
Improving Direct Counting for

Frequent Itemset Mining

Adriana Prado?, Cristiane Targa??, and Alexandre Plastino? ? ?

Department of Computer Science, Universidade Federal Fluminense,
Rua Passo da Pátria, 156 - Bloco E - 3o andar - Boa Viagem,

24210-240, Niterói, RJ, Brazil
{aprado, ctarga, plastino}@ic.uff.br

http://www.ic.uff.br

Abstract. During the last ten years, many algorithms have been pro-
posed to mine frequent itemsets. In order to fairly evaluate their behav-
ior, the IEEE/ICDM Workshop on Frequent Itemset Mining Implemen-
tations (FIMI’03) has been recently organized. According to its analysis,
kDCI++ is a state-of-the-art algorithm. However, it can be observed from
the FIMI’03 experiments that its efficient behavior does not occur for low
minimum supports, specially on sparse databases. Aiming at improving
kDCI++ and making it even more competitive, we present the kDCI-3 al-
gorithm. This proposal directly accesses candidates not only in the first
iterations but specially in the third one, which represents, in general,
the highest computational cost of kDCI++ for low minimum supports.
Results have shown that kDCI-3 outperforms kDCI++ in the conducted
experiments. When compared to other important algorithms, kDCI-3 en-
larged the number of times kDCI++ presented the best behavior.

1 Introduction

Association rules represent an important type of information extracted from data
mining processes that describe interesting relationships among data items of a
specific knowledge domain. Market basket analysis is the typical application of
association rule mining (ARM) and consists in identifying relationships among
products that significantly occur in customers buys. For instance, the rule “a
customer who buys bean, in general buys rice”, represented by {bean} ⇒ {rice},
would certainly be extracted from a market database in Brazil. Formally, an
association rule, defined over a set of items I = {i1, i2, . . . , in}, is an implication
of the form X ⇒ Y , where X ⊂ I, Y ⊂ I, X 6= Ø, Y 6= Ø, and X ∩ Y = Ø. We
say that X is the antecedent and Y is the consequent of the rule.

Let D be a set of transactions (a transactional database) defined over I,
where each transaction t is a subset of I (t ⊆ I). Then, the rule X ⇒ Y holds in

? Work sponsored by CAPES Master scholarship.
?? Work sponsored by CAPES Master scholarship.

? ? ? Work sponsored by CNPq research grant 300879/00-8.

D with support s and confidence c if, respectively, s% of the transactions in D
contain X ∪ Y , and c% of the transactions in D that contain X also contain Y .

The ARM problem is commonly broken into two phases. Let minsup and
minconf be, respectively, the user specified minimum support and confidence.
The first phase, the frequent itemset mining (FIM) phase, consists in identify-
ing all frequent itemsets (sets of items) that occur in at least minsup% of the
transactions. The second phase outputs, for each identified frequent itemset Z,
all association rules A ⇒ B with confidence greater than or equal to minconf ,
such that A ⊂ Z, B ⊂ Z, and A ∪ B = Z. The FIM phase demands more
computational effort than the second one and has been intensively addressed [3].

1.1 Previous Work

During the last ten years, many algorithms have been proposed to efficiently
mine frequent itemsets. Most of them are improved variations of Apriori [1]. In
this strategy, the set F1 containing all frequent itemsets of length 1 (1-itemsets)
is initially identified. Then, at each iteration k ≥ 2: (a) the set Ck of candidates
of length k (k-candidates) is generated by combining all pairs included in Fk−1

(frequent (k− 1)-itemsets) that share a common (k− 2)-prefix; (b) Ck is pruned
in order to eliminate candidates that have at least one (k − 1)-subset that is
not frequent (all subsets of a frequent itemset are also frequent); (c) then, in
the counting phase, the database D is read and, for each transaction t of D,
the support of all k-candidates contained in t is incremented. After reading the
whole database, Fk is identified. If this set is empty, the termination condition
is reached. In the Apriori algorithm, the candidates are stored in a hash-tree.

Subsequent proposed algorithms have improved Apriori by reducing: the num-
ber of database scans [11, 12], the computational cost of the counting phase [2,
7–9], and the number and size of transactions to be scanned [7–9].

Another class of FIM algorithms mines frequent itemsets by adopting a
depth-first approach. The Eclat algorithm [14] uses an in-memory vertical layout
of the database and an intersection-based approach to determine the supports
of the candidates. The FP-growth algorithm [5] does not generate candidates. It
builds a compact in-memory representation of the database, called FP-tree (fre-
quent pattern tree), from which the support of all frequent itemsets are derived.
According to experiments presented in [5], FP-growth is very efficient. However,
it did not show good performance on sparse databases [15].

OpportuneProject [6], PatriciaMine [10] and FPgrowth* [4] are recent FIM al-
gorithms that have improved the ideas adopted by FP-growth. OpportuneProject

is able to choose between two different data structures according to the database
features. PatriciaMine uses only one data structure (Patricia trie) to represent
both dense and sparse databases together with optimizations that reduce the
cost of tree traversal and that of physical database projections. FPgrowth* in-
troduces an array-based technique also aiming at reducing FP-trees traversals.

DCI (Direct Count & Intersect) [8] and its recent version kDCI++ [7] are
apriori-like algorithms. During their first iterations, they exploit database prun-
ing techniques, inspired in [9], and efficient data structures to store candidates.

When the vertical layout of the pruned database fits into main memory, the sup-
ports of the candidates are obtained by an intersection-based technique. Both
of them can adapt their behavior according to the database features. Moreover,
kDCI++ uses a counting inference strategy based on that presented in [2].

A recent and efficient proposed method called LCM-freq [13] mines all fre-
quent itemsets from frequent closed itemsets (an itemset is a closed itemset if
none of its supersets have the same support).

1.2 Motivation

As pointed out in [3], every new proposed FIM algorithm is many times eval-
uated by limited experimental tests. In order to fairly evaluate the behav-
ior of these algorithms, the IEEE/ICDM Workshop on Frequent Itemset Min-
ing Implementation (FIMI’03) has been recently organized. All the accepted
FIM implementations can now be found in the FIMI repository (available at
http://fimi.cs.helsinki.fi/) together with an extensive performance evaluation.

According to the FIMI’03 Workshop experiments, kDCI++ is a state-of-the-
art algorithm. However, it can be observed from its analysis [3] that its highly effi-
cient behavior is not true for low values of support, specially on sparse databases.

Aiming at evaluating kDCI++ under these specific circumstances, we per-
formed experiments on different combinations of databases and minimum sup-
ports also used in [2–8, 10, 13, 15]. We observed that the third iteration presented
a very high computational cost compared to the other iterations.

Table 1 presents, for different databases and low minimum supports, the
total execution times (in seconds) of kDCI++ and its third iteration execution
times (in seconds). The databases are described in Section 4. The last column
represents the ratio between the third iteration execution time and the total
execution time. We observed that, on average, the third iteration represented
65% (ranged from 34% to 83%) of the total execution time of kDCI++ runs.
This is due to the huge number of 3-candidates that must be evaluated. Indeed,
as already observed in [7, 8], the third iteration may represent a bottleneck in
apriori-like algorithms.

In this work, in order to improve the kDCI++ algorithm, we propose a strat-
egy, called kDCI-3, that enables the direct counting at the third iteration, one
of its most time consuming iterations for low minimum supports, specially on
sparse databases. This proposal is based on a directly accessible data structure
to store candidates, which allows a more efficient 3-candidate counting.

The paper is organized as follows. In Section 2, we review the kDCI++ algo-
rithm. In Section 3, we present the kDCI-3 algorithm. The experimental results
are reported and discussed in Section 4. Finally, in Section 5, some concluding
remarks are made and future work is pointed out.

Table 1. Execution times of kDCI++

Database (minsup - %) Total time 3rd iteration time (%)

T20I10N1KP5C0.25D200K (0.1) 544 353 65
T20I10N1KP5C0.25D200K (0.3) 51 34 67
T10I5N1KP5C0.25D200K (0.01) 298 220 74
T10I5N1KP5C0.25D200K (0.03) 104 70 67
T30I15N1KP5C0.25D200K (0.25) 655 541 83
T30I15N1KP5C0.25D200K (0.5) 139 116 83
T25I10D10K (0.1) 26 21 81
T25I10D10K (0.2) 4 1.9 47
T40I10D100K (0.5) 386 271 70
T40I10D100K (0.75) 133 101 76
T10I4D100K (0.01) 307 103 34
T10I4D100K (0.03) 36 28 78
T30I16D400K (0.4) 775 487 63
T30I16D400K (0.6) 234 161 69
BMS-POS (0.1) 422 156 37
BMS-POS (0.3) 47 22 47

2 The kDCI++ Algorithm

The kDCI++ algorithm [7] is an apriori-like strategy. During its first iterations,
it exploits directly accessible data structures together with database pruning
techniques that reduce the number and size of transactions to be scanned.

For k = 2, kDCI++ builds a prefix table P2 of
(

|F1|
2

)

entries. Each entry of P2

is a counter that represents a 2-candidate and accumulates its support.
To directly access the entry (counter) associated with a generic candidate

c=(c1,c2), where c1 < c2, kDCI++ maps c into a pair {x1,x2} where x1=T (c1),
x2=T (c2), and T is a strictly monotonous increasing function defined by T :
F1 → {1, . . . , |F1|}. Equation 1 is thus adopted by kDCI++ in order to find the
entry of P2 that represents c={c1, c2}, called here EP2(c1, c2). This equation is
derived considering that the counters associated with pairs {1,x2}, 2 ≤ x2 ≤ |F1|
are stored in the first (|F1|-1) positions of P2, the counters associated with pairs
{2,x2}, 3 ≤ x2 ≤ |F1|, are stored in the next (|F1|-2) positions, and so on.

EP2(c1, c2) =

x1−1
∑

i=1

(|F1| − i)+(x2−x1) = |F1|(x1−1)−
x1(x1 − 1)

2
+x2−x1 . (1)

At the end of the counting phase, if the corresponding entry of c is greater
than or equal to minsup, c is included in F2.

When k > 2, another data structure was proposed. A prefix table Pk of
(

|Mk|
2

)

entries is built, where Mk is the set of items at iteration k that were not
pruned during execution progress. Each entry of Pk contains a pointer to the

beginning of a memory section that stores the ordered k-candidates having the
same 2-prefix. The entry of Pk that represents the prefix {c1, c2} of a candidate
c={c1, c2, . . . , ck} is obtained similarly to the second iteration.

To obtain the support of each k-candidate, for each transaction t, kDCI++

determines all possible 2-prefixes of all k-itemsets in t. Then, for each 2-prefix,
the entry i of Pk is obtained and the section of ordered candidates that must be
evaluated will be delimited by Pk[i] and Pk[i + 1].

At each iteration k ≥ 2, kDCI++ checks whether the vertical layout of the
pruned database fits into main memory. The vertical layout can be seen as a set
of |Mk| bit vectors of size |Tk|, where Tk is the set of not pruned transactions
at that iteration. If the bit vector associated with an item i has its jth bit equal
to 1, item i is present in the jth transaction. If the database is small enough, its
vertical representation is built and the supports of the (k +1)-candidates is thus
obtained by the intersections of the k bit vectors associated with their items.

3 The kDCI-3 Algorithm

Aiming at improving the performance of kDCI++, in this section, we propose the
kDCI-3 algorithm, which uses an efficient direct counting technique to determine
the support of all 3-candidates.

The data structure used by kDCI-3 during the third iteration is based on the
prefix table P2 and on a new array C which represents all 3-candidates.

In the kDCI-3 algorithm, an entry of P2 related to the frequent 2-itemset
{c1,c2} stores two values. The first one, represented by Pt(c1, c2), is a pointer to
the first entry of the contiguous section in C associated with all 3-candidates (in
lexicographic order) having the same 2-prefix {c1,c2}. This value is null if there
is no 3-candidate with that 2-prefix. The second value is the order, represented
by Ord(c1, c2), in which the frequent 2-itemset {c1,c2} is represented in P2.
Ord(c1, c2) is null if {c1,c2} is not a frequent 2-itemset. To access P2, kDCI-3

utilizes Equation 1, similarly to kDCI++.
The entry of C which corresponds to a generic 3-candidate c={c1,c2,c3},

called here EC(c1, c2, c3) and defined by Equation 2, can be found from the
pointer Pt(c1, c2) together with an offset value. This offset is defined by the
number of frequent 2-itemsets represented between {c1,c2} and {c1,c3} in P2.

EC(c1, c2, c3) = Pt(c1, c2) + ((Ord(c1, c3) − Ord(c1, c2)) − 1) . (2)

Figure 1 illustrates how kDCI-3 identifies the entry associated with a given
3-candidate. In this example, F1={0,1,3,7,9} and F2={{0,1},{0,3},{0,7},{0,9},
{1,3},{1,9},{3,9}}. The set of 3-candidates (C3), represented by C, is generated
in lexicographic order by the combination of the frequent 2-itemsets that share
a common 1-prefix. For instance, the frequent 2-itemset {0,1} will be combined
with all subsequent frequent 2-itemsets in P2 that have 0 as their first item, in
order to generate all 3-candidates with {0,1} as their 2-prefix. Since the frequent
2-itemset {0,9} is the third one after {0,1}, it is easy to conclude that the candi-
date {0,1,9} is the third candidate in C having {0,1} as their 2-prefix. Then, the

3-candidate {0,1,9}, generated by {0,1} and {0,9}, is located in C two entries
after the first 3-candidate sharing the prefix {0,1}. Indeed, this two entries are
given by ((Ord(0, 9)−Ord(0, 1))−1) and the first 3-candidate sharing the prefix
{0,1} is identified by Pt(0, 1).

PREFIX TABLE P

6

1 2 3 5 6 7 8 9 10

3 5 6 7

2−candidates

1

1

2

4

Ord

Pt

1 2 4 5 6 7

3−candidates

2

ARRAY C

7

 4

 4

 {0,1} {0,3} {0,7} {0,9} {1,3} {1,7} {1,9} {3,7} {3,9} {7,9}

{0,1,3} {0,1,7} {0,1,9} {0,3,7} {0,3,9} {0,7,9} {1,3,9}

EC(0,1,9) = Pt(0,1) + ((Ord(0,9) − Ord(0,1)) − 1)

EC(0,1,9) = 1 + ((4 − 1) − 1) = 3

3

Fig. 1. Data structure used by kDCI-3 to access 3-candidates

To obtain the support of each 3-candidate, for each transaction t, kDCI-

3 determines all the possible 3-itemsets included in t. After that, for each 3-
itemset {c1,c2,c3} in t, it identifies the entries of P2 that represents the 2-itemsets
{c1,c2} and {c1,c3}. If the identified entries represent frequent 2-itemsets, the
entry associated with {c1,c2,c3}, in C, is found from Equation 2 and is then
incremented. At the end of the candidate counting, if an entry in C is greater
than or equal to minsup, its corresponding candidate is included in F3.

4 Performance Evaluation

The computational experiments reported in this work have been carried out on
a 600 MHz Pentium III PC with 256 MB of RAM memory under the RedHat
Linux 9.0 (kernel version 2.4.20) operating system.

The databases used in the experiments are described in Table 2. The first
three databases were generated by the IBM dataset generator [1]. The databases
T40I10100K, T10I4D100K and BMS-POS (real database) were downloaded from
the FIMI repository, and finally, T25I10D10K and T30I16D400K were down-
loaded from the DCI site (http://miles.cnuce.cnr.it/~palmeri/datam/DCI).

This section is organized as follows. In Subsection 4.1, we compare the ef-
fectiveness of the new technique used by kDCI-3 with that adopted by kDCI++

during the third iteration. In Subsection 4.2, we compare the performance of
kDCI-3 with recent FIM algorithms evaluated in the FIMI’03 Workshop.

Table 2. Databases used in the experiments and its corresponding characteristics

Database Items Transactions Avg. Length References

T20I10N1KP5C0.25D200K 1000 197,437 20.1 [3]
T10I5N1KP5C0.25D200K 1000 192,889 10.3 [3]
T30I15N1KP5C0.25D200K 1000 199,093 29.6 [3]
T25I10D10K 1001 9,219 27.7 [2, 5, 7, 8]
T40I10D100K 1000 100,000 39.6 [4, 10, 13]
T10I4D100K 1000 100,000 10.1 [10, 13]
T30I16D400K 1000 397,487 29.7 [7, 8, 10]
BMS-POS 1657 515,597 6.5 [3, 6, 10, 13, 15]

4.1 Effectiveness of the New Direct Counting Technique

For kDCI++, we used the source code available at the DCI site, now also available
at the FIMI repository. For kDCI-3, we adapted the source code of kDCI++ in
order to implement kDCI-3 features and to allow a fair comparison between them.

Table 3 shows, for the same combinations of databases and low minimum
supports presented in Table 1, the total execution times (in seconds) and the
third iteration execution times (in seconds) of kDCI++ and kDCI-3, respectively.
The fourth column represents the ratio between the third iteration execution
time of kDCI-3 and that of kDCI++. The seventh column represents the ratio
between the total execution time of kDCI-3 and that of kDCI++.

Table 3. Execution times of kDCI++ and kDCI-3

3rd iteration times Total times

Database (minsup - %) kDCI++ kDCI-3 (%) kDCI++ kDCI-3 (%)

T20I10N1KP5C0.25D200K (0.1) 353 40 11 544 191 35
T20I10N1KP5C0.25D200K (0.3) 34 10 29 51 27 53
T10I5N1KP5C0.25D200K (0.01) 220 12 5 298 90 30
T10I5N1KP5C0.25D200K (0.03) 70 7 10 104 48 46
T30I15N1KP5C0.25D200K (0.25) 541 86 16 655 209 32
T30I15N1KP5C0.25D200K (0.5) 116 31 27 139 60 43
T25I10D10K (0.1) 21 4 19 26 9 35
T25I10D10K (0.2) 1.9 1.3 68 4 3.7 93
T40I10D100K (0.5) 271 69 25 386 208 54
T40I10D100K (0.75) 101 39 39 133 72 54
T10I4D100K (0.01) 103 6 6 307 202 66
T10I4D100K (0.03) 28 3 11 36 16 44
T30I16D400K (0.4) 487 132 27 755 478 63
T30I16D400K (0.6) 161 67 42 234 154 66
BMS-POS (0.1) 156 9 6 422 216 51
BMS-POS (0.3) 22 5 23 47 25 53

Due to the large number of 3-candidates generated in these tests (up to
11,051,970 on T10I4D100K (0.01%)), kDCI++ presented a poor performance in
the third iteration. We can note that kDCI-3 efficiently reduced the execution
time of this time consuming phase. We can observe, for instance, that in the
first line of Table 3, while kDCI++ executed the third iteration in 353 seconds,
kDCI-3 executed it in 40 seconds. This represents a reduction of 89%. Since the
third iteration represents in this run a great part of the total execution time
(as observed in Subsection 1.2), kDCI-3 total execution time was 35% of that of
kDCI++ (a reduction of 65%).

The elapsed times of kDCI-3 were, for the third iteration, on average, 23%
(from 5% to 68%) of that of kDCI++ (a reduction, on average, of 77%). We
can also observe the impact produced by the proposed direct counting technique
during the third iteration in the total execution times. The relative total execu-
tion times of kDCI-3 ranged from 30% to 66% (with a discrepant value of 93%)
representing, on average, 51% of the total execution times of kDCI++.

4.2 Performance Comparison

This section reports a performance comparison among kDCI-3 and four preem-
inent algorithms: kDCI++, PatriciaMine, FPgrowth*, and LCM-freq. According
to [3], kDCI++ and PatriciaMine are considered state-of-the-art algorithms. We
also selected FPgrowth* and LCM-freq since they showed a good behavior in the
FIMI’03 experiments, specially for low supports. For PatriciaMine, FPgrowth*

and LCM-freq, we used the source codes available at the FIMI repository.
Figure 2 shows the relative execution times of kDCI-3 and the other algo-

rithms. In each picture, the value 1 (in y-axis) represents the relative execution
time of the worst algorithm for the correspondent minimum support. The value
in brackets beside the minimum support (in x-axis) is the absolute execution
time of the worst algorithm (in seconds).

We observe that kDCI-3 was better than kDCI++ for almost all combinations
of databases and minimum supports. In graph (e), for the highest support (0.9%),
and in graph (f) for the three highest supports (0.5%, 0.4%, and 0.3%), kDCI++
was slightly better than kDCI-3 due to a not relevant number of 3-candidates.

For lower values of minimum support in graphs (e) and (f), when the number
of 3-candidates increases, kDCI-3 performs much better than kDCI++. In some
cases, as pointed out in [7], the bad behavior of kDCI++ can be justified by the
size of C3, which can lead to “a lot of useless work to determine the support of
many candidate itemsets which are not frequent”.

In graphs (g) and (h), kDCI++ was always the worst algorithm. For all values
of support, kDCI-3 was better than kDCI++, making it more competitive.

In graphs (a)-(d), we observe that for higher minimum supports, kDCI-3 runs
faster than kDCI++, which was the best algorithm in these situations. For lower
minimum supports, however, kDCI++ performance decreases, but kDCI-3 is still
better than kDCI++, also making it more competitive. In these graphs (and also
in graph(e)), for some values of support, kDCI++ was the worst algorithm (or
almost the worst), while the improvements of kDCI-3 made it the best one.

 0

 0.25

 0.5

 0.75

 1

0.9 (31) 0.7 (31) 0.5 (33) 0.3 (51) 0.1 (544)

re
la

tiv
e

ex
ec

ut
io

n
tim

e

support (%)

(a) T20I10N1KP5KC0.25D200K

"PatriciaMine"
"LCM-freq"

"FPgrowth*"
"kDCI-3"

"kDCI++"

 0

 0.25

 0.5

 0.75

 1

3 (38) 2 (48) 1 (57) 0.25 (655)

re
la

tiv
e

ex
ec

ut
io

n
tim

e

support (%)

(b) T30I15N1KP5KC0.25D200K

"PatriciaMine"
"LCM-freq"

"FPgrowth*"
"kDCI-3"

"kDCI++"

 0

 0.25

 0.5

 0.75

 1

2 (37) 1.5 (43) 1 (62) 0.5 (385)

re
la

tiv
e

ex
ec

ut
io

n
tim

e

support (%)

(c) T40I10D100K

"PatriciaMine"
"LCM-freq"

"FPgrowth*"
"kDCI-3"

"kDCI++"

 0

 0.25

 0.5

 0.75

 1

1.2 (116) 1 (123) 0.8 (138) 0.6 (234) 0.4 (775)

re
la

tiv
e

ex
ec

ut
io

n
tim

e

support (%)

(d) T30I16D400K

"PatriciaMine"
"LCM-freq"

"FPgrowth*"
"kDCI-3"

"kDCI++"

 0

 0.25

 0.5

 0.75

 1

0.9 (16) 0.7 (30) 0.5 (33) 0.3 (47) 0.1 (422)

re
la

tiv
e

ex
ec

ut
io

n
tim

e

support (%)

(e) BMS-POS

"PatriciaMine"
"LCM-freq"

"FPgrowth*"
"kDCI-3"

"kDCI++"

 0

 0.25

 0.5

 0.75

 1

0.5 (3) 0.4 (3) 0.3 (3) 0.2 (4) 0.1 (26)

re
la

tiv
e

ex
ec

ut
io

n
tim

e

support (%)

(f) T25I10D10K

"PatriciaMine"
"LCM-freq"

"FPgrowth*"
"kDCI-3"

"kDCI++"

 0

 0.25

 0.5

 0.75

 1

0.09 (31) 0.07 (48) 0.05 (70) 0.03 (104) 0.01 (298)

re
la

tiv
e

ex
ec

ut
io

n
tim

e

support (%)

(g) T10I5N1KP5KC0.25D200K

"PatriciaMine"
"LCM-freq"

"FPgrowth*"
"kDCI-3"

"kDCI++"

 0

 0.25

 0.5

 0.75

 1

0.05 (17) 0.04 (23) 0.03 (35) 0.02 (74) 0.01 (307)

re
la

tiv
e

ex
ec

ut
io

n
tim

e

support (%)

(h) T10I4D100K

"PatriciaMine"
"LCM-freq"

"FPgrowth*"
"kDCI-3"

"kDCI++"

Fig. 2. Relative execution times of kDCI-3 and other algorithms

5 Conclusions

In this work we proposed kDCI-3, an extension of the kDCI++ algorithm – a
recent and important method for the FIM problem. kDCI-3 provided an efficient
direct counting of candidates when dealing with a huge number of 3-candidates,
a consequence of low minimum support values, specially in sparse databases.

From the conducted computational experiments, we observed that kDCI-3

presented a very efficient behavior. kDCI-3 reduced the execution times of the
third iteration of kDCI++ and, consequently, its total elapsed times in almost
all executed experiments. We believe that these results represent an important
contribution that improves a state-of-the-art algorithm.

Based on the encouraging observed results, as future work, we intend to inves-
tigate the use of the proposed direct counting of candidates in other iterations.

References

1. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. In 20th
VLDB Conference, 1994.

2. Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L.Lakhal. Mining Frequent
Patterns with Counting Inference. In ACM SIGKDD Explorations, v.2, n.2, 2000.

3. B. Goethals and M. J. Zaki. Advances in Frequent Itemset Mining Implementa-
tions: Introduction to FIMI’03. In IEEE ICDM FIMI Workshop, 2003.

4. G. Grahne, J. Zhu. Efficiently Using Prefix Trees in Mining Frequent Itemsets. In
IEEE ICDM FIMI Workshop, 2003.

5. J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Genera-
tion. In ACM SIGMOD Conference, 2000.

6. J. Liu, Y. Pan, K. Wang, and J. Han. Mining Frequent Item Sets by Opportunistic
Projection. In 8th ACM SIGKDD Conference, 2002.

7. S. Orlando, P. Palmerimi, R. Perego, C. Lucchese, and F. Silvestri. kDCI++: A
Multi–Strategy Algorithm for Discovering Frequent Sets in Large Databases. In
IEEE ICDM FIMI Workshop, 2003.

8. S. Orlando, P. Palmerimi, and R. Perego. Adaptive and Resource–Aware Mining
of Frequent Sets. In IEEE ICDM Conference, 2002.

9. J. S. Park, M. Chen, and P. S. Yu. An Effective Hash-Based Algorithm for Mining
Association Rules. In ACM SIGMOD Conference, 1995.

10. A. Pietracaprina and D. Zandolin. Mining Frequent Itemsets using Patricia Tries.
In IEEE ICDM FIMI Workshop, 2003.

11. A. Savasere, E. Omiecinski, and S. Navathe. An Efficient Algorithm for Mining
Association Rules in Large Databases. In 21th VLDB Conference, 1995.

12. H. Toivonen. Sampling Large Databases for Association Rules. In 22th VLDB
Conference, 1996.

13. T. Uno, T. Asai, Y. Uchida, and H. Arimura. LCM: An Efficient Algorithm for
Enumerating Frequent Closed Item Sets. In IEEE ICDM FIMI Workshop, 2003.

14. M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New Algorithms for Fast
Discovery of Association Rules. In 3rd ACM SIGKDD Conference, 1997.

15. Z. Zheng, R. Kohavi, and L. Mason. Real World Performance of Association Rule
Algorithms. In 7th ACM SIGKDD Conference, 2001.

