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Abstract

In the last few years an interest in native XML
databases has surfaced. With other authors we ar-
gue that such databases need their own provisions for
concurrency control since traditional methods are in-
adequate to capture the complicated update-behavior
that is possible for XML documents. Ideally, up-
dates should not be limited to entire document trees,
but should involve subtrees and even individual ele-
ments. Providing a suitable scheduling algorithm for
semistructured data can significantly improve collab-
orative systems that store their data — e.g. word
processing documents or vector graphics — as XML
documents.

In this paper we improve upon earlier work which
presented two equivalent concurrency control schemes
based on Path Locks, and a commit scheduler for
these schemes. In contrast to the earlier work, we
now introduce a conflict scheduler for XML databases
which uses the same path lock conflict rules and the
same basic query and update languages. This new
scheduler has significantly different properties than
the commit scheduler. We also give a comprehensive
proof of serializability of schedules accepted by the
new scheduler.

Keywords: XML, semistructured data, path locks,
transaction model, serializability, concurrency con-
trol, conflict scheduler.

1 Introduction

Even though XML is not meant to replace traditional
database systems, lately an interest in native XML
databases has surfaced. Consequently, all features
present in relational and object-oriented databases
will be revisited in the context of semistructured data.
One such feature is the necessity of a concurrency con-
trol mechanism in any type of database.

Concurrency control (Weikum & Vossen 2002) has
been extensively studied in the context of traditional
database management systems (Bernstein, Hadzila-
cos & Goodman 1987, Papadimitriou 1986). This lit-
erature has introduced important concepts such as

* Contact author’s affiliation was the University of Antwerp,
Belgium, at the time this research was conducted.

Copyright c©2004, Australian Computer Society, Inc. This pa-
per appeared at Fifteenth Australasian Database Conference
(ADC2004), Dunedin, New Zealand. Conferences in Research
and Practice in Information Technology, Vol. 27. Klaus-Dieter
Schewe and Hugh Williams, Ed. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

locks, transactions, schedulers, etc. Protocols such as
two phase locking have been proposed to ensure seri-
alizability (Eswaran, Gray, Lorie & Traiger 1976) —
the central theoretical notion of correctness for con-
current database systems — of schedules of data ma-
nipulation language actions.

Also, locking mechanisms such as predicate lock-
ing (Eswaran et al. 1976), hierarchical locking (Gray,
Putzolo & Traiger 1976) and tree based locking pro-
tocols (Silberschatz & Kedem 1980) have been intro-
duced to suit special needs and to increase the level of
concurrency that is allowed by schedulers. Another
track of concurrency control research has focused on
decidability of serializability and on the complexity of
algorithms.

The result of this research has been the incorpo-
ration of efficient scheduling algorithms in DBMSs
which ensure serializability and which allow a high
degree of concurrency.

Clearly, it is possible to re-use these well-known re-
sults for providing concurrency control in semistruc-
tured databases. However, as has been shown in ear-
lier work (Dekeyser & Hidders 2002, Grabs, Bohm &
Schek 2002, Dekeyser, Hidders & Paredaens 2003b),
the traditional solutions we mentioned above — while
guaranteeing serializability — do not allow a sufficient
degree of concurrency; i.e., they are too restrictive.
We will come back to this issue in Section 2.

Looking at existing semistructured database systems,
we found that the Lore system (Abiteboul, Quass,
McHugh, Widom & Wiener 1997) did not contain
support for concurrency control that utilizes seman-
tical information, although this was mentioned in
“future work”. Instead, it used page-based strict
two phase locking. The authors of Lore pointed out
that “the semistructured nature [would] require us
to rethink some aspects of traditional solutions” to
concurrency control. The Natix project proposed
in (Fiebig, Helmer, Kanne, Moerkotte et al. 2002)
recognizes that transaction management needs a dif-
ferent approach than traditionally thought; however,
they focus mainly on recovery and isolation, and use
standard hierarchical locking protocols introduced by
Gray et al. in 1976.

As a consequence, the problem statement for our
work is “what kind of conflict rules and scheduling
algorithm for semistructured databases can guaran-
tee both serializability and a high degree of concur-
rency?”

Apart from our own work, we have so far found only
three papers and a technical report which attempt
to solve this problem. These will be discussed and
compared in Section 2.

Applicability Native XML databases (NXDs) are
currently gaining popularity. Unfortunately, most



systems are document-based rather than offering con-
currency at the level of individual elements. It is clear
that much more collaboration could be achieved if dif-
ferent clients could connect to the same XML docu-
ment and update it concurrently. This would allow
multiple authors to work on the same word process-
ing file, or on large vector graphics that are stored as
an XML document.

Evidently, many other applications may benefit
from the theory presented in this paper.

Contribution In previous work (Dekeyser & Hidders
2002, Dekeyser & Hidders 2003), we have investigated
the use of path locks to solve the research problem
mentioned in the introduction. We introduced two
equivalent locking protocols: path locks satisfiabil-
ity (pl-sat) and path locks propagation (pl-prop).
For both systems, we introduced conflict rules and
analyzed their complexity. We showed that the two
systems are equivalent with respect to the conflicts
they detect. We also indicated that the conflict rules
are necessary. In addition, we introduced a commit
scheduler that uses the pl-prop system to guarantee
serializability.

In this paper, however, we introduce the conflict
scheduler which also makes use of the pl-prop sys-
tem. We indicate the properties which make this
scheduler significantly different from the previous
scheduler. Importantly, we outline aspects of recovery
mechanisms using roll-back and abort operations. We
also present a comprehensive proof of serializability,
and show how the conflict scheduler can be extended
to handle commit operations. Finally, we briefly re-
port on on-going work to implement our transaction
model for XML databases.

Organization The paper is organized as follows.
Section 2 briefly restates from previous work that
existing concurrency control mechanisms from rela-
tional and object-oriented databases are inadequate
for our purposes. It also compares the few other
papers related to our work. Section 3 formally in-
troduces the data model, which captures most of
the XPath data model features. The section also
presents the query language and the update primi-
tives that can be used to manipulate documents. Sec-
tion 4 presents the two path lock schemes that can
be used by schedulers to ensure serializability. We
briefly sketch the advantages and disadvantages of
both. Section 5 details the working of the conflict-
scheduling algorithm, while section 6 proves that this
scheduler guarantees serializability. Section 7 extends
the conflict scheduler to include the use of a commit
operation, and proves that this extension also guar-
antees correctness. Section 9 briefly outlines our on-
going efforts to implement the ideas described in this
paper. Finally, Section 10 concludes the paper and
mentions future research possibilities.

2 Related Work

2.1 Relational Methods

Semistructured data can be stored in traditional re-
lational databases in many different ways (Deutsch,
Fernández & Suciu 1999, Florescu & Kossmann 1999).
For all these different representations, the locking
mechanisms of RDBMSs may cause locks that are
too restrictive. Central in our proof of this is the fact
that the parent-child relationship is typically modeled
within one relation. Though this relationship can in-
deed be split up in several tables, in general one table
will — because of XML’s semistructured nature (el-
ements can exist at any nesting depth) — contain

arbitrarily many tuples that model the parent-child
relationship. For our discussion it is therefore appro-
priate to abstract this into one relation. In table lock-
ing, the entire parent-child table will be locked upon
an update, blocking other updates. In predicate lock-
ing, a predicate will lock without taking the hierarchy
inherent in the document into account. Thus, this
method will also make certain updates impossible.

2.2 Hierarchical Methods

In hierarchical and tree locking methods, an update
at one level always requires locks to be set at higher
levels in the tree. Furthermore, an exclusive lock is
required on a node if one wants to add or remove
children from that node. These requirements may be
too strict in many cases.

Example 1 Consider the XML document in Fig-
ure 1. Assume that a first user wants to add a hobby

element to the person with id = 2, while a second,
concurrent, user wants to add a child element to the
same person. Hierarchical and tree-based locking pro-
tocols will typically prevent such concurrent action be-
cause the person element will be locked.

More examples, for different situations and different
locking protocols, can be found in the on-line version
of the PhD thesis referred to in (Dekeyser 2003).

2.3 New Proposals

XPath-based Proposals. Several recent papers, in-
cluding our own, which attempt to solve concurrency
control for XML and semistructured databases are
based on the observation that the data are usually
accessed by means of XPath expressions. In this pa-
per, as in our previous work, we propose to use a
simplified form of XPath expressions as ‘path locks’
on the document, such that precisely all operations
that change the result of the expression are no longer
allowed.

A similar approach is taken in (Hye Choi &
Kanai 2003) where conflicts with path locks are de-
tected by accumulating updates in the XML tree and
intelligently recomputing the results of the path ex-
pressions. As a result they can allow more complex
path expressions, but conflict checking becomes more
expensive.

Another related approach is presented in (Jea,
Chen & Wang 2002) where locks are derived from
the path expressions and a protocol for these locks is
introduced that guarantees serializability.

DOM-based Proposals. Several locking protocols
not based on path expressions but on DOM opera-
tions are introduced in (Helmer, Kanne & Moerkotte
2003). Here, there are locks that lock the whole doc-
ument, locks that lock all the children of a certain
node and locks that lock individual nodes or pointers
between them. An interesting new aspect is here the
possibility to use the DTD for conflict reduction and
thus allowing more parallelism. Although these lock-
ing protocols seem very suitable in the case of DOM
operations, it is not clear whether they will also per-
form well if most of the access is done by path expres-
sions.

DataGuide-based Proposals. A potential problem
with many of the previously mentioned protocols is
that locks are associated with document nodes and
so for large documents we may have large numbers
of locks. A possible solution for this is presented
in (Grabs et al. 2002), where the locks are associated
with the nodes in a DataGuide, which is usually much



<document id="0">

<person id="1", age="55">

<name>Peter</name>

<addr>Parklane 7</addr>

<child>

<person id="3", age="22">

<name>John</name>

<addr>Unistreet 1</addr>

<hobby>swimming</hobby>

<hobby>cycling</hobby>

</person>

</child>

<child>

<person id="4", age="7">

<name>David</name>

</person>

</child>

</person>

<person id="2", age="43">

<name>Mary</name>

<addr>Parklane 7</addr>

<hobby>painting</hobby>

</person>

</document>

Figure 1: A fragment of an XML document D.

smaller than the document. However, in general there
is a trade-off between fewer locks in the DataGuide
and the amount of concurrency allowed, as a lock on
a node in the DG conceptually locks several nodes in
the corresponding document tree. Much more serious,
unfortunately, is that the proposed protocol does not
guarantee serializability and allows phantoms. More-
over, the query language does not support the use
of the descendant-of axis of XPath which is vital for
querying semistructured data.

3 Data Model and DML

The data model we assume for XML documents is
a simplification of the standard XPath data model
and is similar to the data model classically used for
semistructured data (Abiteboul, Buneman & Suciu
1999). Thus, we essentially consider node-labeled
trees. However, for the purpose of locking we will
allow more general acyclic graphs. We label nodes
with a set of transaction identifiers to indicate that
the node has been deleted by these transactions.

Definition 1 The instance graph (N,B, r, ν, δ) is a
rooted acyclic graph with vertices N , edges B ⊆ N ×
N , the root r, nodes labeled with element names by
ν : N → E and with sets of transaction identifiers
by δ : N → 2T . The subgraph defined exactly by the
nodes that are labeled by δ with the empty set is called
the actual instance and is presumed to be always a
tree with root r.

In contrast to the XPath data model, in our model
there is no distinction between elements, attributes,
or text. Also, we do not consider an order between el-
ements. These features can, however, be simulated in
the instance graph model in a straightforward man-
ner. For example, order can be simulated by using a
skewed binary tree.

Example 2 Figure 2 shows an instance graph repre-
sentation d of document D given in Figure 1. Note
that for clarity only a few labelings are shown; nodes
are given a different coloring according to their type
in D (elements are black, text is white, and attributes
are gray). In our model, no distinction is made, how-
ever. The figure also shows that the document order
is not preserved.

Data Manipulation Language Now that we have
defined the data model, we turn our attention to the
data manipulation language. The query language is
based on a subset of XPath expressions as defined by
the following grammar:

P ::= F | P/F | P//F

F ::= E | ∗

where E is the universal set of strings representing
the names of elements.

The path expressions can be used for queries start-
ing from the root node or from nodes that were pre-
viously retrieved in the same transaction, since we
assume that during a transaction the user has a set
of variables into which he can store the intermediate
results of the queries. The contents of these vari-
ables may be manipulated by the user as long as they
always contain sets of nodes that were previously re-
trieved in the same transaction.

We now turn to the semantics of path expressions.
These will be useful in Section 4.2 in the descrip-
tion of conflict rules in the Path Lock Satisfiability
scheme. In the following definition, the dot · denotes
the concatenation of sets of strings. Also, we use the
Kleene-star ∗ to denote the zero or more recurrences
of a substring.

Definition 2 Let L(p) be the set of label paths se-
lected by path expression p. We define L recursively
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Figure 2: An instance graph representation of XML document D.

as follows.

L(∗) = E

L(e) = {e} with e ∈ E.

L(p/f) = L(p) · {/} · L(f)

L(p//f) = L(p) · {/} · (E · {/})∗ · L(f)

Thus, L(p) is the language of which the strings are
the label paths represented by the path expression p.

The following definition enumerates the operations of-
fered by the data manipulation language that can be
used to alter a document.

Definition 3 The following operations are defined
on an instance graph.

A(n, a) This update operation, corresponding to an
insert, adds a new edge starting from n and end-
ing in a new node with label a. The new node is
returned as the result of the operation. If in the
new instance graph the actual instance is not a
tree with root r then the operation fails1.

D(n) This update operation, which corresponds to
a delete, adds the transaction identifier of the
transaction that requests the operation to δ(n).
This operation returns no result. If in the new
instance graph the actual instance is not a tree
with root r then the operation fails.

Q(n, p) This query operation returns as its result all
nodes in the instance graph such that there is in
the actual instance a path from n to this node
that satisfies the path expression p.

Note that the parameters to our operators include
nodes which were extracted from the result of the
query statements that the user posed before request-
ing an update. Thus, writing (i.e., updating the doc-
ument) always implies reading.

Now that we have defined the operations of the data
manipulation language, we turn to some traditional
definitions from transaction management theory.

Definition 4 An action is a pair (o, t) where o is
one of the operations given in Definition 3 and t is
a transaction identifier. A transaction is a finite list
of actions having the same transaction identifier. A

1Failure means here that the scheduler does not execute the
operation and reports this to the transaction that requested it.

schedule is an interleaving of several transactions. A
schedule is said to be node-correct if for every opera-
tion that uses a certain node there is an earlier action
(containing an addition or a query) of the same trans-
action that had this node in its result.

We give a short example next.

Example 3 Consider the instance graph d given in
Figure 2 which acts as the initial instance graph.
Consider also the schedule

S = 〈a1(Q(r, //person), t1),

a2(Q(r, document), t2),

a3(A(n3, child), t1),

a4(D(n1), t2)〉.

This schedule2 is node-correct. The first three actions
do not fail, while the last one does since the result-
ing document is not a tree (the graph becomes uncon-
nected).

Following tradition, two schedules are equivalent if (1)
one is a permutation of the other, (2) the resulting
actual instance is in both cases the same, and (3) all
the queries in one schedule return the same result as
the corresponding queries in the other schedule. A
schedule is said to be serializable if it is equivalent
with a serial schedule.

4 Path Locks

We now turn to the locking schemes that can be
used by the scheduler to ensure serializability. In this
paper we shall discuss both the path lock propaga-
tion (pl-prop) scheme and the path lock satisfiabil-
ity (pl-sat) scheme. The pl-prop scheme has the
advantage that most proofs can be written more legi-
bly; however, its clear disadvantage is that it requires
more locks than pl-sat. We refer to (Dekeyser 2003)
and (Dekeyser et al. 2003b) for more details regarding
the trade-off between pl-prop and pl-sat.

4.1 Path Lock Propagation Scheme

We start with the definition of the read locks. A
read lock is defined as a tuple rl(t, n, p) where t is a
transaction identifier, n is the node identifier in the
instance graph for which the lock holds and p is a

2Note that technically the query in a1 is not possible since it
starts with //. However, this can be easily simulated.



path expression in P. The informal meaning of such
a lock is that the transaction has issued a query p
starting from node n.

The initial read lock that must be obtained for a given
query operation Q(n, p) that is issued by transaction
t is simply rl(t, n, p). From the initial read lock we
derive other read locks that must also be obtained by
a process called read-lock propagation. The process of
read-lock propagation causes read locks on a node to
be propagated to nodes just below this node in the
instance graph. This is done with the rules shown
in Figure 3. The process of read-lock propagation is
applied until no more new read locks are added; this
process ends since the instance graph is both finite
and acyclic.

The result is a set R∗

q of read locks that have to be ac-
quired for the query Q(n, p). Since R∗

q depends upon
the instance graph, it has to be recomputed every
time the instance graph is updated. The recomputa-
tion of R∗

q after an update can be done by propagating
only the locks of the parent that a node is created or
deleted under. Thus, it can be done relatively effi-
ciently.

We proceed with the definition of the write locks. A
write lock is defined as a tuple wl(t, n, f) where t is
a transaction identifier, n is the node identifier for
which the lock holds and f is an expression over F .

The following defines which write locks must be ob-
tained for which update operator:

A(n, a): A write lock wl(t, n, a) on node n for trans-
action t.

D(n): Write locks wl(t, n, ∗) and wl(t, n′, a) where n′

is the parent of n in the instance graph and a
is the label of n. If n or n′ does not exist, then
the corresponding write lock does not need to be
obtained.

We now turn to an example to clarify the definitions
in this section.

Example 4 Consider the instance graph d given in
Figure 2 and the first two actions of schedule S given
next. S =
〈a1(Q(r, document/person/child/person/name), t1),
a2(D(n25), t2), . . .〉.

The following table presents all the locks associated to
d′, which is the instance graph obtained after a1 and
a2 are applied to instance graph d.

rl(t1, r, document/person/child/person/name)
rl(t1, n1, person/child/person/name)
rl(t1, n2, child/person/name)
rl(t1, n3, child/person/name)
rl(t1, n6, person/name)
rl(t1, n13, person/name)
rl(t1, n7, name)
rl(t1, n15, name)
wl(t2, n24, painting)
wl(t2, n25, ∗)

It is clear that, while in many cases the pl-prop

scheme does not generate very many locks, in case the
descendant-of axis of XPath is used, pl-prop may re-
quire a large amount of locks. However, most of them
do not cause conflicts (see the next paragraph), and
they can also be stored efficiently. Even so, we will
further on introduce the pl-sat scheme to alleviate
this problem.

To end this section, we need to define when locks con-
flict. A read lock rl(t, n, a) or rl(t, n, ∗) conflicts with
a write lock wl(t′, n, a) and a write lock wl(t′, n, ∗) if
t 6= t′. All other locks do not conflict.

Example 5 The read lock rl(t1, n16, name) conflicts
with the write lock wl(t2, n16, *). The instance graph
d′ of Example 4 did not contain conflicting locks.

Note that two write locks do not conflict due to the
node-correctness property of transactions. This prop-
erty implies that consecutive additions and deletions
always commute.

4.2 Path Lock Satisfiability Scheme

We now turn to an alternate path lock scheme. In
contrast to the pl-prop scheme, the satisfiability
scheme requires fewer locks to be obtained but is more
complex with regard to testing for conflicts. Thus,
there is a trade-off between time and space complex-
ity. Additionally, the pl-sat scheme does not im-
ply a top-down query evaluation strategy (McHugh
& Widom 1999). For more details on these issues, we
turn the reader to (Dekeyser 2003).

Read Locks Read locks in sat are defined as in prop.
However, it is sufficient to obtain for a given query
operation only the initial read lock. Thus, the lock
propagation process is not applied in this case.

Write Locks Write locks in sat are defined exactly as
in prop. Also, the update operations are to obtain
the same write locks as defined earlier.

As in the path lock propagation scheme, we must yet
define when path locks in the satisfiability scheme
conflict. Read lock rl(t, n, p) conflicts with write lock
wl(t′, n′, f) iff (1) t 6= t′, (2) n is an ancestor of n′, and
(3) λ(n, n′)/f ⊆ L(p). All other locks do not conflict.

Example 6 Consider the same schedule S and in-
stance graph d′ as in Example 4. In the sat scheme,
the following are the only path locks that need to be
obtained.

rl(t1, r, doc/person/child/person/name)
wl(t2, n24, painting)
wl(t2, n25, ∗)

There are no conflicting locks, as λd′(r, n24)/painting
6∈ L(doc/person/child/person/name). Likewise,
λd′(r, n25)/∗ 6⊆ L(doc/person/child/person/name).

5 The Conflict Scheduler

In this section we detail the working of the conflict
scheduler. In contrast to the commit scheduler pro-
posed in (Dekeyser & Hidders 2003) which effectively
lets transactions wait if their request cannot be pro-
cessed, the conflict scheduler keeps accepting and pro-
cessing actions until it fails (i.e., it detects a cycle in
its dependency graph). Thus, it allows for more con-
current actions than the commit scheduler, but it may
cause cascading roll-backs in case of recovery (see Sec-
tion 8). Consequently, the choice between the commit
and the conflict scheduler is highly dependent on the
type of application.

Definition 5 The conflict scheduler is the automa-
ton whose state consists of a schedule S of actions
that it has previously accepted and processed, a set
of locks L, a dependency graph G which is a directed
graph whose nodes are transaction identifiers, and an
instance graph I. Its transition function γ maps S, L,



1. rl(t, n, a/p)→rl(t, n′, p) if (n, n′) ∈ B and name(n′) = a.
2. rl(t, n, ∗/p)→rl(t, n′, p) if (n, n′) ∈ B.
3. rl(t, n, a//p)→rl(t, n′, p) if (n, n′) ∈ B and name(n′) = a.
4. rl(t, n, a//p)→rl(t, n′, ∗//p) if (n, n′) ∈ B and name(n′) = a.
5. rl(t, n, ∗//p)→rl(t, n′, p) if (n, n′) ∈ B.
6. rl(t, n, ∗//p)→rl(t, n′, ∗//p) if (n, n′) ∈ B.

Figure 3: Read lock propagation rules.

G, I and a newly requested action a(o, t) to a sched-
ule S′, a set of locks L′, a dependency graph G′ and
an instance graph I ′ as follows:

1. The new instance graph I ′ is obtained by applying
operation o to instance graph I. If the operation
fails, then γ is not defined3.

2. The new set of locks L′ is obtained by adding to
L those locks that are required by the operation
o. If one of these locks conflicts with a lock in L
of transaction t′ then G′ is equal to G plus the
edge (t′, t), otherwise G′ is equal to G.

3. If G′ contains cycles, then γ is not defined3.

4. The schedule S′ is S augmented with a(o, t) pro-
vided that γ did not become undefined due to the
previous points.

5. The sending process receives the result of o, if
any.

The execution of the conflict scheduler on a given in-
stance graph I starts with the empty schedule S, the
empty set of locks L, an empty graph G and the in-
stance graph I. It receives the actions of S sequen-
tially, and its result is either (1) the output schedule
S, the set of locks L, the dependency graph G and
the instance graph I transformed according to each
iteration of the conflict scheduler, or (2) undefined.

A serial schedule equivalent to the output schedule
is obtained by sorting the transactions according to
their appearance in the topologically sorted depen-
dency graph.

Example 7 Consider the schedule Sin given next and
the instance graph d given in Figure 2.

Sin = 〈a1(Q(r, document/person//hobby), t1),

a2(Q(r, document), t2),

a3(A(n1, person), t2),

a4(A(n40, hobby), t2),

a5(Q(n24, person), t1)〉

Let the state of the conflict scheduler consist of the
empty schedule S, the instance graph I0 which is equal
to d extended with the δ-function which labels all non-
root nodes with the empty set, and the edgeless depen-
dency graph G0. The conflict scheduler accepts indi-
vidual actions from Sin in the sequence given above.

After the first three actions, no conflicts have ap-
peared and the dependency graph G3 is still without
edges. However, action a4 causes a conflict between
locks needed for a1 and a4. Thus, G4 contains an edge
from t1 to t2. After a4, no further conflicts appear,
so the conflict scheduler finishes and accepts Sin as
its output schedule.

A serial schedule equivalent to Sin is the schedule
obtained by first taking all actions of transaction t1
and then all actions of transaction t2.

3If γ is undefined, the sending process is notified that its ac-
tion is not accepted, and the scheduler may wait for a new action.
Thus deadlocks cannot occur. Livelock issues may be solved using
traditional methods.

6 Serializability

In this section, we give a sketch of the serializabil-
ity proof. The full proof can be found in (Dekeyser
et al. 2003b). We will first give some preliminary def-
initions.

Definition 6 A schedule is said to be fail-free if all
its operations can be executed without any of them
failing. A schedule is said to be a legal schedule if (1)
it is node correct, (2) fail-free and (3) all sets of locks
in the scheduler’s state contain only non-conflicting
locks.

It is easy to see that the output schedule of the conflict
scheduler is always node correct and fail-free, but is
not always legal.

Theorem 1 Every output schedule of the conflict
scheduler is serializable.

Sketch of the proof. We serialize the schedule by
swapping consecutive operations. We assume some
linear order on the transaction identifiers that re-
spects the dependency graph at the end of the sched-
ule, i.e., if the edge (tj , ti) is in this dependency graph
then tj < ti. If there is a pair (oi, ti) and (oi+1, ti+1)
in the schedule S and ti > ti+1 then we swap them.
Note that since ti > ti+1 it follows that the locks
of the two operations do not conflict because if they
would then the edge (ti, ti+1) would be in the final de-
pendency graph and therefore ti < ti+1. So we show
that if we swap these two operations then it holds
for the resulting schedule S′ that: (where LS

i and GS
i

denote the set of locks L and the dependency graph
in the state of the scheduler after processing the i-th
step of S, and ISi denotes the resulting instance graph
after this step)

1. the two swapped operations will not fail in S ′,

2. GS′

i+1 ⊆ GS
i+1,

3. IS
′

i+1 = ISi+1,

4. LS′

i+1 = LS
i+1, and

5. if they exist the results of oi and oi+1 remain the
same, and

6. S′ is node correct.

We will now prove each of these points.

1. The two swapped operations will not fail in S ′.
Since a query does not change the instance graph
we only have to consider the cases that involve
no query. For these pairs it holds that if they
fail after the swap then one of the operations
already failed before the swap or the locks of the
two operations conflict.

2. The dependency graph stays the same or de-
creases after the swap. For all pairs that are
swapped it holds that if after the swap the locks
of the operations conflict with previous locks
then also do so before the swap.



3. ISi+1 = IS
′

i+1. Since a query does not change
the instance graph we only need to consider four
straightforward combinations. In these cases, the
fail-free and node-correctness properties of sched-
ules ensure that the operations commute.

4. LS′

i+1 = LS
i+1. Since all operations always request

the same locks and ISi+1 = IS
′

i+1 it follows that
after the two operations the same locks result
from the propagation process.

5. If they exist the results of oi and oi+1 remain the
same. Without loss of generality we may assume
that the additions always return the same result
if they do not fail. For the queries it holds that
if their results change then the locks it required
will conflict with the locks of the other operation.

6. S is node correct. This follows trivially because
the order of the actions within the same trans-
action is not changed and as was shown in the
previous points the return results of the opera-
tions will not change.

Note that this proof shows that the resulting instance
graphs for S and S′ are the same, not just the actual
instances as required by the definition of equivalent
schedules. Thus, this proof is stronger than strictly
necessary.

7 Adding Commits

The serializability proof in the previous section works
for schedulers that do not accept commit operations
in transactions. This is clearly somewhat impracti-
cal since nothing would ever be removed from the
instance graph, nor from the dependency graph, nor
from the set of locks in the scheduler’s state. In this
section we solve this issue.

Consider the following description of the commit op-
eration which we now require to appear at the very
end of each transaction.

C() If it does not fail, the commit operation does the
following things:

1. It removes all the locks in L that are owned
by the committing transaction.

2. It deletes from the instance graph I nodes
with a non-empty δ function if there are no
locks in L′ for that node.

3. It deletes from the dependency graph G the
node for the committing transaction.

The commit operation fails if in G there is an
edge that arrives in the node of the committing
transaction.

Failure of the commit operation means that the
transaction has to resubmit its commit operation un-
til it succeeds. In practice this would be cumber-
some but the scheduler can be redefined such that it
remembers every commit and processes it when all
transactions that logically appear before4 the respec-
tive transaction have committed.

Theorem 2 Every output schedule of the conflict
scheduler enhanced with commits, is serializable.

Proof. Let Sc be a schedule with commits and S the
corresponding schedule without commits, and assume
that Sc is accepted by the scheduler. We first show

4With respect to the topological sort of the dependency graph.

that if the scheduler accepts Sc then it also accepts
S.

Since after every step in the two schedules the re-
sulting actual instance is the same it holds that no
operation in S will fail if no operation in Sc fails. If
after an operation in S there is a conflict between the
locks requested by this operation and those that are
already in the instance graph and belong to a trans-
action that has not yet committed in Sc then these
locks will still be present in the instance graph for
schedule Sc and so the scheduler will add the same
edge to the dependency graph. It follows that the de-
pendency graphs for S are the same as those for Sc
except that the nodes for transactions that already
committed are removed. Since a commit fails if there
is an edge in the dependency graph that leaves from
the node for the transaction, it follows that there can-
not be cycle in the dependency graphs for S if there
isn’t one in those for Sc.

Because the scheduler accepts S there is by Theo-
rem 1 a serial schedule S′ that is equivalent to S. It
is easy to see that if we can extend S ′ with the com-
mits of Sc to a serial schedule S′

c that is equivalent
with S′. Since it also holds that S and Sc are equiv-
alent it follows from the fact the equivalency relation
is an equivalence relation, that S ′

c and Sc are equiva-
lent. Since S′

c is a serial schedule it follows that Sc is
serializable.

The above proof assumes that the conflict scheduler
makes use of the pl-prop path lock scheme. We con-
jecture that the theorem can also be proven making
use of the pl-sat mechanism, since both methods are
equivalent with respect to the conflicts they detect
(see (Dekeyser et al. 2003b)).

8 Recovery

In the definitions of the Commit (see (Dekeyser &
Hidders 2003)) and the Conflict Schedulers we have
explicitly mentioned a commit operation which must
be used by a transaction to release its locks. We have
not explicitly mentioned a roll-back or abort operation
which is traditionally used for recovery from catas-
trophic events such as power outages. It is straight-
forward to extend our schedulers with such recovery
methods. However, there are certain differences be-
tween the two.

Commit Scheduler Since the Commit Scheduler
does not permit an action that causes a conflict to
proceed, dirty reads cannot occur. A transaction is
free to issue a roll-back, upon which the scheduler
undoes the changes made to the instance graph by
that transaction. The roll-back does not affect the
other running transactions.

Conflict Scheduler The Conflict Scheduler can per-
mit an action that causes a conflict to proceed, as long
as there is no cycle in its dependency graph. Thus,
dirty reads are possible and aborting a transaction
can affect other transactions. The rule that states
when a transaction may issue an abort operation or
be rolled-back by the scheduler, is the same as for the
commit operation in the Conflict Scheduler: a trans-
action may abort when all transactions occurring be-
fore it in the dependency graph have been rolled-back.

9 Implementation Efforts

We are currently working on the implementation of a
Client-Server program that demonstrates our trans-
action model for XML databases. The Server is a
Java application which at start-up reads and parses



XML files and constructs an extended DOM repre-
sentation. It uses RMI and synchronized methods to
implement the path lock propagation scheme. Both
the commit scheduler proposed in earlier work and
the conflict scheduler proposed here are implemented
and work well.

The Clients at this point allow for simple tree query-
ing and manipulation. Each user ‘sees’ the entire
XML document, but may only edit those nodes which
he has queried or constructed. An automatic refresh
function is used to update the surrounding context.
We will extend the Client to become a text editor
for LATEX files encoded in XML documents; authors
will then be able to use the software to collaborate
on papers. We will also provide a rename and copy
operation, which will be simulated using the basic op-
erations provided in this paper.

Importantly, we are currently implementing the tra-
ditional hierarchical locking scheme and the new
dglock locking protocol proposed in (Grabs et al.
2002) on top of our document server and conflict
scheduler. This will allow us to compare throughput
of arbitrary sequences of transactions using the di-
verse locking protocols. The authors of dglock have
shown significant performance improvements of their
scheme over the traditional flat transaction model.
Based on the knowledge that our path locking model
decides serializability using the complete instance as
opposed to only the DataGuide, we expect path locks
to outperform dglock — in the area of degree of
concurrency permitted — although this remains to
be proven.

10 Conclusion and Future Work

We have introduced a conflict scheduler for XML
databases which uses the path locks presented in ear-
lier work. The scheduler works on instance graphs
that are an extension of a simplified XPath data
model that in effect retains a log of dirty read and
write operations. We also presented a comprehensive
proof that schedules accepted by the conflict sched-
uler are guaranteed to be serializable. Finally, we
enhanced this result by extending the conflict sched-
uler to accept commit operations which allow it to
become more efficient.

Regarding future theoretical work, we would like to
investigate a model in which node identity plays a
more important role, enabling operations such as re-
name and move. This more elaborate model should
also extend the query language and allow for access
of a document through an index.

Also, we are currently studying a more fundamen-
tal problem in which decidability of serializability of
schedules proceeds in an instance independent man-
ner. Preliminary results in this regard have been pub-
lished in (Dekeyser, Hidders & Paredaens 2003a).

Finally, as mentioned in Section 9 we are implement-
ing existing locking schemes on top of our conflict
scheduler to obtain experimental results comparing
throughput under different locking strategies.
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