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ABSTRACT
A common and recently widely accepted problem in the field of
machine learning is the black box nature of many algorithms. In
practice, many machine learning algorithms can only be viewed
and evaluated in terms of their inputs and outputs, without taking
their internal workings into account. Perhaps the most notorious
examples in this context are artificial neural networks and deep
learning techniques, but they are certainly not the only techniques
that suffer from this problem. Matrix factorisation models for rec-
ommendation systems, for example, suffer from the same lack of
interpretability. Our research focuses on applying and adapting
pattern mining techniques to gain meaningful insights in recom-
mendation algorithms by analysing them in terms of both their
input and output, also allowing us to compare different algorithms
and discover the hidden biases that lead to those differences.

CCS CONCEPTS
• Information systems→Evaluation of retrieval results;Rec-
ommender systems; Data mining.
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1 INTRODUCTION
Explaining the results of machine learning algorithms has become
an important topic in the area of Artificial Intelligence. Most of this
research, however, focuses on the explanation of individual actions,
such as classifications, or recommendations, answering questions
such as: “Why was I recommended this item?”, or “Why was that
person classified in that class?”. Although these are very important
questions indeed, we argue that the ability to explain the working
of the entire model is of crucial importance to its users as well,
answering questions such as: “For what subsets of my data does
this method work best?”.

Today, in most scientific literature, different machine learning
models are being compared to each other by evaluating their perfor-
mance on a selected collection of historic datasets, for a selected set
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Figure 1: Example of an experimental comparison between
methods from a study in 2020 [23]©. Values have been
blurred because they are not important to illustrate the com-
mon practice of reporting results, where performance is
evaluated on a selected collection of datasets, for a selected
set of metrics. Although general arguments are useful to ex-
plain the overall trend, often the relation between individ-
ual results is not known.

of metrics. The results of such experiments are typically reported in
a table such as the illustrative example in Figure 1, where the best
scores are emphasised in bold and the winning model is the one that
outperforms the other models for most of the datasets and metrics.

Although general arguments try to motivate the superiority of
one algorithm over another, very little is typically known about
the underlying reasons. More importantly, when multiple models
are deployed in practice, it is rarely the case that one model is
consistently the best. Different authors often report high levels of
accuracy that are only possible under strict assumptions; while
in real-world applications, where cold-start, noise and concept
drift [28] are common, the accuracy is far lower and less stable [13,
20, 22]. Therefore, we address the need for exploratory methods to
evaluate and analyse different machine learning models and answer
questions such as:

• why does model A outperform model B for metricM ;
• why did model A outperform model B on the data of day D1

and not on the data of day D2;
• for what subset of the data doesmodelB outperformmodelA?
Possible answers to these questions could be: “for all data that

satisfies formula f , model A consistently outperforms model B”, or
“on day D1, most instances were of type t1, and on day D2, most
instances were of type t2, suggesting that model A is better suited
for data of type t1”.

We aim to study and develop techniques that can find the most
suitable formulas and data type descriptions in order to produce
such answers. Our focus will primarily go to pattern mining and
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subgroup discovery techniques, where patterns can be association
rules over itemsets, episodes or other more expressive types of
patterns [1]. We will also study techniques for analysing concept
drift [28], and their relation to the performance of different models.

2 RELATEDWORK
This research can be situated in several active areas of research:
pattern mining, recommender systems, interpretability of machine
learning models, andmeta-learning. The following sections describe
the state of the art and current challenges in each of these fields
with respect to our topic of research.

2.1 Pattern Mining
The goal of this research is not to advance the state of the art in
pattern mining, but rather to investigate domain specific synergies
with respect to recommender systems data. A known issue with
pattern mining is the pattern explosion problem and the difficulty to
reduce the potentially huge set of reported patterns to the most in-
teresting subset. The idea is that finding a smaller set of interesting
patterns becomes easier and more accurate given a specific domain,
use case or target end-user. Consider an example where we concate-
nate for each user their history and the set of recommended items.
The fact that every item can occur as a recommendation as well
as in the history, cannot trivially be represented in the traditional
pattern mining setting, whereas domain specific solutions are able
to exploit this information.

Finding generic, objective interestingness measures to filter or
sort patterns has already been studied extensively. These measures
mostly focus on redundancy [3, 26] or unexpectedness [27], which
already helps to reduce the set of reported patterns [9]. Finding
truly interesting patterns however, remains inherently subjective
and dependent on the domain. To the best of our knowledge, no
substantial amount of work has been done in the context of applying
pattern mining techniques on recommender system data for the
purpose of interpretability or for model selection.

2.2 Recommender Systems
The evaluation of recommender systems is an active area of re-
search, with recent studies [8, 13, 19] showing that offline metrics
give poor estimates of the online performance. Furthermore, it is
widely accepted that performance should not only be assessed in
terms of accuracy, but by a wider variety of metrics, like diversity,
novelty, coverage and serendipity [13, 14].

In a positioning paper from 2017 [2], Beel argues that, in the
context of recommender systems, single numbers express only
average effectiveness over usually a rather long period, which only
provides a vague and static view of the data. He then proposes that
recommender system researchers should instead calculate metrics
for time-series such as weeks or months. This way, results show
how an algorithm’s effectiveness develops over time [2].

This idea is illustrated in Figure 2, where we visualize how, in real
life, it is rarely the case that one recommender system is consistently
the best. Typically, recommenders are evaluated on a static snapshot
of the data, where often, the time when the snapshot was taken,
can change the outcome and conclusions of the experiments. To
make matters worse, the ordering of interactions is often neglected

Figure 2: Illustration of comparing two recommenders over
time in an A/B test. The conclusion of which algorithm per-
forms best depends heavily on at which point in time a snap-
shot is taken.

in offline evaluation, effectively enabling algorithms to predict the
past based on future events [10]. We can even extend this problem
setting beyond the notion of time, by allowing a partitioning in
subsets based on arbitrary criteria, in the hope to dig deeper and
explain what actually causes the effectiveness of algorithms to differ.

Previous work with respect to the interpretability of recom-
mender systems has mostly focused on prediction explanation, like
for example counterfactual explanation [17]. However, very few
studies talk about explanation or interpretation of the recommender
system itself or its results. Questions like “Under which conditions
is item A consumed most often?” or “What do users who are rec-
ommended item A have in common?” could provide meaningful
insights for the development and tuning of algorithms, but the
automated answering of these questions has not received much
attention from researchers.

A preliminary study by Moens et al. [15] has demonstrated that
pattern mining may be a feasible approach for answering these
types of questions. Furthermore, due to the explorative nature of
pattern mining, the technique may even help uncover answers to
important questions that the developer didn’t know to ask (yet).

2.3 Interpretability of Machine Learning
Models

There is an active research trend towards post-hoc, model-agnostic
interpretability tools [16], with recent developments such as per-
mutation feature importance [7], SHAP [12] and LIME [18] for ex-
plaining individual actions (local interpretability). Our approach on
the other hand can be classified as a post-hoc method for global in-
terpretability. Compared to the various advancements in local inter-
pretability, methods for global model interpretability remain limited,
making it difficult to achieve in practice. Options for global inter-
pretability include training an explainable global surrogate model
(if one exists at the given scale and complexity [11]) or resorting
to a modular level: explaining parts of the model in isolation [16].

2.4 Meta-learning
Meta-learning studies how learning systems can increase in effi-
ciency through experience [25]. One type of meta-knowledge on
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a learning algorithm is its bias on the set of possible hypotheses
explaining a concept [24]. This is a natural consequence of the no
free lunch theorem, which states that, if an algorithm performs well
on a certain class of problems then it necessarily pays for that with
degraded performance on the set of all remaining problems [29].

One of the goals in meta-learning is to learn the bias of a learning
algorithm L and investigate what causes a learning algorithm to
dominate in a specific region (a set of similar tasks). The problem
can be decomposed in two parts: 1) determine the properties of
the task in the region that make L suitable for such region; and
2) determine the properties of L (i.e., what are the components
contained by algorithm L and how they interact with each other)
that contribute to the domination in the region. [25]

Our research topic has significant overlap with this specific goal
in the broader field of meta-learning. Also closely related are: 1)
the field of concept drift, where we study unexpected changes of
data distributions over time and the impact this has on learning
algorithms [28, 30]; and 2) the area of ensemble models, where
multiple models are being combined in order to use the best possible
model for every instance. The main goal of these fields is, however,
to build a superior model, and not so much to explain why and
when which underlying model works best.

3 SCIENTIFIC RESEARCH OBJECTIVES
One of the main reasons why recommender systems (and per ex-
tension machine learning algorithms) lack native interpretability, is
the intractable scale at which they operate. Often, vast amounts of
data are required for these algorithms to learn from, up to the point
where a human can no longer manually inspect every input/output
pair. Though this may seem like a problem at first, we believe the
readily availability of large amounts of data can instead be exploited
to help circumvent the black box problem. More concretely we will
investigate these research questions:

RQ1 How and why do the results of two machine learning algo-
rithms differ for a given dataset?

(1) Which ways to describe differences are most suited given
the context?

(2) Is it possible to derive what the most likely causes for
these differences are?

(3) Can knowledge of the differences be used to dynamically
combine algorithms by selecting/weighting them?

RQ2 Can we automatically find subsets of a dataset where the
performance of an algorithm differs? For example through a
partitioning over time, user gender or item popularity.

We give an overview of four concrete research objectives (RO)
that relate to our more general research questions. Each objective
is first described and then the contribution of our research w.r.t. the
objective is discussed.

RO1 More Informed Evaluation. As mentioned, accurately evaluat-
ing the performance of recommender systems in an offline setting,
remains an open problem. Themost notable implication of this prob-
lem, is that it remains difficult to experimentally validate current
and future innovations in recommendation algorithms. Further-
more, with biased metrics that, additionally, only reflect a small
amount of the desired properties, we may even be optimizing for

the wrong goals and discarding interesting algorithms of which the
value cannot accurately be formalised yet [14].

⇒ The main goal of this research is to extend and improve
evaluation methods to provide more insight, which contributes to
better model selection.

RO2 Improve Performance. Consider the phenomenon of canni-
balisation [15], where the presence of some items in a top-K rec-
ommendation list causes other items to be consumed less often. A
recommendation algorithm that can account for this would, with-
out doubt, be of great value in certain contexts (e.g. to optimise
top-K recommendations). However there exists, to the best of our
knowledge, no formal way to measure the degree of cannibalisation,
nor to take it into account during the generation of candidates.

⇒ Discovering and quantifying cannibalisation as a pattern
can potentially improve the performance of recommendation algo-
rithms. Similarly, other interesting phenomena, such as item fatigue
and CTR variation [21], may be described as actionable patterns.

RO3 Gain Insight in Behaviour of Model. Data scientists should
always be wary of the risk that an incidental relation was learnt
between the (often complex) features and the labels. The husky or
wolf classification is a good example of this, where the classifier
learnt to recognise the snow on all wolf images, instead of the actual
wolves [18]. Detecting this problem is a first and non-trivial step
towards avoiding or correcting it.

⇒ Our research includes finding interesting subsets of the data
where model performance varies. For example, if the “snow” feature
can be formalised, our techniques should pick up that all misclassi-
fied husky images also contain snow and that misclassified wolves
tend to be missing this feature.

RO4 A Step Towards Fairness, Accountability and Transparency.
Insight into the behaviour of the model can also contribute to the
concepts of fairness, accountability and transparency, in the sense
that bringing to light what the system is doing, can help raise the
practitioner’s attention to hidden issues.

⇒ Some of the issues that can be detected are undesired discrim-
ination against subgroups of users or items, strong filter bubbles
and polarisation [4–6].

4 RESEARCH METHODOLOGY
We primarily focus on recommender systems, and additionally con-
sider generalisations to other machine learning tasks.

4.1 Recommender Systems - Offline
To achieve our research objectives, we propose the method de-
scribed in Figure 3, which illustrates how a recommender system
is typically evaluated in an offline setting. However, in addition to
summarizing the system with various metrics, a more informed
and extensive evaluation step is included. In this evaluation step the
goal is to learn insightful patterns from the inputs and the outputs
of the system(s) under study.

Though the idea behind the method is not new, automating the
process is still considered non-trivial due to the need for domain
knowledge to define interestingness and the pattern explosion prob-
lem. One can imagine it is trivial to look for a specific pattern (e.g.
“How many times are the items X and Y recommended together?”),
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Figure 3: Global overview of our approach. 1) User history
and item information are used by recommender systems to
predict candidate items a user might like. 2) In offline eval-
uation, algorithms are typically evaluated by leaving items
out of the training history and inspecting whether they ap-
pear in the top-K recommendations. 3) Pattern mining with
the right interestingness measures could provide more de-
tailed insights into the global behaviour of the system. Two
systems (or the influence of a parameter (ρi ) on one system)
can even be compared by inspecting the differences between
the two result sets.

whereas generating all interesting patterns that make sense from
the perspective of the user, is non-trivial.

Another challenge is to combine the output of two or more rec-
ommendation algorithms (or instances with different parameters)
and define in which respect they differ. Typically one simply com-
pares them by evaluating their performance on a selected collection
of datasets, for a selected set of metrics and concludes that A is
better than B. Our research will be directed at finding a reason as
to why A performs better than B. If this problem is solved, we can
equivalently also find the influence a parameter has on the results
of an algorithm by comparing those two instances of the algorithm.

For example, given our approach, it would be possible to discover
that one system performs better on a specific subset of the users (or
items) [5]. It can also help guide the optimisation process by clarify-
ing the effects of certain parameters, and in the limit even improve
recommendations by selecting different algorithms for different
users. The feasibility of this idea has already been demonstrated
in the context of news recommendations, where it was found that
shifting the weight of popularity-based recommendations based on
the time of day, improved performance [13].

4.2 Recommender Systems - Online
Complementary to offline evaluation, online evaluation (in the
form of A/B testing) can provide richer metrics that are closer to
the dependent variable. Naturally, we should be able to extend the
idea described in Figure 3 to the online scenario. The envisioned
method and possible results are described in Figure 4, where we can
see the addition of user feedback as input. Finding cannibalisation
for example, can now be described as a pattern with a certain

Recommender
System

User Histories

CTR
CTR per item
Dwell time
...

Item Information

Feedback

Evaluation
Top-K Recommendations

only clicked when

not recommended.

80% of clicks
originate from

popularity
recommendations.

          -like items

are clicked 25%
more by people

under 25.

ρ1

ρ2

Figure 4: In online evaluation (A/B tests), user feedback
is captured and aggregated in metrics like clickthrough
rate (CTR) and dwell time, which in turn are used to assess
the performance of a recommender system. Coupling the
user responses back to the recommendations and item infor-
mation however can potentially lead to interesting insights
into why the recommender systems performs good or bad.

support (see first result pattern in Figure 4). What’s notable here is
that this kind of pattern requires the absence (or complement) of
some item(s) to be taken into account. Finding interesting patterns
of this type makes the problem even more complex, because items
are absent muchmore frequently and not at random (MNAR), which
can complicate pruning. In addition, often the absence of an item is
not meaningful, resulting in an exponential increase in hard to filter,
meaningless patterns. Little work has been done towards finding
interesting patterns when complements are considered.

Furthermore, the comparison of two algorithms can also trivially
be extended to the online case.

4.3 Generalisation to Other Supervised Tasks
Recommenders fit within the class of supervised learning algo-
rithms. Subsequently, it would be interesting to investigate whether
the results and techniques of this research can be generalized to
other supervised learning tasks.

5 CONCLUSION
Recommender systems are inherently difficult to evaluate offline,
and even in online evaluation, clear explanations of their perfor-
mance are still required to draw accurate conclusions. In addition,
recommender systems often operate at a large scale and many pop-
ular algorithms have a black box nature. We address the need for
exploratory evaluation methods that, in addition to summarising
the performance of recommendation algorithms, also discern sub-
sets of interest or general reasons that explain the achieved results.

ACKNOWLEDGMENTS
This work is conducted under the supervision of Prof. Bart Goethals.
Special thanks to Jan Van Balen andOlivier Jeunen for their valuable
feedback. This research received funding from the Flemish Gov-
ernment under the “Onderzoeksprogramma Artificiële Intelligentie
(AI) Vlaanderen” programme.

785



Exploratory Methods for Evaluating Recommender Systems RecSys ’20, September 22–26, 2020, Virtual Event, Brazil

REFERENCES
[1] Charu C. Aggarwal and Jiawei Han. 2014. Frequent Pattern Mining. Springer

Publishing Company, Incorporated.
[2] Joeran Beel. 2017. It’s Time to Consider "Time" when Evaluating Recommender-

System Algorithms [Proposal]. arXiv:1708.08447 [cs.IR]
[3] Toon Calders and Bart Goethals. 2002. Mining All Non-Derivable Frequent

Itemsets. In Proceedings of the 6th European Conference on Principles of Data
Mining and Knowledge Discovery (PKDD ’02). Springer-Verlag, Berlin, Heidelberg,
74–85.

[4] Michael D Ekstrand, Robin Burke, and Fernando Diaz. 2019. Fairness and
Discrimination in Recommendation and Retrieval. In Proceedings of the 13th
ACM Conference on Recommender Systems (Copenhagen, Denmark) (RecSys
’19). Association for Computing Machinery, New York, NY, USA, 576–577.
https://doi.org/10.1145/3298689.3346964

[5] Michael D Ekstrand, Mucun Tian, Ion Madrazo Azpiazu, Jennifer D Ekstrand,
Oghenemaro Anuyah, David McNeill, and Maria Soledad Pera. 2018. All the
cool kids, how do they fit in?: Popularity and demographic biases in recom-
mender evaluation and effectiveness. In Conference on Fairness, Accountability
and Transparency. 172–186.

[6] Michael D. Ekstrand, Mucun Tian, Mohammed R. Imran Kazi, Hoda Mehrpouyan,
andDaniel Kluver. 2018. Exploring Author Gender in Book Rating and Recommen-
dation. In Proceedings of the 12th ACM Conference on Recommender Systems (Van-
couver, British Columbia, Canada) (RecSys ’18). Association for Computing Ma-
chinery, New York, NY, USA, 242–250. https://doi.org/10.1145/3240323.3240373

[7] Aaron Fisher, Cynthia Rudin, and Francesca Dominici. 2019. All models are
wrong, but many are useful: Learning a variable’s importance by studying an
entire class of prediction models simultaneously. Journal of Machine Learning
Research 20, 177 (2019), 1–81.

[8] Florent Garcin, Boi Faltings, Olivier Donatsch, Ayar Alazzawi, Christophe Brut-
tin, and Amr Huber. 2014. Offline and Online Evaluation of News Recom-
mender Systems at Swissinfo.Ch. In Proceedings of the 8th ACM Conference
on Recommender Systems (Foster City, Silicon Valley, California, USA) (Rec-
Sys ’14). Association for Computing Machinery, New York, NY, USA, 169–176.
https://doi.org/10.1145/2645710.2645745

[9] Liqiang Geng and Howard J Hamilton. 2006. Interestingness measures for data
mining: A survey. ACM Computing Surveys (CSUR) 38, 3 (2006), 9–es.

[10] Olivier Jeunen, Koen Verstrepen, and Bart Goethals. 2018. Fair Offline Evaluation
Methodologies for Implicit-Feedback Recommender Systems with MNAR Data.
In Proc. of the REVEAL 18 Workshop on Ofine Evaluation for Recommender Systems
(RecSys’ 18).

[11] Zachary C Lipton. 2018. The mythos of model interpretability. Queue 16, 3 (2018),
31–57.

[12] Scott M. Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting
Model Predictions. In Proceedings of the 31st International Conference on Neural
Information Processing Systems (Long Beach, California, USA) (NIPS’17). Curran
Associates Inc., Red Hook, NY, USA, 4768–4777.

[13] Andrii Maksai, Florent Garcin, and Boi Faltings. 2015. Predicting Online Perfor-
mance of News Recommender Systems Through Richer Evaluation Metrics. In
Proceedings of the 9th ACM Conference on Recommender Systems (Vienna, Austria)
(RecSys ’15). Association for Computing Machinery, New York, NY, USA, 179–186.
https://doi.org/10.1145/2792838.2800184

[14] Sean M. McNee, John Riedl, and Joseph A. Konstan. 2006. Being Accurate is Not
Enough: How Accuracy Metrics Have Hurt Recommender Systems. In CHI ’06
Extended Abstracts on Human Factors in Computing Systems (Montréal, Québec,
Canada) (CHI EA ’06). Association for Computing Machinery, New York, NY,
USA, 1097–1101. https://doi.org/10.1145/1125451.1125659

[15] Sandy Moens, Olivier Jeunen, and Bart Goethals. 2019. Interactive Evaluation
of Recommender Systems with SNIPER: An Episode Mining Approach. In Pro-
ceedings of the 13th ACM Conference on Recommender Systems (Copenhagen,
Denmark) (RecSys ’19). Association for Computing Machinery, New York, NY,
USA, 538–539. https://doi.org/10.1145/3298689.3346965

[16] Christoph Molnar. 2019. Interpretable machine learning. Lulu. com.
[17] Yanou Ramon, David Martens, Foster Provost, and Theodoros Evgeniou.

2019. Counterfactual Explanation Algorithms for Behavioral and Textual Data.
arXiv:1912.01819 [cs.AI]

[18] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. “Why Should I
Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (San Francisco, California, USA) (KDD ’16). Association for Computing
Machinery, New York, NY, USA, 1135–1144. https://doi.org/10.1145/2939672.
2939778

[19] Marco Rossetti, Fabio Stella, and Markus Zanker. 2016. Contrasting Offline and
Online Results When Evaluating Recommendation Algorithms. In Proceedings of
the 10th ACM Conference on Recommender Systems (Boston, Massachusetts, USA)
(RecSys ’16). Association for Computing Machinery, New York, NY, USA, 31–34.
https://doi.org/10.1145/2959100.2959176

[20] Alan Said, Jimmy Lin, Alejandro Bellogín, and Arjen de Vries. 2013. A Month
in the Life of a Production News Recommender System. In Proceedings of the
2013 Workshop on Living Labs for Information Retrieval Evaluation (San Francisco,
California, USA) (LivingLab ’13). Association for Computing Machinery, New
York, NY, USA, 7–10. https://doi.org/10.1145/2513150.2513159

[21] Oren Sar Shalom, Noam Koenigstein, Ulrich Paquet, and Hastagiri P. Vanchi-
nathan. 2016. Beyond Collaborative Filtering: The List Recommendation Prob-
lem. In Proceedings of the 25th International Conference on World Wide Web
(Montréal, Québec, Canada) (WWW ’16). International World Wide Web Con-
ferences Steering Committee, Republic and Canton of Geneva, CHE, 63–72.
https://doi.org/10.1145/2872427.2883057

[22] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Diet-
mar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan
Dennison. 2015. Hidden Technical Debt in Machine Learning Systems. In Pro-
ceedings of the 28th International Conference on Neural Information Processing
Systems - Volume 2 (Montreal, Canada) (NIPS’15). MIT Press, Cambridge, MA,
USA, 2503–2511.

[23] Harald Steck, Maria Dimakopoulou, Nickolai Riabov, and Tony Jebara. 2020.
ADMM SLIM: Sparse Recommendations for Many Users. In Proceedings of the
13th International Conference on Web Search and Data Mining (Houston, TX, USA)
(WSDM ’20). Association for Computing Machinery, New York, NY, USA, 555–563.
https://doi.org/10.1145/3336191.3371774

[24] Joaquin Vanschoren. 2018. Meta-Learning: A Survey. arXiv:1810.03548 [cs.LG]
[25] Ricardo Vilalta and Youssef Drissi. 2002. A perspective view and survey of

meta-learning. Artificial intelligence review 18, 2 (2002), 77–95.
[26] Jilles Vreeken, Matthijs Van Leeuwen, and Arno Siebes. 2011. Krimp: mining

itemsets that compress. Data Mining and Knowledge Discovery 23, 1 (2011),
169–214.

[27] Geoffrey I Webb. 2010. Self-sufficient itemsets: An approach to screening poten-
tially interesting associations between items. ACM Transactions on Knowledge
Discovery from Data (TKDD) 4, 1 (2010), 1–20.

[28] Geoffrey I Webb, Loong Kuan Lee, Bart Goethals, and François Petitjean. 2018.
Analyzing concept drift and shift from sample data. Data Mining and Knowledge
Discovery 32, 5 (2018), 1179–1199.

[29] David H Wolpert and William G Macready. 1997. No free lunch theorems for
optimization. IEEE transactions on evolutionary computation 1, 1 (1997), 67–82.
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