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Abstract. The frequent itemset mining (FIM) problem is a well-known and im-
portant data mining problem, that has been studied in considerable depth during
the last few years, mainly experimental. For the analytical study of the average
case performance of FIM algorithms, the probability that an itemset is a candidate
and the probability that a set is frequent (a success) or infrequent (a failure) are
of crucial importance. This paper gives a statistical approach to the success prob-
ability for the simple shopping model where every item has the same probability
and all the items and all the transactions are independent.

1 Introduction

The frequent itemset mining (FIM) problem, introduced in [1], is a well-known and
interesting basic problem at the core of many data mining problems [3]. The problem
is, given a large database of basket data, i.e. subsets of a fixed set df jtantsa user-
defined support threshold to find those sets of items occurring together in at Iéast
baskets. In the last two decades, several different algorithms for solving this problem
were proposed and studied experimentically [3].

For the analytical study of the behavior of FIM algorithms, the probability that an
itemset is a candidate, a frequent set or an infrequent set is of crucial importance. If the
itemset is frequent, it is called a success; if a candidate turns out to be infrequent, it is
called a failure. All correct FIM algorithms give the same success probability; it is a
property of the data, not of the algorithm. This paper gives a statistical approach to the
success probabilitys;, the probability that a set consisting bftems is frequent, for
the simple model where every item has the same probapitifybeing chosen, and all
the items and all the transactions are independent. Related work [5] computes Chernoff
bounds to estimaté), but the statistical approach presented in this paper is easier to
compute and gives better results. The new approach is based on the approximation of
the Binomial Distribution.

In the used shopping model, the probability that a randomly filled basket contains
the items{1,...,1} is P(I) = p'. The probability that at leagt baskets contaihitems

{1,...,1} equals
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It is the probability that the s€ftl, ..., [} is a frequent set.



n < 30 Directly to determine (table or count)

B(n, p) 0.1 < p < 0.9 =N(np, np(1-p))
np < 10 Directly
n>30

p <0.1 =P(np) <
np > 10 = N(np, np)

p > 0.9 Switch p and 1-p, use above

Fig. 1. Overview approximations

2 Statistical Background Information

The Binomial DistributionX ~ B(n,p) is a discrete distribution whet® represents
the amount of successesiirindependent repetitions of a random experiment with two
possible outcomes, success with probabilitgnd failure with probabilityl — p. The
probability of having at leagt successes in the successive experiments is

PX >k =3 (?) P =Y (?)pf (1 p).

>k j=k

The Binomial Distribution can be approximated by the Normal Distribution and the
Poisson Distribution. An overview is given in Figure 1. For more information, see [4]
or any other reference book on statistics.

3 Approximation of S,

In this section, we approximate the success probabflitythe probability that a set
consisting of items occurs in at leagtbaskets.

b

si=3(2) - o

j=k

can be seen aB(X > k) = 1 — P(X < k) with X ~ B(b, P(l)). We now use

the appropriate approximation for the Binomial Distribution and investigate the three
different situations that can appear. The case 30 is not considered becausés the
amount of tuples in the database and this is supposed to be larg&0than

31 0.1< P(1)<0.9

We approximate the discrete Binomial distribut&d~ B (b, P(1)) by the continuous
Normal distributedY” ~ N (bP(1),bP(I)(1 — P(1))). Since we are approximating a



discrete distribution by a continuous one, we have to take care of the continuity correc-
tion. The following expression fa$; can be found:

Slz1_¢<(k—o.5)—bp(1)>.

bP(1)(1 = P(1))

These values can be found in pre-calculated tables or can be computed using statistical
software.

3.2 P(l) <0.1

In this case, the Binomial distributedl ~ B (b, P(1)) will be approximated by the
Poisson distributed” ~ P (bP(l)). Dependent on de size dP(l) we can distinguish
two different cases.

bP(l) < 10 In this case, the approximation of the discrete Binomial Distribution by
the discrete Poisson Distribution is used. A continuity correction is not necessary. We
can find the following expression fcf;:

k—1 .
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bP(l) > 10 In this case, the discrete Poisson Distribution itself is approximated by
the continuous Normal Distribution and we have to take care of the continuity correc-
tion. For.S;, the following expression can be found:

S~ <(k—0.5)—bP(l)> |

vP(l)

3.3 P(l) > 0.9
In this case X ~ B (b, P(I)) with P() > 0.9. X’ = b — X ~ B(b,1 — P(l)) with

1 — P(I) < 0.1is constructed. We are now in the previous case (Section 3.2)X¥ith
instead ofX. Again, there are two situations that have to be considered.

b (1 — P(l)) < 10 Analogously as in the previous section, we can find an expression
for S;, based on the approximation by the Poisson Distribution:
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b (1 — P(l)) > 10 Inthis case, the Poisson Distribution itself has to be approximated
by the Normal Distribution and we find:

S~ ((b— k+0.5) — b(1 —P(l))) |
b(1— P(1))

4 Experimental Results

In an experimental study [2], we have compared the approximations with the exact
values forS; for b = 1024 and different values o (1/2,1/16) and! (1,2, 3,4, 5) by
means of an error computation. Our study shows that the approximations are accurate
whenb is large and that they give better results compared to the Chernoff bounds in [5].
During this study of the comparison, we noticed the following interesting facts.
When we look at the exact values 8r, we can notice that when we fix a certain,
moderately-sized value fdr, .5; is close tol for small values of and it is close to zero
for large values of. The transition from near to near0 is quite sharp with increasing
1. The transition value dfincreases wheh decreases. For large evensS; is near zero.
For small values ok, | has to be large beforg, approaches zero.
When we look at the approximations fé} and fix one particulal, the results
are more inaccurate whenincreases. For increasirigthe approximations are getting
worse for smaller and smaller valuesiof
In [5], it was found that the values faf with p = 1/2 andl = 4 are approximately
the same a$ for p = 1/16 andl = 1, particularly wherk is small. In our approxima-
tion, we can see that these values are approximated by the same formula, what in the
two cases leads to the same results.

5 Conclusions and Future Work

This paper presents a new, statistically inspired approximatiéh, ¢fie probability that

a set consisting of elements is frequent for the simple shopping model where every

item has the same probability and all the items and all the transactions are independent.
Future work includes finding approximations for two other important probabilities:

the candidate and the failure probability and applying a new, more realistic and more

complex model of shopping behaviour that can cover almost all realistic situations.
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