
Instance Independent Concurrency Control for

Semistructured Databases

Stijn Dekeyser, Jan Hidders, Jan Paredaens

University of Antwerp

Abstract. Semistructured databases require tailor-made concurrency
control mechanisms since traditional solutions for the relational model
have been shown to be inadequate. Such mechanisms need to take full ad-
vantage of the hierarchical structure of semistructured data, for instance
allowing concurrent updates of subtrees of, or even individual elements
in XML documents. In earlier work, we presented two equivalent path
locking schemes and two schedulers which guarantee serializability of
schedules on XML documents. However, these methods are dependent
on the instance of the XML database. In this paper we take a more gen-
eral, higher level approach by characterizing and deciding equivalence of
schedules without looking at the instance.

1 Introduction

In previous work [3–5] we have shown that traditional concurrency control [9]
mechanisms for the relational and object-oriented model [2, 6–8] are inadequate
to capture the complicated update behavior that is possible for semistructured
databases. Indeed, when XML documents are stored in relational databases,
their hierarchical structure becomes invisible to the locking strategy used by the
database management system. Therefore, in previous work mentioned above, we
have investigated the use of path locks to remedy this situation. We introduced
two equivalent path locking protocols. For both systems we introduced conflict
rules and analyzed their complexity. We also indicated that the conflict rules are
necessary. In addition, we introduced a commit scheduler and a conflict scheduler
which guarantee serializability of schedules involving queries and updates.

The differences between the work presented in this paper and our earlier work
are as follows. First, in our earlier work the definition of equivalence of schedules
is tightly bound to the document over which the schedule is defined. This has
the advantage that relatively more schedules are serializable than in the work
we present here. However, the clear disadvantage is that involving the instance
of the database is much less general. The second difference is that in earlier work
we require schedules to be node-correct, meaning that any identifier used in a
transaction must have been obtained through an earlier operation in the same
transaction. In this work we drop this requirement, again making this work more
general.

Contribution In this paper we first characterize the correctness of transactions in-
volving only update operations (queryless transactions); i.e. whether there exists
at least one document for which the transformation represented by the transac-
tion is defined. We then show decidability of equivalence and of serializability of
queryless schedules. Finally, we characterize equivalence of schedules including
both queries and update operations.

2 Data Model and Operations

The data model is derived from the classical data model for semistructured
data [1]; we consider directed, unordered trees in which the edges are labelled.
Consider a fixed universal set of nodes N and a fixed universal set of edge labels
L not containing the symbol /.

<document id="0">
<person id="1",age="55",
spouse= >
<name>Peter</name>
<addr>Parklane 7</addr>
<child>
<person id="3", age="22">

<name>John</name>
<addr>Unistreet 1</addr>
<hobby>swimming</hobby>
<hobby>cycling</hobby>

</person>
</child>

</person>
<person id="2", age="43">

<name>Mary</name>
<addr>Parklane 7</addr>
<hobby>painting</hobby>

</person>
</document>

"2"
document

r

personperson @id

@age

name

name

nameaddr @id

addr

addr
hobby

@id

hobby

swimming cycling

2

0

Peter

John

Parklane 7

Unistreet 1

55

223

43 Mary
Parklane 7

21
painting

hobby
@age@id

@age

person

child

@spouse

Fig. 1. A fragment of an XML document and its dt representation.

Definition 1. A graph is a tuple (N,E)1 with N ⊆ N and E ⊆ N × L×N .

A document tree (dt) T is a tuple (N,E, r) such that (N,E) is a graph that
represents a tree with root r. The edges are directed from the parent to the child.

This data model closely mimics the XML data model as illustrated next.

Example 1. Consider the XML document D of Figure 1. Figure 1 presents a
representation of D into a dt. Note that the document order is not preserved,
and that there is no distinction between elements, attributes and text nodes.

1 Because every set of edges E ⊆ N × L × N uniquely defines a graph, we will call
such sets also graphs.

Definition 2. Let G be a graph and m and n two nodes in G then pathG(m,n)
is the set of simple paths2 in G from m to n.
A label path is a string of the form l1/ . . . /lm with m ≥ 0 and every li an
edge label in L. Given a path p = ((n1, l1, n2), . . . , (nm, lm, nm+1)) in a graph G,
the label path of p, denoted λ̄T (p) (or λ̄(p) when T is subsumed) is the string
l1/ . . . /lm.

Processes working on document trees do so in the context of a general program-
ming language that includes an interface to a document server which manages
transactions on documents. The process generates a list of operations that will
access the document. In general there are three types of operations: the query,
the addition and the deletion. The input to a query-operation will be a node and
a path expression, while the result of the invocation of a query-operation will be
a set of nodes. The programming language includes the concepts of sets, and has
constructs to iterate over their entire contents. The input to an addition or a
deletion will be an edge. The result of an addition or a deletion will be a simple
transformation of the original tree into a new tree. If the result would not be a
tree anymore it is not defined.
We now define path expressions and query-operations, subsuming a given dt T .
The syntax of path expressions3 is given by P:

P ::= peε | P
+ P+ ::= F | P+/F | P+//F F ::= ∗ | L

The set L(pe) of label paths represented by a path expression pe is defined as:

L(peε) = {ε} L(∗) = L L(l) = {l}
L(pe/f) = L(pe) · {/} · L(f) L(pe//f) = L(pe) · {/} · (L · {/})∗ · L(f)

Let n be an arbitrary node of T and pe a path expression. The query-operation
query(n, pe) returns a set of nodes, and is defined as follows:

Definition 3. query(n, pe) with n ∈ N and pe ∈ P. The result of query(n, pe)
on a dt T is defined as queryT (n, pe) = {n′ ∈ N | ∃p ∈ pathT (n, n

′) : λ̄(p) ∈
L(pe)}.

There are two update-operations; the addition and the deletion of an edge:

Definition 4. The update operations return no value but transform a dt T =
(N,E, r) into a new dt T ′ = (N ′, E′, r).

– add(n, l, n′) with n, n′ ∈ N and l ∈ L. The resulting T ′ is defined by E′ =
E ∪ {(n, l, n′)} and N ′ = N ∪ {n′}. If the resulting T is not a document tree
anymore or (n, l, n′) was already in the document tree then the operation is
undefined.

– del(n, l, n′) with n, n′ ∈ N and l ∈ L. The resulting T ′ is defined by E′ =
E − {(n, l, n′)} and N ′ = N − {n′}. If the resulting T is not a document
tree anymore or (n, l, n′) was not in the document tree then the operation is
undefined.

2 This includes empty paths that contain no edges and start and end in the same
node.

3 Remark that path expressions form a subset of XPath expressions.

3 Schedules

We first give some straightforward definitions of schedules and their semantics.
An action is a pair (o, t), where o is one of the three operations query(n, pe),
add(n, l, n′) and del(n, l, n′) and t is a transaction identifier. A transaction is a
sequence of actions with the same transaction identifier. A schedule over a set
of transactions is an interleaving of these transactions.
We can apply a schedule S on a dt T . The result of such application is (1) the
dt that results from the sequential application of the actions of S; this dt is
denoted by S[T], and (2) for each query in S the result of this query.
If some of these actions are undefined the application is undefined. Two schedules
are equivalent on a dt T iff their application on T has the same result. Two
schedules are equivalent iff they are defined on the same non-empty set of dt’s
and they are equivalent on these dt’s. The definition of serial and serializable
schedules is straightforward.

Example 2. Let T1 = ({n1, n2}, {(n1, b, n2)}, n1), T2 = ({n1, n2}, {(n1, a, n2)}, n1)

and T3 = ({n1}, ∅, n1) be three dt’s and let S1 = (add(n2, b, n3), t1), (query(n1, a/b),

t2) and S2 = (query(n1, a/b), t2), (add(n2, b, n3), t1) be two schedules. Schedules S1

and S2 are equivalent on T1, they are not equivalent on T2 and their application
is undefined on T3.

Example 3. Let S1 = (add(n1, l1, n2), t1), (del(n1, l1, n2), t2) and S2 be the empty
schedule. Schedules S1 and S2 are not equivalent although they are equivalent
on many dt’s.

4 Correctness of Queryless Schedules

We begin by considering only transactions and schedules that contain no queries.
Later in this paper we will look at general schedules.

Definition 5. A transaction (a schedule) is called queryless (QL) iff it contains
no queries.

Because of the way that operations can fail it is possible that the application
of a certain transaction is not defined for any document tree. However, this is
a necessary property for all transactions in a schedule if the schedule is to be
serializable. Therefore we call such transactions (schedules) correct transactions
(schedules).

Definition 6. A QL schedule S is called correct iff there is a dt T with S[T]
defined.

It will be clear that we are only interested in correct transactions.

Example 4. The next transaction is correct: (add(r, l1, n1), t1), (del(r, l1, n1), t1),
(add(r, l2, n2), t1), (del(r, l2, n2), t1), (add(r, l2, n2), t1), (del(r, l2, n2), t1).
The next transaction is not correct: (add(r, l1, n1), t1), (del(r, l2, n1), t1),
(add(n1, l3, n2), t1).

Remark that if two QL schedules are equivalent then they are both correct. This
equivalence relation is defined on the set of correct QL schedules.

Example 5. Here is a QL schedule S that is defined on T = ({r}, ∅, r) but that
is not serializable because of only one transaction t1 that is not correct. Ev-
ery equivalent serial QL schedule would be undefined! Transaction t1 has the
property that all QL schedules over a set of transactions that contain t1 are
non-serializable, independent of T .
S = (add(r, l1, n1), t1), (del(r, l1, n1), t2), (add(r, l1, n1), t1).

Since a transaction is a special case of a schedule all the definitions on QL
schedules also apply on transactions.

We will characterize correct QL schedules and prove that this property is decid-
able. For this purpose we will first attempt to characterize for which document
trees a given correct QL schedule S is defined, and what the properties for the
document trees in the result of the QL schedule. We do this by defining the
sets N+

I (S), N−

I (S), E+
I (S) and E

−

I (S), which informal meaning is respectively
the nodes that are required in the input document tree, the nodes that are
not allowed, the edges that are required and the edges that are not allowed. In
the same fashion we define the sets N+

O (S), N−

O (S), E+
O(S) and E−

O (S), which
informal meaning is respectively the nodes that are always present in the out-
put document tree, the nodes that are never present, the edges that are always
present and the edges that are never present.

Definition 7. Let S be a QL schedule. φS(n, o) (φS((m, l, n), o)) indicates that
the first occurrence of the node n (the edge (m, l, n)) in the schedule S has the
form of the operator o. For example, φS(n2, add(r, l2, n2)) in the correct QL
schedule in Example 4 above. λS(n, o) (λS((m, l, n), o)) indicates that the last
occurrence of the node n (the edge (m, l, n)) in the QL schedule S has the form
of the operation o. We then define the sets N+

I (S), N−

I (S), E+
I (S) and E

−

I (S),
and the sets N+

O (S), N−

O (S), E+
O(S) and E

−

O (S) as in Figure 2.
A dt T is called a basic-input-tree (basic-output-tree) of S iff it contains all the
nodes of N+

I (S) (N+
O (S)), no nodes of N−

I (S) (N−

O (S)), all the edges of E+
I (S)

(E+
O(S)) and no edges of E

−

O (S) (E
−

O (S)).

Example 6. Let S = (add(n1, l1, n2), t1), (del(n4, l2, n3), t2), (del(n1, l1, n4), t3)
then

N+
I (S) = {n1, n3, n4}; N

−

I (S) = {n2}; E
+
I (S) = {(n4, l2, n3), (n1, l1, n4)}

E−

I (S) = { (m, l, n2), (n2, l,m), (m′, l′, n3), (m
′′, l′′, n4), (n3, l,m),

(n4, l
′′′,m′′′) | l, l′, l′′, l′′′ ∈ L, m,m′,m′′,m′′′ ∈ N ,

(m′, l′) 6= (n4, l2), (m
′′, l′′) 6= (n1, l1), (l

′′′,m′′′) 6= (l2, n3)}
N+
O (S) = {n1, n2}; N

−

O (S) = {n3, n4}; E
+
O(S) = {(n1, l1, n2)}

E−

O (S) = { (n2, l,m), (m′, l′, n2), (n3, l,m), (m, l, n3), (n4, l,m), (m, l, n4) |
l, l′ ∈ L, m,m′ ∈ N , (m′, l′) 6= (n1, l1)}

N+
I (S) = {m|φS(m, add(m, l, n))} ∪ {m|φS(m, del(m, l, n))} ∪ {n|φS(n, del(m, l, n))}

N−I (S) = {n|φS(n, add(m, l, n))}
E+

I (S) = {(m, l, n)| φS((m, l, n), del(m, l, n))}
E−I (S) = {(m, l, n)| φS((m, l, n), add(m, l, n))} ∪

{(m, l, n)| ∃(m1, l1, n) that occurs in S, (m1, l1) 6= (m, l) and
(m, l, n) does not occur before} ∪

{(m, l, n)|∃(m1, l1,m) that occurs in S and (m, l, n) does not occur before}
N+

O (S) = {m|λS(m, del(m, l, n))} ∪ {m|λS(m, add(m, l, n))} ∪ {n|λS(n, add(m, l, n))}
N−O (S) = {n|λS(n,del(m, l, n))}
E+

O(S) = {(m, l, n)|λS((m, l, n), add(m, l, n))}
E−O (S) = {(m, l, n)|λS((m, l, n), del(m, l, n))} ∪

{(m, l, n)|∃(m1, l1, n) that occurs in S, (m1, l1) 6= (m, l) and
(m, l, n) does not occur afterwards } ∪

{(m, l, n)|∃(m1, l1,m) that occurs in S and (m, l, n) does′t occur afterwards}

Fig. 2. The Definition of the Basic Input and Output Sets.

When a QL schedule is not correct this is always because two operations in the
QL schedule conflict, as for example the first two operations in the incorrect
transaction of Example 4: add(r, l1, n1) and del(r, l2, n1). If these two operations
immediately follow each other then at least one of them will always fail. However,
if between them we find the action del(r, l1, n1) then this is no longer true. The
following definition attempts to identify such pairs of conflicting operations and
states which operations we should find between them to remove the conflict.

Definition 8. A QL schedule fulfills the C-condition iff actions a1 and a2 appear
in that order in S and action a3 appears between them, where a1, a2, a3 are as
follows.

a1 a2 a3

(add(n, l1, n1), t1) (add(n2, l2, n), t2) (del(n, l1, n1), t3)
(add(n1, l1, n), t1) (add(n2, l2, n), t2) (del(n1, l1, n), t3)
(add(n, l1, n1), t1) (del(n2, l2, n), t2) (del(n, l1, n1), t3)
(add(n1, l1, n), t1) (del(n, l2, n2), t2) (add(n, l2, n2), t3)
(add(n1, l1, n), t1) (del(n2, l2, n), t2) (del(n1, l1, n), t3)

if(n1, l1) 6= (n2, l2)
(del(n, l1, n1), t1) (add(n2, l2, n), t2) (del(n3, l3, n), t3)
(del(n1, l1, n), t1) (add(n, l2, n2), t2) (add(n3, l3, n), t3)
(del(n1, l1, n), t1) (del(n, l2, n2), t2) (add(n3, l3, n), t3)
(del(n1, l1, n), t1) (del(n2, l2, n), t2) (add(n2, l2, n), t3)

The following theorem establishes the relationship between correctness, basic-
input trees and the C-condition.

Theorem 1. The following conditions are equivalent for a QL schedules S: (1)
there is a basic-input-tree of S and the application of S is defined on each basic-
input-tree of S; (2) there is a basic-input-tree of S on which the application of S

is defined; (3) S is correct; (4) S fulfills the C-condition; (5) there is a tree on
which the application of S is defined and all trees on which the application of S
is defined are basic-input-trees of S.

Proof (Sketch) Clearly 1 → 2 → 3 → 4 and 5 → 3. We prove that 4 implies
1. First we proof that there is a basic-input-tree for which S is defined. This
tree consists of all edges (m, l, n) for which φS((m, l, n),del(m, l, n)) holds and
all nodes m for which φS(m, add(m, l, n)) augmented with edges from the root
to the nodes in which no edge arrives. This is a basic-input-tree. Then we prove
that the application of S is defined on each basic-input-tree of S. By induction
on the length of S. In general we prove this property for the QL schedule o.S,
supposing it holds for S. Finally 3 implies 5. Indeed, let S be defined on T , where
T is not a basic-input-tree of S. T does not satisfy one of the four conditions of
Definition 7. In each case this yields a contradiction. ut

Corollary 1. It is decidable whether a QL schedule or a transaction is correct.

For the sets that define the basic-input-trees and basic-output-trees we can derive
the following properties.

Property 1. Let S be a correct QL schedule.

1. If (m, l, n) ∈ E+
I (S)(E

+
O(S)) then m,n ∈ N+

I (S)(N+
O (S)). If n ∈ N−

I (S)
(N−

O (S)) then for all m, l holds (n, l,m), (m, l, n) ∈ E−

I (S)(E
−

O (S));
2. E+

I (S) ∩ E
−

I (S) = ∅, E+
O(S) ∩ E

−

O (S) = ∅, N+
I (S) ∩ N−

I (S) = ∅, N+
O (S) ∩

N−

O (S) = ∅;
3. E+

I (S), E
+
O(S) do not contain two different edges ending in the same node;

4. E+
I (S), E

+
O(S) do not contain a cycle. ut

The symmetry between basic-input-trees and basic-output-trees can be made
even more clear by looking at reverse QL schedules.

Definition 9. Let S be a QL schedule. Sσ, the reverse of S where every addition
of an edge is substituted by the deletion of the edge and vice versa.

Theorem 2. Let S be a correct QL schedule and Tin be a basic-input-tree of S,
and let Tout = S[Tin]. Then Sσ is a correct QL schedule and Tin = Sσ[Tout].

By ADD(S) we denote the set of edges that is really added by the QL schedule
S, i.e., they are added without being removed again afterwards, and by DEL(S)
we denote the set of edges that is really deleted by the QL schedule S, i.e., the
are deleted without being added again afterwards.

Definition 10. Let S be a correct QL schedule. We denote ADD(S) = {(m, l, n)|
λS((m, l, n), add(m, l, n))} and DEL(S) = {(m, l, n)|λS((m, l, n),del(m, l, n))}.

Remark that two correct QL schedules with the same ADD and DEL are not
necessarily equivalent. Cf. Example 3.

Definition 11. Let T = (N,E, r) be a dt and E1 = {(mi, ai, ni)} be a set of
edges. T ∪E1 = (N ∪ {ni}, E ∪E1, r) and T −E1 = (N −{ni}, E −E1, r). Note
that T ∪ E1 nor T − E1 are necessarily dt’s.

Theorem 3. Let S be a correct QL schedule and Tin be a basic-input-tree of S.
S[Tin] = Tin ∪ADD(S)−DEL(S) is a basic-output-tree.

Proof (Sketch) Clearly Tin ∪ADD(S)−DEL(S) is the result of the application
of S on Tin. We verify that Tin ∪ADD(S)−DEL(S) is a basic-output-tree. ut

Property 2. Let S be a correct QL schedule. ADD(S) and DEL(S) fulfill the
following conditions: (1) ADD(S) ∩ DEL(S) = ∅; (2) if (m1, l1, n), (m2, l2, n) ∈
ADD(S) then (m1, l1) = (m2, l2); (3) ADD(S) does not contain a cycle; (4) if
(m1, l1, n) ∈ ADD(S) and (n, l2, n2) ∈ DEL(S) then ∃(m3, l3, n) ∈ DEL(S);
and (5) if (m1, l1, n) ∈ DEL(S) and (n, l2, n2) ∈ ADD(S) then ∃(m3, l3, n) ∈
ADD(S).

The following theorem establishes the relationships between the addition and
deletion sets, and the basic input and output sets.

Theorem 4. Let S be a correct QL schedule. Then

N+
O = (N+

I − {n|∃m, l : (m, l, n) ∈ DEL(S)}) ∪ {n|∃m, l : (m, l, n) ∈ ADD(S)}
N−

O = (N−

I ∪ {n|∃m, l : (m, l, n) ∈ DEL(S)})− {n|∃m, l : (m, l, n) ∈ ADD(S)}
E+
O = (E+

I −DEL(S)) ∪ADD(S), and E−

O = (E−

I ∪DEL(S))−ADD(S).

5 Equivalence and Serializability of QL schedules

The purpose of a scheduler is to schedule requests by users such that the result-
ing schedule is serializable. In this section we discuss the problem of deciding
whether a schedule is serializable and, as a subproblem, whether two schedules
are equivalent.
One possible approach for a scheduler is to introduce a locking mechanism such
that operations of a certain user are only allowed if they do not conflict with
previous operations of other users. Because non-conflicting operations can be
commuted any schedule that is allowed by such a scheduler can be serialized.
The following example shows that such an approach will be too strict in this
case.

Example 7. Here is a QL schedule S that is defined on T = ({r}, ∅, r), that is
serializable, that has only one equivalent serial QL schedule S ′ but we cannot
go from S to S′ only by swapping:

S = (add(r, l1, n1), t1), (del(r, l1, n1), t2), (add(r, l2, n2), t2), (del(r, l2, n2), t2),
(add(r, l2, n2), t1), (del(r, l2, n2), t1).

However, it can also be shown that that any schedule over two given transactions
will always result in the same dt if its result is defined.

Theorem 5. Let S and S′ be two QL schedules over the same set of transac-
tions. If their applications on the dt T are both defined then the resulting dt’s
are equal.

As a consequence the problem of deciding whether two correct schedules over
two given transactions are equivalent reduces to the problem of deciding whether
their result is defined for the same dts, which in turn can be decided with the
help of the basic input and output sets.

Theorem 6. Two (correct) QL schedules over the same set of transactions are
equivalent iff they have the same set of basic-input-trees.

Note that this theorem does not hold for two arbitrary QL schedules. Indeed
S1 = (add(m, l, n), t) and S2 = (add(m, l, n), t), (del(m, l, n), t) have the same
basic-input-trees and are not equivalent.

Theorem 7. Two (correct) QL schedules S1, S2 over the same set of trans-
actions are equivalent iff N+

I (S1) = N+
I (S2), N

−

I (S1) = N−

I (S2), E
+
I (S1) =

E+
I (S2) and E

−

I (S1) = E−

I (S2).

We can use the basic input and output sets to decide whether one correct sched-
ule can directly follow another correct schedule without resulting an an incorrect
schedule.

Theorem 8. Let S1 and S2 be two correct QL schedules. S1.S2 is correct iff
N−

O (S1) ∩ N+
I (S2) = ∅, E−

O (S1) ∩ E+
I (S2) = ∅, N+

O (S1) ∩ N−

I (S2) = ∅ and
E+
O(S1) ∩ E

−

I (S2) = ∅

The following theorems show how the basic input and output sets can be com-
puted for a concatenation of schedules if we know these sets for the concatenated
schedules.

Theorem 9. Let S1, S2, ..., Sn and S1.S2...Sn be (n + 1) correct QL schedules.
Then
N+

I
(S1...Sn) =

⋃
n

i=1
(N+

I
(Si) −

⋃
k<i

N+

O
(Sk)); N−

I
(S1...Sn) =

⋃
n

i=1
(N−

I
(Si) −

⋃
k<i

N−
O

(Sk))

E+

I
(S1...Sn) =

⋃
n

i=1
(E+

I
(Si) −

⋃
k<i

E+

O
(Sk)); E−

I
(S1...Sn) =

⋃
n

i=1
(E−

I
(Si) −

⋃
k<i

E−
O

(Sk))

Theorem 10. Let S1, S2, ..., Sn and S1.S2...Sn be (n+1) correct QL schedules.
Then
N+

I
(S1...Sn) =

⋃
n

i=1
(N+

I
(Si) −

⋃
k<i

N−
I

(Sk)); N−
I

(S1...Sn) =
⋃

n

i=1
(N−

I
(Si) −

⋃
k<i

N+

I
(Sk))

E+

I
(S1...Sn) =

⋃
n

i=1
(E+

I
(Si) −

⋃
k<i

E−
I

(Sk)); E−
I

(S1...Sn) =
⋃

n

i=1
(E−

I
(Si) −

⋃
k<i

E+

I
(Sk))

These previous theorems can be used to show that serializability is decidable.

Theorem 11. It is decidable whether a given QL schedule is serializable.

Proof (Sketch) There is a backtracking algorithm to decide whether a QL sched-
ule is serializable. Indeed, we verify whether each transaction is correct (Corol-
lary 1); we draw a graph that indicates which transactions can follow directly
another transaction (Theorem 8); there is a Hamiltonian path, that fulfills The-
orem 10 iff the QL schedule is serializable. ut

6 Schedules over the Same Set of Transactions

In the previous section we only considered queryless schedules, but in this sec-
tion we consider all schedules. We start with generalizing the notions that were
introduce for QL schedules.

A schedule S is called correct iff its corresponding QL schedule is correct.
ADD(S) = ADD(S′) where S′ is the QL schedule of S. Analogously for DEL,
E+
I , E

−

I , E
+
O , E

−

O , N
+
I , N−

I , N+
O , N−

O .

To verify whether two correct schedules over the same set of transactions are
equivalent, we first eliminate the queries and verify whether the resulting QL
schedules are equivalent. (Cfr. Theorem 7). In this section we investigate the
equivalence of two correct schedules over the same set of transactions and whose
QL schedules are equivalent. Such schedules can sometimes be equivalent on all
the DTs they are defined on, on only some of them or on none.

In order to show decidability of equivalence we introduce the following defini-
tions.

Definition 12. We define ADDN (S) = {n|∃m, l : (m, l, n) ∈ ADD(S)}. Let m
be a node of ADDN (S). We denote by Aroot(S,m) the node n that is an ascen-
dant of m in ADD(S) and such that n has no parent in ADD(S). Aroot(S, n)
is uniquely defined by Property 2. The label path of the path from Aroot(S, n) to
n in ADD(S) is denoted by Alabel(S, n).

Remark that ADD(S) is always a forest and that Aroot(S,m) is simply the root
of the tree that contains m. Given a path expression pe and a label path lp we
define the prefix of lp in pe, denoted as δlp(pe) as a set of path expressions that
together represent the prefixes of the label paths represented by pe that end with
lp. For instance δa(b//∗) = {b, b//∗}

Definition 13. Let pe be a path expression, lp be a label path and l ∈ L. The
prefix of lp in pe, denoted as δlp(pe) is defined by

δε(pe) = {pe} δl(pe//∗) = δl(pe//l) = {pe, pe//∗}
δl(∗) = δl(l) = {peε} δlp/l(pe/∗) = δlp/l(pe/l) = δlp(pe)
δl(pe/∗) = δl(pe/l) = {pe} δlp/l(pe//∗) = δlp/l(pe//l) = δlp(pe) ∪ δlp(pe//∗)

Otherwise δlp(pe) = ∅. Furthermore we define L(δlp(pe)) =
⋃
pei∈δlp(pe) L(pei).

Example 8. We now turn to a brief example.

– δa/b(a/ ∗ / ∗ /b) = δa(a/ ∗ /∗) = {a/∗}
– δa/b/c(a// ∗ /c) = δa/b(a//∗) = δa(a) ∪ δa(a//∗) = {peε, a, a//∗}
– δa/b/c(∗//∗) = δa/b(∗) ∪ δa/b(∗//∗) =
∅ ∪ δa(∗) ∪ δa(∗//∗) = ∅ ∪ {peε} ∪ {∗, ∗//∗} = {peε, ∗, ∗//∗}

– δc/d(a/b/c/d) = {a/b}; δc/d(a/ ∗ / ∗ /d) = {a/∗}; δc/d(a//d) = {a, a//∗}
– δc/d(c//d) = {pε, c, c//∗} and δb/c/d(a//b//d) = {a, a//∗, a//b, a//b//∗}

Theorem 12. Let pe be a path expression and lp be a label path. δlp(pe) is
uniquely defined, finite and is computable. L(δlp(pe)) = {lp1|lp1/lp ∈ L(pe)}

4.

Given a graph G that defines a forest and two nodes n and m in N we define the
function θG(n,m) such that θG(n,m) = λ̄(p) if p ∈ pathG(n,m) and θG(n,m) =
⊥ otherwise, where ⊥ is a special string unequal to every label path.
With these definitions we can now characterize when exactly a node is in the
result of a query after a certain schedule has been applied to a dt.

Theorem 13. Let T be a dt and S a schedule such that S[T] is defined, then
m ∈ queryS[T](n, pe) iff at least one of the following holds

– n,m 6∈ ADDN (S)∧ θT−DEL(S)(n,m) ∈ L(pe)

– n 6∈ ADDN (S)∧m ∈ ADDN (S) ∧ θT−DEL(S)(n,Aroot(S,m)) ∈ L(δAlabel(S,m)(pe))

– n,m ∈ ADDN (S) ∧ θADD(S)(n,m) ∈ L(pe)

From the characterization above we can derive a characterization of when a
node is in the result of a query after a certain schedule but not in the result
after another schedule.

Theorem 14. Let S1 and S2 be two schedules and T a dt such that S1[T] and
S2[T] are defined. It then holds for every query query(n, pe) and node m ∈ N
that m ∈ (queryS1[T](n, pe) − queryS2[T](n, pe)) iff at least one of the following

holds: (1) n,m 6∈ ADDN (S1) ∧ θT−DEL(S1)(n,m) ∈ L(pe); (2) n 6∈ ADDN (S1) ∧

m ∈ ADDN (S) ∧ θT−DEL(S1)(n,Aroot(S1,m)) ∈ L(δAlabel(S1,m)(pe)); (3) n,m ∈

ADDN (S1) ∧ θADD(S1)(n,m) ∈ L(pe), and at least one of the following holds:
(1) n,m 6∈ ADDN (S2) ∧ θT−DEL(S2)(n,m) 6∈ L(pe); (2) n 6∈ ADDN (S2) ∧ m ∈

ADDN (S2) ∧ θT−DEL(S2)(n,Aroot(S,m)) 6∈ L(δAlabel(S2,m)(pe)); (3) n,m ∈ ADDN (S2) ∧

θADD(S2)(n,m) 6∈ L(pe).

The purpose of the previous theorem is to obtain a necessary and sufficient
condition for when such a dt and node m exist. To approximate T we define
the sets Emin(S) and Emax(S) which can informally be described as the set of
edges that should at least be in T and the the set of edges that can at most be
in T , respectively.
We denote Emin(S) = E+

I (S) and Emax(S) = (N × L × N) − E−

I (S). Re-
mark that if S1 and S2 are two schedules over the same set of transactions and
the QL schedules of S1 and S2 are equivalent then Emin(S1) = Emin(S2) and
Emax(S1) = Emax(S2).
With these sets we can characterize when for two schedules over the same trans-
actions and a certain query in those schedules there is a basic-input-tree such
that a certain node is in the result of the query in the first schedule but not in
the result of the query in the second schedule.

Theorem 15. Let S1 and S2 be two correct schedules over the same set of trans-
actions with equivalent QL schedules that both contain Q = (query(n, pe), t) and

4 We identify lp1/ε with lp1

let m ∈ N . We denote that part of the schedule Si that comes before Q by SQi .
There is a basic-input-tree T of S1 and S2 for which m ∈ (querySQ

1
[T](n, pe) −

querySQ

2
[T](n, pe)) iff there exists a path p ∈ pathEmax(S1)(n,m) such that (1)

λ̄(p) ∈ L(pe)), (2) Emin(S1) ∪ {p} is a forest and (3) the condition in Theo-
rem 14 holds with T replaced with Emin(S1) ∪ {p} and S1 and S2 replaced with

SQ1 and SQ2 , respectively.

This final theorem suggests a decidable characterization since the paths p that
are quantified over are paths in the graph Emax(S1) and this graph can be
described by giving for a finite set of nodes either finite set of incident edges
that are either all allowed or all not allowed. If this is decidable then we can
decide the equivalence of two schedules over the same transactions by deciding
for each query if there is a basic-input-tree such that the result of the query
contains in one schedule a node that it does not contain in the other schedule or
vice versa. This leads to the following conjecture.

Conjecture 1. It is decidable whether two schedules are equivalent.

7 Further Research

We have conjectured that it is decidable whether two schedules are equivalent.
In future work we intend to prove this conjecture. Secondly, we will also look
to incorporate the information contained in the Schema or DTD of an XML
document to enhance the results in this paper. Using the additional information
of DTDs is expected to allow more schedules to be serializable. Finally, we will
also analyse the computational complexity of the decision problems.

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to

Semistructured Data and XML. Morgan-Kaufmann, San Francisco, 1999.
2. P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery

in Database Systems. Addison Wesley, Reading, Mass., 1987.
3. S. Dekeyser and J. Hidders. Path locks for XML document collaboration. In Pro-

ceedings of the Third WISE Conference, 2002.
4. S. Dekeyser and J. Hidders. A commit scheduler for XML databases. In Proceedings

of the Fifth Asia Pacific Web Conference, Xi’an, China, 2003.
5. S. Dekeyser, J. Hidders, and J. Paredaens. A transaction model for XML databases.

World Wide Web Journal, 2003. To appear.
6. J. Gray, G. Putzolo, and I. Traiger. Granularity of locks and degrees of consistency

in a shared data base. In Modeling in Data Base Management Systems. North
Holland, Amsterdam, 1976.

7. C. Papadimitriou. The Theory of Database Concurrency Control. Computer Science
Press, Rockville, MD, 1986.

8. A. Silberschatz and Z. Kedem. Consistency in hierarchical database systems. Jour-
nal of the ACM, 27(1):72–80, 1980.

9. G. Weikum and G. Vossen. Transactional Information Systems. Morgan Kaufmann,
2002. ISBN: 1-55860-508-8.

