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Abstract. The frequent itemset mining (FIM) problem is a well-known and im-
portant data mining problem, that has been studied in considerable depth during
the last few years, mainly experimental. For the analytical study of the average
case performance of FIM algorithms, the probability that an itemset is a candidate
and the probability that a set is frequent (a success) or infrequent (a failure) are
of crucial importance. This paper gives a statistical approach to the success prob-
ability for the simple shopping model where every item has the same probability
and all the items and all the transactions are independent.

1 Introduction

The frequent itemset mining (FIM) problem, introduced in [1], is a well-known and
interesting basic problem at the core of many data mining problems [3]. The problem
is, given a large database of basket data, i.e. subsets of a fixed set of itemsI, and a user-
defined support thresholdk, to find those sets of items occurring together in at leastk
baskets. In the last two decades, several different algorithms for solving this problem
were proposed and studied experimentically [3].

For the analytical study of the behavior of FIM algorithms, the probability that an
itemset is a candidate, a frequent set or an infrequent set is of crucial importance. If the
itemset is frequent, it is called a success; if a candidate turns out to be infrequent, it is
called a failure. All correct FIM algorithms give the same success probability; it is a
property of the data, not of the algorithm. This paper gives a statistical approach to the
success probabilitySl, the probability that a set consisting ofl items is frequent, for
the simple model where every item has the same probabilityp of being chosen, and all
the items and all the transactions are independent. Related work [5] computes Chernoff
bounds to estimateSl, but the statistical approach presented in this paper is easier to
compute and gives better results. The new approach is based on the approximation of
the Binomial Distribution.

In the used shopping model, the probability that a randomly filled basket contains
the items{1, . . . , l} is P (l) = pl. The probability that at leastk baskets containl items
{1, . . . , l} equals

Sl =
∑
j≥k

(
b
j

)
[P (l)]j [1− P (l)]b−j .

It is the probability that the set{1, . . . , l} is a frequent set.
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Fig. 1.Overview approximations

2 Statistical Background Information

The Binomial DistributionX ∼ B(n, p) is a discrete distribution whereX represents
the amount of successes inn independent repetitions of a random experiment with two
possible outcomes, success with probabilityp and failure with probability1 − p. The
probability of having at leastk successes in then successive experiments is

P (X ≥ k) =
∑
j≥k

(
n
j

)
pj (1− p)n−j =

n∑
j=k

(
n
j

)
pj (1− p)n−j .

The Binomial Distribution can be approximated by the Normal Distribution and the
Poisson Distribution. An overview is given in Figure 1. For more information, see [4]
or any other reference book on statistics.

3 Approximation of Sl

In this section, we approximate the success probabilitySl, the probability that a set
consisting ofl items occurs in at leastk baskets.

Sl =
b∑

j=k

(
b
j

)
[P (l)]j [1− P (l)]b−j

can be seen asP (X ≥ k) = 1 − P (X < k) with X ∼ B(b, P (l)). We now use
the appropriate approximation for the Binomial Distribution and investigate the three
different situations that can appear. The caseb ≤ 30 is not considered becauseb is the
amount of tuples in the database and this is supposed to be larger than30.

3.1 0.1 ≤ P (l) ≤ 0.9

We approximate the discrete Binomial distributedX ∼ B (b, P (l)) by the continuous
Normal distributedY ∼ N (bP (l), bP (l)(1− P (l))). Since we are approximating a



discrete distribution by a continuous one, we have to take care of the continuity correc-
tion. The following expression forSl can be found:

Sl ≈ 1− Φ

(
(k − 0.5)− bP (l)√

bP (l)(1− P (l))

)
.

These values can be found in pre-calculated tables or can be computed using statistical
software.

3.2 P (l) < 0.1

In this case, the Binomial distributedX ∼ B (b, P (l)) will be approximated by the
Poisson distributedY ∼ P (bP (l)). Dependent on de size ofbP (l) we can distinguish
two different cases.

bP (l) ≤ 10 In this case, the approximation of the discrete Binomial Distribution by
the discrete Poisson Distribution is used. A continuity correction is not necessary. We
can find the following expression forSl:

Sl ≈ 1−
k−1∑
j=0

(bP (l))je−bP (l)

j!
.

bP (l) > 10 In this case, the discrete Poisson Distribution itself is approximated by
the continuous Normal Distribution and we have to take care of the continuity correc-
tion. ForSl, the following expression can be found:

Sl ≈ 1− Φ

(
(k − 0.5)− bP (l)√

bP (l)

)
.

3.3 P (l) > 0.9

In this case,X ∼ B (b, P (l)) with P (l) > 0.9. X ′ = b − X ∼ B(b, 1 − P (l)) with
1 − P (l) < 0.1 is constructed. We are now in the previous case (Section 3.2) withX ′

instead ofX. Again, there are two situations that have to be considered.

b (1 − P (l)) ≤ 10 Analogously as in the previous section, we can find an expression
for Sl, based on the approximation by the Poisson Distribution:

Sl ≈
b−k∑
j=0

(b(1− P (l)))je−b(1−P (l))

j!
.



b (1 − P (l)) > 10 In this case, the Poisson Distribution itself has to be approximated
by the Normal Distribution and we find:

Sl ≈ Φ

(
(b− k + 0.5)− b(1− P (l))√

b(1− P (l))

)
.

4 Experimental Results

In an experimental study [2], we have compared the approximations with the exact
values forSl for b = 1024 and different values ofp (1/2, 1/16) andl (1, 2, 3, 4, 5) by
means of an error computation. Our study shows that the approximations are accurate
whenb is large and that they give better results compared to the Chernoff bounds in [5].

During this study of the comparison, we noticed the following interesting facts.
When we look at the exact values forSl, we can notice that when we fix a certain,

moderately-sized value fork, Sl is close to1 for small values ofl and it is close to zero
for large values ofl. The transition from near1 to near0 is quite sharp with increasing
l. The transition value ofl increases whenk decreases. For largek, evenS1 is near zero.
For small values ofk, l has to be large beforeSl approaches zero.

When we look at the approximations forSl and fix one particularl, the results
are more inaccurate whenk increases. For increasingl, the approximations are getting
worse for smaller and smaller values ofk.

In [5], it was found that the values forS with p = 1/2 andl = 4 are approximately
the same asS for p = 1/16 andl = 1, particularly whenk is small. In our approxima-
tion, we can see that these values are approximated by the same formula, what in the
two cases leads to the same results.

5 Conclusions and Future Work

This paper presents a new, statistically inspired approximation ofSl, the probability that
a set consisting ofl elements is frequent for the simple shopping model where every
item has the same probability and all the items and all the transactions are independent.

Future work includes finding approximations for two other important probabilities:
the candidate and the failure probability and applying a new, more realistic and more
complex model of shopping behaviour that can cover almost all realistic situations.
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