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Abstract. The hierarchical and semistructured nature of XML data may cause
complicated update behavior. Updates should not be limited to entire document
trees, but should ideally involve subtrees and even individual elements. Providing
a suitable scheduling algorithm for semistructured data can significantly improve
collaboration systems that store their data — e.g. word processing documents or
vector graphics — as XML documents. In this paper we show that concurrency
control mechanisms in CVS, relational, and object-oriented database systems are
inadequate for collaborative systems based on semistructured data. We therefore
propose two new locking schemes based on path locks which are tightly coupled
to the document instance. We also introduce two scheduling algorithms that can
both be used with any of the two proposed path lock schemes. We prove that both
schedulers guarantee serializability, and show that the conflict rules are necessary.

Keywords: XML, semistructured data, path lock, serializability, scheduler, concur-
rency control

1. Introduction

Semistructured data (Abiteboul, 1997; Abiteboul et al., 1999) is an
important topic in Information Systems research that has been studied
extensively — especially regarding query languages (Abiteboul et al.,
1997; Buneman et al., 2000; Florescu et al., 1997) — in the past and
which has regained importance due to the popularity of XML (Bray
et al., 2000). Even though XML is not meant to replace traditional
database systems, lately an interest in native XML databases has sur-
faced. Consequently, all features present in relational and object-oriented
databases are revisited in the context of semistructured data. One such
feature is the inclusion of an update language in XML databases. Possi-
bly due to the existence of the DOM (Wood et al., 1998) interface which
enables the user to change XML data in a procedural way, relatively
little research has been done regarding update languages for XML;
current proposals are (Lehti, 2001; Tatarinov et al., 2001).

A second feature that must be present in any XML database, is a
concurrency control mechanism that allows multiple users to query
and update a document simultaneously. Concurrency control (Weikum
and Vossen, 2002) has been extensively studied in the context of tradi-
tional database management systems such as RDBMSs and OODBMSs
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(Bernstein et al., 1987; Gray, 1978; Papadimitriou, 1986). This litera-
ture has introduced important concepts such as locks, transactions,
schedulers, etc. Protocols such as two phase locking have been proposed
to ensure serializability (Eswaran et al., 1976) — the central theoretical
notion of correctness for concurrent database systems — of schedules
of data manipulation language actions. Also, locking mechanisms such
as predicate locking (Eswaran et al., 1976), hierarchical locking (Gray
et al., 1975; Gray et al., 1976) and tree based locking protocols (Silber-
schatz and Kedem, 1980) have been introduced to suit special needs
and to increase the level of concurrency that is allowed by schedulers.

The result of this research has been the incorporation of efficient
scheduling algorithms in traditional DBMSs which ensure serializability
and which allow a high degree of concurrency.

In contrast, research in the field of semistructured databases so far
has been focussed on single-user environments, where documents are
created, stored and altered by one user. Thus, if one wants to collab-
orate on an XML document, an existing collaboration system such as
CVS (Cederqvist et al., 1993) has to be used. These systems, however,
have a very coarse granularity and do not make use of locking schemes
— multiple users can check out and make changes only upon entire
documents simultaneously. The CVS system will then attempt to re-
solve conflicts automatically, and if it fails to do so, solicit help from
the user.

Using concurrency control methods of existing systems As already men-
tioned, relational database systems have long since dealt with update
conflicts in a satisfactory manner. Consequently, one way to offer con-
current update access to an XML document would be to store the doc-
ument in relational database tables, and then use the existing locking
scheme from the RDBMS. Unfortunately, as we will show in Section 3,
this method — while guaranteeing serializability — often causes locks
that are too restrictive.

Several existing XML-enabled relational database systems, such as
Oracle 9i and Microsoft SQL Server, do use either variants of the
traditional relational locking mechanisms, or provide conflict detection
based on optimistic concurrency control.

Object-Oriented databases (Khoshafian, 1993) also offer concurrency
control. A significant portion of research (Barghouti and Kaiser, 1991;
Loomis, 1995), however, deals with supporting long-lived transactions,
thereby relaxing the serializability requirement. Of more interest to our
work is the research that looks at locking hierarchical objects (Cellary
et al., 1988; Khoshafian, 1993). In such systems, locking can be based
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on a hierarchy of collections, extents, objects etc. Protocols similar to
those of relational databases extended with intentional locks are used.
The remarks made in Section 3, are therefore also valid for OODBMSs.

Finally, the Lore database management system for semistructured data
(Abiteboul et al., 1997; McHugh et al., 1997) did not contain support
for concurrency control that utilizes semantical information, although
this was mentioned in “future work”. Instead, it used page-based strict
two phase locking. The authors of Lore pointed out that “the semistruc-
tured nature [would] require us to rethink some aspects of traditional
solutions” to concurrency control.

Contribution Since we cannot simply put XML documents in relational
or object-oriented databases without losing a high degree of concur-
rency, what is needed is a profound adaption of the work done in the
field of these traditional databases to suit the needs of a semistructured
database.

In this paper we therefore propose a simple data model to repre-
sent an XML document and detail two perspectives on the transaction
model for an XML database. We also propose two new locking schemes
based on path locks and introduce two scheduling algorithms that can
both be used with any of the two proposed path lock schemes. We
prove that both schedulers guarantee serializability, and show that the
conflict rules are necessary.

Organization In Section 2 we present a running example that will
appear throughout the paper, and also introduce two use cases for
concurrency control for semistructured data. We show in Section 3
that traditional solutions from relational and object oriented database
systems are not sufficient to support the use cases. This result gives
the motivation for the research presented in this paper.

Section 4.1 gives the first of two perspectives on the data model and
the query- and update language; this perspective is for users manipulat-
ing XML documents. In Section 4.2 we present the second perspective,
to be used by the XML database’s scheduling algorithm. We therefore
also define the notions of actions, transactions and schedules.

Section 5 introduces two different locking schemes that describe
which operations in the transactions need which locks and defines when
such locks conflict. The complexity of checking for conflicts in both
schemes is given, and we show that the two schemes are equivalent
regarding the conflicts they detect.

The definitions of two schedulers are given in Section 6. In Sec-
tion 7 we show that both schedulers guarantee their output schedules
to be serializable. We also characterize the data structure needed by
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the schedulers, and show that the conflict rules given in Section 5 are
necessary. We end with a short conclusion in Section 8, in which we
also briefly outline possible future work.

2. Running Example and Use Cases for Concurrency

In this paper we will use a running example to clarify important con-
cepts.

EXAMPLE 1 (Running Example). Figure 1 shows a part of an XML
document representing genealogical information.

We assume no given DTD for the document; the scheduling algorithm
makes use of the instance, not the schema of the database.

<doc>

<person id="1", age="55">

<name>Peter</name>

<addr>Parkl7</addr>

<child>

<person id="3", age="22">

<name>John</name>

<addr>Unistr1</addr>

<hobby>swim</hobby>

<hobby>cycling</hobby>

</person>

</child>

<child>

<person>

<name>David</name>

</person>

</child>

</person>

<person id="2", age="43", spouse="1">

<name>Mary</name>

<hobby>paint</hobby>

</person>

</doc>

Figure 1. A fragment of an XML document D.
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To show that existing concurrency control methods are insufficient, and
to illustrate what our transaction model contributes, we will make use
of two use cases.

2.1. Use Cases for Concurrency

The use cases describe transactions from different users or processes
that need to be allowed to run concurrently. This means that the
individual actions of these transactions should not conflict with one
another.

USE CASE 1. Consider that a user U has accessed document D of
Figure 1 and has “seen” (queried) elements <hobby> appearing at any
level under elements <child> which themselves can be found at any
depth in the XML tree representing D. Stated differently, using the
XPath surface syntax, user U has issued the query //child//hobby.
As the answer to this query, user U has received all node-identifiers
of elements <hobby> that appear under some element <child>. In this
case, these hobbies correspond to hobbies swim and cycling, but not to
paint since that hobby does not appear under a child element.

It should now be possible for a second user V to make changes to
the <hobby> element representing paint (because it does not appear in
the result of U ’s query); e.g., changing it to painting.

Use case 1 assumes that the query language can express simple
XPath queries that make use of the child-of and descendant-of axes.
No branching (use of conditions) is needed. The update language in this
scenario is assumed to be able to change the CDATA between element
tags. In particular, the element to be changed is a leaf element.

USE CASE 2. Consider that a user U has accessed document D of
Figure 1 and has “seen” (queried) elements <hobby> appearing at any
level under elements <person> which themselves are children of the
<doc> element. This in effect means that user U has issued the XPath
query /doc/person//hobby.

It should now be possible for a second user V to create a <person>

element which is a child of the element <doc>.
On the other hand, if V is allowed to subsequently create a <hobby>

element at any level under this newly created <person>, this may lead
to inconsistencies.

The second use case implies the same assumptions with regard to
the query language as the first use case. The update language in this
scenario is assumed to be able to create leaf elements.
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3. Insufficiency of Existing Concurrency Control Methods

In the introduction we have described how current document collabo-
ration systems such as CVS do not offer a locking scheme of adequate
granularity. In this section, we show that storing XML data in a re-
lational database and using the RDBMS’s concurrency mechanisms is
also insufficient. Stated differently, we show that the use cases fail.

Semistructured data can be stored in relational databases in many
different ways (Deutsch et al., 1999; Florescu and Kossmann, 1999). For
all these different representations, the locking mechanisms of RDBMSs
may cause locks that are too restrictive. Central in our proof is the fact
that the parent-child relationship is typically modelled within one rela-
tion. Though this relationship can indeed be split up in several tables,
in general one table will — because of XML’s semistructured nature
(elements can exist at any nesting depth) — contain arbitrarily many
tuples that model the parent-child relationship. For our discussion it is
therefore appropriate to abstract this into one relation.

We will examine the following locking mechanisms utilized by relational
database systems. First, we start with the simplest case where entire
tables are locked to prevent phantoms (Date, 2000) from occuring. Sec-
ondly, as an improvement to the first system, we investigate predicate
locks. To conclude the comparison with RDBMSs, we look at intention
locks and tree locking.

3.1. Table locking

In this approach the entire table representing the hierarchy will be
locked in case of query that traverses the hierarchy. If this were not the
case, a phantom could occur; i.e., an insert update could generate a
tuple that should be in the result of the original query. Since we require
serializability, we cannot permit phantoms.

A lock on the entire parent-child relationship table makes it impos-
sible, however, to add an element in a subtree that has not been read
by any user. This will be made clear in the following property.

PROPERTY 1. Use Case 1 fails when document D is represented by
an Edge Table (Florescu and Kossmann, 1999) in an RDBMS, and the
database system employs the table locking mechanism.

Proof. Using the Edge Table approach proposed by (Florescu and
Kossmann, 1999) to convert XML data to the relational model, we
get the table presented in Table I.
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Table I. A fragment of the Edge Table
for XML document D.

source ordinal name target

1 1 age 55

1 5 child 3

1 6 child 4

3 5 hobby swim

3 6 hobby cycling

2 4 hobby paint

. . . . . . . . . . . .

We are obliged — since we require serializability and thus do not
allow phantoms that could be introduced if row-level locking was used
— to lock the entire Edge Table for user U ’s query.

Using an RDBMS table locking scheme on this and other relational
representations of D would prohibit the user V from performing his
update because the entire table is locked. 2

3.2. Predicate Locks

Predicate locks (Eswaran et al., 1976; Weikum and Vossen, 2002) have
been introduced to fix the problem mentioned above. There is no longer
any need to lock an entire table; phantoms cannot occur because pred-
icates are given that describe the tuples that have been selected in an
insert, update or delete query. New or altered tuples that satisfy
these predicates cannot be added to the table, thus eliminating the
threat of phantoms.

Predicate locks have two problems in view of this work, however. First,
they are rarely implemented in commercial relational databases systems
because they are prohibitively expensive. Indeed, testing satisfiability
for even simple predicates (i.e. consisting of Boolean combinations
of comparisons between a field of a tuple and a constant) is NP-
complete (Hunt and Rosenkrantz, 1979). Surprisingly, this even holds
true for predicates that do not contain disjunction. Thus, storing XML
in existing RDBMSs and using the product’s locking scheme will almost
certainly not offer the benefits of predicate locks.

The second and most important problem is that while predicate locks
come very close to capturing the expressiveness of our proposed locking
scheme, they still fall short. This is because predicates do not take the
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containment hierarchy into account; locks work over the entire table
representing the parent-child relationship.

PROPERTY 2. Use Case 2 fails when document D is represented by
an Edge Table in an RDBMS, and the database system employs the
predicate lock mechanism.

Proof. Property 1 presented a partial translation of D to the Edge
Table approach. Assume that the root node <doc> has the internal
element identifier 0 such that in the relational representation of D it is
identified by source=‘0’.

When a user poses the query /doc/person//hobby, this has the infor-
mal meaning that an element <person> may be added directly ‘under’
<doc> as long as no <hobby> element is later added somewhere under
<person>.

To evaluate the query in a relational database that uses predi-
cate locks, consider that the query processor starts by reading all
the <person> children of the <doc> node such that in a next phase
it can recursively look for <hobby> nodes under the <person> nodes.
This first read query will result in the predicate lock source=‘0’ ∧
name=‘person’. Clearly, this is not what we want, since this predicate
lock means that no-one can insert a new <person> element under the
root, regardless of whether a <hobby> element gets inserted under it in
a later phase or not. 2

In (Dekeyser and Hidders, 2002a) we show that one can fundamen-
tally change the process by which predicate locks are set such that the
new relational locking mechanism closely mimics the way our proposed
system works. However, such extentions require the re-evaluation of
each active query each time an update is performed. Additionally, the
satisfiability problem remains. For all these reasons, predicate locks
in relational database systems are unsuited for the kind of locking
mechanism we would like to use for XML documents.

3.3. Hierarchical and Tree Locking Protocols

Hierarchical locking protocols (Gray et al., 1975; Gray et al., 1976),
also known as “multigranularity locking protocols”, are used for data
that can be thought of as nested hierarchical granules and where it is
important that we can place locks on granules at different levels in the
hierarchy. Usually such protocols allow shared and exclusive locks at
different levels but with the restriction that if a granule is to be locked
then corresponding intention locks (or stronger locks) must be acquired
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for all the ancestors, i.e., the granules that directly or indirectly contain
this granule. Additionally, if a granule is to be extended with a new
element then an exclusive lock on the granule must be acquired.

PROPERTY 3. Use Case 1 fails when the database system that stores
document D employs the hierarchical locking mechanism.

Proof. If the hierarchical locking protocol is applied to D then a query
like //child//hobby will require shared locks on the whole document
tree and therefore disallow any update on it by other transactions. 2

Object-oriented databases typically implement some version of the hi-
erarchical locking protocol (Khoshafian, 1993). The granules in this
case are, for example, classes, extents, objects, etc.

Tree Locking Another type of protocol that is often used for hierarchical
data are so-called tree locking protocols (Silberschatz and Kedem, 1980).
In these protocols locks do not hold for entire granules but only for
nodes, i.e., when a node is locked its descendants are not also locked.
However, there is the restriction that a lock can only be acquired for a
node if an identical or stronger lock was already obtained for the parent
of the node. Furthermore, as in hierarchical locking protocols, we need
to acquire an (exclusive) lock on a node if we want to add or remove
children (Lanin and Shasha, 1986).

Tree Locking protocols are used in multi user operating systems to
allow concurrent access to the directory structure.

PROPERTY 4. Use Case 1 fails when the database system that stores
document D employs the tree locking mechanism.

As for the hierarchical locking protocol, when using tree locking it
holds that a query like //child//hobby will require shared locks on all
the element nodes in the document tree and thereby block any update
by other transactions. 2

If use case 1 is altered such that the query does not make use of the
descendant-of axis (e.g., /doc/person/child/person/hobby), the tree
locking protocol would correctly process use case 1. This does not hold
for use case 2, however, which fails whether or not the query makes use
of the descendant-of axis.

For a comprehensive overview of Hierarchical Locking and Tree Locking
protocols, see (Barghouti and Kaiser, 1991).
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4. Two Perspectives on the Transaction Model

In this paper we present two perspectives on the transaction model: the
user’s perspective and the scheduler’s perspective which extends the
first with the necessary scheduling information. In the next section we
give the user perspective before turning to the scheduler’s perspective
in Section 4.2.

Each perspective defines what transactions are. More precisely, we de-
tail which operations can be used in transactions, and over which data
model these operations are defined.

4.1. The User Perspective

Consider that users write programs in a high-level programming lan-
guage which contains special operations to manipulate an XML docu-
ment. The user’s perspective of a transaction is simply a sequence of
such operations.

In the present section, we give a simple model for representing XML
documents and introduce a query and update language defined over this
simple model. We then proceed with formally defining transactions as
seen from the user’s perspective.

4.1.1. Data Model
The data model we assume for XML documents is a simplification of
the standard XPath data model (Fernández et al., 2002), which is itself
based on the XML Information Set (Cowan and Richard, 2001). The
basic notion in our data model is the xp-tree (XPath tree).

DEFINITION 1 (Xp-tree). An xp-tree d is a tuple (N,B, r, ν) where
N is a set of nodes, B : N × N is a binary relation representing the
directed edges (branches) of the tree d, and r ∈ N is the root node of d.
The function ν maps nodes (except r) to strings representing the node’s
name.

Seen from the user’s perspective, an XML document is an instance of
the xp-tree data model. We briefly discuss the differences between the
XML data model and the xp-tree data model.

Translating an XML document to an xp-tree The xp-tree data model
resembles the XML data model. For instance, references are treated as
in XML: the attributes in which they appear are modelled as ordinary
nodes in the xp-tree. However, there are a few important differences.
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First, our model lacks an ordering of sibling nodes. This is not
crucial, however, since an ordering can be simulated by using a skewed
binary xp-tree.

Secondly, a single XML document may be represented by several xp-
trees which are equal up to isomorphism. Stated differently, node iden-
tifiers in our model are only incidental; they do not remain persistent
after a user process is finished manipulating the document.

Finally, in our model we do not distinguish between element, at-
tribute or text nodes. It would be trivial, however, to add a type
function to the xp-tree model to solve this. For simplicity, we have
refrained from doing so in this paper. Instead, text appearing in an
XML document is simulated in our model. As a consequence, in our
model an ‘element’ node may contain several ‘attributes’ of the same
name. Likewise, it is possible for several ‘text’ nodes to be adjacent to
each other. Furthermore, updating text is simulated by replacing the
node representing the orginal text with a new node that has a different
name. In (Dekeyser and Hidders, 2002b) we give an alternative method
for treating text and attributes.

We now turn to an example to illustrate the xp-tree concept.
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Figure 2. An xp-tree representation of XML document D.

EXAMPLE 2. Figure 2 shows an xp-tree representation d of document
D given in Figure 1. Note that for purely didactical reasons we have
made a distinction in the manner in which nodes of different types
(elements, attributes, and text) are presented. Thus, black circles denote
element nodes, while white circles denote text nodes and gray circles
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represent attribute nodes. The names of the nodes are given in Table II.
Note also that the document order is not preserved.

Table II. Node names of the xp-tree shown in Figure 2.

ν(n1) = doc ν(n11) = Parkl7 ν(n21) = Mary ν(n31) = hobby

ν(n2) = person ν(n12) = @age ν(n22) = @spouse ν(n32) = 3

ν(n3) = person ν(n13) = child ν(n23) = 1 ν(n33) = 22

ν(n4) = @id ν(n14) = 55 ν(n24) = hobby ν(n34) = John

ν(n5) = 1 ν(n15) = person ν(n25) = paint ν(n35) = Unistr1

ν(n6) = child ν(n16) = @id ν(n26) = @id ν(n36) = swim

ν(n7) = person ν(n17) = 2 ν(n27) = @age ν(n37) = cycling

ν(n8) = name ν(n18) = @age ν(n28) = name ν(n38) = name

ν(n9) = Peter ν(n19) = 43 ν(n29) = addr ν(n39) = David

ν(n10) = addr ν(n20) = name ν(n30) = hobby

We now define the notion of a label path.

DEFINITION 2 (Label Path). The label path from node n1 to node
nm in an xp-tree d, denoted λd(n1, nm) and abbreviated to λ(n1, nm)
when it is clear to which xp-tree the label path is associated, is the
string “l1/ . . . /lm−1” if there is in d a path from n1 to nm such that for
all i, 1 ≤ i ≤ m− 1, the i-th edge in this path ends in a node with label
li. If n1 = nm, then the label path is the empty string. If no sequence
of edges exists between n1 and nm, and n1 6= nm, then the label path
λd(n1, nm) is not defined.

Now that we have defined the data model, we turn our attention to
the data manipulation language. We will start with the query language.

4.1.2. Query Language
The user accesses an XML document through the use of a query opera-
tion. This operation in turn makes use of XPath-like path expressions.
Before turning to the precise semantics of the query operation for our
data model, we give the grammar and semantics of our path expres-
sions. We use a limited version of the surface syntax of XPath which is
described by the following grammar

P ::= F | P/F | P//F

F ::= E | ∗

where E is the universal set of strings representing the names of ele-
ments.
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Note that in the full XPath surface syntax it is possible to start a
path expression with a single or a double slash, the former denoting an
absolute path, and the latter denoting the descendant-of axis. In this
paper, an absolute path can be easily simulated in the query operation
defined later in this section. An XPath expression starting with a dou-
ble slash can be simulated by using two of our path expressions. For
example, an XPath expression //person/child can be simulated by the
path expressions person/child and *//person/child.

We now turn to the semantics of path expressions. These will be useful
in Section 5.2 in the description of conflict rules in the Path Lock
Satisfiability scheme. In the following definition, the dot · denotes the
concatenation of sets of strings. Also, we use the Kleene-star ∗ to denote
the zero or more recurrences of a substring.

DEFINITION 3 (Semantics of path expressions). Let L(p) be the set
of label paths selected by path expression p. We define L recursively as
follows.

L(∗) = E

L(e) = {e} with e ∈ E.

L(p/f) = L(p) · {/} · L(f)

L(p//f) = L(p) · {/} · (E · {/})∗ · L(f)

Thus, L(p) is the language of which the strings are the label paths
represented by the path expression p.

Query Operation Path expressions are used in query operations over a
certain xp-tree d. Informally, the semantics of a query operationQ(n, p)
are the same as for XPath expressions: the result of Q(n, p) is the set of
nodes selected by the path expression p started from the context node
n. Note that Q denotes “query”.

DEFINITION 4 (Semantics of the query operation). The result of a
query operation Q(n, p) over xp-tree d is defined as the set of all nodes
n′ in d such that λd(n, n

′) ∈ L(p).
A query operation never fails; if the context node n is not a node in

the xp-tree d, we define the result of the query operation to be empty.

We assume that during a transaction the user has a set of variables
X = {x1, x2, . . .} into which he can store the results of the queries.
The contents of these variables may be manipulated, in a generic or
non-generic manner, by the user as long as they always contain sets of
nodes that were previously retrieved in the same transaction.
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When the user first makes a connection to the XML database with
the intention to query or update a document represented by the xp-tree
d, he receives the root node r of d. The node r can then be used as
the context node in a query operation of which the result is stored in
a variable xi of X . One or more of the nodes in xi can then be used as
the context node in subsequent query operations.

4.1.3. Update Language
Next to the query operation we also define update operations that can
be called by the user to change the document. The parameters to our
operations include nodes which were extracted from the result of the
query operations that the user posed before requesting an update. Thus,
writing (i.e., updating the document) always implies reading. This will
be formalized in Definition 7 later in this section.

We now turn to the formal presentation of the addition and deletion
operations.

DEFINITION 5 (Update operations on xp-trees). The following two
update operations operate on a certain xp-tree d.

A(n, a) This operation creates a new node n′ with ν(n′) = a and a new
edge (n, n′) in the xp-tree d. The operation fails if the resulting
document is not an xp-tree. If successful, the result of the addition
operation is {n′}.

D(n) This operation removes the node n and the edge incident to n
from the xp-tree d. The operation fails if the resulting document is
not an xp-tree. If successful, the result of the deletion operation is
the empty set.

Note that A is an abbreviation of “addition”, while D denotes “dele-
tion”. We proceed with a small example to clarify these operations.

EXAMPLE 3. Consider the xp-tree d given in Figure 2. The update
operation A(n3, child) is successful; its result is the new node n40 with
ν(n40) = child.

The operation D(n2) fails because the resulting document is not an
xp-tree (the graph becomes unconnected).

We are now ready to formally define transactions as seen from the
user’s perspective. In addition to the three operations defined earlier
— Q(n, p), A(n, a), and D(n) — the following definition will mention
the commit operation C() of which the semantics, for now, is taken to
be empty. We will revisit this operation in the next section.
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DEFINITION 6 (User Transaction). A user transaction is a finite list
of operations Q(n, p), A(n, a), D(n), and C(). This list contains ex-
actly one C() operation; occurring at the end.

The following definition formalizes our earlier remark that in our trans-
action model writing implies reading.

DEFINITION 7 (Node-correct Transaction). A transaction is said to
be node-correct if for every operation that uses a certain node identifier
other than the root r as a parameter, there is an earlier operation (an
addition or a query) in the transaction that had this node in its result.

We have now defined the data model and transactions of data ma-
nipulation language operations over the data model that can be used
by a user to alter a document. We will now turn to the internal repre-
sentation of the document by the scheduler, and review the semantics
of the data manipulation operations. Stated differently, we now turn to
the scheduler’s perspective on transactions.

4.2. The Scheduler’s Perspective

In this and the next sections, we will detail the internal workings of the
concurrency control mechanism we propose for XML databases. The
prime notion in this context is that of the scheduler. While we will
define and discuss two schedulers in detail in Section 6, we will already
start using the term; it is sufficient for now to recall the traditional
meaning of the scheduler.

In this section we will extend the simple data model and transaction
model presented in the previous section. The extension is necessary for
the scheduler to manage concurrent manipulations of a document by
multiple users.

We proceed with extending the xp-tree data model.

DEFINITION 8 (Instance graph and actual instance). The instance
graph (N,B, r, ν, δ) is a rooted acyclic graph with vertices N , edges
B ⊆ N×N , the root r, nodes labeled with element names by ν : N → E
and with sets of transaction identifiers by δ : N → 2T . The sets of
transaction identifiers indicate that the node has been deleted by these
transactions. The subgraph defined exactly by the nodes that are labeled
by δ with the empty set is called the actual instance and is presumed to
be always an xp-tree extended with the δ function.
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An xp-tree is itself a special case of an instance graph which forms a tree
in which all nodes are labeled by δ with the empty set of transactions.
We give a small example next.

EXAMPLE 4. Consider the xp-tree d given in Figure 2. Let d also
be an instance graph I. Assume that we extend I with the following
δ-labelings: δ(n15) = {t1}, δ(n38) = {t1}, and δ(n39) = {t1, t2}, to I ′.

In I ′, the actual instance is the graph d without the nodes n15, n38

and n39 and the edges (n13, n15), (n15, n38) and (n38, n39).

As we detailed in the previous section, users can send data manipu-
lation operations to the document server consecutively; the operations
that he can send are the ones given in Definition 6. However, these
operations were defined on xp-trees, because for users this is the in-
tended semantics. Since the scheduler makes use of an instance graph
(to keep track of ‘dirty’ updates) rather than an xp-tree, we need to
redefine the operations slightly. The users need not be aware of these
new semantics, since ultimately the scheduler must make sure that the
semantics are the same as the intended semantics.

DEFINITION 9 (Operations on the instance graph). The four follow-
ing operations are defined on an instance graph.

A(n, a) The semantics of this update operation are largely unchanged
from Definition 5, except that now the operation fails if in the
resulting instance graph the actual instance is not an xp-tree1 with
root r.

D(n) The semantics of this update operation have changed completely.
No nodes are removed from the instance graph; instead this opera-
tion adds the transaction identifier of the executing transaction to
the set that the node n is δ-labeled with. The operation fails if in
the resulting instance graph the actual instance is not an xp-tree1

with root r.

Q(n, p) This query operation works only on the actual instance of the
instance graph. As such, its semantics are unchanged.

C() The commit operation removes nodes from the instance graph that
are labeled by δ with at least the identifier of the executing trans-
action.

1 We mean an xp-tree extended with the δ function that maps each of its nodes
to the empty set of transactions.
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Note that the definitions of the four operations are such that given
an instance graph in which the actual instance is indeed an xp-tree (as
it is presumed to be), then the resulting actual instance is also an xp-
tree. This is true since the addition and the deletion fail if the actual
instance in the result would not be an xp-tree, and the query and the
commit do not change the actual instance. In addition, we can prove
the following lemma.

LEMMA 1. The application of an operation on an instance graph does
not introduce cycles (directed or undirected) in the resulting instance
graph.

Proof. It is clear that only the addition operation generates new edges.
Consider the addition A(n, a) which creates a new edge (n, n′). Since
n′ is always a new node, no cycles can be constructed. 2

Now we are ready to formally define actions, transactions (as seen from
the scheduler’s perspective) and schedules.

DEFINITION 10 (Action, Transaction, and Schedule). An action is a
pair a(o, t) where o is one of the operations given in Definition 9 and t
is a transaction identifier. A transaction is a finite list of actions that
all have the same transaction identifier and in which there is exactly
one commit operation which is in the last action. A schedule is an
interleaving of a set of transactions.

EXAMPLE 5. Consider the xp-tree d given in Figure 2 which acts as
the initial instance graph. Consider also the schedule

S = 〈a1(D(n39), t1), a2(D(n38), t2),

a3(C(), t2), a4(C(), t1)〉.

The result, after action a3 but before action a4, is an instance graph
that is unconnected. The actual instance, however, remains an xp-tree.

DEFINITION 11 (Node-correct Schedule). A schedule is said to be
node-correct if all its transactions are node-correct (see Definition 7).

Thus, the schedule S presented in Example 5 is not a node-correct
schedule. Indeed, transactions t1 and t2 have used the nodes n38 and
n39 without having obtained them through an earlier query or update
operation.

In the remainder of this paper, we will always assume schedules to
be node-correct.
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We now turn to the discussion of path locks which will be used by the
scheduler to ensure serializability of schedules.

5. Path Lock Schemes

In this section we introduce read and write locks that are associated
to the instance graph which represents an XML document. We will
present two path lock schemes: “Path Lock Satisfiability”(abbreviated
to sat) and “Path Lock Propagation” (abbreviated to prop) (Dekeyser
and Hidders, 2002b). The latter scheme causes a multitude of read
locks to be obtained but makes checking for conflicts trivial, as it only
checks lock equality locally (i.e. within one node). The former scheme,
in contrast, sets very few locks but requires more work when checking
for conflicting locks. We will formally compare the two schemes in
Section 5.3.

We first introduce the path lock propagation scheme.

5.1. Path Lock Propagation Scheme

We will start by defining read and write locks, and discuss which locks
must be obtained by which operations. We then proceed with giving the
conflict rules. Finally, we also characterize the complexity of checking
for lock conflicts in the propagation scheme.

5.1.1. Read Locks and Write Locks
We start with the definition of the read locks.

DEFINITION 12 (Read Lock). A read lock is a tuple rl(t, n, p) where
t is the transaction which owns the lock, n is the node identifier in the
instance graph for which the lock holds and p is a path expression in P.

The informal meaning of such a lock is that the transaction has issued
a query p starting from node n.

The initial read lock for a given query operation Q(n, p) that is issued
by transaction t is simply rl(t, n, p). From the initial read lock we can
derive other read locks by a process called read-lock propagation.

The process of read-lock propagation causes read locks on a node
to be propagated to nodes just below this node in the instance graph.
This is done with the rules shown in Table III.

The process of read-lock propagation is applied until no more new
read locks are added; this process ends since the instance graph is both
finite and acyclic. The result is a set R∗

q of read locks.
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Table III. Propagation Rules for Read Locks.

1. rl(t, n, a/p) → rl(t, n′, p) if (n, n′) ∈ B and ν(n′) = a.

2. rl(t, n, ∗/p) → rl(t, n′, p) if (n, n′) ∈ B.

3. rl(t, n, a//p) → rl(t, n′, p) if (n, n′) ∈ B and ν(n′) = a.

4. rl(t, n, a//p) → rl(t, n′, ∗//p) if (n, n′) ∈ B and ν(n′) = a.

5. rl(t, n, ∗//p) → rl(t, n′, p) if (n, n′) ∈ B.

6. rl(t, n, ∗//p) → rl(t, n′, ∗//p) if (n, n′) ∈ B.

The following defines which read locks need to be obtained for the query
operation Q(n, p) issued by transaction t:

Q(n, p): The lock rl(t, n, p) and those that are derived from it through
propagation.

Note that this set of locks depends upon the instance graph, it has to
be recomputed every time the instance graph is updated. This recom-
putation after an update can be done by propagating only the locks
of the parent that a node is created or deleted under. Thus, it can be
done relatively efficiently.

We proceed with the definition of the write locks.

DEFINITION 13 (Write Lock). A write lock is a tuple wl(t, n, f) for
which t is the transaction which owns the lock, n is the node identifier
for which the lock holds, and f is an expression over F .

The following defines which write locks must be obtained for which
update operation issued by transaction t:

A(n, a): A write lock wl(t, n, a) on node n for transaction t.

D(n): Write locks wl(t, n, ∗) and wl(t, n′, a) where n′ is the parent of
n in the instance graph and a is the label of n. If n or n′ does
not exist, then the corresponding write lock does not need to be
obtained.

We now turn to an example to clarify the definitions in this section.

EXAMPLE 6. Consider the xp-tree d given in Figure 2 and the first
two actions of schedule S given below. The following table presents all
the locks associated to d′, which is the instance graph obtained after a1

and a2 are applied to xp-tree d.

S = 〈a1(Q(r, doc/person/child/person/name), t1),

a2(D(n25), t2), . . .〉
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rl(t1, r, doc/person/child/person/name)

rl(t1, n1, person/child/person/name)

rl(t1, n2, child/person/name)

rl(t1, n3, child/person/name)

rl(t1, n6, person/name)

rl(t1, n13, person/name)

rl(t1, n7, name)

rl(t1, n15, name)

wl(t2, n24, paint)

wl(t2, n25, ∗)

As will be explained in Section 6, locks are kept until a transaction com-
mits. This amounts to two-phase locking (2PL); together with correct
locking behavior, this will ensure serializability.

5.1.2. Lock Compatibility
We have established which read locks are to be obtained by queries
and which write locks are to be obtained by update operations. What
remains to be defined is when exactly such locks can be obtained when
other transactions have also obtained locks upon the same document.
For this purpose we define the notion of conflicting locks.

DEFINITION 14 (Conflicting Path Locks in prop). A read lock such
as rl(t, n, a) or rl(t, n, ∗) conflicts with a write lock wl(t′, n, a) and a
write lock wl(t′, n, ∗) if t 6= t′. Note that a is a single symbol in F . All
other locks do not conflict.

According to the definition, two write locks do not conflict. Indeed,
the serializability proof in Section 7 shows that the conflict rules given
above are sufficient to ensure serializability. The intuition behind this
is as follows.

1. In general, two update operations from different transactions logi-
cally commute. Indeed, since we work with unordered documents,
it does not matter for example which one of two additions comes
first.

2. For those cases which do not logically commute — for instance, if
a transaction deletes a node created by another transaction — the
node-correctness property of transactions ensures that a read-write
conflict arrises prior to the update.
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EXAMPLE 7. The read lock rl(t1, n38, name) conflicts with the write
lock wl(t2, n38, ∗); but rl(t1, n25, *//child//hobby) and wl(t2, n25, ∗) do
not conflict. The set of locks associated to the instance graph d′ of
Example 6 did not contain conflicting locks.

5.1.3. Complexity
The complexity of the Path Lock Propagation scheme is as follows.
Checking for a read- and write lock conflict is clearly relatively simple
in this system. Consider the path locks rl(t, n, a) and wl(t′, n, a′), where
a is an expresion over F . The two locks are associated to the same node
n, and only the equality of a and a′ needs to be checked. Thus, the time
complexity of checking for conflicts in the propagation system is O(1).

The setting of read locks can occur at the time of query evaluation;
this causes only a small increase in execution time.

Thus, while the time complexity of checking for conflicts in this
method is low, the space and time complexity of setting the locks is a
more serious issue. Specifically, the complexity is O(nm), where n is
the size of the tree, and m is the length of the lock expression.

5.2. Path Lock Satisfiability Scheme

We now turn to an alternate path lock scheme. In contrast to the Path
Lock Propagation scheme, the satisfiability scheme requires fewer locks
to be obtained but is more complex with regard to testing for conflicts.

5.2.1. Read Locks and Write Locks

Read Locks Read locks in sat are defined as in prop. However, it is
sufficient to obtain for a given query operation only the initial read
lock. Thus, the lock propagation process is not applied in this case.

Write Locks Write locks in sat are defined exactly as in prop. Also,
the update operations are to obtain the same write locks as defined
earlier.

As in prop, all locks owned by a transaction are retained until that
transaction commits.

5.2.2. Lock Compatibility
As in the path lock propagation scheme, we must define when path
locks in the satisfiability scheme conflict.

DEFINITION 15 (Conflicting Path Locks in sat). Read lock rl(t, n, p)
conflicts with write lock wl(t′, n′, f) iff (1) t 6= t′, (2) n is an ancestor
of n′, and (3) λ(n, n′)/f ∈ L(p). All other locks do not conflict.
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EXAMPLE 8. Consider the same schedule S and instance graph d′ as
in Example 6. In the sat scheme, the following are the only path locks
that need to be obtained.

rl(t1, r, doc/person/child/person/name)

wl(t2, n24, paint)

wl(t2, n25, ∗)

There are no conflicting locks, as

λd′(r, n24)/paint 6∈ L(doc/person/child/person/name).

Likewise, λd′(r, n25)/∗ 6∈ L(doc/person/child/person/name).

5.2.3. Complexity
Clearly the space complexity in this scheme is not an issue; we have
already shown that fewer locks need to be obtained than in prop.
Relative to the size of the instance graph, the space complexity is
O(1). However, the time complexity is more important here than in
the alternative locking scheme. Indeed, we need to check the satisfia-
bility of a path by a more general path expression. Such a test can be
likened to checking whether a string is accepted by a non-deterministic
automaton. The path expression p can be written as an NFA while a
pathname t can be seen as a string. If the string is accepted by the NFA,
the pathname is equal to one of the pathnames represented by p. From
Automata Theory, we know that this problem is of time complexity
O(n4).

5.3. Equivalence of the Path Lock Schemes

In the remainder of this paper, we will work primarily with the path
lock propagation scheme. However, the results also apply to the path
lock satisfiability scheme since the two are equivalent with respect to
the conflicts they detect. This is shown in the following theorem.

THEOREM 1. A conflict occurs in the instance graph I according to
the path lock propagation scheme if and only if a conflict occurs in I
according to the path lock satisfiability scheme.

The proof can be found in (Dekeyser, 2003).
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6. Schedulers for XML Databases

In this section we present two different schedulers for XML databases
that work on instance graphs and make use of the path locks. It is
the scheduler’s task to guarantee that the schedules it accepts are
serializable.

DEFINITION 16 (Equivalent and Serializable Schedules). Two sched-
ules are equivalent if (1) one is a permutation (preserving the order of
actions within a transaction) of the other, (2) the resulting instance
graph is in both cases the same, and (3) all the queries in one schedule
return the same result as the corresponding queries in the other sched-
ule. A schedule is said to be serializable if it is equivalent with a serial
schedule.

Depending on the definition of the scheduler, it can accept more or
fewer schedules. We will first present the commit scheduler (Dekeyser
and Hidders, 2003) and then proceed with the conflict scheduler.

6.1. The Commit Scheduler

In this section we detail the working of the commit scheduler. The term
is based on the theoretical notion of commit serializability (Weikum and
Vossen, 2002).

User processes send actions to the document server in a sequence that
can (at least a posteriori) be seen as a transaction. When an action is
sent, the process waits for a reply from the scheduler. This reply can
be positive, in which case the result (if any) of the action is obtained.
It can also be negative, if the action caused a conflict or if the action
failed. Whatever the reply from the scheduler, the sending process may
use the answer to decide whether or not to subsequently send another
action. If it decides to send another action, it may use the result from
any previous action as a parameter in the next action.

In our theoretical model we will assume that the scheduler replies
to every request before it processes the next request. Strictly speaking
dead lock cannot occur then, but it replaces the problem with live lock
if transactions repeat requests that caused conflicts. It is easy to see
how the model could be extended such that the scheduler keeps requests
that cause conflicts in a waiting queue until they no longer conflict, in
which case dead lock can be detected in the usual way with a wait-for
graph.

We now turn to the formal definition of the commit scheduler.
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DEFINITION 17 (Commit Scheduler). The commit scheduler is the
automaton whose state consists of a schedule S of actions that it has
previously accepted and processed, a set of locks L and an instance graph
I. Its transition function γ maps S, L, I and a newly requested action
a(o, t) to a schedule S ′, a set of locks L′ and an instance graph I ′ as
follows:

1. The new instance graph I ′ is obtained by applying operation o to
instance graph I. If the operation fails, then γ is not defined2.

2. For update and query operations, the set of locks L′ is obtained
by adding to L the locks required by the operation o and the locks
that are caused by propagation in I ′. For the commit operation, L′

is obtained by removing all locks from L which are owned by the
transaction that commits, plus those locks on the nodes that are
now deleted from the instance graph.

If some of the locks required by o conflict with those in L, then γ
is not defined2.

3. The schedule S ′ is S augmented with a(o, t) provided that γ did not
become undefined due to the previous points.

4. The sending process receives the result of o, if any.

The execution of the commit scheduler on a given instance graph I
starts with the empty schedule S, the empty set of locks L, and the
instance graph I. It receives the actions of S sequentially, and its result
is either (1) the output schedule S, the set of locks L, and the instance
graph I transformed according to each iteration of the commit scheduler,
or (2) undefined.

We will illustrate the definition in Example 9 below.

As can be deduced from the definition, in its first phase the scheduler
effectively does two things. First, it does a test-processing of the newly
arrived operation to see if o does not fail. Second, if the operation does
not fail, it attempts to obtain all the locks that are necessary for o. If
it can obtain all the locks, then the scheduler proceeds with the second
phase. If one of the two conditions is not met, then the action is rejected
and the sending process is notified. In case there is no failure, nor a
conflict, the operation o is effectively processed and appended to the
output schedule.

2 If γ is undefined, the sending process is notified that its action is not accepted,
and the scheduler waits for a new action. Thus deadlocks cannot occur.
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A commit of a transaction t causes all read and write locks of t to
be removed from the instance graph. Additionally, all nodes δ-labeled
with at least t are removed from the instance graph, together will all
locks on those nodes.

A serial schedule equivalent to the output schedule is obtained by
sorting the transactions according to the commit-points in the output
schedule.

We proceed with characterizing the output schedule of the commit
scheduler.

DEFINITION 18 (Legal and Fail-free Schedules). A schedule is said
to be fail-free if all its operations can be executed without any of them
failing.

A schedule is said to be a legal schedule if (1) it is node correct, (2)
fail-free and (3) for all LS

i it holds that they only contain compatible
locks.

LEMMA 2. Any output schedule of the commit scheduler is a legal
schedule.

The proof is straightforward.

At this point we have a complete transaction model plus scheduling al-
gorithm for an XML database. Using the path lock propagation scheme
and the commit scheduler, we can now solve use case 1. Note that use
case 2 can also be solved at this point, but we will do this in the next
section.

EXAMPLE 9. Consider use case 1 and the xp-tree d given in Figure 2.
The actions described in the use case translate to the schedule Sin given
next3. Let p1 = doc//child//hobby, p2 = doc/person/hobby/paint, and
p3 = doc/person/hobby.

Sin = 〈a1(Q(r, p1), t1), a2(Q(r, p2), t2), a3(Q(r, p3), t2), a4(D(n25), t2),

a5(A(n24, painting), t2), a6(C(), t2), a7(C(), t1)〉

Let the state of the commit scheduler consist of the empty schedule
S and the instance graph I0 which is equal to d extended with the δ-
function which labels all non-root nodes with the empty set. The commit

3 As discussed in Section 4.1, the manner in which we perform a text-value update
is a simulation. The result is defined up to isomorphism on the nodes. For other
transactions, this is sufficient as node identifiers are incidental.
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scheduler accepts individual actions from Sin in the sequence given by
Sin.

The schedule Sin is itself already a legal schedule, thus the output
schedule of the commit scheduler is the same as Sin.

A serial schedule equivalent to Sin is the schedule obtained by first
taking all actions of transaction t2 and then all actions of t1.

6.2. The Conflict Scheduler

In this section we detail the working of the conflict scheduler. As
with the commit scheduler, user processes send actions to the docu-
ment server in a sequence that can (at least a posteriori) be seen as
a transaction. In contrast to the commit scheduler which effectively
lets transactions wait if their request cannot be processed, the conflict
scheduler keeps accepting and processing actions until it fails.

6.2.1. Schedules Without Commits
The commit operation as defined for the Commit Scheduler is not suit-
able for the Conflict Scheduler. Therefore, we first present a scheduler
which does not accept commit operations. In the subsequent section
we will add a new kind of commits.

DEFINITION 19. The conflict scheduler is the automaton whose state
consists of a schedule S of actions that it has previously accepted and
processed, a set of locks L, a dependency graph G which is a directed
graph whose nodes are transaction identifiers, and an instance graph I.
Its transition function γ maps S, L, G, I and a newly requested action
a(o, t) to a schedule S ′, a set of locks L′, a dependency graph G′ and
an instance graph I ′ as follows:

1. The new instance graph I ′ is obtained by applying operation o to
instance graph I. If the operation fails, then γ is not defined2.

2. The new set of locks L′ is obtained by adding to L those locks that
are required by the operation o. If one of these locks conflicts with a
lock in L of transaction t′ then G′ is equal to G plus the edge (t′, t),
otherwise G′ is equal to G.

3. If G′ contains cycles, then γ is not defined2.

4. The schedule S ′ is S augmented with a(o, t) provided that γ did not
become undefined due to the previous points.

5. The sending process receives the result of o, if any.
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The execution of the conflict scheduler on a given instance graph I
starts with the empty schedule S, the empty set of locks L, an empty
graph G and the instance graph I. It receives the actions of S sequen-
tially, and its result is either (1) the output schedule S, the set of
locks L, the dependency graph G and the instance graph I transformed
according to each iteration of the commit scheduler, or (2) undefined.

The output schedule of the conflict scheduler is always node-correct
and fail-free, but is not always legal.

A serial schedule equivalent to the output schedule is obtained by sort-
ing the transactions according to the topological sort of the dependency
graph.

At this point we have an alternative transaction model for an XML
database. Using the path lock propagation scheme and the conflict
scheduler, we can now solve use case 2. Note that use case 1 can also
be solved with this model.

EXAMPLE 10. Consider use case 2 and the xp-tree d given in Fig-
ure 2. The actions described in the use case translate to the schedule
Sin given next.

Sin = 〈a1(Q(r, doc/person//hobby), t1), a2(Q(r, doc), t2),

a3(A(n1, person), t2), a4(A(n40, hobby), t2)〉

Let the state of the conflict scheduler consist of the empty schedule S,
the instance graph I0 which is equal to d extended with the δ-function
which labels all non-root nodes with the empty set, and the edgeless
dependency graph G0. The conflict scheduler accepts individual actions
from Sin in the sequence given by Sin.

After the first three actions, no conflicts have appeared and the de-
pendency graph G3 is still without edges. However, action a4 causes
a conflict between locks needed for a1 and a4. Thus, G4 contains an
edge from t1 to t2. After a4, no further conflicts appear, so the conflict
scheduler finishes and accepts Sin as its output schedule.

A serial schedule equivalent to Sin is the schedule obtained by first
taking all actions of transaction t1 and then all actions of t2.

6.2.2. Adding Commits
The above Conflict Scheduler without commits is clearly somewhat
impractical since nothing would ever be removed from the instance
graph, nor from the dependency graph, nor from the set of locks in the
scheduler’s state. In this section we solve this issue.
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Consider the following description of the commit operation which we
now require to appear at the very end of each transaction.

C() If it does not fail, the commit operation does the following things:

1. It removes all the locks in L that are owned by the committing
transaction.

2. It deletes from the instance graph I nodes with a non-empty
δ function if there are no locks in L′ for that node.

3. It deletes from the dependency graph G the node for the
committing transaction.

The commit operation fails if in G there is an edge that arrives in
the node of the committing transaction.

Failure of the commit operation means that the transaction has to
resubmit its commit operation until it succeeds. In practice this would
be cumbersome but the scheduler can be redefined such that it remem-
bers every commit and processes it when all transactions that logically
appear before4 the respective transaction have committed.

6.3. Recovery

In the definitions of the Commit and the Conflict Schedulers we have
explicitely mentioned a commit operation which must be used by a
transaction to release its locks. We have not explicitely mentioned a
roll-back or abort operation which is traditionally used for recovery
from catastrophic events such as power outages. It is straightforward
to extend our schedulers with such recovery methods. However, there
are certain differences between the two.

Commit Scheduler Since the Commit Scheduler does not permit
an action that causes a conflict to proceed, dirty reads cannot occur.
A transaction is free to issue a roll-back, upon which the scheduler
undoes the changes made to the instance graph by that transaction.
The roll-back does not affect the other running transactions.

Conflict Scheduler The Conflict Scheduler can permit an action that
causes a conflict to proceed, as long as there is no cycle in its depen-
dency graph. Thus, dirty reads are possible and aborting a transaction
can affect other transactions. The rule that states when a transaction
may issue an abort operation or be rolled-back by the scheduler, is

4 With respect to the topological sort of the dependency graph.
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the same as for the commit operation in the Conflict Scheduler: a
transaction may abort when all transactions occuring before it in the
dependency graph have been rolled-back.

7. Theoretical Results

In this section, we give a number of technical results that show what
the scheduling system we propose for XML databases can offer.

First, we characterize precisely the data structure needed for the in-
stance graph in the state of the scheduler. Secondly, we will show that
the output schedule of the commit scheduler is always serializable. We
will then do the same for the conflict scheduler. Finally, we also show
necessity for the conflict rules.

7.1. Instance Graph Connectedness

Since we define a scheduling system for XML databases, the scheduler,
whether it is the commit or the conflict scheduler, always starts with
an instance graph that is an xp-tree. We now show that during all
iterations of the commit scheduler, its instance graph remains a tree.
As a consequence, its actual instance is always a subtree of the instance
graph, with the same root. This result does not hold for the conflict
scheduler.

THEOREM 2 (Connectedness). Let the state of the commit-scheduler
contain the instance graph I. If I is a tree, then γ(I) is also a tree.

The proof can be found in (Dekeyser, 2003).

EXAMPLE 11. Example 5 gave a schedule S which resulted in an
instance graph that became unconnected. The schedule S was not node-
correct, however. Still, it is possible to fix S such that it becomes node-
correct. Schedule S ′ given next is such an improvement of S. Assume
that p1 = doc/person/child/person/name/David and that
p2 = doc/person/child/person/name/.

S′ = 〈a1(Q(r, p1), t1), a2(Q(r, p2), t2), a3(D(n39), t1),

a4(D(n38), t2), a5(C(), t2)〉.

Now we must show that S ′ is not a valid output schedule, otherwise we
have given a counter example to Theorem 2.

Assume that we obtained locks according to the prop scheme. This
means that at least two following two locks must have been obtained:
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rl(t1, n38, David) and wl(t2, n38, ∗). Clearly, these two locks conflict.
Thus, S′ is not a legal schedule.

7.2. Serializability

We give only a sketch of the serializability proofs for both schedulers.
The full proofs can be found in (Dekeyser, 2003).

7.2.1. Commit Scheduler
THEOREM 3 (Serializability). Every output schedule of the commit
scheduler is serializable.

Sketch of the proof. We presume some ordering on the transaction
identifiers used in S such that ti < tj if the commit of ti precedes the
commit of tj in S or there is a commit of ti but not a commit of tj in
S. We serialize the schedule by repeatedly swapping two consecutive
actions (ti, oi) and (ti+1, oi+1) if ti 6= tj and tj < ti. It is easy to see
that if there are no more such pairs then the schedule is serialized. It
can also be shown that after a swap of such a pair the result will be
an equivalent legal schedule if the schedule before the swap is a legal
schedule. Assume that S is a legal schedule and we swap two consecutive
actions (ti, oi) and (ti+1, oi+1) in S and ti 6= tj and oi is not a commit,
then we prove that the following holds: (where LS

i denotes the set of
locks L in the state of the scheduler after processing the i-th step of S,
and IS

i denotes the resulting instance graph after this step)

1. the two swapped operations will not fail in S ′,

2. all locks in LS′

i are compatible,

3. IS′

i+1 = IS
i+1,

4. if they exist the results of oi and oi+1 remain the same, and

5. LS′

i+1 ⊆ LS
i+1

6. S′ is node correct,

It follows from these points that S ′ is equivalent with S, fail-free and
in all sets LS′

j there are no incompatible locks, i.e., S ′ is legal.
Each of the six points is proven in (Dekeyser, 2003). 2

7.2.2. Conflict Scheduler
We give only a sketch of the serializability proof. The full proof can be
found in (Dekeyser, 2003). Note that the following proof only proceeds
for schedules without commits; the subsequent theorem adds commits.
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THEOREM 4 (Serializability). Every output schedule of the conflict
scheduler without commits is serializable.

Sketch of the proof. We serialize the schedule by swapping con-
secutive operations. We assume some linear order on the transaction
identifiers that respects the dependency graph at the end of the sched-
ule, i.e., if the edge (tj , ti) is in this dependency graph then tj < ti. If
there is a pair (ti, oi) and (ti+1, oi+1) in the schedule S and ti > ti+1

then we swap them. Note that since ti > ti+1 it follows that the locks
of the two operations do not conflict because if they would then the
edge (ti, ti+1) would be in the final dependency graph and therefore
ti < ti+1. So we show that if we swap these two operations then it
holds for the resulting schedule S ′ that: (where LS

i and GS
i denote the

set of locks L and the dependency graph in the state of the scheduler
after processing the i-th step of S, and IS

i denotes the resulting instance
graph after this step)

1. the two swapped operations will not fail in S ′,

2. GS′

i+1 ⊆ GS
i+1,

3. IS′

i+1 = IS
i+1,

4. LS′

i+1 = LS
i+1, and

5. if they exist the results of oi and oi+1 remain the same, and

6. S′ is node correct.

Each of these points is proven in (Dekeyser, 2003). 2

Note that this proof shows that the resulting instance graphs for S
and S′ are the same, not just the actual instances as required by the
definition of equivalent schedules. Thus, this proof is stronger than
strictly necessary.

THEOREM 5. Every output schedule of the conflict scheduler which
is enhanced with commits, is serializable.

The proof can be found in (Dekeyser, 2003).

7.3. Necessity

We now turn to the issue of necessity of the conflict rules. We commence
with showing that the rules are locally necessary, after which we show
that global necessity does not hold. For simplicity, we will work with
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the path lock satisfiability scheme (though the result can of course also
be obtained for pl-prop). For local necessity, in essence we need to
show that if two consecutive actions in a schedule conflict, then they
cannot commute.

THEOREM 6 (Local Necessity). The following holds for all instance
graphs Ii with conflict-free lock set LS

i . Consider two fail-free actions
a1(o1, t) and a2(o2, t

′) applied consecutively to Ii such that the instance
graph Ii+2 is yielded. If the lock set LS

i+2 contains conflicting locks,
then the swapping of a1 and a2 yielding I ′i+2 means that either (1)
Ii+2 6= I ′i+2 or (2) a1 or a2 failed, or (3) the results of query operations
have changed.

Proof. Since LS
i+2 contains conflicting locks, a1 (a2) must be a query

while a2 (a1) must be an update operation. Thus, possibilities (1) and
(2) cannot occur. Indeed, a query operation does not change the in-
stance, nor does it fail. Whether the update operation preceeds the
query or not, does not change the instance nor the fail-free property.
Consequently, we need to prove that the result of the query opera-
tion changes when a1 and a2 are swapped. We consider the following
cases.

1. Assume that the conflicting locks are rl(t, nq, p) and wl(t′, n, a).
Thus, λIi+1

(nq, n)/a ∈ L(p).

− Assume that a1 = Q(nq, p).

• Assume that a2 = D(n′). Since λIi+1
(nq, n)/a ∈ L(p) we

know that n′ is in the result of query a1 at instance Ii+1

(note that the path from nq to n is part of the actual
instance of instance graph Ii+1). Clearly, when the two
operations are swapped, n′ cannot be in the result of the
query a2.

• Assume that a2 = A(n, a). In instance Ii+1 thenode n′

does not exist, and λIi+1
(nq, n) 6∈ L(p). Thus, the result

of query a1 does not contain n nor n′ which will become
the child of n in instance Ii+2. Clearly, when the two
operations are swapped, node n′ will be in the result of
the query a2.

− Assume that a2 = Q(nq, p). The proof is similar to the previ-
ous case.

2. Assume that the conflicting locks are rl(t, nq, p) and wl(t′, n′, ∗).
The proof is similar to the previous case. 2
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This result shows that the conflict rules, at least when considering con-
secutive actions, are not too restrictive. However, in general necessity
does not hold. We illustrate this with the following example.

EXAMPLE 12. Consider a document d represented by the instance
graph I, with N = {r, n}, B = {(r, n)}, and ν(n) = person. Assume
the scheduler receives the following schedule (commits have been omitted
for simplicity):

S = 〈a1(Q(r, //child/hobby), t1), a2(A(n, child), t2), a3(D(n1), t2)〉.

Action a2 has created the node n1 as a child of n. Clearly there is no
conflict between a1 and a2, but there is a conflict between a1 and a3.
Thus, in this case the transaction that has created node n1 may not
delete that same node.

The example shows that in certain cases, our conflict rules are slightly
too restrictive.

8. Conclusion and Future Work

We have shown that traditional concurrency control methods are in-
sufficient to capture the complex update behavior which is possible
in XML databases. We presented two perspectives on the transaction
model which we introduce in this paper. We also introduced two equiv-
alent locking schemes for XML databases. Finally, we have introduced
two schedulers which may use either one of these path locks schemes.
For both schedulers, we have shown that they guarantee serializability.

Regarding future work, we would like to extend the update language to
include more expressive operations such as a move. For this, we need
to investigate a model in which node identity plays a more important
role. This would likely lead to new kinds of locks and compatibility
rules. Such a model would also be more suitable to simulate ordered
documents.

We are currently investigating a more theoretical approach where
serializability of schedules can be determined independently from the
instance. Preliminary results have been published in (Dekeyser et al.,
2003).

Finally, we are working on a proof-of-concept implementation of
both schedulers using the pl-prop scheme. We would like to extend
this implementation to obtain experimental results that show the per-
formance gains possible when using our path lock transaction model
compared to existing solutions.
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