
That’s All Folks! LLUNATIC Goes Open Source

Floris Geerts1 Giansalvatore Mecca2 Paolo Papotti3 Donatello Santoro2,4

1 University of Antwerp – Antwerp, Belgium 2 Università della Basilicata – Potenza, Italy
3 Qatar Computing Research Institute (QCRI) – Doha, Qatar 4 Università Roma Tre – Roma, Italy

ABSTRACT
It is widely recognized that whenever different data sources need
to be integrated into a single target database errors and inconsisten-
cies may arise, so that there is a strong need to apply data-cleaning
techniques to repair the data. Despite this need, database research
has so far investigated mappings and data repairing essentially in
isolation. Unfortunately, schema-mappings and data quality rules
interact with each other, so that applying existing algorithms in a
pipelined way – i.e., first exchange then data, then repair the result
– does not lead to solutions even in simple settings. We present the
LLUNATIC mapping and cleaning system, the first comprehensive
proposal to handle schema mappings and data repairing in a uni-
form way. LLUNATIC is based on the intuition that transforming
and cleaning data are different facets of the same problem, unified
by their declarative nature. This holistic approach allows us to in-
corporate unique features into the system, such as configurable user
interaction and a tunable trade-off between efficiency and quality of
the solutions.

1. INTRODUCTION
Data transformation and data cleaning represent two important

technologies in data management. Data transformation, or data ex-
change [2], is the process of translating data coming from one or
more relational sources into a single target database. Data repair-
ing [3] uses declarative constraints, like functional and inclusion
dependencies, to detect and repair inconsistencies in the data.

It is natural to think of data exchange and data repairing as two
strongly interrelated activities. In fact, the source databases are
often structured according to different conventions and rules, and
may be dirty. As a consequence, inconsistencies and errors often
arise when the sources are brought together into a target schema
that comes with its own integrity constraints.

On the contrary, the database literature has so far studied these
two problems in isolation, with the consequence that there is cur-
rently neither a clear semantics, nor adequate techniques to handle
data translation and data repairing in an integrated fashion. One
might expect that pipelining data exchange algorithms [2] and data
repairing algorithms like those in [3] is sufficient. Unfortunately,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

this is not the case. In fact, we have shown [5] that schema map-
pings and data quality constraints interact in such a way that simply
pipelining the two semantics often does not return solutions.

LLUNATIC [4, 5] is the first tool that can solve mapping and
cleaning scenarios in a unified fashion. It provides a novel seman-
tics and new algorithms to generate solutions in the presence of
dirty data. It offers a number of unique features, as follows:

(i) Users have a common language to express both schema map-
pings for data exchange purposes, and data quality rules for data
repairing, within an integrated tool capable of executing them.

(ii) Users can declaratively express preference rules to select the
best strategy to repair data in case of conflicts; for example, they
can easily specify that values with higher confidence or currency
should be preferred.

(iii) The semantics accommodates user inputs in the process in a
principled way, for example to discard unwanted solutions or to
interactively resolve conflicts among values for which there is no
clear preference rule.

(iv) Finally, the system allows users to fine-tune the trade-off be-
tween the quality of the solutions and the efficiency of computing
them. This is crucial due to the exponential nature of data repair-
ing algorithms. In fact, different applications typically require dif-
ferent levels of quality. For example, a medical data-integration
scenario requires very high accuracy, while a web aggregator of
sports-related data may tolerate a minor quality to reduce users’
efforts and execution time.

In the following sections we describe the organization of the
demonstration. First, we outline the kind of mapping and cleaning
scenarios that will be demonstrated. We concentrate on a synthetic
example that serves the purpose of showing all of the main features
of the system. During the demo, however, we will also discuss
scenarios from real-life applications that have been conducted with
the system, including medical data, events and sports data from the
Web, and bibliographic data about publications. Given the focus of
this proposal, we deliberately choose to omit many of the technical
details that are in published papers [4, 5]. We rather concentrate on
a description of the system from the user perspective, and illustrate
what an attendee may learn by playing with it.

The system is available under an open-source license at the fol-
lowing URL: http://db.unibas.it/projects/llunatic/.

2. MAPPING AND CLEANING
Consider the data scenario shown in Figure 1. Here we have sev-

eral different hospital-related data sources that must be correlated
to one another. The first repository has information about Patients
and Surgeries. The second one about MedTreatments. Our goal is

1565

Source #1 – Confidence 0.5 Initial Target

Master Data

Customers

 SSN
 Name
 Phone
 City
 CC#

Treatments
 SSN
 Salary
 Insurance
 Treatment
 Date

Source #2 – Confidence 0.7
MEDTREATMENTS

SSN Name Phone City

tm 222 L. Lennon 122-1876 SF

HOSPITALS MD

Source #1 – Confidence 0.5
CUSTOMERS

SSN Name Phone Conf City CC#
t4 111 M. White 408-3334 0.8 NY 112321

t5 222 L. Lennon 122-1876 0.9 null 781658

t6 222 L. Lennon 000-0000 0.0 SF 784659

TREATMENTS
SSN Salary Insur. Treat. Date

t7 111 10K Abx Dental 07/01/2012

t8 111 25K Abx Cholest. 08/12/2012

t9 222 30K Med Eye surg. 06/10/2012

PATIENTS
SSN Name Phone City

t1 123 W. Smith 324-0000 LA

SURGERIES
SSN Insur. Treat. Date

t2 123 Med Eye surg. 12/01/2013

 SSN Name City Insur. Treat.
t3 124 W. Smith LA Med Lapar.

Initial Target
 Patients

 SSN
 Name
 Phone
 City

 Surgeries
 SSN
 Insurance
 Treatment
 Date

 MedTreatments

 SSN
 Name
 City
 Insurance
 Treatment

So
ur

ce
 #

1
So

ur
ce

 #
2

Target

b) Value Correspondences a) Instances

Figure 1: A Hospital Mapping and Cleaning Scenario.

to move data from the source database into a target database that or-
ganizes data in terms of Customers with their addresses and credit-
card numbers, and medical Treatments paid by insurance plans.

Schema mappings To move data from the sources to the target,
users may specify declarative schema mappings. As it is common,
the mappings for our example are specified under the form of value
correspondences in Figure 1.b. Intuitively, the lines from attributes
of Source #2 to attributes of the target state that, for each tuple in the
MedTreatments source table, there must be corresponding tuples in
the Customers and Treatments target tables. Correspondences are
translated into a set of mappings under the form of tuple generating
dependencies (tgds) [10, 8] (which we omit here for the sake of
space), and executed as SQL scripts.

Target Constraints Notice that, besides deciding how to populate
the target to satisfy the mappings above, users must also deal with
the problem of generating instances that comply with target con-
straints, as follows.

(i) Functional and Inclusion Dependencies: Traditionally,
database architects have specified constraints of two forms: inclu-
sion constraints and functional dependencies. In our example, we
have a foreign-key constraint stating that the SSN attribute in the
Treatments table references the SSN of a customer in Customers.
The target database also comes with a number of functional de-
pendencies: d1 = (SSN,Name → Phone), d2 = (SSN,Name
→ CC#) and d3 = (Name,City → SSN) on table Customers.
Here, d1 requires that a customer’s social-security number (SSN)
and name uniquely determine his or her phone number (Phone).
Similarly for d2 and d3. Notice that we do not assume that the
target database is empty. In fact, in Figure 1.a we have reported
an instance of the target. There, the pair of tuples {t5, t6} violates
both d1 and d2; the database is thus dirty.

(ii) Conditional Dependencies: Besides standard functional and
inclusion dependencies, the recent literature has shown that more
advanced forms of constraints are often necessary [3]. Therefore,
an expressive data-cleaning tool needs to support a larger class of
data-quality rules. Here we mention conditional functional depen-
dencies and conditional inclusion dependencies [3], among others.
We designed our example in such a way to incorporate some of
these as well. We assume two conditional functional dependencies
(CFDs): (i) a CFD d4 = (Insur[Abx] → Treat[Dental]) on table
Treatments, expressing that insurance company ‘Abx’ only offers
dental treatments (‘Dental’). Tuple t8 violates d4, adding more

dirtiness to the target database. (ii) In addition, we also have an
inter-table CFD d5 between Treatments and Customers, stating that
the insurance company ‘Abx’ only accepts customers who reside in
San Francisco (‘SF’). Tuple pairs {t4, t7} and tuples {t4, t8} vio-
late this constraint.
(iii) Master Data and Editing Rules: Finally, as it is common in
corporate information systems [7], an additional master-data ta-
ble is available; this table contains highly-curated records whose
values have high accuracy and are assumed to be clean. We also
assume an additional editing rule, d6, that states that whenever
a tuple t in Customers agrees on the SSN and Phone attributes
with some master-data tuple tm in Hospitals MD, then the tu-
ple t must take its Name and City attribute values from tm, i.e.,
t[Name, City] = tm[Name, City]. Tuple t5 does not adhere to this
rule as it has a missing city value (NULL) instead of ‘SF’ as pro-
vided by the master-data tuple tm.
Mapping and Cleaning In summary, our example is such that:
(a) it requires to map different source databases into a given target
database; (b) it assumes that the target database may be non-empty,
and that both the sources and the target instances may be dirty and
generate inconsistencies when the mappings are executed; (c) it
comes with a rich variety of data-quality constraints over the target.

Given the source instances and the target, our goal is to generate
a target instance that satisfies the mappings and that it is clean wrt
target constraints. We call this a mapping & cleaning scenario.

LLUNATIC is the first system to provide a unified semantics and
a set of executable algorithms to solve mapping and cleaning sce-
narios. The semantics is a conservative extension of the one of
data exchange and incorporates many of the features found in data-
repairing algorithms (see [6] for a comparison to other semantics).

3. QUICK OVERVIEW OF THE SYSTEM
The GUI of the LLUNATIC system is reported in Figure 2. Any

experience with the system starts by specifying a scenario (item 1
in Figure 2), i.e., a set of source databases and a target database,
that does not need to be empty. Among the source databases, users
may indicate some that are considered as authoritative – like master
data. Both the source and the target database can be browsed to
inspect the data (item 2).

The next step is concerned with specifying the mappings, i.e., the
tgds, and the data quality constraints over the target. The system
provides a graphical user interface for this task (items 3 and 4).

1566

Figure 2: LLUNATIC in action

In addition, users may specify configuration options (item 5), as
explained in the following section.

Given a set of source instances, a target instance, a set of tgds and
a set of data quality rules, LLUNATIC computes a set of minimal
solutions, i.e., target instances that satisfy the constraints (tgds and
egds), and “minimally change” the original target instance. To do
this, it runs a parallel-chase procedure, that generates a chase tree
(item 6 in Figure 2). Leaves in the chase tree are solutions that can
be inspected by users (item 7) to analyze the modifications to the
original database.

Traditionally [3], solutions to data-repairing problems have been
considered simply as sets of updates to the cells of the original
database. Here, by cell we denote a tuple-attribute pair t.A, i.e.,
the value of attribute A in tuple t. In contrast, LLUNATIC models
updates to the target database in terms of a novel data structure
called cell groups. Cell groups are essentially “repair instructions
with lineage”, since they carry full provenance information for each
change to the database, i.e.: (i) which conflicting cells in the target
were modified, and which were their values; (ii) which value was
chosen to repair the conflict; (iii) whether this value comes from
one or more of the cells in the source databases, and if these cells
are authoritative. Cell groups are the core element of the semantics,
and represent the cornerstone of user interactions in LLUNATIC, as
it will be discussed in the following section. In fact, proper care has
been devoted to provide users with a flexible interface to inspect
solutions and their cell groups (item 8).

4. EXPERIENCES WITH THE SYSTEM
The demonstration will be centered around a number of experi-

ences that should illustrate what are the main challenges in map-
ping and cleaning scenarios and how the system solves them. At-
tendees will be able to interact directly with the system, in such
a way that the process will resemble a hands-on tutorial. In the
following paragraphs we illustrate these experiences.
a. Need and Benefits of an Integrated Semantics To start, we
shall demonstrate why a new, integrated semantics for mapping
and cleaning is necessary, and we cannot simply reuse existing al-
gorithms for schema-mappings and for data-repairing. We have

formally proven that such an approach does not work in general [5,
6]. To show this in a practical way, LLUNATIC can be configured to
run with several semantics. One of them is the result of pipelining
a standard chase algorithm for tgds [9, 8], with some of the popular
algorithms to repair functional dependencies [1]. By running the
system with this semantics on the scenario in Figure 1, and others,
we will show that even in simple cases constraints interact in such
a way that alternating the execution of mappings and the repairing
of data quality constraints does not terminate. In addition, when
the pipelining process terminates, the quality of the solutions com-
puted by this procedure are quite poor, and definitely worse than
those generated by LLUNATIC.
b. Solutions as Upgrades Data-repairing algorithms in the lit-
erature [3] try to repair a dirty database by making the small-
est number of changes to its cells. There are various mini-
mality conditions for repairs, and repairing algorithms are cen-
tered around these notions. Consider our example in Fig-
ure 1. Tuples t5 = 〈222, L. Lennon, 122-1876 . . .〉, t6 =
〈222, L. Lennon, 000-000 . . .〉 in the target violate the functional
dependency d1 : SSN,Name → Phone over table Customers, i.e.,
the two phone cells generate a conflict. There are many possible
ways to repair the database. For example, we may change cell
t6.Phone to value 122-1876; as an alternative, we may change cell
t5.Phone to value 000-0000.

However, these are not the only possible repairs. For example,
we might decide to change both cells to a new number, say 555-
6789. This repair, however, it is not minimal, since it requires to
change two different cells, while a single cell-change is sufficient
the ones above. There are many other minimal repairs, even for
this very simple example. One of these changes t5.SSN to a new
SSN, say 333 (similarly for t6.SSN). These are called “backward
repairs”, since they falsify the premise of the dependency instead
of enforcing its conclusion.

Traditionally, as long as repairs involve a minimal number of
changes, they are considered as equally acceptable. However, our
example above shows that the minimality criterion is rather weak,
and algorithms often choose a repair arbitrarily. LLUNATIC is
based on a different philosophy. Its semantics is centered around

1567

the notion of an upgrade: a repair is a solution as long as it improves
the quality of the original database. Improvements cannot be made
arbitrarily. On the contrary, a change to the database is considered
an upgrade only when it unequivocally improves the data.

To specify when changes are actually upgrades, users can declar-
atively specify preference rules. Consider our example above; no-
tice that confidence values are associated with phone numbers (see
Figure 1.a). Then, it is natural to state a preference rule saying that
a value of a Phone-cell should be preferred to another as soon as
its confidence is higher. In LLUNATIC this is easily done by a few
clicks that identify Conf as the ordering attribute for Phone. Given
this rule, not all repairs above are equally acceptable. More specif-
ically, changing t6.Phone to value 122-1876 is an upgrade of the
target, while the opposite is not.

Ultimately, by specifying preference rules, LLUNATIC users may
specify a partial order over the repairs of a dirty database. In turn,
this yields an elegant notion of a solution: it is a minimal upgrade
of the original database that satisfies the constraints.
c. Effective User-Interaction When no preference rule is avail-
able, LLUNATIC does not make arbitrary choices, and rather marks
conflicts so that users may resolve them later on. Conflicts are
marked using special values called lluns. A llun is a distinguished
symbol, Li, distinct from nulls and constants, that is introduced
whenever there is no clear way to upgrade the dirty database by
changing a cell to a new constant.

Users will be asked to consider again tuples t5, t6 above, and
focus on the conflict on the credit-card numbers, 781658 for t5,
781659 for t6. In this case we have no clear preference strategy.
Therefore, the only acceptable upgrade to the database according to
the semantics of LLUNATIC is to change both t5.CC# and t6.CC#
to a llun L. Here, L represents a value that may be either 781658
or 781659, or even a different constant as long as it ensures that
it resolves the conflict and upgrades the quality of the database.
Unfortunately, this value is currently unknown, and only an expert
user may identify it, possibly at a later time.

Lluns are different from the ordinary variables used in previous
approaches, due to their relationship to cell-groups. Recall that
cell-groups are the building blocks used by LLUNATIC to spec-
ify repairs. They not only specify how to change the cells of
the database, but also carry full provenance information for the
changes. Based on this combination, LLUNATIC offers powerful
features to collect user-inputs. In fact, we will show how users may
easily stop the chase to provide inputs. They may pick up a node in
the chase tree, consult its history in terms of changes to the original
database, inspect the lluns that have been introduced, and analyze
the associated cell groups. Based on this, informed decisions are
taken in order to remove lluns and replace them with the appropri-
ate constants, or discard unwanted repairs.

During the demonstration, we plan to convey to attendees two
main notions. The first one is the fact that lluns and cell groups, to-
gether, provide a natural and effective basis to support users in their
choices. The second one is that by appropriately providing inputs
it is possible to drastically prune the size of the chase tree. Figure
3 shows one of our experiments: we run the chase for the same
scenario several times, each with an increasing number of inputs
provided by the user. With no user inputs, the chase tree counts
over 130 leafs, i.e., possible solutions. With as little as 10 inputs,
the tree collapses to a single solution. We will reproduce this ex-
ample during the demonstration, to show how small quantities of
inputs from the user may significantly prune the size of the chase
tree, and therefore speed-up the computation of solutions.

0

25

50

75

100

125

150

 UI 2 UI 4 UI 6 UI 8 UI 10 UI

of nodes

Figure 3: Impact of user-inputs on
the size of the chase

d. Pay-As-You-Go Data
Cleaning At the core of
the system stands a pow-
erful disk-based chase en-
gine, capable of generat-
ing parallel-chase trees and
multiple solutions.

As it is well known, the
chase is a principled algo-
rithm that plays a key role in
many important database-
related problems: data ex-
change, computing certain answers, query minimization, query
rewriting using views, and constraint implication. Given its gen-
erality, LLUNATIC can be effectively used in all of these settings.

On real-life examples, it is crucial to guarantee good compu-
tation times. LLUNATIC strives to provide the best compromise
between an exploration of the space of repairs that is more system-
atic and thorough that previous algorithms, and a good scalability
on large mapping and cleaning problems. A key feature, in this
respect, are cost managers. Cost managers are predicates over the
chase tree that a user may specify in order to accept or refuse nodes.
They can be used to implement different heuristics to prune the
chase tree. For example, a forward-only cost manager accepts only
forward changes and discards those that contain backward ones; a
maximum-size cost manager accepts new branches in the chase tree
as long as the number of leaves is less than N .

During the demonstration we plan to show how to obtain a good
compromise between the quality of the solutions and the execution
times by working with cost managers and their parameters, user-
specified preference rules, and user-inputs, which, together, give a
fine-grained control over the solution-generation process.

5. REFERENCES
[1] M. Dallachiesa, A. Ebaid, A. Eldawy, A. K. Elmagarmid,

I. Ilyas, M. Ouzzani, and N. Tang. Nadeef: a commodity data
cleaning system. In SIGMOD, pages 541–552, 2013.

[2] R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data Exchange:
Semantics and Query Answering. TCS, 336(1):89–124, 2005.

[3] W. Fan and F. Geerts. Foundations of Data Quality
Management. Morgan & Claypool, 2012.

[4] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The
LLUNATIC Data-Cleaning Framework. PVLDB,
6(9):625–636, 2013.

[5] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. Mapping and
Cleaning. In ICDE, pages 232–243, 2014.

[6] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. Mapping and
Cleaning: the Llunatic Way. Technical Report TR 1-2014 –
University of Basilicata
http://www.db.unibas.it/projects/llunatic/, 2014.

[7] D. Loshin. Master Data Management. Knowl. Integrity, Inc.,
2009.

[8] B. Marnette, G. Mecca, P. Papotti, S. Raunich, and
D. Santoro. ++Spicy: an OpenSource Tool for
Second-Generation Schema Mapping and Data Exchange.
PVLDB, 4(12):1438–1441, 2011.

[9] G. Mecca, P. Papotti, and S. Raunich. Core Schema
Mappings: Scalable Core Computations in Data Exchange.
Inf. Systems, 37(7):677–711, 2012.

[10] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez, and
R. Fagin. Translating Web Data. In VLDB, pages 598–609,
2002.

1568

