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Abstract

In the literature, there exist an analytical and empiritadlg for the be-
haviour of the Apriori Algorithm, the best known frequergritset mining
algorithm [PVGGO04]. For the analytical part, a very simghegping model
is used where every item has the same probability and allt¢inesi and all
the transactions are independent. The notiorsofthe probability that a
certain set consisting dfelements is a frequent set, is introduced and ap-
proximated using Chernoff bounds. This technical repstuases a new,
statistically inspired approximation &; that is easier to compute than the
Chernoff result. This new approach is based on the apprdiximaf the
Binomial Distribution.

1 Introduction

The frequent itemset problem, introduced in [AIS93, AS%lh well known and
interesting basic problem at the core of many data mininglpros [AIS93, AS94,
Goe03, GZ03]. The problem is, given a large database of bdska, i.e. subsets
of a fixed set of itemg, and a user-defined support threshb|dletermine which
sets of items occur together in at leégsbaskets. In the last two decades, sev-
eral different algorithms for solving this problem were posed [AIS93, AS94,
HPYO0O0, Zak00]. The best known algorithm is the Apriori Algbm, introduced

in [AS94].

In the literature [PVGGO04], there exist an analytical angbeioal study for the
behaviour of Apriori. In this theoretical study, the notsoaf C;, S; and F; were
introduced to gain more insight in the average case perfioceaf Apriori. C; is
the probability that a certain set consisting/afems is a candidate sef; is the
probability that such a candidate set is frequent, Bnid the probability that such
a candidate set of lengthis a failure, so is not frequent. These probabilities were
estimated with Chernoff bounds in the case of the simpleghgpmodel where all
the items were independent and had the same probabilityiraf lbhosenp, and all
the transactions were independent as well. In this techrépart, we use the same
simple model of shopping behaviour. Based on statisticewaapproximation for
S; is derived. This new approximation is fast and easy to compntl gives better
results than the Chernoff bounds.



The study of the average case performance of Apriori is ngy.eln the ex-
pressions found for the different probabilitigs;, .S; and F; in [PVGGO04], com-
binatorial sums appeared that are hard to compute. Therdfas good to have a
computable form for these probabilities. In this techniegdort, we focus on such
a form for S; to estimate the size of the result. This computable formashed
by straigthforward statistical approximation and produaecurate estimates &y
when the amount of basket data in the databadge,large.

For the database, we assume that thererap@ssible items that can be bought
andb baskets or transactions. The user-defined support theefholhe frequent
itemset mining problem is denoted by The model of shopping behaviour used
in the rest of this technical report is the simple model basethe following three
assumptions:

e each item has the same probability
¢ all them items are independent
e all theb transactions are independent

Sy is the probability ( < S; < 1) that a set consisting éfitems{1,...,l}isa
frequent set. In our simple shopping model, each basketdd fiit random, all the
items are independent and have the same probapijlgp any other set consisting
of [ items has the same probability of success,

Analoguously as in [PVGG04], we can now define the followirgnditions
with respect to a single basket:

e condition Mj: the basket containsitems{1, ...}

e condition M}, (1 < h < [): the basket contains all items frofa, ... [},
except a fixed itenk, so containg — 1 items

Each basket obeys at most one of thesel disjoint conditionsij,, 0 < h <.

With these definitions of the different conditions and thevabknowledge of
the used shopping model, we can now write down some basi@pildles. The
probability that a randomly filled basket obeys conditiafy is

P(l) = pl.
The probability that a randomly filled basket obeys conditid, (1 < h <) is
Q) =p"'(1-p).
The probability that at leagt baskets obey conditioh/, can be found by
si=% (1) warn-rop
Jjzk J

and describes the probability that the §e&t. .., [} is a frequent set.



Outline

The rest of this Technical Report is organized as followsSéation 2, some no-
tions and distributions in statistics are shortly reviist They are necessary to
understand the new approach. This section is the statifhigadation of our ap-
proximation. In Section 3, the new results fgrare presented. Section 4 discusses
these results w.r.t. the experimental settings used in [BY4G. Here it is shown
that the new approach yields fast and easy computations ettet lbesults. Sec-
tion 5 concludes and points out future work.

2 Statistical Background Information

This section gives a general background on the statistimalponents used and
can therefore be seen as the statistical foundation of tiweap@roach presented
in Section 3. For more information, see [DK95], [OGD80], g or any other
reference book on statistics.

2.1 The Binomial Distribution

Distribution
Consider stochast = X; + ... 4+ X,,, where the stochast¥; (1 < j < n) are
independent and identically distributed (i.i.d.), follog a Bernoulli Distribution
B(1,p). The Bernoulli Distribution is the distribution that is ws® describe an
experiment with two possible outcomes, a “success” outcwiitie probability p
and a “failure” outcome with probability — p. The classical example of this dis-
tribution is tossing a coin where both sides have equal fitityal/2 to be on top.
Each stochask; (1 < j < n) equalsl when it represents a success anahen it
represents a failureX, the result of the Bernoulli sum, is now defined to follow the
Binomial DistributionX ~ B(n,p). This is a discrete distribution whepé repre-
sents the amount of successes (so the amoutioaturrences) im independent
Bernoulli experiments with success probability The Binomial Distribution is
therefore the result af independent repetitions of a random experiment with two
possible outcomes, success with probabititgnd failure with probabilityl — p.
There are two parameters; the number of repetitions, and the probability of
success in the repeated Bernoulli experiment. pHias to be the same for all the
n Bernoulli trials.

The probability that there aresuccesses in thesuccessive BernoullB (1, p)
experiments is

Pex=i)= (") a-pr
The probability of having at leagt (0 < k < n) successes in the successive

B(1,p) experiments is

n

Pz =Y (1) a-er =3 (1) a-pr

ik =k



Approximation

In the statistics literature there exist good approxinmtitor the Binomial Distri-
bution. An overview is given in Figure 1. It is not the purpadethis technical
report to cover the proofs of these properties. They can baddn the better
statistical handbooks.

n <30 Directly to detenmine (table or count)

B(n, p)

0.1 <p <09 =Nap,npl-p)

np <10 Directly
n =30 p<0.1zP(np)<
np > 10 = M{ap, np)

p= 0.9 Switch pand 1-p, use above

Figure 1: Overview approximations

When approximating a discrete distribution by a continoistribution, we
have to take care of the continuity correction by adding dtrswcting0.5.

Remark

There exist other ways of approximating a Binomial Disttidn. An overview can
be found in [JK69]. For this technical report, we have chabermost commonly
used, simple and straightforward approximations.

The difference in approximating the Binomial Distributibg the Normal or
the Poisson Distribution is the rofeplays. In the Normal approximation, — oo
andp is fixed. In the Poisson approximation,— oo, p — 0 butnp, the Poisson
parameter, stays constant.

2.2 The Poisson Distribution

Distribution

A random variableX is said to follow a discrete Poisson Distributid?{\) with
parameted < A < o if



Approximation

The Poisson Distribution is the limit of a Binomial Distrifoan, as the number of
Bernoulli trials,n, gets large and the probability of succesgyets small. Formally,
a Poisson distribution approaches a Binomial Distributfain — oo andp — 0 in
such a way that their product remains constapt,= \. This value is called the
Poisson parameter.

2.3 The (Standard) Normal Distribution

First, the Standard Normal Distribution is considered. mhas extended to the
Normal Distribution. In contrast with the previously cometied discrete distribu-
tions, these distributions are continuous.

Standard Normal Distribution
The Standard Normal DistributioV (0, 1) is defined by the probability density
function

The distribution function (or cumulative probability disiution function) of N (0, 1)
is defined by

O(x) = / o(t)dt, reR
and describes the surface under the graphfodm —oo to the pointx (Figure 2).

YA

(1)

Figure 2: Grafical illustration ob.

It is easy to see thab(—x) = 1 — ®(z) because of the symmetry around the
Y-axis and the fact that is a density function, so the total surface under the graph
is 1. We can use this property when we need to finth large values of. When
just computing®(x) whenz is large, it is possible that this resultsinwhile it is
known that the result is close fiobut not equal to it. A better way to compute a
more accurate value fdF(x) is to computel — ®(—x). In this expressionp(—x)
is a very small value close t but not equal to it, sd — ®(—x) results in an
expression close tb but not equal td.



Normal Distribution
The general Normal DistributioiV (11, o?) is the distribution ofX = 0Z + p
whereZ ~ N(0,1). The Standard Normal Distribution is in fact a special cdse o
the Normal DistributionV (12, %) with meanu € R and standard deviation > 0,
wherey = 0 ando = 1.

The density function is

. 2
fu,a(x): e %(v), z,u € R and o > 0.

The distribution function

g g
can be computed by using the knowledge of the Standard Nd@istxlbution:

X-EB[X] X-up
Var[X] o

= Z ~ N(0,1).

3 Efficient computation of S;

Based on the theory of Section 2.1,

b

si=3 (1) warn-rop

j=k

canbeseena(X > k) =1—P(X < k) with X ~ B(b, P(l)). We now use the
appropriate approximation for the Binomial Distributiondainvestigate the three
different situations that can appear. The dase30 is not considered becausés
the amount of tuples in the database and this is supposedaogee thars0.

If the above formula forS; is compared with the new results found by the
approximation, it is clear that the new approach yieldsdast easy computations.
The binomial sums do not have to be computed but are apprtedhiay simple
formulas usingp and Poisson.

31 b>30and0.1 < P(l) 0.9

We approximate the Binomial distributedd ~ B (b, P(l)) by the Normal dis-
tributedY ~ N (bP(1),bP(l)(1 — P(l))), SO

Y —bPO)
VOP()(1 — P(1))

~ N(0,1).




Because we approximate a discrete distribution by a comtisudistribution, we
have to take care of the continuity correction. In details:

P(X <k) ~ P(Y<k-—05)
o, (z o (k—05) —bP(l))
VOP()(1 — P(1))
<(1<: —0.5) — bP(l))
= &
VOP()(1 — P(1))
S, = P(X>k) = 1-P(X<k)

( (k — 0.5) — bP(]) )
—® .
VOP()(1 — P(1))

In this case, the Binomial distributed ~ B (b, P(l)) will be approximated by
the Poisson distributetf’ ~ P (bP(l)). Dependent of the value &°(/) we can
distinguish two different cases.

SO

32 b>30andP(l) < 0.1

3.2.1 bP(l) < 10

In this case, the approximation of the discrete Binomiatritigtion by the discrete
Poisson Distribution is used. A continuity correction i necessary.

P(X <k) = P(Y <k)
= PY <k-1)
= F(k-1)
— (bP(1))yie PO
4!

??‘

<
I
=)

SO

S, = P(X>k) = 1-P(X <k)

= 1-F(k-1)
k—1 :
B (bP (1)) e PO
= 1-— Z —
7=0



3.2.2 bP(l) > 10

In this case, the discrete Poisson Distribution is apprai by the continuous
Normal Distribution and we have to take care of the continadrrection.

X ~ B(b, P(l)) Y ~ PbP())
T ~ N(bP(1),bP(1))

%

SO

Therefore

P(X <k)

2
:
N
A
N
|
o
&

SO

S; = P(XZ/{:)

1-P(X <k)

_ ((k —0.5) — bP(l)) |
vP()

3.3 b>30andP(l) > 0.9

In this case X ~ B (b, P(1)) with P(I) > 0.9. X’ =b—X ~ B(b,1— P(l)) with
1 — P(l) < 0.1is constructed. We are now in the previous case (see Secfpn 3
with X’ instead ofX. Therefore

P(X<k) = Pb—X>b—k)
= P(X'>b—k)
= 1-PX'<b-k)
and
S; = P(X>k) = 1-P(X<k)
= 1-(1-P(X'<b-k))
= P(X'<b—k).
We know thatX’ ~ B (b, (1 — P(1))) with 1 — P(l) < 0.1 so
X' =Y ~ P(b(1 - P(l)))

as seen in Section 3.2. Again, there can occur two situatltatshave to be con-
sidered.



331 b(1—P()) <10

P(X'<b—k)

.
a3
= =
IN
S
|
=

(=
B

(b(1 = P(1)))i e~ b(=PD)
5

<
I
=)

For S; this gives:

Si=Fb—k) = bi (b(1 — P(1)))Je~b(1-P®)
j=0

[
j= o

3.32 b(1— P(l)) > 10

In this caseY ~ P (b(1 — P(1))) will be approximated by" ~ N (b(1 — P(1)),
b(1— P(l))), so
T —b(1 - P(1))

Z = ~ N(0,1).
(1 — P())

Therefore

P(X'<b—k)

Q

P(T <b—k+0.5)
_ P<Z§ (b—k+0.5)—b(1—P(l))>

b1 - P0))

o (b—k+0.5) —b(1 — P(l))
b(1 — P(1)) ’

For S; this gives:

5o <(b— k+0.5) —b(1 —P(l))) |
b(1 — P(1))

4 Experimental Results For.S;

4.1 Quality of the New Approach

In this section, the results of the new approach are compardte exact values.
We show that our results are quite good and that they can beutench very fast
and easy.



411 b=1024andp =1/2

b> 30
P(1) = p!, so for every value of (I = 1,2, 3,4, 5), P(l) has a different value.

el=1—-01<P(l)=1/2<0.9= Section 3.1
el =2-01<P()=1/4<09= Section 3.1
e/ =3—-01<P(l)=1/8<0.9= Section3.1
el =4— P(l)=1/16 < 0.1 andbP(l) = 64 > 10 = Section 3.2.2
el =5— P(l)=1/32 <0.1andbP(l) = 32 > 10 = Section 3.2.2

The results can be found in Table 2. The computation of thikets based on the
following example. The calculations are performed in Maflke original values
for S; can be found in Table 1.

Example

Let us considei = 1 andk = 1. In this caseP(1) = 1/2 and the approach
of Section 3.1 has to be followedbP(1) = 512 and1 — P(1) = 1/2, so
bP(1)(1 — P(1)) = 256.

R <¢bP<1'><1 = P<1>>>

= 1—®(-31.97)
1—1.48 10724

When! = 5 andk = 533, P(5) = 1/32 and the approach of Section 3.2.2 has
to be followed.bP(5) = 32.

S — 1_0 <(1<:—0.5) —bP(5)>
bP(5)

_ 1_(1)((533—\/0?;_;)—32)

= 1— $(88.48)
= $(—88.48)
= 6.26 1071703

10



1T

k S1 So S3 Sy S5

1 1.0-56 10739 1.0-1210"%® 10-4110"% 1.0-2010"2° 1.0-7.610"1°
2 1.0-5710"3% 1.0-4010""% 10-6.110"° 1.0-1.410"27 1.0-26 1013
3 1.0-2.9107%3 1.0-6810"'2* 1.0-4510"° 10-4810"26 1.0-4.410"'2
4 1.0-1.01073%0 10-7710"%22 10-2210"° 1.0-1.110"%2# 1.0-5.0 101!
5 1.0 2510298  1.0-6.610"2° 1.0-8110"° 10-1910"2% 1.0-4.310"1C
22 1.0 —-1.5107265 1.0-3.11079 1.0-2310"3% 1.0-1510"1% 1.0-2410"2
32 1.0 -9.2107250  1,0-3.3 1078 1.0-5410"27 1.0-2010"¢ 5.2 1071

33 1.0-2.910"24  1.0-3.410783 1.0-2410"% 1.0-4.310"6 4.5 1071

45 1.0 —2.4 107231 1.0-5.710"72 1.0-1.6 10" 1.0-4210"3 1.6 102

57 1.0 — 6.8 107216 1.0 —-3.1 10762 1.0-3.71071* 831071 3.1 107°

58 1.0 - 1.2 10724 1.0-1.7 10761 1.0-9210 % 8010 ! 1.6 10°°

64 1.0 —1.9 107207 1.0 —4.0 10757 1.0—-1410"" 5210t 2.5 1077

65 1.0 -2.9 107206 1.,0—-2.0 10756 1.0—-3.010"" 4710t 1.2 1077

91 1.0-6.2107'7® 1.0 -1.9 10740 1.0 —1.1 1074 5.8 1074 2.3 10718

120 | 1.0 —1.5107%%  1.0-7.6 10727 7.9 1071 5.3 1011 2.0 10734

121 | 1.0-1.210"*° 1.0-1.9 10726 7.6 1071 2.6 10711 4.7 1073°

128 | 1.0-1.310"'%%  1.0-9.8 10724 5.1 101 1.4 10713 1.7 10739

129 | 1.0-8.8 107143 1.0-2310"23 4.8 1071 6.6 10714 3.8 10740

186 | 1.0 —2.8107'9° 10-7.110"8 1.3 107 8.9 10739 6.4 10783

247 | 1.0 —3.7 1079 7.5 1071 2.0 10724 1.2 10775 5.2 107139

248 | 1.0 —1.2 10764 7.3 1071 8.7 10~ 2% 2.4 10776 5.3 10140

256 | 1.0 — 9.6 10761 5.1 1071 1.1 1027 7.2 10782 4.7 107148

257 | 1.0 —2.9 10760 4.8 1071 4.8 10728 1.4 10782 4.6 107149

377 | 1.0 —8.110"18 3.8 10717 1.4 10787 9.8 107182 4.9 107286

503 | 7.2 107! 6.9 10762 1.5 10178 2.2 107314 2.1 107458

504 | 7.0 1071 2.4 10762 2.3 107179 1.5 107315 7.0 10460

512 | 5.1 107! 4.0 10766 4.4 107186 6.6 107325 9.3 107472

513 | 4.9 107! 1.3 1066 6.3 10187 4.4 107326 3.0 107473

533 | 1.0 107! 1.6 1076 3.3 107204 5.6 107350 1.9 107503

Table 1: Exact values fof; for b = 1024, p = 1/2 and selected values &f



A"

k S1 S S Sy Ss

1 1.0 —1.48 10722%  1.0-31910"7® 1.0-9.9810"% 1.0-1.0310"'® 1.0-1.2810"%
2 1.0 -1.09 10722 1.0-1.21107° 1.0-3.131073 1.0-2.80 10"  1.0—3.49 108
3 1.0 —8.03 107223 1.0-45510""° 1.0-9.71107%% 1.0-7.5010"'° 1.0-9.2010"%
4 1.0 -588 107222  1.0-1.711077* 1.0-29910732 1.0-1.9810"* 1.0-23510""
5 1.0 —4.28 107221 1.0-6.3710"7* 1.0-9.11107%2 1.0-51310"'% 1.0-58310""

22 1.0 —1.09 107206 10-1.5110"% 1.0-4.0110"2* 1.0-5.41 108 1.0 — 3.17 102
32 1.0 -1.92 1079  1.0-244107°° 1.0-3.8110720 1.0-24310°° 1.0 — 4.65 10~ 1
33 1.0-1.25 1077  1.0-7.89 107°° 1.0-9.08 10720 1.0 —-4.12 107° 4.65 1071
45 1.0 —5.60 10~ '8  1.0-6.67107°% 1.0-1.51 10" 1.0-7.39 1073 1.36 1072
57 1.0 —1.43 1077  1.0-268 1047 1.0-7.0910"*% 1.0-1.74 107! 7.42 10~6
58 1.0 —8.46 10~  1.0-75810"%" 1.0-1.3510"'" 1.0-2.08 10"} 3.28 106

64 1.0-338 10717  1.0-35210"% 1.0-54810"" 1.0-4.75 107! 1.28 1078

65 1.0 —1.95 107172 1.0-9.61 107%* 1.0-9.8510"10 4.75 10! 4.59 1079
91 1.0 —3.03 1071  1.0-349 1073 1.0-1.97 10°% 4.62 1074 2.29 10~ 2%
120 | 1.0 —3.43 107133 1.0-3.391072% 1.0-2.11 10" 2.00 10712 2.85 10724
121 | 1.0-1.59 10~%2  1.0-6.94 10723 1.0-2.39 10~} 8.18 1013 1.80 107°°
128 | 1.0 —6.56 10728 1.0-18.99 1072 1.0 —4.81 107! 1.03 10715 3.04 10764
129 | 1.0-2.95 10"%7  1.0-1.76 10720  4.81 107! 3.74 1016 1.50 10~6°
186 | 1.0 — 7.36 10793 1.0 — 1.81 10~7 2.77 108 2.14 10752 1.89 10162
247 | 1.0 —3.87 10792 1.0 — 2.46 10~1 2.10 1029 1.72 107115 6.35 107 31°
248 | 1.0 —1.09 1061 1.0 —2.70 101 7.21 1030 9.82 10~ 117 7.64 107318
256 | 1.0 —3.87 10758 1.0 — 4.86 107! 9.98 10734 6.24 10127 1.08 107341
257 | 1.0 — 1.05 10757 4.86 1071 3.16 10734 3.09 107128 9.85 10734
377 | 1.0—1.24 10~ 17 1.71 10~ 18 3.19 10~ 122 4.66 10334 2.95 10808
503 | 1.0 —2.76 10~! 4.25 10- 71 1.36 107274 2.90 10~ 65° 3.13 101505
504 | 1.0 —2.98 10! 1.17 1071 4.76 10276 3.04 10658 1.26 10~ 1511
512 | 1.0 —4.88 10~! 3.19 1076 7.86 10288 2.50 10682 2.94 1071563
513 | 4.88 107! 8.37 10777 2.54 10289 2.28 10768° 8.97 101570
533 | 1.00 10~1 6.83 1089 6.15 10320 1.30 107747 6.26 101703

Table 2: Approximations fo6; (I = 1,2, 3,4,5) for b = 1024, p = 1/2 and selected values fét
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Figure 3: Exact values df; and approximations fags = 1/2 for all values ofk.
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Figure 4: Relative error for the approximations for 1/2 for all values ofk.

In Figure 3, the original values fd$; for selected values fat are plotted in
massive cubes, together with their approximations. Theleeted values fok are
the same as the values used in [PVGGO04]. The rightmost cujie for S, A for
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So, + for S3, x for Sy and the leftmost curves] is for S;. The figure shows that
the approximations are very close to the exact values.

To express the accuracy, some error computation is done.iglwd=4, the
relative error is plotted. The relative error is computedhesabsolute error (ap-
proximation minus exact value) divided by the exact valuke Tesults forS; are
again plotted as, S asA, S5 as+, S4 asx andSs aso.

If onel is fixed ( = 1,2,3,4,5), the approximation is more inaccurate when
k increases. For increasirig the approximations are getting worse for smaller
and smaller values df. Especially forl = 4 and! = 5 and big values ok the
approximations are underestimating the real values. Tdppéns becausein big
negative values is close to zero.

412 b=1024andp =1/16

b> 30
P(1) = p!, so for every value of (I = 1,2, 3,4, 5), P(l) has a different value.
el =1— P(l)=1/16 < 0.1 andbP(l) = 64 = Section 3.2.2

e | =2— P(l) =1/256 < 0.1 andbP(l) = 4 = Section 3.2.1

1)
el =3— P(l) =1/4096 < 0.1 andbP(l) = 0.25 = Section 3.2.1
el =4— P(l)=1/65536 < 0.1 andbP(I) = 0.016 = Section 3.2.1

el =5 P(l) =1/1048576 < 0.1 andbP(l) = 9.5 10~ = Section 3.2.1
The results can be found in Table 4. The exact values can Ipel iouTable 3.

Example
Let us considef = 1 andk = 1. In this caseP(1) = 1/16 and the approach of
Section 3.2.2 has to be followebtlP(1) = 64.

s — 1_0 <(l<:—0.5) —bP(l))

bP(1)
. ((1-05)—64
- ‘D< Vot )
= 1—®(—7.94)
1—-1.03 1071

When! = 5 andk = 257, P(5) = 1/1048576, the approach of Section 3.2.1 has
to be followed.bP(5) = 0.0009765625.

Ss = 1-F(k—1)

= 1 — Py.0009765625(256)
1—2.69 1071278
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GT

k S1 S S Sy Ss

1 1.0-2.010"2° 1.0-1810"2 2210} 1.6 102 9.8 1074

2 1.0-1.410"27 1.0-9110"2 26102 1.2 1074 4.8 1077

3 1.0 —4.810°26 7.6 107! 2.2 1073 6.3 1077 1.5 1010

4 1.0—-1.110"2*% 5710t 1.3 10~ 2.4 1077 3.8 10714

5 1.0—-1.9 1072 3710 ! 6.6 106 7.6 10712 7.3 10718

22 1.0—1.51071% 3.0 10710 3.2 10735 1.3 1061 4.2 10788

32 1.0 — 2.0 106 1.0 10718 1.0 10755 3.7 10794 1.1 10132
33 1.0 — 4.3 10~6 1.2 1019 7.3 10758 1.7 10797 3.1 107137
45 1.0 — 4.2 1073 9.2 10732 2.0 10784 1.6 107142 1.1 107192
57 8.3 107! 2.5 10745 1.9 10712 55107181 1.3 107249
58 8.0 1071 1.7 10746 7.810711% 1410718 2.1 1072%
64 5.2 1071 8.9 10754 2.5 107129 26107206 23107283
65 4.7 1071 5.1 1075 8.9 107132 59107210 33107288
91 5.8 1074 2.0 10789 1.6 107197 5.1 107397 1.4 107416
120 | 5.3 10711 5.6 10132 48107275 1910749 6.1 107964
121 | 2.6 10~ 1.6 10133 8.7 107278 211107423 4.3 107°69
128 | 1.4 10713 2.3 10144 45107297 4110741 3.1 107605
129 | 6.6 10714 6.3 107146 77107300 4.4 107455 2.1 107610
186 | 8.9 10739 7.9 10~ 241 1.8 107403 24107687 2.6 107911
247 | 1.2 1077 1.0 1075352 6.7 107949 30107945 1.2 1071243
248 | 2.4 10776 1.3 107354 5.1 1072 1.5 107950 3.5 1071249
256 | 7.1 10782 5.4 107370 4.9 107677 33107985 1.8 1071293
257 | 1.4 10782 6.3 107372 3.6 107980 15107989 5.2 1071299

Table 3: Exact values faf; for b = 1024, p = 1/16 and selected values &f
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k S1 Sa S3 Sy S5

1 1.0 - 1.03 107! 1.0 —1.83 1072 1.0 — 7.79 10t 1.0 — 9.84 1071 1.0 — 9.99 1071

2 1.0 —2.80 10~ 1.0 —7.33 1072 1.0 — 1.95 101 1.0 — 1.54 102 1.0 — 9.76 104

3 1.0 — 7.50 1071 1.0 — 1.47 10~} 1.0 — 2.43 1072 1.0 — 1.20 10~% 1.0 — 4.76 10~ 7

4 1.0—-1.9810"'% 1.0—-1.95 107! 1.0 — 2.03 1073 1.0 — 6.26 10~ 7 1.0 — 1.55 1010

5 1.0 -5.13107'%  1.0-1.95 10~} 1.0 — 1.27 10~% 1.0 — 2.45 109 1.0 — 3.79 10714
22 1.0 — 5.41 108 1.0 — 1.58 10~° 1.0 — 3.47 10733 1.0 — 2.27 10758 1.0 — 1.19 1083
32 1.0 — 2.43 10~° 1.0 — 1.03 10~ 17 1.0 — 2.05 10753 1.0 — 1.22 10790 1.0 — 5.82 107128
33 1.0 — 4.12 107° 1.0 — 1.28 1018 1.0 — 1.60 10722 1.0 — 5.96 10794 1.0 — 1.78 10132
45 1.0 — 7.39 1073 1.0 — 2.13 10730 1.0 — 9.47 10782 1.0 —1.25 107134 1.0 -1.32 107187
57 1.0 — 1.74 101 1.0 — 1.34 10~43 1.0 —2.11 107199 1.0 -9.89 107177 1.0 —3.72 107244
58 1.0 — 2.08 10~ 1 1.0 — 9.39 1074° 1.0-9.25 10712  1.0-27110"'80  1.0-6.38 10724°
64 1.0 —4.75 101 1.0 — 7.86 10752 1.0 —4.62 10126 1.0 -8.07 107202 1.0 —1.13 107277
65 4.75 1071 1.0 — 4.91 10753 1.0 —1.80 1012 1.0 —1.79 107205 1.0 —1.73 10~ 282
91 4.62 1073 1.0 — 1.89 10786 1.0 -3.42 10719  1.0-1.8410730" 1.0-7.96 10~410
120 | 2.00 10~ 1'2 1.0 — 1.45 107127 1.0-3.16 10729 1.0 —2.05 10~*'2 1.0 — 1.07 107255
121 | 8.18 10713 1.0 — 4.48 10712 1.0-6.59 107272 1.0-2.67 10-*6 1.0-8.67 10761
128 | 1.03 1071 1.0 —1.76 107139  1.0-8.93 10721  1.0-1.35 10~%**3 1.0 - 1.63 10729
129 | 3.74 10716 1.0 —5.50 10~ 1.0-1.741072 1.0-1.64 1077 1.0 -1.24 107601
186 | 2.14 10722 1.0 —1.07 107231 1.,0-7.86 10743  1.0-1.72107%75 1.0 —3.01 107898
247 | 1.72 10711 1.0 —2.76 107337 1.0 -7.18 107932 1.0 -5.55 107928 1.0 —3.45 1071224
248 | 9.82 10~ 117 1.0 —4.47 107339 1.,0-7.27 10793  1.0-3.51 107932 1.0 —1.36 10~ 122°
256 | 6.24 107127 1.0 —1.831073%  1.0-6.93107%9 1.0-7.801079%6 1.0 -7.05 1071273
257 | 3.09 107128 1.0 — 2.86 10735 1.0 —6.77 107962 1.0 —4.76 107970 1.0 — 2.69 1071278

Table 4: Approximations fo6; (I = 1,2, 3,4,5) for b = 1024, p = 1/16 and selected values &f
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Figure 5: Exact values df; and approximations fgr = 1/16.
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Figure 6: Relative error for approximations for= 1/16.

In Figure 5, the original values fd; for selected values fokt, the values also
used in [PVGGO04], are plotted in massive cubes, togethdr thitir approxima-
tions. The curve is for Sy, A for Se, + for Ss, x for S, ando for S5. As the
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figures show, the approximations are not that good.

The error computation in Figure 6 shows that the approxivnatiare not so
accurate. In the case that= 1 the approximation is of the same quality as the
aprroximations in the previous section. Fet 2, 3,4 and5, the Poisson approxi-
mation is used. For small values iafthis approximation is accurate, but for larger
values ofk, it overestimates the real value §f. It stays close td while the real
values decrease to zero.

Remark

In [PVGGO04], they found that the values fSrwith p = 1/2 andi = 4 are approx-

imately the same as for p = 1/16 andl = 1, particularly whenk is small. In our

approximation we can see that these values are approxirbgtin same formula

o <(k: —0.5) — bP(l))
P ()

what in the two cases will lead to the same results.

4.2 New Approach versus Old Approach

In [PVGGO04], there are no actual approximations computedSfdout an upper
and a lower bound fof; is derived and these bounds are plotted together with the
correct values foiS;. Their figures show that there is a gap between the exact val-
ues and each of the two bounds. This new approach does net Bofh this gap;

it is more accurate than the introduced upper and lower hound

Remark

When we look at the exact values {8y in Tables 1 and 3 we can notice the fol-
lowing interesting things. When we fix a certain, moderates value fork, S;

is close tol for small values of and it is close to zero for large valuesiofThe
transition from nean to near0 is quite sharp with increasing The transition
value of] increases wheh decreases. For larde evenS; is near zero. For small
values ofk, [ has to be large befor§, approaches zero.

5 Conclusion and Future Work

The first step in future work is trying to repeat the basic &efthe analysis from
this technical report for the other two important probdieiti, C; and F;. These
two probabilities are closely related, so if it is known hawtteatC;, the same
can be done foF;. By following the same kind of reasoning as with the most
easy part in the approach 6f is to find the distribution thaf’; describes. This is
a Multinomial Distribution, the direct multivariate geiadization of the univariate
Binomial Distribution. By extending this analoguous waytbinking, the chal-
lange is to find the approximating Multivariate Normal and [tWariate Poisson
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Distributions. These distributions are the theoreticgrapimations, but are not
so tractable in practice for computations. The multivaraalogon of® is a mul-
tivariate integral and is too hard to solve. The Multivagi#oisson is even more
strange, starting from the definition by loosing one degféeeedom. The compu-
tation of the found formula is also very hard, because of teglrof all the different
partitions of the original transaction database obeyimgctinditions expressed in
the formula forC;. An important step in future work is considering in detaigk
two cases and trying to find a practical computation method.

The next possible topic is applying a new, more realistic ammte complex
model of shopping behaviour. The model used now to deschiéestiopping be-
haviour is very simple. It assumes that all the items arepgaddent and have the
same probability and that all the transactions are indeg@ndn reality, none of
these three conditions is satisfied, so our model is a stiomgliication of the real
world. First of all, it is not true that all the items have ttzeree probability of being
chosen. Some items are needed or wanted more than othdrijesdfore have
bigger probabilities and will be bought more often. Thisgs us automatically
to the next condition, independence of items. The assumpticndependence of
items is not true in the real world. One of the basic powersopping behaviour
is that buying one item is influenced by buying or not buyingthaer item(s), so
the products are clearly positively or negatively corrdiatA third aspect that has
to be considered, is the fact that the behaviour of persatimet is influenced by
experiences that person had in the past. Loyalty to certainches or satisfaction
of a product play an important role in shopping behaviouis Hiso possible that
the buying pattern of persaris influenced by items that person saw in the basket
of some other shopper shopping at the same time and place. These cases lead to
transactions not being independent any more. In the futheee have to be taken
care of these more realistic situations, keeping in mind tivgy won’t simplify
the analysis at all. Even the easiest step in the generafisgtmping from the
same probability for each item to a different probability &ach item makes the
formulas very complex.
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