd← (I \ {j})⊕M → j
7: if conf(cfd, Π(I)) ≥ 1− ε then
8: Σ ← Σ ∪ cfd

9: insert children of M into fringe if their support ≥ δ
10: return Σ


