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Abstract

We analyse several candidate-based frequent item-
set algorithms, for the general shopping model
where each combination of items has its own proba-
bility of being purchased, so any correlation is pos-
sible. The Apriori Algorithm is considered in detail;
AIS, Eclat, FP-growth and the Fast Completion
Apriori Algorithm are also studied. For each al-
gorithm, we derive the probability that an item-set
is a candidate (an item-set whose frequency status
cannot be deduced by the algorithm) and that it is
actually frequent or fails to be frequent.

1 Introduction

The frequent item-set problem, introduced in [2, 3],
is a well known and interesting basic problem at the
core of many data mining problems [1, 2, 3, 4, 9,
12, 14, 16]. The problem is, given a large database
of basket data and a user-defined support thresh-
old k, to determine which sets of items occur in at
least k baskets. In the last two decades, several dif-
ferent algorithms for solving it were proposed [2, 3,
15, 18, 20]. In this paper, we focus on the frequent
item-set algorithms that are candidate-based. For
each algorithm, item-set I becomes a candidate if
certain associated test-sets are already determined
to be frequent. Based on these candidates, the fre-
quent sets are found by counting the frequency of
the item-set. We consider the Apriori Algorithm [3]
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in detail; the Agrawal-Imielinski-Swami (AIS) Al-
gorithm [2], the Equivalence Class Transformation
Algorithm (Eclat) [20], the Frequent Pattern Tree-
growth (FP-growth) Algorithm [15] (which can be
considered as a candidate-based algorithm, the title
of [15] not withstanding; see also [12]) and the Fast
Completion Apriori Algorithm are also studied but
their analysis is similar to that of Apriori, so only
the main principles are sketched. For the Apriori,
AIS, Eclat, and FP-growth algorithms, the test-sets
are item-sets that can be obtained by omitting a sin-
gle item from I. For the Fast Completion Apriori
Algorithm, the test-sets are all those subsets of I
whose size is equal to the level where the regular
Apriori Algorithm was last used.

For each of the above mentioned algorithms, we
determine the probability that an item-set is a can-
didate and the probability that it is actually fre-
quent, for a much more general model of shopping
behaviour than in [19]. Our new shopping model
can cover almost all situations that occur in real-
ity; the shoppers are independently following a ran-
dom shopping policy and each combination of items
has its own probability, so any correlation in item
purchasing can be accommodated. The probabil-
ity that an item-set is a candidate depends on the
particular algorithm that is used. On the contrary,
for a given probability model of the data, all cor-
rect algorithms give the same probability that an
item-set is frequent. This probability is called the
success probability. The probability that an item-
set is a candidate but not frequent, is called the
failure probability. This probability is particularly

1



important because it is related to work that a bet-
ter algorithm might hope to avoid. We compute the
success and failure probability for all the algorithms
and relate these probabilities to the probabilities of
the corresponding test-sets for finding candidates.
It turns out to be that the algorithms differ in which
test-set is the most important one. We call the best
test-set the one with the smallest probability. Our
results show that for the Apriori and the Fast Com-
pletion Apriori Algorithm, the most important test-
set is the best test-set. For the AIS Algorithm, it
is the worst test-set. For Eclat-like algorithms (in-
cluding FP-growth) it is a set that is at least as
good as the second-worst test-set.

A survey of the best known frequent item-set al-
gorithms can be found in [8] and [12]. The notion
of candidates was introduced in [13] in a slightly
different way. We already referred to other directly
related work [19], where Apriori is considered in de-
tail for the uniform shopping model.

Our main contributions are: (1) a probabilistic
study of various candidate-based frequent item-set
algorithms using a general random shopping model
with arbitrary buying patterns, (2) the introduction
and significance of the conceptual notion of test-sets
for the determination of candidates, (3) the deter-
mination of the success and failure probability of an
item-set I, (4) the discovery that the failure proba-
bility of item-set I is almost always determined by
the probability of a single test-set of I and (5) the
conclusion that the found probabilistic results are
sharp: the algorithms may perform close to each
other for certain data sets and for other data sets
not.

In the next section, we describe the different al-
gorithms considered in the paper. In the following
section, the probability model is discussed in detail.
After that, we give a proof of the claims about the
Apriori Algorithm. Finally, we outline the proof of
the claims for the other algorithms. We conclude
with a discussion.

2 Preliminaries

2.1 The Apriori Algorithm

The Apriori Algorithm [3] uses the most powerful
candidacy test: an item-set I is a candidate if and

only if each of I’s subsets obtained by removing
one element is frequent. The algorithm processes
the sets level-wise: it determines which sets of size
1 are frequent, then generates candidates of size 2
and determines which of these sets are frequent, etc.
When processing level n, it already knows all fre-
quent sets of size n− 1. An item-set I of n items is
a candidate for level n if all of its n− 1 size subsets
are frequent.

2.2 The Fast Completion Apriori Algo-

rithm

We use the word “counting” to describe the exam-
ination of the data to determine whether a candi-
date is frequent, regardless of the details of how
it is done. Usually, it is faster to count a batch
of candidates rather than one candidate at a time.
The Fast Completion Apriori Algorithm [3] uses this
property. It starts out like the regular Apriori Al-
gorithm, proceeding in a level-wise manner, gener-
ating and testing candidates as it goes, but as soon
as it determines that the number of remaining can-
didates for all remaining levels is not too large, it
generates candidates for the remaining levels based
on the currently available information. So in fact,
it runs the Apriori Algorithm but stops at level n.
From that level on, the algorithms uses the frequent
item-sets of size n to generate candidates for all re-
maining higher levels. An item-set I of size n + h
is a candidate for level n + h, if all of its subsets of
size n are frequent.

2.3 The AIS Algorithm

The AIS algorithm [2] was the first algorithm intro-
duced to solve the frequent item-set problem. The
Apriori Algorithm is developed from the AIS Algo-
rithm by strengthening the candidacy test. When
the AIS Algorithm is doing level n processing, an
item-set I is only considered when the algorithm
comes across a basket that contains all the items of
I. Thus, the set I is treated as a candidate if any
size n − 1 subset of I is frequent.

2.4 Eclat and FP-growth

As far as the test leading to candidacy, Eclat [20]
and FP-growth [15] are the same algorithm, even
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though they have important differences in the de-
tails of how they organize the data for processing.
They both build a tree of frequent item-sets based
on an ordering of the items. Max-Miner [6] is almost
the same algorithm. There are three different order-
ings that are commonly discussed: least-frequent-
first [6], most-frequent-first [15], and arbitrary (or
lexicographic) order [17]. The first two orders can
be based on global frequency (static) or on frequen-
cies for the current subtree (dynamic). There is
an initialization phase to take care of the item-sets
with only one or two elements. For the candidate
generation, an algorithm of this type generates an
item-set I as a candidate only when two particular
subsets of I are frequent. The two test-sets associ-
ated with I are the one obtained by omitting the
last item from I and the one obtained by omitting
the next to last item from I. Based on the tree asso-
ciated with building the frequent item-sets, we call
the first test-set the father test-set and the second
one the special-uncle test-set. Both the father and
the special-uncle test-set must be frequent before I
can be a candidate.

3 Random Shopping Model

Our shopping model considers a set of shoppers that
have identical, independent and random shopping
policies. The more general situation where each
shopper has his own policy can be also handled
with this model so long as the shoppers arrive in
random order and they shop independently; replace
the original shoppers with a single shopper whose
policy is an average of the policies of the original
shoppers.

4 General Analysis

We focus on what a candidate-based frequent item-
set algorithm does while processing a single item-
set, I. To determine the total work done by the
algorithm, one must sum the results of this section
over all item-sets, and this is often hard to do. One
can, however, get a lot of insight into the behavior
of the algorithm by focusing on what is important
with respect to a single item-set.

In general, a candidate-based algorithm, when it

Figure 1: Graphical illustration of the ears associ-
ated with item-sets I1 and I2

is considering making item-set I a candidate, will
have already counted some of the subsets of I. Fig-
ure 1 shows the situation in basket space when I is
associated with two test-sets. Associated with I we
have the region M with the baskets that contain
all the items of I (along with perhaps additional
items). If the two subsets of I are I1 and I2, then
the left ear (labelled M1) has those baskets with all
the items of I1 except those baskets that have all the
items of I. Similarly, M2 has all the baskets with
the items of I2 except those that have all the items
of I. For all the algorithms we consider, except for
the Fast Completion Apriori Algorithm, the various
ears are disjoint. Item-set I will be a candidate if
the number of baskets that are in either M or Mi,
is at least k, for every test-set Ii.

We use the following notation in the analysis:

b, the total number of baskets in the database.

k, the support threshold. A frequent item-set algo-
rithm determines which item-sets are contained
in at least k baskets.

I, the item-set being considered. We name the ele-
ments of I with integers from 1 to |I|.

Ii, the i-th test-set associated with I. For the Apri-
ori Algorithm, we have Ii = I − {i} (1 ≤ i ≤
|I|), but this is not true in general.

P (I), the probability that a shopper buys all the
items in I (regardless of whether or not other
items are purchased). This definition implies
P (∅) = 1. Similarly, P (Ii) is the probability
that a shopper buys all the items in Ii. This
is the probability that a basket is in the set
of baskets associated with the i-th test-set Ii,
M ∪ Mi.
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Qi(I) = P (Ii)−P (I), the probability that a shopper
buys all the items in the i-th test-set without
buying all the items in I. This is the probabil-
ity that a basket contributes to the i-th test-set
even though it does not contain all the items
of I. In other words, the basket is in the ear
associated with the i-th test-set, Mi, and Qi(I)
is the probability of this ear Mi.

Q(I), the Qi(I) that controls the performance of
the algorithm.

l, the number of i values for which Qi(I) = Q(I).
Thus, l is the multiplicity of the controlling
value.

For item-set I, we compute:

S(I), the success probability, i.e., the probability
that at least k baskets contain all the items of
I, so that I is frequent. Any correct algorithm
for the frequent item-set problem has the same
success probability. The success probability is
a property of the data, not of the algorithm.

F (I), the failure probability, i.e., the probability
that item-set I passes the candidacy test but
fails the frequency test. Some algorithms are
faster than others because they have a smaller
failure probability. The failure probability de-
pends on both the problem instance and the
algorithm.

The probability that item-set I is a candidate is
C(I) = S(I) + F (I).

The mathematics is similar to that in [19], but
there are changes in the details so that we can han-
dle the more general situation of this paper. There-
fore, we concentrate on deriving the initial equa-
tions and explaining the notational transformations
needed so that the proofs from the earlier paper
will apply to the equations of this paper. We move
quickly to the final results.

4.1 Success Probability

The probability that at least k of b shoppers have
baskets that contain all of the items of set I is

S(I) =
∑

j≥k

(

b

j

)

[P (I)]j [1 − P (I)]b−j . (1)

This probability of success applies to any correct
frequent item-set algorithm.

When P (I) ≤ k/b, define α1 by

α1 =
k

b
− P (I). (2)

In this case S(I) goes to 0 rapidly with increasing
α1. In particular, we can find

S(I) ≤ e−bα2

1
/{2P (I)[1−P (I)]}+O(bα3

1
[1−P (I)]−2) (3)

When P (I) ≥ (k − 1)/b, define α2 by

α2 = P (I) −
k − 1

b
. (4)

In this case S(I) goes to 1 rapidly with increasing
α2. In particular, we can find

S(I) ≥ 1 − e−bα2

2
/{2P (I)[1−P (I)]}+O(bα3

2
P (I)−2) (5)

4.2 Failure Probability

To compute the failure probability for an algorithm,
we define the following conditions with respect to a
single basket:

M : a shopper’s basket contains all the items in I,
and

Mi: a shopper’s basket contains all the items of
test-set Ii without containing all the items of
I.

It is not important which items (if any) the shop-
per’s basket contains among those not in item-set
I. For all the algorithms we consider (except the
Fast Completion Apriori Algorithm), these condi-
tions are disjoint.

The probability that a shopper satisfies condition
M is P (I). The probability that a shopper satisfies
condition Mi is Qi(I).

So long as the Mis are disjoint, the probability
that j0 shoppers satisfy condition M , j1 shoppers
satisfy condition M1, . . . , jn shoppers satisfy condi-
tion Mn and the remaining b−j0−· · ·−jn shoppers
do not satisfy any of the conditions can be expressed
by
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(

b
j0, j1, . . . , jn, b − j0 − j1 − · · · − jn

)

×[P (I)]j0
[

∏

1≤i≤n

Qi(I)ji

]

×

[

1 − P (I) −
∑

1≤i≤n

Qi(I)

]b−j0−
∑

1≤i≤n
ji

(6)

If the Mi overlap, then the details are more com-
plex, but the situation is similar and a variant of
eq. (6) can be derived.

Thus, for any algorithm we are considering,
eq. (6) (or a variant) gives the probability related
to a particular set of counts (the j values). If this
equation is summed over the cases that lead a par-
ticular algorithm to make I a candidate, then the
formula gives the probability that I is a candidate.
If we sum over the conditions that lead to I be-
ing a failure, then we obtain the probability that
I is a failure. The set of conditions depend on the
particular algorithm.

5 Failure Probability for the

Apriori Algorithm

We now focus on the failure probability for the Apri-
ori Algorithm. In this case, the number of tests as-
sociated with a set I is |I|. The test-sets are all
the subsets of I, leaving one element out. Item-set
I will be a candidate if the number of baskets that
are in either M or Mi is at least k, for every test-set
Ii. This happens when

j0 + j1 ≥ k and j0 + j2 ≥ k and · · ·

and j0 + j|I| ≥ k (7)

is true. Thus, to find the probability that I is a
candidate for the Apriori Algorithm, we must sum
eq. (6) (with n = |I|) subject to condition (7), what
leads to

C(I) =

∑

j0
j1≥k−j0
j2≥k−j0

···
j|I|≥k−j0

(

b
j0, j1, . . . , j|I|, b − j0 − j1 · · · − j|I|

)

×[P (I)]j0
[

∏

1≤i≤|I|

Qi(I)ji

]

×

[

1−P (I)−
∑

1≤i≤|I|

Qi(I)

]b−j0−
∑

1≤i≤|I|
ji

(8)

The subset of these cases, where j0 is smaller than
k, are the cases that lead to I being a failure. This
is expressed in

F (I) = C(I)−S(I) =

∑

j0<k
j1≥k−j0
j2≥k−j0

···
j|I|≥k−j0

(

b
j0, j1, . . . , j|I|, b − j0 − j1 − · · · − j|I|

)

×[P (I)]j0
[

∏

1≤i≤|I|

Qi(I)ji

]

×

[

1−P (I)−
∑

1≤i≤|I|

Qi(I)

]b−j0−
∑

1≤i≤|I|
ji

(9)

5.1 Efficient Computation of F (I)

The number of operations needed to compute F by
direct application of eq. (9) is O(kb|I|). However,
we can find a recurrence relation such that F can
be computed in time that is polynomial in b and |I|,
O(|I|b2).

5.2 Chernoff Bound for F (I)

For most values of P (I) and the Qi(I), F (I) will ei-
ther be close to 0 or close to 1. Chernoff bounds [11]
provide a good method to approximate F (I).

For any y ≤ 1 and any set of xi ≥ 1, we have the
Chernoff bound expressed by
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F (I) ≤

[

1+P (I)

(

y
∏

1≤i≤|I|

xi−1

)

+
∑

1≤i≤|I|

Qi(I)(xi − 1)

]b

y−k+1
∏

1≤i≤|I|

x−k
i (10)

To find the best Chernoff bound for F , the first
step is to take the partial derivative of the loga-
rithm of the right side of eq. (10) with respect to
y and with respect to each xi. Setting the partial
derivative with respect to y to zero gives

(b−k+1)P (I)y
∏

1≤i≤|I|

xi

−(k − 1)

[

1 − P (I)+

∑

1≤i≤|I|

Qi(I)(xi−1)

]

= 0. (11)

Setting the partial derivative with respect to xi′

to zero leads to

(b−k)P (I)y
∏

1≤i≤|I|

xi+bQi′(I)xi′

−k

[

1−P (I)+
∑

1≤i≤|I|

Qi(I)(xi−1)

]

= 0. (12)

To find the optimum Chernoff bound, we rewrite
eqs. (11) and (12). In the end, eq. (11) can be seen
as

(b−k+1)P (I)yxl

−(k−1)[1−P (I)+lQ(I)(x−1)] = 0, (13)

and eq. (12) as

(b−k)P (I)yxl+bQ(I)x

−k[1−P (I)+lQ(I)(x−1)] = 0. (14)

When Q(I) + P (I) ≤ k/b, define α3 by

α3 =
k

b
− [P (I) + Q(I)]. (15)

In this case, F (I) goes rapidly to 0. In particular,
when α3 is small enough, i.e.,

α3 = {lP (I) + Q(I) − l[Q(I) + P (I)]2}o(1) (16)

and b is large enough that the second smallest Qi(I)
is not important,

F (I) ≤

e−blθα2

3
/(2{Q(I)+P (I)+(l−1)P (I)−l[Q(I)+P (I)]2}) (17)

gives an upper bound on the failure probability.
Here θ is used to represent a function that ap-
proaches 1 in the limit.

When P (I) ≥ (k−1)/b, F (I) goes rapidly to zero
because F (I) ≤ 1−S(I). In particular, we can find

F (I) ≤ e−bα2

2
/{2P (I)[1−P (I)]}+O(α3

2
bP (I)−2) (18)

when α2 is defined by eq. (4).
To obtain a lower bound on F (I), we use

inclusion-exclusion arguments leading to

F (I) ≥ 1−e−bα2

1
/{2P (I)[1−P (I)]}+O(bα3

1
[1−P (I)]−2)

−
∑

1≤i≤|I|

e−bβ2

i
/{2[P (Ii)][1−P (Ii)]}+O(bβ3

i
[P (Ii)]−2) (19)

where P (Ii) = P (I) + Qi(I) and where α1 and βi

related to k by k = b[P (I) + α1] and k = b[P (I) +
Qi(I)− βi] + 1 when α1 and all the βs are positive.
For those cases where α1 or some β is too large for
the big O term to be small, one can still obtain a
correct bound by replacing the too-large parameter
with a smaller value. So long as α1 and none of the
βs are near zero, the value of F is near 1.

The diagram in Figure 2 is useful for understand-
ing the behavior of the Apriori Algorithm with re-
gard to a single item-set, I, where the associated
test-sets are I1, . . . , I|I|. Item-set I has proba-
bility P (I). Each test-set Ii has some larger (or
equal) probability because each basket that has all
the items of I also has all the items of each test-set
Ii. If the fractional threshold k/b is less than P (I),
the probability of buying all the items of I, then
item-set I is nearly always a success, so frequent. In
this case, the failure probability is almost zero. If
k/b is between P (I) and P (Ij) (where Ij is the best
test-set, i.e., the one with smallest probability, then
the probability that I is a success is almost zero,
but the probability that it is a candidate is almost
one, so the probability that item-set I is a failure for
the Apriori Algorithm is almost one. If k/b is above
P (Ij), then there is almost no chance that I is even
a candidate, so both the probability of failure and
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Figure 2: Whether item-set I is frequent (a suc-
cess), or a candidate which is infrequent (a failure),
or not even a candidate, is determined (with high
probability) by where the threshold ratio k/b falls
in relation to the probability of item-set I and the
probability of I’s most important test-set Idominant.

the probability of success are nearly zero. Nearly all
the failures for the Apriori Algorithm, i.e. counting
item-sets which are not frequent, come from those
sets where the set’s probability is below the thresh-
old but where the probability of the best test-set is
above the threshold.

6 Failure Probability for Other

Algorithms

In this section, we consider the failure probability
for the remaining algorithm. For AIS, Eclat, and
FP-growth, the relevant test-sets for item-set I are
still the item-sets Ii, with one item less. For the Fast
Completion Apriori Algorithm, the relevant test-
sets are all the subsets of I that have size n, where n
is the last level where the regular Apriori Algorithm
was used.

6.1 AIS

For AIS, a set I is a candidate if (1) I occurs in
a basket and (2) some subset of I that is missing
one item is frequent. For a simple analysis, we take
the viewpoint that an item-set I is a candidate if
it satisfies the second condition and that the time
spent in counting is proportional to the number of
baskets that I is in. Thus, if I meets the second
condition but not the first, then it is a candidate
that requires no time. We also briefly indicate how
to do the more complex analysis where both condi-
tions must be true for I to be a candidate.

With the simple approach, item-set I will be a

candidate exactly when the condition

j0 +j1 ≥ k or j0 +j2 ≥ k or · · ·

or j0 + j|I| ≥ k (20)

is true. It will be a failure when eq. (20) is true
with j0 < k. Thus, the failure probability for AIS
is given by eq. (9) except that the condition on the
summation is

j0 < k and (j0+j1 ≥ k or j0+j2 ≥ k or · · ·

or j0 + j|I| ≥ k). (21)

Inclusion-exclusion type reasoning can be used on
the logical or operation. The sum is equivalent to
the sum of a bunch of subsums (some occurring with
a negative sign). The i-th subsum of the first group
has the condition

j0 < k and j0 + ji ≥ k (22)

(in the subsum, each index not mentioned in con-
dition (22) must be summed-out by summing over
all possible values of the index). There is a second
group of subsums that must be subtracted with the
condition

j0 < k and j0 + ji1 ≥ k and j0 + ji2 ≥ k (23)

because we have double counted the situations
where two ji’s satisfy eq. (20). These groups con-
tinue until we run out of corrections. From the
detailed analysis that we did for the Apriori Al-
gorithm, we can approximate all of these subsums.
The only subsum that is important is the one asso-
ciated with the weakest of the test-sets, the test-set
with the highest probability, so long as the largest
Qi(I) is not too close to the others. Thus, when we
have a unique worst test-set (no near ties), the fail-
ure probability for the AIS Algorithm is bounded
by eqs. (17), (18), and (19) with Q(I) being the
largest of the Qi(I) and l = 1. The performance of
AIS is in this case determined by the worst test-set.
If Im is the size m − 1 subset (of a candidate set
I of size m) with largest probability of being pur-
chased, then I is a candidate with probability near
1 when the probability of buying all the items of Im

is significantly above k/b, and it is near 0 when the
probability of buying the items is significantly below
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k/b. The other test-sets have only a slight effect on
the probability that item-set I will be a candidate.
When several item-sets tie for worst, the bound on
the failure probability is worse than that given by
eqs. (17), (18), and (19) but only by a factor that
is no larger than the number of ties. Whether F (I)
is near 0 or 1 still depends on whether or not k/b
is between P (I) and P (Ii), but now Ii is the worst
test-set associated with I.

If we want to analyze the effect of requiring a can-
didate to have an associated basket, then we need
to reduce the failure probability from the previous
calculation by allowing for the cases where item-set
I does not occur in any basket. When k is larger
than 1, the correction is usually not important.

6.2 Eclat and FP-growth

Eclat and FP-growth can be treated as the same
algorithm, even though they have important differ-
ences in how they organize the data for processing
[see Section 2.4]. Since both the father and the
special-uncle must be frequent, the best of those
two has the main effect on whether I is a candi-
date. Thus, the failure probability for the algorithm
is bounded by eqs. (17), (18), and (19) with Q(I)
equal to the smaller of the Qi(I) for the father and
the Qi(I) for the special-uncle. The value of l is 1
when these two Qs are different, and l is 2 when
they are equal.

Which two Qs control the failure probability de-
pends on the ordering that is used. If the order
is dynamic with the most-frequent item first, then
the father test-set will be the worst test-set and the
special uncle test-set will be the second worst. If
the order is static with the most-frequent item first,
then there will be a strong tendency for the father
test-set to be the worst one and for the special-uncle
test-set to be the second-worst one. If this hap-
pens, the second-worst test-set has the main effect
on the probability of candidacy, but the actual sit-
uation will depend on what correlations are present
in the data. If the order is dynamic with the least-
frequent item first, then the father test-set will be
the best test-set and has the main effect. If the or-
der is static with the least-frequent item first, the
father test-set will likely be the best test-set. If the
items are choosen in a random lexicographic order,

both the parent and the special uncle will each be
randomly-choosen test-sets. Each pair of possible
Qs is thus equally likely to be chosen and the best
of the two randomly-chosen test-sets will have the
main effect. Once we have determined which test-
set has the main effect, the situation is the same as
for the previous algorithms; the item-set I is a can-
didate with probability near 1 when the probability
of buying all the items of the important test-set is
significantly above k/b and it is near 0 when the
probability of buying is significantly below k/b.

On many data sets dynamic least-frequent-first
Eclat has essentially the same performance (gen-
erated and count the same candidates) as Apriori,
but there are interesting cases with anti-correlated
data where this is not the case. Suppose items
have the following frequency ordering: a < b < c
(let a = hot dog, b = Pepsie Cola and c = Coca
Cola) and the following doubleton frequency order-
ing bc < ab < ac. For thresholds in the range
bc < k < ab, Eclat counts the set abc but Apri-
ori does not.

6.3 Fast Completion Apriori Algorithm

The test-sets for an item-set I are its subsets con-
sisting of n elements, where n is the last level where
the regular Apriori Algorithm is used. Unlike the
previous cases, we now have overlapping test-set
ears. Again, the performance of the algorithm on
item-set I is determined primarily by the best of
I’s test-sets. Of course, this best test-set will come
from the level where the regular Apriori Algorithm
stopped, so it usually will be a much worse test-set
than the one the Apriori Algorithm would use.

Rather than do a detailed calculation of the effect
of the overlap, we will use some simple ideas to show
that eqs. (17), (18), and (19) still bound the failure
probability with Q(I) being the Qi(I) for the best
test-set and l = 1, so long as there is no tie for the
best Q.

The presence of overlapping ears reduces the ef-
fectiveness of the test-sets compared to the no-
overlap case. However even in the presence of over-
lapping ears the collection of test-sets is at least as
effective as the best of the test-sets in the collection
of test-sets. When l (the number of ties for best) is
one, the bounds are all in terms of the Q for the best
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test-set. Thus, they still apply even when there are
overlaps. When there is a tie for best, a more com-
plex analysis is needed to obtain the best possible
bounds, but the previous bounds still apply if one
uses a modified l, where the modified l is somewhere
between 1 and the original l.

The only significant weakness of the Fast Com-
pletion Apriori Algorithm with regard to generating
candidates is that the test-sets used come from sev-
eral levels back and thus are likely to have much
higher probabilities than test-sets from one level
back would have.

7 Conclusion

In this paper, we discuss algorithms that have a
candidacy test that considers an item-set I when
only some of I’s subsets are frequent. The various
algorithms mentioned differ in which subsets they
consider for the candidacy test. It is clear that an
algorithm that considers all subsets that are miss-
ing one item (such as Apriori) will sometimes need
to consider fewer candidates than those that have a
weaker candidacy test, but it is less obvious how sig-
nificant these differences are. We use probabilistic
analysis to show that the significance depends both
on the algorithm and on properties of the data set
that the algorithm is being run on (and in the case
of Eclat-like algorithms, the ordering assumption).

For random data, all the algorithms considered
have about the same performance, because all test-
sets of a given size have about the same frequency.
So, least-frequent-first Eclat-like algorithms per-
form on most data sets nearly as well as the Apriori
Algorithm, since, in both cases, the candidacy of
an item-set is essentially determined by frequency
status of its best test-set.

For highly correlated data, the algorithms differ
greatly in their performance. In this case, the vari-
ous subsets of I with size one less may have hughly
different frequencies. The performance of the algo-
rithms depends on whether or not their candidancy
test includes the most important subset, the one
whose frequency is expected to be closest to the
frequency of I. Those algorithms with the candi-
dacy test which includes the most important test-
sets have essentially the same performance. Those

that do not have much worse performance. When
the Eclat-like algorithms use a least-frequent-first
order, they perform nearly as well as the Apriori
Algorithm unless the data set has strongly anti-
correlated data. When the Eclat-like algorithms use
a random order, their performance can be signifi-
cantly worse than that of the Apriori algorithm, but
significantly better than the performance of the AIS
algorithm. When they use a most-frequent-first or-
dering, the Eclat-like algorithms perform nearly as
poorly as the AIS-algorithm, since in this cases, the
candidacy of an itemset is essentially determined by
the frequency status of its worst test-set.
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