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Abstract

This technical report discusses statistically the influence of noise on the out-
put of data mining algorithms for finding frequent itemsets. The results of
this research are algorithm independent but for simplicity, we focus on the
results for the best known frequent itemset mining algorithm, Apriori. First,
we consider the effects of small changes in the support value on the output
of the algorithm for three real-life datasets. Second, we introduce noise and
rerun Apriori with the same support values. The most important results of the
comparison “before noise” and “after noise” will be shown and explained.

1 Introduction

In the last decades, with the development of relational databases, companies had
the opportunity to store huge amounts of data efficiently. Not only this huge
amount of data itself, but also the possibility to research and query it makes it
so precious, valuable and interesting. The necessity of analysis is a motivation for
data mining. After all, data mining is the analysis of huge amounts of observed
data to discover interesting, unexpected relations, patterns or regularities [16].

For the discovery of these previously unknown but interesting patterns in data,
lots of algorithms were developed. Usually, these algorithms handle the so called
“frequent itemset mining problem” [2, 3]. The problem is, given a large database
of basket data, i.e. subsets of a fixed set of items Z, and a user-defined support
threshold &, to determine which sets of items occur together in at least k baskets.
This is a well known and interesting basic problem at the core of many data min-
ing problems [1, 2, 3, 4, 10, 13, 15, 19]; once the frequent items are found, this
information can be used to find other interesting regularities between the data, for
example Association Rules. In the last two decades, several different algorithms
for finding frequent itemsets were proposed [2, 3, 17, 21, 24] and compared.

There is a fundamental link between data mining and statistics [26, 18, 23].
Both research disciplines are searching for interesting relationships in datasets.
They are both trying to analyze data to find interesting patterns and use these results
for their specific purposes. In data mining, the analysis of the algorithms is usually
empirical, based on the execution time. In this technical report, we are trying to



look at the statistical side of the game and consider the robustness of the existing
algorithms in the case of noise and small changes in parameters.

Noise is a term that is used to indicate that a certain percentage of the data is
not correct, not known, or missing. We cannot use it for the analysis, because we
just don’t know what it is or if it is correct. We are extremely interested in the
output of frequent itemset mining algorithms when there is noise in the datasets.
Because all algorithms (have to) find the same frequent itemsets, we focuse on the
best known data mining algorithm for finding all frequent itemsets: Apriori [3].

It is known that a bit of noise has an enormous influence on the frequency of
long patterns [22]. What happens with wrong data, incomplete data, missing infor-
mation? When we are looking for periodic, returning regularities in the dataset, it
could be possible that these different cases disturb the whole process and cause an
overfitting of the dataset. It is also interesting to look whether a small change in
the parameter support (k) has a large impact on the output of the data mining algo-
rithms. For example, if the support value decreases, how is the amount of frequent
itemsets behaving?
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In Section 2, we shortly review the basics for the search for frequent itemsets and
some definitions needed for the rest of this technical report. Section 3 describes
the experiment that gave rise to this technical report. The idea is to compare the
results of Apriori before noise and after noise. In Section 4, some details about
the datasets and the algorithms used (the Apriori algorithm and the algorithm used
to introduce noise) are discussed. Section 5 groups the results of the comparison
before noise and after noise and tries to give an explanation. In Section 6, another
way of making noise is introduced, different from the way it was introduced in 4.
Section 7 concludes this technical report.

2 Refreshing Some Concepts

In the recent years, data mining (or nowledge Discovery in Databases) has at-
tracted a lot of interest in the database community, caused by the large amounts of
computerized data that organisations have about their businesses. The discovery
of association rules and frequent itemsets [2, 3] is an interesting subfield of data
mining. The motivation for this kind of research has come from the desire to an-
alyze large amounts of supermarket basket data. Association rules describe how
often items are purchased together. For instance, “bread = butter (87%)” states
that 87% of the customers that bought bread also bought butter. Such rules can be
useful for decisions concerning product pricing or store layout.

We shortly review some definitions related to frequent itemset mining and as-
sociation rules that are necessary for the rest of the paper. Consider the supermar-
ket domain, the so called “market basket analysis”. The goal here is to discover
associations between items that are often bought together. Z = {i1,42,...,%m,}



represents the set of all items that are sold in the supermarket. Collections of these

items are called “itemsets” and are denoted by I, I, .... The baskets of the
shoppers are represented by an identifier “TID”. Let us assume that there are n
shoppers, so n baskets or n transactions (T'/D € {1}, Ty, ..., T,,}). Each trans-

action combines a TID with all the items from that basket. To store this efficiently
in a database D, we split the transaction across several lines, for each item a line;
we get a two-column database with in the first column the TID and in the second
column the itemID. There will be b tuples in the database.

Here is an example to make it more concrete: John is buying bread, butter and
milk, and Lisa is buying chips, beer and bread too. First, we number the baskets:
John’s basket is 1 and Lisa’s is 2, representing the two transactions. Second, we
number the products: bread is 1, butter 2, milk 3, chips 4 and beer 5; the number of
items sold, m, is 5. Transaction 1 denotes John’s basket: (1;1,2,3). Transaction 2
denotes Lisa’s basket: (2;4, 5, 1). In the database D, it is stored as

TID | ItemID
1
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As we can see, the number of tuples in the database, b, equals 6 in this example.

The support of set X, support(X), is the fraction of the baskets or transactions
that contain all the items of X. An itemset X is called frequent if support(X) >
mansup, a user-defined support threshold. Let, in our example, minsup be equal
to 2. We see that support({bread}) = 2 > minsup, so bread is frequent. We also
have support({chips}) = 1 < minsup, so chips is not frequent. For describing
the support count, we are working absolute, in terms of the amount of transactions.
Other approaches in data mining are working relative (in percent) but we do not
consider that approach in this technical report.

An association rule X = Y is used to denote that when all the items in set X
are in a basket, also the items in Y tend to be in the basket, thus when X occurs,
so does Y. The strength of this rule is called the confidence
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A user-defined confidence threshold is used to exclude rules that are not strong
enough to be interesting. In our example the confidence of

bread = butter
is

support({bread,butter}) 1
support(bread) =5 = 50%.




The problem of finding association rules can be divided into two subproblems:

1. Find all the frequent itemsets X C Z.

2. Find all the association rules: For each frequent set X, test for all non-empty
subsets Y C X if X \ Y = Y holds with sufficient confidence.

The second part of the problem can be solved in a straightforward manner once
the first part of the problem, the frequent itemset mining problem, is solved, so
once the frequent sets and their corresponding supports are known. This first part
is the hardest part and many algorithms were developed [3, 2, 24, 17] to handle this
problem. Apriori [3] is one of them.

3 Experiment

In this section, the experiment is described that gave rise to this technical report.
The experiment consists of two big parts: the idea is to compare the results of
Apriori before noise and after noise, and this for different values of the param-
eter support k. This research shows that noise in a dataset is causing differences
compared to the normal case without noise. For more details, we refer to Section 5.

The first part uses the Apriori algorithm on three real-life datasets (Section 4.1),
for finding all frequent itemsets and their corresponding support counts. The sim-
ilarities and the differences between the results for the three different datasets are
discussed. We also try to find a pattern in the results of the Apriori algorithm when
the input parameter, the user-defined support threshold k, is slightly changed. We
decrease the support from 1% with steps of 0.20% until we reach 0.20%. Then we
jump to 0.10% and decrease with steps of 0.02%. Additionally, we take 0.01% to
end our support sequence.

The second part starts with adding noise in the three datasets. This noise means
that every line in the database has 2% chance of being removed. That is, for
every basket B, every item 4 in it has a chance of 2% to be removed from the
basket. This corresponds with removing 2% of the lines in the database at ran-
dom (Section 4.1). The procedure of generating noise is done for different values
of 2% = 10%, 20%, 30%, 40% and 50%. Now, the experiment of part one is re-
done: the Apriori algorithm is run again and the results are compared.

The experiment is schematically shown in Table 1.

4 Datasets and Algorithm

4.1 Datasets, Before and After Noise

It is shown in [25] that association rule mining algorithms perform differently on
real-world datasets then they do on artificial datasets. Therefore, for our exper-
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| Part1

Datasets (3) Support
BMS-WebView-1, | 1%, 0.80%, 0.60%, 0.40%,
BMS-WebView-2, | 0.20%, 0.10%, 0.08%, 0.06%,
BMS-POS 0.04%, 0.02%, 0.01%
| Part11
Noise
Datasets (15) Percentage Noise Support
BMS-WebView-1, | 10%, 20%, 30%, 40%, 50% 1%, 0.80%, 0.60%, 0.40%,
BMS-WebView-2, 0.20%, 0.10%, 0.08%, 0.06%,
BMS-POS 0.04%, 0.02%, 0.01%

Table 1: The two different stages of the experiment

iments, we have chosen to use three real-life datasets instead of synthetic data-
sets. Thanks to Blue Martini Software, Inc. we can use the sparse real-life datasets
BMS-WebView-1, BMS-WebView-2 and BMS-POS.

BMS-WebView-1 and BMS-WebView-2 consist of several months worth of
clickstream data from two e-commerce websites from a small dot-com company
named Gazelle.com, specialised in legwear and legcare but not existing anymore.
In this dataset, the items are the product detail views. Each transaction is a web-
session consisting of all the product detail pages viewed in that session. The goal
for working with this dataset is to find associations between products viewed by
visitors in a single visit to the website.

BMS-POS is a dataset consisting of several years worth of point-of-sale data
from a large electronics retailer. Every retailer has many different products, so for
this dataset product categories are used as items. Each transaction in the database
corresponds to a customer’s purchase transaction consisting of all the product cat-
egories purchased at one time. The goal of this dataset is to find associations be-
tween product categories often purchased together by customers in a single visit to
the retailer.

The datasets all have the same layout. Every line consists of two numbers.
The first is the transaction identified and the second is the item identified. In this
way, one transaction is spread across several lines, for each item in the transaction
one line. We will denote the total number of lines in the dataset b, the number of
transactions n and the number of items m. In Table 2, these characteristics can be
found.

‘We now explain how we add noise to the three datasets. This noise means that
every line in the database has 2% chance of being removed; i.e., for every basket B,
every item ¢ in it has a chance of 2% to be removed from B. This corresponds with
removing approximately % of the lines in the database at random. The procedure
of generating noise is done for different values of z% = 10%, 20%, 30%, 40% and



| Dataset | Lines (b) | Transactions (n) | Items (m) |

BMS-WebView-1 149 641 59 602 497
BMS-WebView-2 358 318 77512 3340
BMS-POS 3367 424 515597 1 657

Table 2: Different characteristics of the three real-life datasets

50% to generate datasets with the same percentages of noise.

For the first two datasets, BMS-WebView-1 and BMS-WebView-2, this is done
in S-PLUS, a statistical program for data analysis. A new column is generated in
the dataset, with entries 0 (with 2% chance) and 1 (with (100 — 2:)% chance). This
generation of 0 or 1, for each line in the dataset, is done with a random generator
of a Bernoulli Distribution with probability (100 — z)/100. Only the lines with 1
in the new column are kept. They form the new noise dataset with approximately
2% lines less than the original dataset.

To handle the third dataset, BMS-POS, there is constructed a small C++ pro-
gramm that makes the desired percentage of noise in the dataset used as input. A
random generator is used to keep only (100 — x)% of the data.

For each newly generated noise dataset, Table 3 gives the amount of lines,
resulting from the noise algorithm; this is approximately x% less than the original
dataset. We also give the theoretical amount of lines, i.e. the amount of lines
that we would retain if we removed exactly 2% of the lines in the database. We
compare the generated amount with the exact amount to show that the way of
making x% noise as explained in this section is accurate. Later on in this technical
report (Section 6), another way of generating noise with exact removal of % lines
is explained.

4.2 The Apriori Algorithm

We have chosen for the implementation of Apriori by Bart Goethals [13]. His
implementation is in C++ and generates all frequent itemsets for a given minimal
(absolute) support threshold. The input format of the datasets is that of the Quest
datagenerator ASCII. The support has to be given absolutely; this means that for
using this implementation of the Apriori algorithm, it is important to know how
many transactions there are in the datasets and to count how much the support is in
terms of the amount of transactions. In Table 4, the used support counts are shown
for the different datasets. The numbers are rounded to the nearest integer.



| Dataset | Generated # Lines | Exact # Lines | Difference |

BMS-Web View-1

Original 149 641.0
10% 134 731 134 676.9 54.1 | 0.0362%
20% 119 808 119712.8 95.2 | 0.0636%
30% 104 583 104 7487 | -165.7 | 0.111%
40% 89 878 89 784.6 93.4 | 0.0624%
50% 74792 74 820.5 -28.5 | 0.0190%

BMS-WebView-2

Original 358 318.0
10% 322 445 322 486.2 -41.2 | 0.0115%
20% 286 730 286 654.4 75.6 | 0.0211%
30% 250974 250 822.6 151.4 | 0.0423%
40% 215032 214 990.8 41.2 | 0.0115%
50% 179 827 179 159.0 668.0 | 0.186%

BMS-POS

Original 3367 424.0
10% 3030 655 3030 681.6 -26.6 | 0.000790%
20% 2 693 696 2693939.2 | -243.2 | 0.00722%
30% 2 356 609 2357196.8 | -587.8 | 0.0175%
40% 2 020 871 20204544 416.6 | 0.0124%
50% 1 682 388 1683712.0 | -1324.0 | 0.0393%

Table 3: Different characteristics of the “noise” datasets

5 Results

5.1 PartI: Apriori on Real-Life Data

In Part I, the decrease of the parameter support is studied on the original datasets
BMS-WebView-1, BMS-Web-View-2 and BMS-POS. We consider the similarities
and differences in the results and try to find a pattern in the output of Apriori.

In Figure 1, the amount of frequent itemsets and the time used to compute
these itemsets are plotted for each support level in percent for the three datasets on
a logarithmic scale.

Plot (a) (Log Frequent Itemsets - Support in percent, for the three datasets)
shows that the trend followed by the three datasets is the same. If the support is
decreasing, the amount of frequent itemsets is increasing. This is exactly what we
expect: by systematically lowering the support level, the itemsets have to appear
in an ever smaller amount of transactions to be frequent. This causes a sudden
explosion of itemsets that satisfy the support count and therefore are frequent and
this causes an increase in plot (a). The increase in plot (b), when the support
decreases, follows naturally because more itemsets also means more time needed



Support in Percent Support in Transactions
(Relative) (Absolute)

BMS-WebView-1 | BMS-WebView-2 | BMS-POS
1.00% 596 775 5156
0.80% 4717 620 4125
0.60% 358 465 3094
0.40% 238 310 2 062
0.20% 119 155 1031
0.10% 60 78 516
0.08% 48 62 412
0.06% 36 47 309
0.04% 24 31 206
0.02% 12 16 103
0.01% 6 8 52

Table 4: The support values of the three different datasets, relative and absolute

Log Frequent ltemsets

Log Time

o
T

Figure 1: Frequent Itemsets and Time, related to Support in percent, on logarithmic

axes

to compute them.

The increase in the amount of frequent itemsets when the support is decreasing
is super-exponential. The graphs in the logarithmic scale are no straight lines but
are still curved.

5.2 Part II: Apriori on Noisy Data

In Part II, we rerun Apriori, but this time on the noise versions of the datasets,
to study the influence of noise on the output of the algorithm. In Section 5.2.1,
the three datasets are compared for each noise level. Once the similarities and
differences are discussed, we take a look at each of the three datasets separately for



all noise levels (Section 5.2.2). Section 5.2.3 tries to find a mathematical formula
to explain theoretically the effect of noise.

5.2.1 Comparison of the Datasets For Each Noise Level

For each noise level, the results for the three datasets are plotted in Figures 2 and 3.

The trend for the three datasets is the same for frequent itemsets as well as
for the time used to compute these frequent itemsets, for each of the noise levels.
The datasets behave like in the case with no noise (Section 5.1): when the support
is decreasing, the amount of frequent itemsets and the time used to find them is
increasing.

With increasing noise level, the amounts of frequent itemsets and time are de-
creasing, for a fixed percentage of support. To have a better idea of the effect of
noise on the output of Apriori, the three datasets are considered individually in
detail in the next section.

5.2.2 Comparison of the Noise Levels For Each Dataset

Figure 4 shows that the shape of the graph (Frequent Itemsets - Support in percent
and Time - Support in percent) for each noise level for each of the three datasets is
the same.

When focusing on one specific support value in the (a) plots, it is clear that
an increase in the noise level causes a decrease in the amount of frequent itemsets.
This is not strange, because increasing noise in fact means that the dataset becomes
smaller, so the amount of frequent itemsets becomes smaller too.

The same behaviour can be seen in the time graphs (the (b) plots). On a fixed
support level, an increasing amount of noise is causing a decreasing amount of time
needed to compute these frequent itemsets. This happens for all three datasets.

The graphs also show that the most interesting region to consider in detail is
the region where the support is very small. Noise has a strong influence for small
support values. The (a) plots show that only a small increase in noise causes a large
drop in frequent itemsets. For higher values of support, the different noise versions
of each dataset are behaving practically the same. There is a small difference in the
time needed to compute the frequent itemsets ((b) plots) but this is neglectable.

5.2.3 Interpretation

In this section, we try to capture the effect of noise in a mathematical formula.
We therefore first focus on the specific case of BMS-WebView-1 10% noise and
BMS-WebView-1 20% noise and show that when a concrete support level is fixed,
an increasing amount of noise is causing a decreasing amount of frequent itemsets.
Based on this example, an expression is derived that explains the relationship be-
tween the amount of frequent itemsets before and after the noise was added to the
dataset.
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Figure 2: Frequent Itemsets and Time, related to Support in percent, for the three
datasets and the different noise levels 10%, 20% and 30%

Let us fix a concrete support level. To illustrate the effect that an increasing
amount of noise is causing a decrease in the amount of frequent itemsets, the exact
results for BMS-WebView-1 10% noise and BMS-WebView-1 20% noise are given
in Table 5. The amount of noise is increasing with 10%, so BMS-WebView-1 20%
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Figure 3: Frequent Itemsets and Time, related to Support in percent, for the three
datasets and the different noise levels 40% and 50%

has approximately 10% lines less than BMS-WebView-1 10% (Table 3). For the
support, it is not the amount of lines in the database that is important, but the
amount of transactions; a certain itemset I has support s if I occurs in at least s
transactions in the database. In Table 5 the amount of transactions for the two noise
datasets are given, together with their absolute support count and the corresponding
amount of frequent itemsets, obtained from the Apriori algorithm. For each support
level, the amount of frequent itemsets for BMS-WebView-1 20% is (indeed) less
than that for BMS-WebView-1 10%. The question is: How much less? What is the
connection between the last two columns of Table 5? It looks like the decrease in
support is exactly 10%, but this is not true. In the beginning, it is almost correct
(69 — 0.10 % 69 = 61), but at the end you can see that it has to be more than 10%
(0.90 * 3983 =~ 3585 > 2262).

The aim of this section is to find a relationship between the amount of frequent
itemsets in a dataset after the 2% noise algorithm in terms of the amount of frequent
itemsets in the dataset before the 2% noise algorithm. For now, we focus on the
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Figure 4: Frequent Itemsets and Time, related to Support in percent, for each sup-
port level, for each of the three datasets

10% noise case. The other percentages can be treated analoguously.
Consider an itemset I; consisting of one item . What is the probability that a
transaction that contained that itemset I does not contain it any more after the 10%
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Datasets # transactions
BMS-WebView-1 10% noise 56 160
BMS-WebView-1 20% noise 52 499

Relative Support Absolute Support Frequent Itemsets

10% noise | 20% noise || 10% noise | 20% noise
1.00 562 525 69 61
0.80 449 420 95 86
0.60 337 315 151 140
0.40 225 210 234 208
0.20 112 105 610 490
0.10 56 52 2327 1 504
0.08 45 42 3983 2262
0.06 34 31 10 920 4737

Table 5: Frequent Ttemsets for BMS-WebView-1, 10% and 20% noise

noise algorithm? So, what is the probability that a transaction that contained that
specific item 4, does not contain it anymore after the 10% noise algorithm? This
is 10% because this is the probability that one line in the dataset is thrown away
when carrying out the 10% noise algorithm:

P(—i) = 10%.

Analoguously, the probability that a transaction that contained that specific item ¢
still contains it after the 10% noise algorithm is

P(i) =1—10% = (100 — 10)% = 90% .

Let us now consider an itemset I of length 2. What is the probability that a
transaction that had this itemset I, before (so contained the two items together),
won’t have it anymore after the 10% noise algorithm? The event that two items, i,
and 72, won’t be in the transaction anymore can be reached in three ways. The first
way is that #; is still in the transaction but 75 not. The second way is that ¢; is not
in the transaction anymore, but 9 still is and the third way is that neither 7, nor 49
are in the transaction. Because we know that

P(iy and i9) + P(i1 and —iy) + P(—iy and i9) + P(—4y and —ig) = 1,

the probability we are looking for is 1 minus the probability that both items will
stay in the transaction, so

P(i; and —ig) + P(—i; and ig) + P(—iqp and i) = 1 — P(i; and ig).

In the 2% noise algorithms that are used for this section, the removal of lines is
based on independent Bernoulli distributions. This means that the removal of one
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line is independent of the removal of another line and is completely determined by
the result of the Bernoulli trial with probability 2% on the mother dataset BMS-
WebView-1. The removal of one item is thus independent of the removal of another
item. Because of the independent usage of the Bernoulli Distribution for each
line separately in the database, this procedure for generating noise yields a dataset
with approximately 1% lines less than the original dataset. In Section 6, another
approach for making noise is considered, this time with an exact removal of 2%
lines in the dataset.

The independence of the presence of the two items makes that this probability
equals

P(i; and —ig) + P(—ip and i3) + P(—ip and —ig) =1 — P(i1)P(i2) =
1—(1—-10%)2.

If we generalize this to an itemset I; of length [, we obtain the following ex-
pression P(l,10%) for the probability that a transaction that contained an itemset
of length [ does not contain it anymore after the run of the 10% noise algorithm:

P(1,10%) = 1 — (1 — 10%)".

We can find a formula for the frequency of I; after the 10% noise algorithm
in terms of the frequency in the dataset with approximately 10% more line. The
“original” dataset is denoted by D, the dataset with 10% more noise (so with 10%
less lines) is denoted by D’. Both datasets are generated based on the mother
dataset BMS-WebView-1. The amount of lines in D is approximately 1 — 2% =
(100—z)% of the amount of lines in BMS-WebView-1. D’ has approximately 10%
lines less than D and is generated by taking 1 — (z + 10)% = (100 — (z + 10))%
of lines from BMS-WebView-1. We thus have

R

DI
|1D'|

(100 — )% |BMS — WebView — 1|
(100 — (z + 10))% |BMS — WebView — 1|

R

what leads to

|D| ~ 2
(100 — 2)% (100 — (z + 10))%
(100 = (z + 10))
D= (100 — ) DI

If this information is combined in an expression relating the frequency of I; in D’
with the frequency of I; in D, it yields

B !
Jreq(, D) = [WEGEEON]  freg(Iy, D).

14



Itemset I,

N B W N = -

{10295}

{47953, 47961}

{10295, 32201, 32205}
{10311,12487,12703, 32213}
{10311, 12487, 12703, 32213, 34893}

Table 6: The itemsets

freq(I;, BMS-WebView-1 10%)

O, W SN U NS T

freq(I;, BMS-WebView-1 20%)

1811 1 606
87 75
65 50
128 84
58 38

Table 7: Results of the experiment

freq(I;, BMS-WV-120%)

(8/9) freq(I;, BMS-WV-1 10%)

Relative Error

1 606
75
50
84
38

1428
67
44
75
34

0.1108
0.1067
0.1200
0.1071
0.1053

Table 8: Results of the formula

This formula is checked for our example considering BMS-WebView-1 10%
and BMS-WebView-1 20%. The results can be found in Tables 7 and 8. We con-
sider itemsets of length 1, 2, 3, 4, and 5 (Table 6) and the relative support level used
is 0.06%. This corresponds to an absolute support of 34 for BMS-WebView-1 10%
and an absolute support of 31 for BMS-WebView-1 20%. Numbers are rounded to

the nearest integer.

The relative error is computed by subtracting the approximated value from the
exact value and by deviding the result by the exact value. Table 8 shows that the
new formula is approximately correct. The small changes in the results can be
explained by knowing that BMS-WebView-1 20% does not have exactly 10% lines
less than BMS-WebView-1 10%.
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6 Another Way of Sampling

Until now, the noise algorithms used for the experiments were generating approxi-
mately z% of noise. In practice, approximately 2% of lines in the original database
were removed, based on independent Bernoulli trials. Therefore, the removal of
one line is independent of the removal of another line. Because transactions are
spread over several lines, this means that the removal of transaction T; is indepen-
dent of the removal of transaction T} (i # j).

In this section, another, more exact way of sampling and a more general way
of computing the desired probabilities is considered. With this new procedure,
exactly 2% of the lines in the database is removed. Now, the removal of transaction
T; causes a decrease in the probability of the removal of transaction T} (z # j). On
the other hand, when we do not remove transaction 7;, the probability of removing
T} increases.

This section also provides a comparison between the approximate removal and
the exact removal, to show that both methods lead to the same results. In Section 3,
the experiments were done, based on noise datasets generated with the approximate
removal, because the exact removal is much more difficult to compute. Even more,
the importance of the exact removal diminishes when the dataset becomes larger.
In the case of a huge database, the difference between replacing lines and not re-
placing lines is negligible and the approximate results satisfy.

6.1 Example

This section starts with the illustration of the statement that the probability that a
transaction that contained an itemset I; of length [ still contains that itemset I; after
the 2% noise algorithm is dependent of the size of the dataset

Consider a dataset consisting of 3 lines and a dataset consisting of 6 lines. The
percentage of lines to throw away is 1/3. In the first case, it means that one line
will be thrown away (and evidently, two lines will be kept) and in the second case,
two lines will be thrown away (and four lines will be kept). We now consider an
itemset o, so two lines in each dataset are particularly interesting for us.

Imagine in the first case that the two last lines are the interesting ones cor-
responding to the items from itemset Io. In Figure 5, dots are used to show the
different possibilities of single lines that can be removed (and also the pairs of
lines that are left after the removal of one line). Each line that can be removed is
expressed by a dot and the lines without dots are the lines that remain in the dataset
in that case. There are three different possibilities of removing one line in the first
dataset. To compute the probability that the two interesting lines are still in the new
dataset consisting of two lines instead of three, the common rule

f favorable pairs 1

B # possible selection of pairs 3

is used.
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Figure 5: The possibities of removing 1 line in a dataset of 3 lines

Figure 6: The possibities of removing 2 lines in a dataset of 6 lines

The same is now done for the second case; again, the last two lines are the
interesting ones. For this example, two lines have to be thrown away and four lines
will be kept. In Figure 6, the dots correspond to the possible combinations of lines
that can be thrown away. The probability that the two interesting lines are still in
the new dataset consisting of four lines is

_ ffavorable sets of four 6 2

"~ f possible sets of four 15 5’

Because 1/3 # 2/5, it is shown with this example that the probability that
two interesting items that were contained in a transaction are still contained in that
transaction after the noise algorithm, is dependent of the size of the database.

6.2 Another Noise Algorithm

The way of thinking illustrated in Section 6.1 is only correct when we exactly
remove 2% (in our example 1/3) of the lines in the dataset. With the approach
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we used so far, we approximately removed 2%, which was pretty good (Table 3,
Table 8). This section shows a theoretical way to remove exactly 2% of the lines
in a dataset. This method is not used for experiments because the first approach is
good enough to confirm our expectations.

First, it is necessary to know how many lines there are in the dataset; this
number is denoted by b. Then, 2% of this amount b is computed to find the exact
amount of lines that has to be thrown away: xb/100; this is denoted by X. Now,
a random number between 0 and 1 is generated, multiplied by b and rounded to
the nearest integer; this yields the number of the line that will be thrown away.
This line is thrown away, the resulting lines are renumbered and the procedure
is repeated. A new random number between 0 and 1 is generated but this time
multiplied by b — 1 because already one line is removed from the database. This
causes dependency. The result is rounded and the corresponding line is removed.
After each removal, the resulting lines are renumbered. This procedure is repeated
until exactly X lines are removed from the dataset. In pseudocode:

fori=1.[Zb

remove 1line|,qna(p—i+1)|

in which rand(s) means removing a line at random from a dataset with s lines, as
described above.

6.3 Another Way of Computing Probabilities

Now we have a method to remove exactly % of lines from our dataset, the way
of thinking of our example (Section 6.1) can be abstracted to the general case. A
mathematically correct way can be given to compute the probability that [ items
that where contained in a transaction are still contained in that transaction after the
2% noise algorithm described above. Therefore, the Hypergeometric Distribution
is used.

We start from a bag with NV marbles; a fraction p of the marbles is white (so Np
marbles) and a fraction g (= 1 —p) is black (so N ¢ marbles). Without replacement,
r marbles are picked, so in fact r marbles are picked at the same time. If the jth
marble is white, X; = 1 and if the jth marble is black, X; = 0 (1 < j <
r). We are interested in Y, the amount of times that we picked a white marble.
Mathematically:

Y=X1+Xo+... + X,

with the X; NOT independent (1 < j < r). After all, if we pick a white marble
in the first stap (with probability P = Np/N = p), the probability to pick again a
white one in the second stap is reducing to (Np — 1) /N — 1 because already one
white marble is gone.

The probability of having ¢+ white marbles in a sample consisting of  marbles
out of an original bag of N marbles, partitioned in Np white ones and N ¢ other
ones can be computed by using the Hypergeometric distribution. This distribution
tells us that
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# interesting lines Np

N=3 | N=6
2 4
# not interesting lines Nq | 1 2

Table 9: The two different examples

Np

PY =i) = i favorable _ < i ()

()
3

This section shows that the two examples in Section 6.1 are illustrations of this
exact approach. We consider an interesting itemset of length [ = 2, so two lines
in our datasets. The idea is to remove 1/3 of the datasets; in the first case one line
(two lines left) and in the second case two lines (four lines left). In Table 9, the
different parameters in each example are shown.

# possible

6.4 Illustration

Example 1
Pick a sample of » = 2 lines and compute the probability that the two interesting
lines are the two lines that are kept in the new dataset.

Example 2
Pick a sample of r = 4 lines and compute the probability that the two interesting
lines are still in the four lines that are kept.

6.5 Generalisation

In this section, the general case is considered. For each newly introduced parame-
ter, the corresponding notation from Section 6.3 is given between brackets.
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The startpoint is a database consisting of b (/V) lines. Consider an itemset of
length | (Np =1, Nq = b — ). Pick a sample of r lines; throw away 2% of lines
from the database to keep (100 — z)% lines (r = [ (100 — z)%b)).

The probability that a transaction that contained these / items still contains
them after the 2% noise algorithm (in the dataset consisting of |[(100 — z)%b]

lines) is
(=)
l r—1
Py =1 = ( ; )
ot (=1t
b (e =)
leading to

(r=01+D(r—=04+2)-(r—1r

P(iyandigand ... and4;) = G—T+)(b-1+2) (=1

This approach (using the dependency) gives us a more general formula instead of
P(iy and ig and ... and i) = P(i1)P(is) ... P(i;) = ((100 — z)%)",

the formula we found in Section 5.2.3 when we used independency.
The new formula converges to the old formula, when z is fixed. If b — oo, so
the difference between replacing and not replacing is negligible, the above result

becomes l

r = <%)l =~ (100 — 2)%]".

The probability that a transaction that contained these [ items does not contain
them any more after the % noise algorithm is

P(—ijor ... or—i)=1—P(i; andig and ... and 7;)

=1—1(100 — 2)%]"

In the 10% noise case, this gives us 1 — (90%)' as also found in the approximate
approach!

7 Conclusion

In this technical report, the influence of noise on the output of the frequent itemset
mining algorithm Apriori is studied statistically. First, the effects of changes in the
support value on the output of Apriori on three real-life datasets are considered.
Second, noise is introduced in these datasets and Apriori is rerun with the same
sequence of support values. A comparison is made.
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It is now showed that noise in a dataset is causing differences compared to
the case with no noise. A formula is computed to predict the probability of the
frequency of an itemset after the noise in terms of the probability of that itemset
before the noise. An alternative way of sampling is explained.
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