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Abstract

The hierarchical and semistructured nature of XML data
can cause complicated types of update-behavior. The up-
dates are not limited to entire document trees, but can in-
volve subtrees and even individual elements. These docu-
ment parts correspond to e.g. sections in text documents or
sub-diagrams in vector graphics files. Providing suitable
locking mechanisms for semi-structured data can signifi-
cantly improve collaboration systems that store their data
as XML documents.
In this paper we show that concurrency control mechanisms
in CVS, relational, and object oriented database systems
are inadequate for collaboration systems based on semi-
structured data. We therefore propose a new locking scheme
of fine granularity based on path locks. We also show that
our proposed mechanism avoids conflicts by ensuring se-
rializability, that it supports both top-down and bottom-up
query evaluation, and that it is relatively efficient.

1. Introduction

Largely due to its semi-structured nature, XML [4] is
rapidly becoming the language of choice to publish data
on the web. Apart from being of importance to the com-
mercial world, XML has also attracted considerable inter-
est from researchers. Most recent fundamental research
has focussed on for example Tree Automata [21], while
more applied research has dealt with XML query languages
such as XQuery [3]. Possibly because the existence of
the DOM [24] interface which enables the user to change
XML data in a procedural way, relatively little research has
been done regarding update languages for XML. Currently,
Lexus [17] and XUpdate [18] are two proposals for such a
language.

The research mentioned so far has been focussed on single-
user environments, where documents are created, stored and

altered by one user. Thus, if one wants to collaborate on
an XML document, an existing collaboration system such
as CVS [5] has to be used. These systems, however, have
a very coarse granularity and do not make use of locking
schemes — multiple users can check out and make changes
only upon entire documents simultaneously. The CVS sys-
tem will then attempt to resolve conflicts automatically, and
if it fails to do so, solicit help from the user.

Relational database systems have long since dealt with up-
date conflicts in a satisfactory manner. Consequently, one
way to offer concurrent update access to an XML document
would be to store the document in relational database tables,
and then use the existing locking scheme from the RDBMS.
Unfortunately, as we will show in Section 2, this method of-
ten causes locks that are too restrictive.
Several existing XML-enabled relational database systems,
such as Oracle 9i and Microsoft SQL Server, do use either
variants of the traditional relational locking mechanisms, or
provide conflict detection based on optimistic concurrency
control.

Object-Oriented databases [15] also offer concurrency con-
trol. A significant portion of research [2, 19], however,
deals with supporting long-lived transactions, thereby re-
laxing the serializability requirement. Of more interest to
our work is the research that looks at locking hierarchical
objects [6, 15]. In such systems, locking can be based on
a hierarchy of collections, extents, objects etc. Protocols
similar to those of relational databases extended with inten-
tional locks are used. The remarks made in Section 2, are
therefore also valid for OODBMSs.

Finally, the Lore database management system for semi-
structured data [1, 20] did not contain support for concur-
rency control that utilizes semantical information, although
this was mentioned in “future work”. Instead, it used page-
based strict two phase locking. The authors of Lore pointed
out that “the semi-structured nature [would] require us to re-
think some aspects of traditional solutions” to concurrency



control.

In conclusion to this introduction, the semi-structured and
hierarchical nature of XML documents invites more so-
phisticated collaboration schemes than CVS, RDBMSs and
OODBMSs can offer. In this paper, we use locking the-
ory from relational databases as a basis to expand upon,
introducing path locks as a relatively fine-grained locking
scheme for XML. This scheme is relatively straightforward
to implement; its efficiency is shown to be acceptable.

Practical Use It is clear that a native XML database must
offer a locking scheme if it is to accept multiple simulta-
neous transactions. A special case of such a native XML
database could be an extension to existing webservers such
as Apache. The extension would enable the webserver to
offer XML-files to clients connecting over the Web much
as a relational database server would offer a network user a
view over its tables. Several clients could then collaborate
on the same XML document which itself can be a represen-
tation of a word processing file, or a large diagram created
by a vector graphics program.

Organization The paper is organized as follows. Sec-
tion 2 compares existing concurrency control mechanisms
from relational and object-oriented databases to our ap-
proach. Section 3 will present the query language that trans-
actions use to read (part of) the XML document. It will
also present a new update language that is similar to Lexus.
Section 4 introduces the locking scheme that offers a fine
granularity and efficient algorithms both for requesting and
placing locks. It is divided in two subsections, reflecting
two different but equivalent locking methods.
Section 5 gives a proof that the locking scheme ensures se-
rialization of schedules of transactions (sufficiency). Also,
it shows that the conflict rules given for unordered trees
are not too restrictive (necessity). Section 6 illustrates how
references are treated in this model and how they can be
used for efficient bottom-up query evaluation. Finally, Sec-
tion 7 discusses future research opportunities, while Sec-
tion 8 briefly lists our conclusions.

2. Comparison to Related Work

In the introduction we have described how current docu-
ment collaboration systems such as CVS do not offer a lock-
ing scheme of adequate granularity. In this section, we show
that storing XML data in a relational database and using the
RDBMS’s concurrency mechanisms is also insufficient.

Semi-structured data can be stored in traditional relational
databases in many different ways [10, 12]. For all these dif-
ferent representations, the locking mechanisms of RDBMSs

may cause locks that are too restrictive. Central in our proof
of this is the fact that the parent-child relationship is typi-
cally modelled within one relation. Though this relationship
can indeed be split up in several tables, in general one table
will — because of XML’s semi- structured nature (elements
can exist at any nesting depth) — contain arbitrarily many
tuples that model the parent-child relationship. For our dis-
cussion it is therefore appropriate to abstract this into one
relation.

We will examine the following locking mechanisms utilized
by relational database systems. First, we start with the sim-
plest case where entire tables are locked to prevent phan-
toms [8] from occuring. Secondly, as an improvement to the
first system, we investigate predicate locks. To conclude the
comparison with RDBMSs, we look at intention locks and
tree locking.

2.1. Table locking

In this approach the entire table representing the hierarchy
will be locked in case of an update. This is to prevent phan-
toms from occuring; since this paper introduces a locking
scheme that is shown to support serializability, phantoms
are not permitted. Such a lock on the entire parent-child re-
lationship table makes it impossible, for example, to add an
element in a subtree that has not been read by any user.

<document id="0">
<person id="1", age="55">

<name>Peter</name>
<addr>Parklane 7</addr>}
<child>

<person id="3", age="22">
<name>John</name>
<addr>Unistreet 1</addr>
<hobby>swimming</hobby>
<hobby>cycling</hobby>

</person>
</child>
<child>

<person id="4", age="7">
<name>David</name>
<addr>Parklane 7</addr>

</person>
</child>

</person>
<person id="2", age="43">

<name>Mary</name>
<addr>Parklane 7</addr>
<hobby>painting</hobby>

</person>
</document>

Figure 1. A fragment of an XML document D.



Example 1 Consider that a user U has accessed document
D of Figure 1 and has “seen” elements <hobby> appear-
ing at any level under elements <child> which themselves
can be found at any depth in the XML tree representing
D. Stated differently, using the well-known XPath [7] syn-
tax, user U has issued the query //child//hobby. As
the answer to this query, user U has received all node-
identifiers of elements <hobby> that appear under some
element <child>. In this case, these hobbies correspond
to hobbies swimming and cycling, but not to painting since
that hobby does not appear under a child element.
Using the Edge Table approach proposed by [12] to con-
vert semi-structured data to the relational model, we get the
tuples shown in Table 1.

source ordinal name target
1 1 age 55
1 5 child 3
1 6 child 4
3 5 hobby swimming
3 6 hobby cycling
2 4 hobby painting
. . . . . . . . . . . .

Table 1. A fragment of the Edge Table for XML
document D.

We are obliged — since we require serializability and thus
do not allow phantoms that could be introduced if row-level
locking was used — to lock the entire Edge Table for U ’s
query.
Now consider a user V that wants to make changes to the
<hobby> element representing painting (which does not ap-
pear under an element <child>). Using an RDBMS lock-
ing scheme on this and other relational representations of D
would prohibit V from doing this because the entire table is
locked.

2.2. Predicate Locks

Predicate locks [23] have been introduced to fix the problem
mentioned in the previous section. There is no longer any
need to lock an entire table; phantoms cannot occur because
predicates are given that describe the tuples that have been
selected in an INSERT, UPDATE or DELETE query. New or
altered tuples that satisfy these predicates cannot be added
to the table, thus eliminating the threat of phantoms.

Predicate locks have two problems in view of this work,
however. First, they are rarely implemented in commercial
relational databases systems because they are prohibitively
expensive. Indeed, testing satisfiability for even simple

predicates (i.e. consisting of Boolean combinations of com-
parisons between a field of a tuple and a constant) is NP-
complete [14]. Thus, storing XML in existing RDBMSs
and using the product’s locking scheme will almost cer-
tainly not offer the benefits of predicate locks.

The second and most important problem is that while pred-
icate locks come very close to capturing the expressiveness
of our proposed locking scheme, they still fall short.

Lemma 1 Using a relational database system with predi-
cate locks causes locking behaviour that is too restrictive
for semi-structured data.

Proof. We proof the lemma by giving an example where un-
nescessarily restrictive predicate locks are set. Consider an
XML document D′ with only a root node <doc>; this root
has the internal element identifier 0 such that in the rela-
tional representation of D′ it is identified by source=‘0’.
When a user poses the query /A//B, this has the informal
meaning that an element <A> may be added directly ‘under’
<doc> as long as no <B> element is later added somewhere
under <A>. To evaluate the query in a relational database
that uses predicate locks, consider that the query processor
starts by reading all the <A> children of the root node such
that in a next phase it can recursively look for <B> nodes
under the <A> nodes. This first read query will result in the
predicate lock source=‘0’ ∧ name=‘A’. Clearly, this is
not what we want, since this predicate lock means that no-
one can insert a new A element under the root, regardless of
whether a <B> element gets inserted under it in a later phase
or not.

In our Technical Report [9] we show that we can funda-
mentally change the process by which predicate locks are
set such that the new relational locking mechanism closely
mimics the way our proposed system works. However, such
extentions require the re-evaluation of each active query
each time an update is performed. On top of that, the sat-
isfiability problem remains. For all these reasons, predi-
cate locks in relational database systems are unsuited for the
kind of locking mechanism we would like to use for XML
documents.

2.3. Hierarchical and Tree Locking Protocols

Hierarchical locking protocols [13], also known as “multi-
granularity locking protocols”, are used for data that can be
thought of as nested hierarchical granules and where it is
important that we can place locks on granules at different
levels in the hierarchy. Usually such protocols allow shared
and exclusive locks at different levels but with the restric-
tion that if a granule is to be locked then corresponding in-
tention locks (or stronger locks) must be acquired for all the



ancestors, i.e., the granules that directly or indirectly con-
tain this granule. Additionally if a granule is to be extended
with a new element then an exclusive lock on the granule
must be acquired.
If such a protocol is applied to XML data then a query like
//A//B will require shared locks on the whole document
tree and therefore disallow any update on it by other trans-
actions.

As mentioned in the introduction, object-oriented databases
typically implement some version of the hierarchical lock-
ing protocol [15]. The granules in this case are then, for
example, classes, extents, objects, etc.

Tree Locking Another type of protocol that is often used
for hierarchical data are so- called tree locking proto-
cols [22]. In these protocols locks do not hold for entire
granules but ony for nodes, i.e., when a node is locked its
descendants are not also locked. However, there is also the
restriction that a lock can only be acquired for a node if an
identical or stronger lock was already obtained for the par-
ent of the node. As in hierarchical locking protocols we also
need to acquire an (exclusive) lock on a node if we want to
add or remove children [16].
Also for these protocols it holds that a query like //A//B

will require shared locks on all the element nodes in the
document tree and thereby block any update by other trans-
actions.

For a comprehensive overview of Hierarchical Locking and
Tree Locking protocols, see [2].

3. Query and Update Language

The data model we assume for XML documents is the
standard XPath data model [11], including the Document
Node. The user accesses the documents through XPath-like
queries. The result of these queries is either a list of node
identifiers or a list of strings. We use a limited version of the
surface syntax of XPath which is described by the following
grammar

P ::= F | F/P | F//P

F ::= . | T | ∗ | @A | @∗ | τ | σ

where T is the set of tag names, A is the set of attribute
names, τ denotes the text() function that retrieves all the
children that are text nodes, and σ denotes the string-
value() function that retrieves the string value of an at-
tribute or a text node.
The path expressions can be used for queries starting from
the document node or from node identifiers that were pre-
viously retrieved in the same transaction. For this purpose

we assume that during a transaction the user has a set of
variables X = {x1, x2, . . .} into which she can store the
intermediate results of the queries. The contents of these
variables may be manipulated by the user as long as they
always contain either lists of strings or lists of node identi-
fiers that were previously retrieved in the same transaction.
A query statement is now defined as a statement of the form
X := Q where the set of queries Q is defined by the fol-
lowing grammar.

Q ::= /P | //P | X/P | X//P

Next to query statements we also define update operators
that can be called by the user to change the document. Up-
date operators are grouped in three classes: attribute ma-
nipulation, element manipulation and text node manipula-
tion. The following list describes all operators in an infor-
mal way.

• Attribute manipulation

– create-attribute(e-id, a-name,

string) Creates an attribute with name
a-name and string string under the element
with identifier e-id.

– delete-attribute(a-id) Deletes an at-
tribute with identifier a-id.

– update-attribute(a-id, string) Up-
dates an attribute with identifier a-id to string
string.

• Element manipulation

– create-element-under(e-id, tagname)

Creates an (empty) element with tagname
tagname immediately succeeding the last child
(element or text node), if it exists, of the element
with identifier e-id. If such a child does not
exist, the new element becomes the only child
of the element with said identifier. The newly
created element always becomes a leaf node in
the document tree.

– delete-leaf-element(e-id) Deletes the el-
ement with identifier e-id if and only if this el-
ement is a leaf node in the document tree. Other-
wise no action is taken.

• Text node manipulation

– create-text-under(e-id, string) Cre-
ates a text node with string string immediately
succeeding the last child (element or text node),
if it exists, of the element with identifier e-id.
If such a child does not exist, the new text node
becomes the only child of the element with said
identifier.



– delete-text(t-id) Deletes the text node
with identifier t-id.

– update-text(t-id, string) Updates the
string of the text node with identifier t-id to
string.

Our update language additionally includes variants to all
create-*-under operators, in which under is replaced
by either before or after. However, since the locking
behavior of the operators is similar to that of the create-
*-under operators, we have omitted them from the above
list. In the remainder of this paper, when we discuss an *-
under, a *-before, or an *-after operator, it will act as
as a prototype for the variants.

The parameters to our operators include node identifiers
which were extracted from the result of the query statements
that the user posed before requesting an update. Thus, writ-
ing always implies reading.

4. Locking Scheme

The locking scheme is defined by giving a set of read locks,
a set of write locks, a description of which locks must be
obtained for which operation and a compatibility matrix
that defines which locks can be obtained when certain other
locks are already obtained by other transactions. We will as-
sume that once a transaction acquires certain locks it keeps
them until it ends.

In this paper, we introduce two equivalent systems of setting
locks: “Path Lock Satisfiability” and “Path Lock Propaga-
tion”. The latter system causes a multitude of read locks to
be placed but makes checking for conflicts trivial, as it only
checks lock equality locally (i.e. within one node). The
former system, in contrast, sets very few locks but requires
more work when checking for conflicting locks.

4.1. Path Lock Satisfiability

4.1.1 Read Locks

We start with the definition of the read locks. A read lock
is defined as a tuple (n, p) where n is the node identifier for
which the lock holds and p is a path in P . The informal
meaning of such a lock is that the transaction has issued a
query p starting from node n.
To determine the set of all read locks Rq that must be ob-
tained for a certain query statement xn := q we use the
following rules:

• If q = xm/p then Rq = {(x, p)|x ∈ xm};

• If q = xm//p then Rq = {(x, .//p)|x ∈ xm};

• If q = /p then Rq = {(r, p)} where r is the document
node;

• If q = //p then Rq = {(r, .//p)} where r is the docu-
ment node.

We give a small example to illustrate the proces.

Example 2 We shall use the same document D as in Ex-
ample 1. We extend the original query statement to q =
//child//hobby/τ/σ, indicating that we want to read
the text in hobby elements that occur somewhere un-
der the element child. Thus the XPath document node
(labled ‘virtual-root’ in the figure) recieves the read lock
.//child/hobby/τ/σ, as shown in Figure 2.

Note that this method of placing read locks does not favour
either a top-down or a bottom-up query evaluation strategy.
We will briefly revisit this issue in Section 6.

4.1.2 Write Locks

We proceed with the definition of the write locks. A write
lock is defined as a tuple (n, f) where n is the node identi-
fier for which the lock holds and f is an element of F \ {.}.
The informal meaning of such a lock is that if a node has
a lock f then the list of children corresponding to f have
been changed or if f = σ the text value of the node has
been updated.
The following list defines which write locks must be ob-
tained for which update operator:

• Attribute manipulation

– create-attribute(n, a, v) : A @a lock on
n.

– delete-attribute(n) : A @a lock on the
parent of n where a is the attribute name of n.

– update-attribute(n, v) : A σ-lock on n.

• Element manipulation

– create-element-under(n, t) : A t lock on
n.

– delete-leaf-element(n) : A t lock on the
parent of n where t is the tag name of n.

• Text node manipulation

– create-text-under(n, v) : A τ lock on the
parent of n.

– delete-text(n) : A τ lock on the parent of n.
– update-text(n, v) : A σ lock on n.
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Figure 2. Document tree over D with read locks

4.1.3 Lock Compatibility

We have established which read locks are required by
queries and which write locks are required by update op-
erations. What remains to be defined is when exactly such
locks can be obtained when other transactions have also ac-
quired locks upon the same document. For this purpose we
define the notion of conflicting locks. It is defined by the
rules in the following definition.

Definition 1 The following rules define which locks con-
flict.

1. Two read locks never conflict.

2. A read lock (n, p) conflicts with a write lock (n′, f) if
and only if n is an ancestor of n′ and path(n, n′)/f
satisfies p.

3. A write lock (n, f) always conflicts with a write lock
(n, f ′).

Informally, the path operator used in rule 2 denotes the path-
name of the path from an ancestor to a descendant node;
i.e., path(n, n′) is the list of element names (separated by
‘/’) encountered on the path from n to n′.
A pathname satisfies an XPath expression p if it is equal to
one of the pathnames represented by p.

Whether a lock can be obtained by a transaction is deter-
mined as follows:

A transaction can obtain a lock iff there is no other
transaction that holds a conflicting lock.

Example 3 Considering the query of Example 1, suppose
that we want to insert a child element under the first per-
son element in the tree. This results in the read lock (dr,
.//child//hobby) and the write lock (p01, child) over

document D. The literal p01 is the identifier of the node
that represents the first person child of the document ele-
ment, while dr denotes the Document Node.
To see whether there is a conflict, we need to check
whether the path path(dr, p01)/child satisfies
.//child//hobby. Since ./document/person/child

is only a prefix of a direct path defined by
.//child//hobby, the two locks do not conflict and
the update (i.e., insertion of a child element under the
first person) element will be performed.

4.1.4 Complexity

Clearly the space complexity in this system is not an is-
sue; very few locks need to be set. Relative to the size of
the tree, the space complexity is O(1). However, the time
complexity is more important here than in the alternative
method. Indeed, we need to check the satisfiability of a di-
rect path by a more general XPath expression. Such a test
can be likened to checking whether a string is accepted by a
non-deterministic automaton. The XPath expression p can
be written as an NFA while a direct path t can be seen as
a string. If the string is accepted by the NFA, the direct
path is equal to one of the direct paths represented by p.
From Automata Theory, we know that this problem is of
time complexity O(n4).

4.2. Path Lock Propagation

4.2.1 Read Locks

The set of read locks in this protocol is the same as in the
previous path lock satisfiability protocol. Given a query
statement xn := q the protocol starts with placing the locks
in Rq as was defined in the lock satisfiability protocol. We
will call this set of locks in this protocol the initial lock set.



From the initial lock set we derive other read locks that must
also be obtained by processes called read-lock inference and
read-lock propagation. With read-lock inference we mean
the derivation of locks that must also be obtained for the
same node. This is done with the rules shown in Figure 3.

.//p ⇒ p

./p ⇒ p

Figure 3. Inference Rules for Read Locks.

The process of read-lock propagation causes read locks on
a node to be propagated to nodes just below this node in
the document tree. This is done with the rules shown in
Figure 4.

parent lock child type child name child lock
.//p element - .//p
t/p element t p
t//p element t .//p
*/p element - p
*//p element - .//p
@a/p attribute a p
@*/p attribute - p
τ/p text - p

Figure 4. Propagation Rules for Read Locks.

The processes of read-lock inference and read-lock propa-
gations are applied to Rq until no more new locks are added.
The result is R∗

q
, the set of read locks that have to be ac-

quired for the query q. Since R∗

q
depends upon the doc-

ument tree it has to be recomputed every time this tree is
updated.

We give a small example to illustrate the processes.

Example 4 We shall use the same document D as in Ex-
ample 1. We extend the original query statement to q =
//child//hobby/τ/σ, indicating that we want to read
the text in hobby elements that occur somewhere under
child. Note that this is a rather powerful query, in the
sense that it will traverse the whole tree. Usually, queries
will be less powerful, and fewer locks will have to be set.

The initial read lock is .//child//hobby/τ/σ for the
document node. With the first inference rule we also derive
the lock child//hobby/τ/σ for this node.

The tree in Figure 5 depicts, in boxes, the locks associated
to the nodes of D. These locks are abbreviated to make the
figure readable; the full version is in the following table.

lock inferred lock
q .//child//hobby/τ/σ child//hobby/τ/σ
q1 .//hobby/τ/σ hobby/τ/σ
q2 τ/σ
q3 σ

Note that the full path makes up a lock (hence the name
Path Lock); they cannot be abbreviated. Indeed, consider
that the document node would only have child as its lock.
This would mean that another transaction cannot add a
child node under document, which is of course not what
we want. A child may be added under document as long
as that child does not itself receive a hobby node as a
child.

Although the powerful query stated in the above example
causes many locks to be set in the tree, these locks can be ef-
ficiently stored in a hash table. The hash table relates nodes
in the tree with the correct locks.

The mechanisms of lock inference and lock propagation
may seem a bit involved but they correspond closely to
how the query may actually be computed, e.g., the nodes
to which the locks are propagated are the same as the nodes
that have to be visited to compute the query. Therefore they
can be computed at very little extra cost. Moreover, the re-
computation of R∗

q
after an update of the document tree can

be done by propagating only the locks of the parent that a
node is created or deleted under.

Note that in the propagation system, the setting of locks
is an atomic operation. Either all locks that are infered or
propagated are obtained, or none are.

4.2.2 Write Locks

Write Locks are set in exactly the same manner as described
in Section 4.1.2.

4.2.3 Lock Compatibility

We have established which read locks are required by
queries and which write locks are required by update op-
erations. What remains to be defined is when exactly such
locks can be obtained when other transactions have also ac-
quired locks upon the same document. For this purpose we
define the notion of conflicting locks. It is defined by the
rules in the following definition.

Definition 2 The following rules define which locks con-
flict.

1. Two read locks never conflict.

2. A read lock (n, p) conflicts with a write lock (n, f) if
and only if p = f ∨ p =*.
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3. A write lock (n, f) always conflicts with a write lock
(n, f ′).

Whether a lock can be obtained by a transaction is deter-
mined as follows:

A transaction can obtain a lock iff there is no other
transaction that holds a conflicting lock.

4.2.4 Complexity

Checking for a read- and write lock conflict clearly becomes
trivial in this system. The two locks are present in the same
node, and only the equality of the read lock to the write lock
or to * needs to be checked. Thus, the time complexity of
checking for conflicts in the propagation system is O(1).
The setting of read locks can occur at the time of query
evaluation; this causes only a small increase in execution
time.
Thus, while the time complexity for this method is low w.r.t.
the alternative method, the space complexity is a more se-
rious issue. Specifically, the space complexity is O(nm),
where n is the size of the tree, and m is the length of the
lock expression.

4.3. Equivalence

It is relatively easy to see that the “Path Lock Satisfiability”
system and the “Path Lock Propagation” system are in some
sense equivalent. With ‘equivalent’ we mean that the same
transaction schedules will cause the same conflict behavior
in the two alternative methods. As mentioned before, there
is only a trade-off between the quantity of locks to be set
(space) and the testing of lock conflicts (time).

5. Theoretical Results

The theoretical results given in this section make use of the
“Path Lock Satisfiability” system. As the “Path Lock Prop-
agation” system is equivalent, these results can also be ob-
tained for the alternative system.

5.1. Serializability

The purpose of a locking scheme is to ensure serializability,
i.e., if the schedule of a set of transactions is accepted by
the locking scheme then a certain linear order of the trans-
actions exists such that if the transaction were consecutively
executed in that order then the answers to all the queries in
transactions and the final database state should be the same
as for the accepted schedule. We will give here only a sketch
of the proof.

Theorem 1 If two consecutive operations occuring in dif-
ferent transactions do not conflict then they commute.

Proof. If two operations in different transactions do not
conflict then they are either

• two read operations,

• a read and an update operation, or

• two update operations on different nodes.

Suppose that we have two read operations then these triv-
ially commute. Next we consider the case of a read and an
update operation. If the update operation is an insert then
the new node is not in the result of the read operation if the
corresponding locks do not conflict. Since after an insert
operation the result of a query stays the same or is extended



with the new node, it follows that the result of the read oper-
ation will be the same before and after the insert operation.
If the update operation is a delete operation then the deleted
node is not in the result of the read operation since the cor-
responding locks conflict, as is the asumption. Since after
a delete operation the result of a query stays the same or
the deleted node is removed from the result, it follows that
the result of the read operation is the same before and after
the delete operation. Finally, we consider two update opera-
tions on different nodes. Since these two operations cannot
influence each other and work on different parts of the tree
it follows trivially that they commute.

5.2. Necessity

The conflict rules given in Definition 1 are slightly too re-
strictive. Indeed, two transactions should be able to delete
leaf elements no matter in which order they are executed
since the end result will be the same. Such delete-delete
combinations are, however, prevented by the rule which
says that any write lock conflicts with any other write lock
at the same node.
The rule is included, however, since this is the only case in
which the rule is too restrictive; for the two other combina-
tions of updates (insert-delete and insert-insert), the rule is
exactly right.

We can adapt Definition 1 to the case of unordered trees.
When the order of the children of a node is not important,
more update combinations are allowed. For instance, two
transactions that insert a child can commute.
The correct conflict rules for unordered trees are as follows:
in Definition 1 the third rule is replaced by

3. A write lock (n, f) never conflicts with a write lock
(n, f ′).

The observant reader will notice that this rule would allow
an insert-delete combination to commute. However, since
write locks always imply read locks, this combination will
be correctly blocked.

We now prove the necessity of the conflict rules for un-
ordered trees. This result shows that the adapted conflict
rules for unordered trees are not too restrictive.

Theorem 2 If two consecutive operations occuring in dif-
ferent transactions conflict according to the locking proto-
col then they cannot commute.

Proof. In unordered trees, read-read operations and update-
update operations never conflict. Thus, the only two types
of operations that can conflict are read operations and up-
date operations (i.e. insert and delete). If we look at a read

operation and an insert operation that conflict, then the in-
sert operation requires a t write lock on a node n and the
query operation requires a read lock with path p on an an-
cestor n′ of n such that the path path(n′,n)/t satisfies the
path expression of the query operation. If this is the case
then the inserted node will be in the result of the query if
the insert precedes the query and therefore the two opera-
tions do no commute.
If we look at a conflicting read operation and a delete op-
eration, then the delete operation requires a t write lock on
a node n and the query operation requires a read lock with
path p on an ancestor n′ of n such that the path path(n′,n)/t
satisfies the path expression of the query operation. If this
is the case then the deleted node will be in the result of the
query if the query precedes the delete and therefore the two
operations do no commute.

6. Using References as Indices

We have so far not discussed the use of references in XML
documents. In this section we show a naive way to simulate
such use. We then show how this method can be used to
construct an index mechanism to speed up queries.

6.1. Naive Simulation of References

In an XPath expression we can use an XML reference to
jump from one subtree to another. Our locking protocol
currently does not handle such jumps efficiently. However,
we offer a naive way to simulate the use of references. In
future work, we will propose improvements.

To follow a reference in our locking mechanism, we pro-
pose to treat references as if they were simply attributes with
no special meaning, querying their value just like those of
other attributes. We can subsequently compare this value
with the identifier of another node. An example will clarify
this.

Example 5 To follow an idref with the name child from
a person element we write two queries. The result of query
q1 = //person/@child is the value v of the idref which
we use in the second query: q2 = //person[@id=v].

Note that, strictly speaking, we cannot express the equality
within a query, as in q2. Rather, the user program will have
to compare the result of q1 with the result of q2. This issue
will be addressed in future work.

The approach given here is naive in the sense that for
both queries our concurrency control mechanism will insert
locks. This is correct behaviour for the node that contains
the reference, but it is too restrictive for the referenced node.
Indeed, consider that the second query will place (weak)



locks on the ancestors of the referenced node. This implies
that the user has read the path leading to the referenced
node, instead of jumping there directly from the referring
element.

6.2. Using References as Indices

References can be used to model indices that allow direct
access to certain nodes within the document tree. A struc-
ture like a B-tree, for example, can be seen as a tree with
references to another tree that contains the indexed infor-
mation. Combined with the simulation of references as de-
scribed before, this tells us how the locking protocol should
proceed if the document is accessed through the index.

7. Further Research

The current approach to dereferencing needs to be replaced
to ensure more concurrency. We are currently extending
the query language to include conditional paths, which will
make the use of references more efficient.
For more sophisticated collaborative applications, our lock-
ing mechanism should be extended such that the reordering
of the chapters of a book by one user while other users are
writing parts of these chapters, is allowed. Thus, this would
imply an even more sophisticated, and possibly less effi-
cient, locking scheme. We are currently ([9]) extending the
update language to include a move-tree operator which
will enable such updates and thus allow for more concur-
rency.
The query language needs to be extended with other XPath
axes such as parent, ancestor, following and others,
and also for other functions that are allowed in XPath.

8. Conclusion and Acknowledgements

We have presented a locking scheme for XML documents
that allows the same document to be queried and updated by
more than one user, whilst guaranteeing serializability. The
locking scheme is fine-grained relative to existing mecha-
nisms in relational and object-oriented databases, and al-
lows the locking of subtrees of the document tree and more
complicated subsets if these can be described by a certain
subset of XPath queries.

We would like to thank the anonimous referees of Wise’02
for their insightful and valuable comments.
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