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Abstract

In the literature, there exist an analytical and empirical study for the be-
haviour of the Apriori Algorithm, the best known frequent itemset mining
algorithm [PVGG04]. For the analytical part, a very simple shopping model
is used where every item has the same probability and all the items and all
the transactions are independent. The notion ofSl, the probability that a
certain set consisting ofl elements is a frequent set, is introduced and ap-
proximated using Chernoff bounds. This technical report discusses a new,
statistically inspired approximation ofSl that is easier to compute than the
Chernoff result. This new approach is based on the approximation of the
Binomial Distribution.

1 Introduction

The frequent itemset problem, introduced in [AIS93, AS94],is a well known and
interesting basic problem at the core of many data mining problems [AIS93, AS94,
Goe03, GZ03]. The problem is, given a large database of basket data, i.e. subsets
of a fixed set of itemsI, and a user-defined support thresholdk, determine which
sets of items occur together in at leastk baskets. In the last two decades, sev-
eral different algorithms for solving this problem were proposed [AIS93, AS94,
HPY00, Zak00]. The best known algorithm is the Apriori Algorithm, introduced
in [AS94].

In the literature [PVGG04], there exist an analytical and empirical study for the
behaviour of Apriori. In this theoretical study, the notions of Cl, Sl andFl were
introduced to gain more insight in the average case performance of Apriori. Cl is
the probability that a certain set consisting ofl items is a candidate set,Sl is the
probability that such a candidate set is frequent, andFl is the probability that such
a candidate set of lengthl is a failure, so is not frequent. These probabilities were
estimated with Chernoff bounds in the case of the simple shopping model where all
the items were independent and had the same probability of being chosen,p, and all
the transactions were independent as well. In this technical report, we use the same
simple model of shopping behaviour. Based on statistics, a new approximation for
Sl is derived. This new approximation is fast and easy to compute and gives better
results than the Chernoff bounds.
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The study of the average case performance of Apriori is not easy. In the ex-
pressions found for the different probabilities,Cl, Sl andFl in [PVGG04], com-
binatorial sums appeared that are hard to compute. Therefore, it is good to have a
computable form for these probabilities. In this technicalreport, we focus on such
a form forSl to estimate the size of the result. This computable form is reached
by straigthforward statistical approximation and produces accurate estimates forSl

when the amount of basket data in the database,b, is large.
For the database, we assume that there arem possible items that can be bought

andb baskets or transactions. The user-defined support threshold for the frequent
itemset mining problem is denoted byk. The model of shopping behaviour used
in the rest of this technical report is the simple model basedon the following three
assumptions:

• each item has the same probabilityp

• all them items are independent

• all theb transactions are independent

Sl is the probability (0 ≤ Sl ≤ 1) that a set consisting ofl items{1, . . . , l} is a
frequent set. In our simple shopping model, each basket is filled at random, all the
items are independent and have the same probabilityp, so any other set consisting
of l items has the same probability of success,Sl.

Analoguously as in [PVGG04], we can now define the following conditions
with respect to a single basket:

• conditionM0: the basket containsl items{1, . . . , l}

• conditionMh (1 ≤ h ≤ l): the basket contains all items from{1, . . . , l},
except a fixed itemh, so containsl − 1 items

Each basket obeys at most one of thesel + 1 disjoint conditionsMh, 0 ≤ h ≤ l.
With these definitions of the different conditions and the above knowledge of

the used shopping model, we can now write down some basic probabilities. The
probability that a randomly filled basket obeys conditionM0 is

P (l) = pl.

The probability that a randomly filled basket obeys condition Mh (1 ≤ h ≤ l) is

Q(l) = pl−1(1 − p).

The probability that at leastk baskets obey conditionM0 can be found by

Sl =
∑

j≥k

(

b
j

)

[P (l)]j [1 − P (l)]b−j

and describes the probability that the set{1, . . . , l} is a frequent set.
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Outline
The rest of this Technical Report is organized as follows. InSection 2, some no-
tions and distributions in statistics are shortly revisisted. They are necessary to
understand the new approach. This section is the statistical foundation of our ap-
proximation. In Section 3, the new results forSl are presented. Section 4 discusses
these results w.r.t. the experimental settings used in [PVGG04]. Here it is shown
that the new approach yields fast and easy computations and better results. Sec-
tion 5 concludes and points out future work.

2 Statistical Background Information

This section gives a general background on the statistical components used and
can therefore be seen as the statistical foundation of the new approach presented
in Section 3. For more information, see [DK95], [OGD80], [JK69] or any other
reference book on statistics.

2.1 The Binomial Distribution

Distribution
Consider stochastX = X1 + . . . + Xn, where the stochastsXj (1 ≤ j ≤ n) are
independent and identically distributed (i.i.d.), following a Bernoulli Distribution
B(1, p). The Bernoulli Distribution is the distribution that is used to describe an
experiment with two possible outcomes, a “success” outcomewith probability p
and a “failure” outcome with probability1 − p. The classical example of this dis-
tribution is tossing a coin where both sides have equal probability 1/2 to be on top.
Each stochastXj (1 ≤ j ≤ n) equals1 when it represents a success and0 when it
represents a failure.X, the result of the Bernoulli sum, is now defined to follow the
Binomial DistributionX ∼ B(n, p). This is a discrete distribution whereX repre-
sents the amount of successes (so the amount of1-occurrences) inn independent
Bernoulli experiments with success probabilityp . The Binomial Distribution is
therefore the result ofn independent repetitions of a random experiment with two
possible outcomes, success with probabilityp and failure with probability1 − p.
There are two parameters:n, the number of repetitions, andp, the probability of
success in the repeated Bernoulli experiment. Thisp has to be the same for all the
n Bernoulli trials.

The probability that there arej successes in then successive BernoulliB(1, p)
experiments is

P (X = j) =

(

n
j

)

pj (1 − p)n−j .

The probability of having at leastk (0 ≤ k ≤ n) successes in then successive
B(1, p) experiments is

P (X ≥ k) =
∑

j≥k

(

n
j

)

pj (1 − p)n−j =
n
∑

j=k

(

n
j

)

pj (1 − p)n−j.
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Approximation
In the statistics literature there exist good approximations for the Binomial Distri-
bution. An overview is given in Figure 1. It is not the purposeof this technical
report to cover the proofs of these properties. They can be found in the better
statistical handbooks.

Figure 1: Overview approximations

When approximating a discrete distribution by a continous distribution, we
have to take care of the continuity correction by adding or subtracting0.5.

Remark
There exist other ways of approximating a Binomial Distribution. An overview can
be found in [JK69]. For this technical report, we have chosenthe most commonly
used, simple and straightforward approximations.

The difference in approximating the Binomial Distributionby the Normal or
the Poisson Distribution is the rolep plays. In the Normal approximation,n → ∞
andp is fixed. In the Poisson approximation,n → ∞, p → 0 but np, the Poisson
parameter, stays constant.

2.2 The Poisson Distribution

Distribution
A random variableX is said to follow a discrete Poisson DistributionP (λ) with
parameter0 < λ < ∞ if

P [X = j] = pj =
λj

j!
e−λ.
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Approximation
The Poisson Distribution is the limit of a Binomial Distribution, as the number of
Bernoulli trials,n, gets large and the probability of success,p, gets small. Formally,
a Poisson distribution approaches a Binomial Distributionif n → ∞ andp → 0 in
such a way that their product remains constant,np = λ. This value is called the
Poisson parameter.

2.3 The (Standard) Normal Distribution

First, the Standard Normal Distribution is considered. Then it is extended to the
Normal Distribution. In contrast with the previously considered discrete distribu-
tions, these distributions are continuous.

Standard Normal Distribution
The Standard Normal DistributionN(0, 1) is defined by the probability density
function

φ(x) =
1√
2π

e−
1

2
x2

.

The distribution function (or cumulative probability distribution function) ofN(0, 1)
is defined by

Φ(x) =

∫ x

−∞

φ(t)dt, x ∈ R

and describes the surface under the graph ofφ from −∞ to the pointx (Figure 2).

X

Y

x

Φ(x)
φ(t)

Figure 2: Grafical illustration ofΦ.

It is easy to see thatΦ(−x) = 1 − Φ(x) because of the symmetry around the
Y-axis and the fact thatφ is a density function, so the total surface under the graph
is 1. We can use this property when we need to findΦ in large values ofx. When
just computingΦ(x) whenx is large, it is possible that this results in1, while it is
known that the result is close to1 but not equal to it. A better way to compute a
more accurate value forΦ(x) is to compute1−Φ(−x). In this expression,Φ(−x)
is a very small value close to0 but not equal to it, so1 − Φ(−x) results in an
expression close to1 but not equal to1.
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Normal Distribution
The general Normal DistributionN(µ, σ2) is the distribution ofX = σZ + µ
whereZ ∼ N(0, 1). The Standard Normal Distribution is in fact a special case of
the Normal DistributionN(µ, σ2) with meanµ ∈ R and standard deviationσ > 0,
whereµ = 0 andσ = 1.

The density function is

fµ,σ(x) =
1

σ
√

2π
e−

1

2
(x−µ

σ )
2

, x, µ ∈ R and σ > 0.

The distribution function

FX(x) = P [X ≤ x] = FZ

(

x − µ

σ

)

= Φ

(

x − µ

σ

)

can be computed by using the knowledge of the Standard NormalDistribution:

X − E[X]
√

V ar[X]
=

X − µ

σ
= Z ∼ N(0, 1).

3 Efficient computation of Sl

Based on the theory of Section 2.1,

Sl =
b
∑

j=k

(

b
j

)

[P (l)]j [1 − P (l)]b−j

can be seen asP (X ≥ k) = 1−P (X < k) with X ∼ B(b, P (l)). We now use the
appropriate approximation for the Binomial Distribution and investigate the three
different situations that can appear. The caseb ≤ 30 is not considered becauseb is
the amount of tuples in the database and this is supposed to belarger than30.

If the above formula forSl is compared with the new results found by the
approximation, it is clear that the new approach yields fastand easy computations.
The binomial sums do not have to be computed but are approximated by simple
formulas usingΦ and Poisson.

3.1 b > 30 and 0.1 ≤ P (l) ≤ 0.9

We approximate the Binomial distributedX ∼ B (b, P (l)) by the Normal dis-
tributedY ∼ N (bP (l), bP (l)(1 − P (l))), so

Z =
Y − bP (l)

√

bP (l)(1 − P (l))
∼ N(0, 1).
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Because we approximate a discrete distribution by a continuous distribution, we
have to take care of the continuity correction. In details:

P (X < k) ≈ P (Y ≤ k − 0.5)

= P

(

Z ≤ (k − 0.5) − bP (l)
√

bP (l)(1 − P (l))

)

= Φ

(

(k − 0.5) − bP (l)
√

bP (l)(1 − P (l))

)

so

Sl = P (X ≥ k) = 1 − P (X < k)

= 1 − Φ

(

(k − 0.5) − bP (l)
√

bP (l)(1 − P (l))

)

.

3.2 b > 30 and P (l) < 0.1

In this case, the Binomial distributedX ∼ B (b, P (l)) will be approximated by
the Poisson distributedY ∼ P (bP (l)). Dependent of the value ofbP (l) we can
distinguish two different cases.

3.2.1 bP (l) ≤ 10

In this case, the approximation of the discrete Binomial Distribution by the discrete
Poisson Distribution is used. A continuity correction is not necessary.

P (X < k) = P (Y < k)

= P (Y ≤ k − 1)

= F (k − 1)

=
k−1
∑

j=0

(bP (l))je−bP (l)

j!

so

Sl = P (X ≥ k) = 1 − P (X < k)

= 1 − F (k − 1)

= 1 −
k−1
∑

j=0

(bP (l))je−bP (l)

j!
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3.2.2 bP (l) > 10

In this case, the discrete Poisson Distribution is approximated by the continuous
Normal Distribution and we have to take care of the continuity correction.

X ∼ B(b, P (l)) ≈ Y ∼ P (bP (l))

≈ T ∼ N(bP (l), bP (l))

so

Z =
T − bP (l)
√

bP (l)
∼ N(0, 1).

Therefore

P (X < k) ≈ P (T ≤ k − 0.5)

= P

(

Z ≤ (k − 0.5) − bP (l)
√

bP (l)

)

= Φ

(

(k − 0.5) − bP (l)
√

bP (l)

)

so

Sl = P (X ≥ k) = 1 − P (X < k)

= 1 − Φ

(

(k − 0.5) − bP (l)
√

bP (l)

)

.

3.3 b > 30 and P (l) > 0.9

In this case,X ∼ B (b, P (l)) with P (l) > 0.9. X ′ = b−X ∼ B(b, 1−P (l)) with
1 − P (l) < 0.1 is constructed. We are now in the previous case (see Section 3.2)
with X ′ instead ofX. Therefore

P (X < k) = P (b − X > b − k)

= P (X ′ > b − k)

= 1 − P (X ′ ≤ b − k)

and

Sl = P (X ≥ k) = 1 − P (X < k)

= 1 −
(

1 − P (X ′ ≤ b − k)
)

= P (X ′ ≤ b − k).

We know thatX ′ ∼ B (b, (1 − P (l))) with 1 − P (l) < 0.1 so

X ′ ≈ Y ∼ P (b(1 − P (l)))

as seen in Section 3.2. Again, there can occur two situationsthat have to be con-
sidered.
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3.3.1 b (1 − P (l)) ≤ 10

P (X ′ ≤ b − k) ≈ P (Y ≤ b − k)

= F (b − k)

=

b−k
∑

j=0

(b(1 − P (l)))je−b(1−P (l))

j!

ForSl this gives:

Sl = F (b − k) =

b−k
∑

j=0

(b(1 − P (l)))je−b(1−P (l))

j!

3.3.2 b (1 − P (l)) > 10

In this case,Y ∼ P (b(1 − P (l))) will be approximated byT ∼ N (b(1 − P (l)) ,
b (1 − P (l))), so

Z =
T − b(1 − P (l))
√

b(1 − P (l))
∼ N(0, 1).

Therefore

P (X ′ ≤ b − k) ≈ P (T ≤ b − k + 0.5)

= P

(

Z ≤ (b − k + 0.5) − b(1 − P (l))
√

b(1 − P (l))

)

= Φ

(

(b − k + 0.5) − b(1 − P (l))
√

b(1 − P (l))

)

.

ForSl this gives:

Sl = Φ

(

(b − k + 0.5) − b(1 − P (l))
√

b(1 − P (l))

)

.

4 Experimental Results ForSl

4.1 Quality of the New Approach

In this section, the results of the new approach are comparedto the exact values.
We show that our results are quite good and that they can be computed very fast
and easy.
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4.1.1 b = 1024 and p = 1/2

b > 30
P (l) = pl, so for every value ofl (l = 1, 2, 3, 4, 5), P (l) has a different value.

• l = 1 → 0.1 ≤ P (l) = 1/2 ≤ 0.9 ⇒ Section 3.1

• l = 2 → 0.1 ≤ P (l) = 1/4 ≤ 0.9 ⇒ Section 3.1

• l = 3 → 0.1 ≤ P (l) = 1/8 ≤ 0.9 ⇒ Section 3.1

• l = 4 → P (l) = 1/16 < 0.1 andbP (l) = 64 > 10 ⇒ Section 3.2.2

• l = 5 → P (l) = 1/32 < 0.1 andbP (l) = 32 > 10 ⇒ Section 3.2.2

The results can be found in Table 2. The computation of this table is based on the
following example. The calculations are performed in Maple. The original values
for Sl can be found in Table 1.

Example
Let us considerl = 1 andk = 1. In this caseP (1) = 1/2 and the approach
of Section 3.1 has to be followed.bP (1) = 512 and 1 − P (1) = 1/2, so
bP (1)(1 − P (1)) = 256.

S1 = 1 − Φ

(

(k − 0.5) − bP (1)
√

bP (1)(1 − P (1))

)

= 1 − Φ

(

(1 − 0.5) − 512
√

256)

)

= 1 − Φ(−31.97)

= 1 − 1.48 10−224

Whenl = 5 andk = 533, P (5) = 1/32 and the approach of Section 3.2.2 has
to be followed.bP (5) = 32.

S5 = 1 − Φ

(

(k − 0.5) − bP (5)
√

bP (5)

)

= 1 − Φ

(

(533 − 0.5) − 32√
32

)

= 1 − Φ(88.48)

= Φ(−88.48)

= 6.26 10−1703

�
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k S1 S2 S3 S4 S5

1 1.0 − 5.6 10
−309

1.0 − 1.2 10
−128

1.0 − 4.1 10
−60

1.0 − 2.0 10
−29

1.0 − 7.6 10
−15

2 1.0 − 5.7 10
−306

1.0 − 4.0 10
−126

1.0 − 6.1 10
−58

1.0 − 1.4 10
−27

1.0 − 2.6 10
−13

3 1.0 − 2.9 10
−303

1.0 − 6.8 10
−124

1.0 − 4.5 10
−56

1.0 − 4.8 10
−26

1.0 − 4.4 10
−12

4 1.0 − 1.0 10
−300

1.0 − 7.7 10
−122

1.0 − 2.2 10
−54

1.0 − 1.1 10
−24

1.0 − 5.0 10
−11

5 1.0 − 2.5 10
−298

1.0 − 6.6 10
−120

1.0 − 8.1 10
−53

1.0 − 1.9 10
−23

1.0 − 4.3 10
−10

22 1.0 − 1.5 10
−265

1.0 − 3.1 10
−95

1.0 − 2.3 10
−34

1.0 − 1.5 10
−10

1.0 − 2.4 10
−2

32 1.0 − 9.2 10
−250

1.0 − 3.3 10
−84

1.0 − 5.4 10
−27

1.0 − 2.0 10
−6

5.2 10
−1

33 1.0 − 2.9 10
−248

1.0 − 3.4 10
−83

1.0 − 2.4 10
−25

1.0 − 4.3 10
−6

4.5 10
−1

45 1.0 − 2.4 10
−231

1.0 − 5.7 10
−72

1.0 − 1.6 10
−19

1.0 − 4.2 10
−3

1.6 10
−2

57 1.0 − 6.8 10
−216

1.0 − 3.1 10
−62

1.0 − 3.7 10
−14

8.3 10
−1

3.1 10
−5

58 1.0 − 1.2 10
−214

1.0 − 1.7 10
−61

1.0 − 9.2 10
−14

8.0 10
−1

1.6 10
−5

64 1.0 − 1.9 10
−207

1.0 − 4.0 10
−57

1.0 − 1.4 10
−11

5.2 10
−1

2.5 10
−7

65 1.0 − 2.9 10
−206

1.0 − 2.0 10
−56

1.0 − 3.0 10
−11

4.7 10
−1

1.2 10
−7

91 1.0 − 6.2 10
−178

1.0 − 1.9 10
−40

1.0 − 1.1 10
−4

5.8 10
−4

2.3 10
−18

120 1.0 − 1.5 10
−150

1.0 − 7.6 10
−27

7.9 10
−1

5.3 10
−11

2.0 10
−34

121 1.0 − 1.2 10
−149

1.0 − 1.9 10
−26

7.6 10
−1

2.6 10
−11

4.7 10
−35

128 1.0 − 1.3 10
−143

1.0 − 9.8 10
−24

5.1 10
−1

1.4 10
−13

1.7 10
−39

129 1.0 − 8.8 10
−143

1.0 − 2.3 10
−23

4.8 10
−1

6.6 10
−14

3.8 10
−40

186 1.0 − 2.8 10
−100

1.0 − 7.1 10
−8

1.3 10
−7

8.9 10
−39

6.4 10
−83

247 1.0 − 3.7 10
−65

7.5 10
−1

2.0 10
−24

1.2 10
−75

5.2 10
−139

248 1.0 − 1.2 10
−64

7.3 10
−1

8.7 10
−25

2.4 10
−76

5.3 10
−140

256 1.0 − 9.6 10
−61

5.1 10
−1

1.1 10
−27

7.2 10
−82

4.7 10
−148

257 1.0 − 2.9 10
−60

4.8 10
−1

4.8 10
−28

1.4 10
−82

4.6 10
−149

377 1.0 − 8.1 10
−18

3.8 10
−17

1.4 10
−87

9.8 10
−182

4.9 10
−286

503 7.2 10
−1

6.9 10
−62

1.5 10
−178

2.2 10
−314

2.1 10
−458

504 7.0 10
−1

2.4 10
−62

2.3 10
−179

1.5 10
−315

7.0 10
−460

512 5.1 10
−1

4.0 10
−66

4.4 10
−186

6.6 10
−325

9.3 10
−472

513 4.9 10
−1

1.3 10
−66

6.3 10
−187

4.4 10
−326

3.0 10
−473

533 1.0 10
−1

1.6 10
−76

3.3 10
−204

5.6 10
−350

1.9 10
−503

Table 1: Exact values forSl for b = 1024, p = 1/2 and selected values ofk.
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k S1 S2 S3 S4 S5

1 1.0 − 1.48 10
−224

1.0 − 3.19 10
−76

1.0 − 9.98 10
−34

1.0 − 1.03 10
−15

1.0 − 1.28 10
−8

2 1.0 − 1.09 10
−223

1.0 − 1.21 10
−75

1.0 − 3.13 10
−33

1.0 − 2.80 10
−15

1.0 − 3.49 10
−8

3 1.0 − 8.03 10
−223

1.0 − 4.55 10
−75

1.0 − 9.71 10
−33

1.0 − 7.50 10
−15

1.0 − 9.20 10
−8

4 1.0 − 5.88 10
−222

1.0 − 1.71 10
−74

1.0 − 2.99 10
−32

1.0 − 1.98 10
−14

1.0 − 2.35 10
−7

5 1.0 − 4.28 10
−221

1.0 − 6.37 10
−74

1.0 − 9.11 10
−32

1.0 − 5.13 10
−14

1.0 − 5.83 10
−7

22 1.0 − 1.09 10
−206

1.0 − 1.51 10
−64

1.0 − 4.01 10
−24

1.0 − 5.41 10
−8

1.0 − 3.17 10
−2

32 1.0 − 1.92 10
−198

1.0 − 2.44 10
−59

1.0 − 3.81 10
−20

1.0 − 2.43 10
−5

1.0 − 4.65 10
−1

33 1.0 − 1.25 10
−197

1.0 − 7.89 10
−59

1.0 − 9.08 10
−20

1.0 − 4.12 10
−5

4.65 10
−1

45 1.0 − 5.60 10
−188

1.0 − 6.67 10
−53

1.0 − 1.51 10
−15

1.0 − 7.39 10
−3

1.36 10
−2

57 1.0 − 1.43 10
−178

1.0 − 2.68 10
−47

1.0 − 7.09 10
−12

1.0 − 1.74 10
−1

7.42 10
−6

58 1.0 − 8.46 10
−178

1.0 − 7.58 10
−47

1.0 − 1.35 10
−11

1.0 − 2.08 10
−1

3.28 10
−6

64 1.0 − 3.38 10
−173

1.0 − 3.52 10
−44

1.0 − 5.48 10
−10

1.0 − 4.75 10
−1

1.28 10
−8

65 1.0 − 1.95 10
−172

1.0 − 9.61 10
−44

1.0 − 9.85 10
−10

4.75 10
−1

4.59 10
−9

91 1.0 − 3.03 10
−153

1.0 − 3.49 10
−33

1.0 − 1.97 10
−4

4.62 10
−4

2.29 10
−25

120 1.0 − 3.43 10
−133

1.0 − 3.39 10
−23

1.0 − 2.11 10
−1

2.00 10
−12

2.85 10
−54

121 1.0 − 1.59 10
−132

1.0 − 6.94 10
−23

1.0 − 2.39 10
−1

8.18 10
−13

1.80 10
−55

128 1.0 − 6.56 10
−128

1.0 − 8.99 10
−21

1.0 − 4.81 10
−1

1.03 10
−15

3.04 10
−64

129 1.0 − 2.95 10
−127

1.0 − 1.76 10
−20

4.81 10
−1

3.74 10
−16

1.50 10
−65

186 1.0 − 7.36 10
−93

1.0 − 1.81 10
−7

2.77 10
−8

2.14 10
−52

1.89 10
−162

247 1.0 − 3.87 10
−62

1.0 − 2.46 10
−1

2.10 10
−29

1.72 10
−115

6.35 10
−315

248 1.0 − 1.09 10
−61

1.0 − 2.70 10
−1

7.21 10
−30

9.82 10
−117

7.64 10
−318

256 1.0 − 3.87 10
−58

1.0 − 4.86 10
−1

9.98 10
−34

6.24 10
−127

1.08 10
−341

257 1.0 − 1.05 10
−57

4.86 10
−1

3.16 10
−34

3.09 10
−128

9.85 10
−345

377 1.0 − 1.24 10
−17

1.71 10
−18

3.19 10
−122

4.66 10
−334

2.95 10
−808

503 1.0 − 2.76 10
−1

4.25 10
−71

1.36 10
−274

2.90 10
−655

3.13 10
−1505

504 1.0 − 2.98 10
−1

1.17 10
−71

4.76 10
−276

3.04 10
−658

1.26 10
−1511

512 1.0 − 4.88 10
−1

3.19 10
−76

7.86 10
−288

2.50 10
−682

2.94 10
−1563

513 4.88 10
−1

8.37 10
−77

2.54 10
−289

2.28 10
−685

8.97 10
−1570

533 1.00 10
−1

6.83 10
−89

6.15 10
−320

1.30 10
−747

6.26 10
−1703

Table 2: Approximations forSl (l = 1, 2, 3, 4, 5) for b = 1024, p = 1/2 and selected values fork.
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k, support threshold
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Figure 3: Exact values ofSl and approximations forp = 1/2 for all values ofk.
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Figure 4: Relative error for the approximations forp = 1/2 for all values ofk.

In Figure 3, the original values forSl for selected values fork are plotted in
massive cubes, together with their approximations. These selected values fork are
the same as the values used in [PVGG04]. The rightmost curve (◦) is for S1, 4 for
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S2, + for S3, × for S4 and the leftmost curve (�) is for S5. The figure shows that
the approximations are very close to the exact values.

To express the accuracy, some error computation is done. In Figure 4, the
relative error is plotted. The relative error is computed asthe absolute error (ap-
proximation minus exact value) divided by the exact value. The results forS1 are
again plotted as◦, S2 as4, S3 as+, S4 as× andS5 as�.

If one l is fixed (l = 1, 2, 3, 4, 5), the approximation is more inaccurate when
k increases. For increasingl, the approximations are getting worse for smaller
and smaller values ofk. Especially forl = 4 and l = 5 and big values ofk the
approximations are underestimating the real values. This happens becauseΦ in big
negative values is close to zero.

4.1.2 b = 1024 and p = 1/16

b > 30
P (l) = pl, so for every value ofl (l = 1, 2, 3, 4, 5), P (l) has a different value.

• l = 1 → P (l) = 1/16 < 0.1 andbP (l) = 64 ⇒ Section 3.2.2

• l = 2 → P (l) = 1/256 < 0.1 andbP (l) = 4 ⇒ Section 3.2.1

• l = 3 → P (l) = 1/4096 < 0.1 andbP (l) = 0.25 ⇒ Section 3.2.1

• l = 4 → P (l) = 1/65536 < 0.1 andbP (l) = 0.016 ⇒ Section 3.2.1

• l = 5 → P (l) = 1/1048576 < 0.1 andbP (l) = 9.5 10−7 ⇒ Section 3.2.1

The results can be found in Table 4. The exact values can be found in Table 3.

Example
Let us considerl = 1 andk = 1. In this caseP (1) = 1/16 and the approach of
Section 3.2.2 has to be followed.bP (1) = 64.

S1 = 1 − Φ

(

(k − 0.5) − bP (1)
√

bP (1)

)

= 1 − Φ

(

(1 − 0.5) − 64√
64

)

= 1 − Φ(−7.94)

= 1 − 1.03 10−15

Whenl = 5 andk = 257, P (5) = 1/1048576, the approach of Section 3.2.1 has
to be followed.bP (5) = 0.0009765625.

S5 = 1 − F (k − 1)

= 1 − P0.0009765625(256)

= 1 − 2.69 10−1278

�
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k S1 S2 S3 S4 S5

1 1.0 − 2.0 10
−29

1.0 − 1.8 10
−2

2.2 10
−1

1.6 10
−2

9.8 10
−4

2 1.0 − 1.4 10
−27

1.0 − 9.1 10
−2

2.6 10
−2

1.2 10
−4

4.8 10
−7

3 1.0 − 4.8 10
−26

7.6 10
−1

2.2 10
−3

6.3 10
−7

1.5 10
−10

4 1.0 − 1.1 10
−24

5.7 10
−1

1.3 10
−4

2.4 10
−9

3.8 10
−14

5 1.0 − 1.9 10
−23

3.7 10
−1

6.6 10
−6

7.6 10
−12

7.3 10
−18

22 1.0 − 1.5 10
−10

3.0 10
−10

3.2 10
−35

1.3 10
−61

4.2 10
−88

32 1.0 − 2.0 10
−6

1.0 10
−18

1.0 10
−55

3.7 10
−94

1.1 10
−132

33 1.0 − 4.3 10
−6

1.2 10
−19

7.3 10
−58

1.7 10
−97

3.1 10
−137

45 1.0 − 4.2 10
−3

9.2 10
−32

2.0 10
−84

1.6 10
−142

1.1 10
−192

57 8.3 10
−1

2.5 10
−45

1.9 10
−112

5.5 10
−181

1.3 10
−249

58 8.0 10
−1

1.7 10
−46

7.8 10
−115

1.4 10
−184

2.1 10
−254

64 5.2 10
−1

8.9 10
−54

2.5 10
−129

2.6 10
−206

2.3 10
−283

65 4.7 10
−1

5.1 10
−55

8.9 10
−132

5.9 10
−210

3.3 10
−288

91 5.8 10
−4

2.0 10
−89

1.6 10
−197

5.1 10
−307

1.4 10
−416

120 5.3 10
−11

5.6 10
−132

4.8 10
−275

1.9 10
−419

6.1 10
−564

121 2.6 10
−11

1.6 10
−133

8.7 10
−278

2.1 10
−423

4.3 10
−569

128 1.4 10
−13

2.3 10
−144

4.5 10
−297

4.1 10
−451

3.1 10
−605

129 6.6 10
−14

6.3 10
−146

7.7 10
−300

4.4 10
−455

2.1 10
−610

186 8.9 10
−39

7.9 10
−241

1.8 10
−463

2.4 10
−687

2.6 10
−911

247 1.2 10
−75

1.0 10
−352

6.7 10
−649

3.0 10
−945

1.2 10
−1243

248 2.4 10
−76

1.3 10
−354

5.1 10
−652

1.5 10
−950

3.5 10
−1249

256 7.1 10
−82

5.4 10
−370

4.9 10
−677

3.3 10
−985

1.8 10
−1293

257 1.4 10
−82

6.3 10
−372

3.6 10
−680

1.5 10
−989

5.2 10
−1299

Table 3: Exact values forSl for b = 1024, p = 1/16 and selected values ofk.
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k S1 S2 S3 S4 S5

1 1.0 − 1.03 10
−15

1.0 − 1.83 10
−2

1.0 − 7.79 10
−1

1.0 − 9.84 10
−1

1.0 − 9.99 10
−1

2 1.0 − 2.80 10
−15

1.0 − 7.33 10
−2

1.0 − 1.95 10
−1

1.0 − 1.54 10
−2

1.0 − 9.76 10
−4

3 1.0 − 7.50 10
−15

1.0 − 1.47 10
−1

1.0 − 2.43 10
−2

1.0 − 1.20 10
−4

1.0 − 4.76 10
−7

4 1.0 − 1.98 10
−14

1.0 − 1.95 10
−1

1.0 − 2.03 10
−3

1.0 − 6.26 10
−7

1.0 − 1.55 10
−10

5 1.0 − 5.13 10
−14

1.0 − 1.95 10
−1

1.0 − 1.27 10
−4

1.0 − 2.45 10
−9

1.0 − 3.79 10
−14

22 1.0 − 5.41 10
−8

1.0 − 1.58 10
−9

1.0 − 3.47 10
−33

1.0 − 2.27 10
−58

1.0 − 1.19 10
−83

32 1.0 − 2.43 10
−5

1.0 − 1.03 10
−17

1.0 − 2.05 10
−53

1.0 − 1.22 10
−90

1.0 − 5.82 10
−128

33 1.0 − 4.12 10
−5

1.0 − 1.28 10
−18

1.0 − 1.60 10
−55

1.0 − 5.96 10
−94

1.0 − 1.78 10
−132

45 1.0 − 7.39 10
−3

1.0 − 2.13 10
−30

1.0 − 9.47 10
−82

1.0 − 1.25 10
−134

1.0 − 1.32 10
−187

57 1.0 − 1.74 10
−1

1.0 − 1.34 10
−43

1.0 − 2.11 10
−109

1.0 − 9.89 10
−177

1.0 − 3.72 10
−244

58 1.0 − 2.08 10
−1

1.0 − 9.39 10
−45

1.0 − 9.25 10
−112

1.0 − 2.71 10
−180

1.0 − 6.38 10
−249

64 1.0 − 4.75 10
−1

1.0 − 7.86 10
−52

1.0 − 4.62 10
−126

1.0 − 8.07 10
−202

1.0 − 1.13 10
−277

65 4.75 10
−1

1.0 − 4.91 10
−53

1.0 − 1.80 10
−128

1.0 − 1.79 10
−205

1.0 − 1.73 10
−282

91 4.62 10
−3

1.0 − 1.89 10
−86

1.0 − 3.42 10
−193

1.0 − 1.84 10
−301

1.0 − 7.96 10
−410

120 2.00 10
−12

1.0 − 1.45 10
−127

1.0 − 3.16 10
−269

1.0 − 2.05 10
−412

1.0 − 1.07 10
−555

121 8.18 10
−13

1.0 − 4.48 10
−129

1.0 − 6.59 10
−272

1.0 − 2.67 10
−416

1.0 − 8.67 10
−561

128 1.03 10
−15

1.0 − 1.76 10
−139

1.0 − 8.93 10
−291

1.0 − 1.35 10
−443

1.0 − 1.63 10
−596

129 3.74 10
−16

1.0 − 5.50 10
−141

1.0 − 1.74 10
−293

1.0 − 1.64 10
−447

1.0 − 1.24 10
−601

186 2.14 10
−52

1.0 − 1.07 10
−231

1.0 − 7.86 10
−453

1.0 − 1.72 10
−675

1.0 − 3.01 10
−898

247 1.72 10
−115

1.0 − 2.76 10
−337

1.0 − 7.18 10
−632

1.0 − 5.55 10
−928

1.0 − 3.45 10
−1224

248 9.82 10
−117

1.0 − 4.47 10
−339

1.0 − 7.27 10
−635

1.0 − 3.51 10
−932

1.0 − 1.36 10
−1229

256 6.24 10
−127

1.0 − 1.83 10
−353

1.0 − 6.93 10
−659

1.0 − 7.80 10
−966

1.0 − 7.05 10
−1273

257 3.09 10
−128

1.0 − 2.86 10
−355

1.0 − 6.77 10
−662

1.0 − 4.76 10
−970

1.0 − 2.69 10
−1278

Table 4: Approximations forSl (l = 1, 2, 3, 4, 5) for b = 1024, p = 1/16 and selected values ofk.
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k, support threshold
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Figure 5: Exact values ofSl and approximations forp = 1/16.

k

e
rr

o
rS

5

0 50 100 150 200 250

-1
.0

-0
.5

0
.0

0
.5

1
.0

Figure 6: Relative error for approximations forp = 1/16.

In Figure 5, the original values forSl for selected values fork, the values also
used in [PVGG04], are plotted in massive cubes, together with their approxima-
tions. The curve◦ is for S1, 4 for S2, + for S3, × for S4 and� for S5. As the
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figures show, the approximations are not that good.
The error computation in Figure 6 shows that the approximations are not so

accurate. In the case thatl = 1 the approximation is of the same quality as the
aprroximations in the previous section. Forl = 2, 3, 4 and5, the Poisson approxi-
mation is used. For small values ofk, this approximation is accurate, but for larger
values ofk, it overestimates the real value ofSl. It stays close to1 while the real
values decrease to zero.

Remark
In [PVGG04], they found that the values forS with p = 1/2 andl = 4 are approx-
imately the same asS for p = 1/16 andl = 1, particularly whenk is small. In our
approximation we can see that these values are approximatedby the same formula

1 − Φ

(

(k − 0.5) − bP (l)
√

bP (l)

)

what in the two cases will lead to the same results.

4.2 New Approach versus Old Approach

In [PVGG04], there are no actual approximations computed for Sl but an upper
and a lower bound forSl is derived and these bounds are plotted together with the
correct values forSl. Their figures show that there is a gap between the exact val-
ues and each of the two bounds. This new approach does not suffer from this gap;
it is more accurate than the introduced upper and lower bound.

Remark
When we look at the exact values forSl in Tables 1 and 3 we can notice the fol-
lowing interesting things. When we fix a certain, moderate-sized value fork, Sl

is close to1 for small values ofl and it is close to zero for large values ofl. The
transition from near1 to near0 is quite sharp with increasingl. The transition
value ofl increases whenk decreases. For largek, evenS1 is near zero. For small
values ofk, l has to be large beforeSl approaches zero.

5 Conclusion and Future Work

The first step in future work is trying to repeat the basic ideas of the analysis from
this technical report for the other two important probabilities, Cl andFl. These
two probabilities are closely related, so if it is known how to treatCl, the same
can be done forFl. By following the same kind of reasoning as withSl, the most
easy part in the approach ofCl is to find the distribution thatCl describes. This is
a Multinomial Distribution, the direct multivariate generalization of the univariate
Binomial Distribution. By extending this analoguous way ofthinking, the chal-
lange is to find the approximating Multivariate Normal and Multivariate Poisson
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Distributions. These distributions are the theoretical approximations, but are not
so tractable in practice for computations. The multivariate analogon ofΦ is a mul-
tivariate integral and is too hard to solve. The Multivariate Poisson is even more
strange, starting from the definition by loosing one degree of freedom. The compu-
tation of the found formula is also very hard, because of the need of all the different
partitions of the original transaction database obeying the conditions expressed in
the formula forCl. An important step in future work is considering in detail these
two cases and trying to find a practical computation method.

The next possible topic is applying a new, more realistic andmore complex
model of shopping behaviour. The model used now to describe the shopping be-
haviour is very simple. It assumes that all the items are independent and have the
same probability and that all the transactions are independent. In reality, none of
these three conditions is satisfied, so our model is a strong simplification of the real
world. First of all, it is not true that all the items have the same probability of being
chosen. Some items are needed or wanted more than others, will therefore have
bigger probabilities and will be bought more often. This brings us automatically
to the next condition, independence of items. The assumption of independence of
items is not true in the real world. One of the basic powers in shopping behaviour
is that buying one item is influenced by buying or not buying another item(s), so
the products are clearly positively or negatively correlated. A third aspect that has
to be considered, is the fact that the behaviour of personi at timet is influenced by
experiences that person had in the past. Loyalty to certain branches or satisfaction
of a product play an important role in shopping behaviour. Itis also possible that
the buying pattern of personi is influenced by items that person saw in the basket
of some other shopperj, shopping at the same time and place. These cases lead to
transactions not being independent any more. In the future,there have to be taken
care of these more realistic situations, keeping in mind that they won’t simplify
the analysis at all. Even the easiest step in the generalisation, jumping from the
same probability for each item to a different probability for each item makes the
formulas very complex.
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