
Efficient Discovery of Sets of Co-occurring Items

in Event Sequences

Boris Cule1, Len Feremans1, and Bart Goethals1,2

1 University of Antwerp, Belgium
2 Monash University, Australia

Abstract. Discovering patterns in long event sequences is an important
data mining task. Most existing work focuses on frequency-based quality
measures that allow algorithms to use the anti-monotonicity property to
prune the search space and efficiently discover the most frequent pat-
terns. In this work, we step away from such measures, and evaluate pat-
terns using cohesion — a measure of how close to each other the items
making up the pattern appear in the sequence on average. We tackle
the fact that cohesion is not an anti-monotonic measure by developing
a novel pruning technique in order to reduce the search space. By doing
so, we are able to efficiently unearth rare, but strongly cohesive, patterns
that existing methods often fail to discover.

1 Introduction

Pattern discovery in sequential data is a well-established field in data mining.
The earliest attempts focused on the setting where data consisted of many (typ-
ically short) sequences, where a pattern was defined as a (sub)sequence that
re-occurred in a high enough number of such input sequences [2].

The first attempt to identify patterns in a single long sequence of data was
proposed by Mannila et al [8]. The presented Winepi method uses a sliding
window of a fixed length to traverse the sequence, and a pattern is then consid-
ered frequent if it occurs in a high enough number of these sliding windows. An
often-encountered critique of this method is that the obtained frequency is not
an intuitive measure, since it does not correspond to the actual number of oc-
currences of the pattern in the sequence. For example, given sequence axbcdayb,
and a sliding window length of 3, the frequency of itemset {a, b} will be equal to
2, as will the frequency of itemset {c, d}. However, pattern {a, b} occurs twice in
the sequence, and pattern {c, d} just once, and while the method is motivated by
the need to reward c and d for occurring right next to each other, the reported
frequency values remain difficult to interpret.

Laxman et al. [7] attempted to tackle this issue by defining the frequency
as the maximal number of non-intersecting minimal windows of the pattern in
the sequence. In this context, a minimal window of the pattern in the sequence
is defined as a subsequence of the input sequence that contains the pattern,
such that no smaller subsequence also contains the pattern. However, while the

2

method uses a relevance window of a fixed length, and disregards all minimal
windows that are longer than the relevance window, the length of the minimal
windows that do fit into the relevance window is not taken into account at all.
For example, given sequence axyzbcd, with a relevance window larger than 4,
the frequency of both itemset {a, b} and itemset {c, d} would be equal to 1.

Cule et al. [4] propose an amalgam of the two approaches, defining the fre-
quency of a pattern as the maximal sum of weights of a set of non-overlapping
minimal windows of the pattern, where the weight of a window is defined as
the inverse of its length. However, this method, too, struggles with the inter-
pretability of the proposed measure. For example, given sequence axbcdayb and
a relevance window larger than 3, frequency of {a, b} would be 2/3, while fre-
quency of {c, d} would be 1/2. On top of this, as the input sequence grows longer,
the sum of these weights will grow, and the defined frequency can take any real
positive value, giving the user no idea how to set a sensible frequency threshold.

All of the techniques mentioned above use a frequency measure that satisfy
the so-called Apriori property [1]. This property implies that the frequency of a
pattern is never smaller than the frequency of any of its superpatterns (in other
words, frequency is an anti-monotonic quality measure). While this property is
computationally very desirable, since large candidate patterns can be generated
from smaller patterns, and generating unnecessary candidates can be avoided,
the undesirable side-effect is that larger patterns, which are often more useful
to the end users, will never be ranked higher than all their subpatterns. On top
of this, all these methods focus solely on how often certain items occur near
each other, and do not take occurrences of these items far away from each other
into account. Consequently, if two items occur frequently, and through pure
randomness often occur near each other, they will form a frequent itemset, even
though they are, in fact, in no way correlated.

In another work, Cule et al. [3] propose a method that steps away from anti-
monotonic quality measures, and introduce a new interestingness measure that
combines the coverage of the pattern with its cohesion. Cohesion is defined as
a measure of how near each other the items making up an interesting itemset
occur on average. However, the authors define the coverage of an itemset as
the sum of frequencies of all items making up the itemset, which results in a
massive bias towards larger patterns instead. Furthermore, this allows for a very
infrequent item making its way into an interesting itemset, as long as all other
items in the itemset are very frequent and often occur near the infrequent item.
As a result, the method is not scalable for any sequence with a large alphabet
of items, which makes it unusable in most realistic data sets.

Hendrickx et al. [6] tackle a related problem in an entirely different setting.
Given a graph consisting of labelled nodes, they attempt to discover which la-
bels often co-occur. In this context, they aim to discover cohesive itemsets (sets
of labels), by computing average distances between the labels, where the dis-
tance between two nodes is defined as the length of the shortest path between
them (expressed as the number of edges on this path). While the authors also
experimented with sequential data, after first converting an input sequence into

3

a graph, by converting each event into a node labelled by the event type, and
connecting neighbouring events by an edge, this approach is not entirely suitable
for sequential data. More precisely, in a graph setting, an itemset can only be
considered fully cohesive if all its occurrences form a clique in the graph. Clearly,
in a sequence, for any itemset of size larger than 2, it would be impossible to
form a clique, since each node (apart from the first one and the last one) has ex-
actly two edges - one connecting the node to the event that occurred last before
the event itself, and the other connecting it to the event that occurred first after
the event itself. For example, given sequence abcd (converted into a graph), the
cohesion of itemset {a, b} would be equal to 1, the cohesion of {a, b, c} would be
3/4, and the cohesion of {a, b, c, d} would be 3/5 (we omit the computational
details here), which is clearly not intuitive.

In this work, we use the cohesion introduced by Cule et al. [3] as a single mea-
sure to evaluate cohesive itemsets. We consider itemsets as potential candidates
only if each individual item contained in the itemset is frequent in the dataset.
This allows us to filter out the infrequent items at the very start of our algo-
rithm, without missing out on any cohesive itemsets. However, using cohesion as
a single measure brings its own computational problems. First of all, cohesion is
not an anti-monotonic measure, which means that a superset of a non-cohesive
itemset could still prove to be cohesive. However, since the size of the search
space is exponential in the number of frequent items, it is impossible to evaluate
all possible itemsets. We solve this by developing a tight upper bound on the
maximal possible cohesion of all itemsets that can still be generated in a partic-
ular branch of the depth-first-search tree. This bound allows us to prune large
numbers of potential candidate itemsets, without having to evaluate them at all.
Furthermore, we present a very efficient method to identify minimal windows
that contain a particular itemset, necessary to evaluate its cohesion. Our exper-
iments show that our method discovers patterns that existing methods struggle
to rank highly, while dismissing obvious patterns consisting of items that occur
frequently, but are not at all correlated. We further show that we achieve these
results quickly, thus demonstrating the efficiency of our algorithm.

The rest of the paper is organised as follows. In Section 2 we formally describe
the problem setting and define the patterns we aim to discover. Section 3 provides
a detailed description of our algorithm, while in Section 4 we present a thorough
experimental evaluation of our method, in comparison with a number of existing
methods. We present an overview of the most relevant related work in Section 5,
before summarising our main conclusions in Section 6.

2 Problem Setting

The dataset consists of a single event sequence s = (e1, . . . , en). Each event ek
is represented by a pair (ik, tk), with ik an event type (coming from the domain
of all possible event types) and tk an integer time stamp. For any 1 < k ≤ n, it
holds that tk > tk−1. For simplicity, we omit the time stamps from our examples,
and write sequence (e1, . . . , en) as i1 . . . in, implicitly assuming the time stamps

4

are consecutive integers starting with 1. In further text, we refer to event types
as items, and sets of event types as itemsets.

For an itemset X = {i1, ..., im}, we denote the set of occurrences of items
making up X in a sequence s with N(X) = {t|(i, t) ∈ s, i ∈ X}. For an item i,
we define the support of i in an input sequence s as the number of occurrences
of i in s, sup(i) = |N({i})|. Given a user-defined support threshold min sup, we
say that an itemset X is frequent in a sequence s if for each i ∈ X it holds that
sup(i) ≥ min sup.

To evaluate the cohesiveness of an itemset X in a sequence s, we must first
identify minimal occurrences of the itemset in the sequence. For each occurrence
of an item in X , we will look for the minimal window within s that contains that
occurrence and the entire itemset X . Formally, given a time stamp t, such that
(i, t) ∈ s and i ∈ X , we define the size of the minimal occurrence of X around t

as Wt(X) = min{te − ts + 1|ts ≤ t ≤ te and ∀i ∈ X ∃(i, t′) ∈ s, ts ≤ t′ ≤ te}.
We further define the size of the average minimal occurrence of X in s as

W (X) =

∑
t∈N(X) Wt(X)

|N(X)|
.

Finally, we define the cohesion of itemset X , with |X | > 0, in a sequence s as

C(X) = |X|

W (X)
. If |X | = 0, we define C(X) = 1.

Given a user-defined cohesion threshold min coh, we say that an itemset X
is cohesive in a sequence s if it holds that C(X) ≥ min coh.

Note that the cohesion is higher if the minimal occurrences are smaller. Fur-
thermore, a minimal occurrence of itemset X can never be smaller than the
size of X , so it holds that C(X) ≤ 1. If C(X) = 1, then every single minimal
occurrence of X in s is of length |X |.

A single item is always cohesive, so to avoid outputting all frequent items,
we will from now on consider only itemsets consisting of 2 or more items. An
optional parameter, max size, can be used to limit the size of the discovered
patterns. Formally, we say that an itemset X is a frequent cohesive itemset if
1 < |X | ≤ max size, ∀i ∈ X : sup(i) ≥ min sup and C(X) ≥ min coh.

Cohesion is not an anti-monotonic measure. A superset of a non-cohesive
itemset could turn out to be cohesive. For example, given sequence abcxacbybac,
we can see that C({a, b}) = C({a, c}) = C({b, c}) = 6/7, while C({a, b, c}) = 1.
While this allows us to eliminate bias towards smaller patterns, it also brings
computational challenges which will be addressed in the following section.

3 Algorithm

In this section we present a detailed description of our algorithm. We first show
how we generate candidates in a depth-first manner, before explaining how we
can prune large numbers of potential candidates by computing an upper bound
of the cohesion of all itemsets that can be generated within a branch of the
search tree, and we end the section by providing an efficient method to compute
the sum of minimal windows of a particular itemset in the input sequence.

5

Algorithm 1: FCIseq finds frequent cohesive itemsets in a sequence

1 FI = all frequent items;
2 sort FI on support in ascending order;
3 FC = ∅;
4 DFS(〈∅, F I〉);
5 return FC

Algorithm 2: DFS(〈X,Y 〉) depth-first search

1 if Cmax(X,Y) ≥ min coh then

2 if Y = ∅ then
3 if |X| > 1 then

4 FC = FC ∪ {X};

5 else

6 a = first(Y);
7 if |X ∪ {a}| ≤ max size then

8 DFS(〈X ∪ {a}, Y \ {a}〉);

9 DFS(〈X,Y \ {a}〉);

3.1 Depth-First-Search

The main routine of our FCIseq algorithm is given in Algorithm 1. We begin by
scanning the input sequence, identifying the frequent items, and storing their
occurrence lists for later use. We then sort the set of frequent items on support
in ascending order (line 2), initialise the set of frequent cohesive itemsets FC as
an empty set (line 3), and start the depth-first-search process (line 4). Once the
search is finished, we output the set of frequent cohesive itemsets FC (line 5).

The recursive DFS procedure is shown in Algorithm 2. In each call, X con-
tains the candidate itemset, while Y contains items that are yet to be enumer-
ated. In line 1, we evaluate the pruning function Cmax(X,Y) to decide whether
to search deeper in the tree or not. This function will be described in detail in
Section 3.2. If the branch is not pruned, there are two possibilities. If we have
reached a leaf node (line 2), we add the discovered cohesive itemset to the output
(provided its size is greater than 1). Alternatively, if there are more items to be
enumerated, we pick the first such item a (line 6) and make two recursive calls
to the DFS function — the first with a added to X (this is only executed if
X ∪ {a} satisfies the max size constraint), and the second with a discarded.

3.2 Pruning

At any node in the search tree, X denotes all items currently making up the
candidate itemset, while Y denotes all items that are yet to be enumerated.
Starting from such a node, we can still generate any itemset Z, such that X ⊆
Z ⊆ X ∪Y and |Z| ≤max size. In order to be able to prune the entire branch of

6

the search tree, we must therefore be certain that for every such Z, the cohesion
of Z cannot satisfy the minimum cohesion constraint.

In the remainder of this section, we first define an upper bound for the
cohesion of all itemsets that can be generated in a particular branch of the
search tree, before providing a detailed proof of its soundness. Given itemsets X
and Y , with |X | > 0 and X ∩ Y = ∅, the Cmax(X,Y) pruning function used in
line 1 of Algorithm 2 is defined as

Cmax(X,Y) =
min(max size, |X ∪ Y |)(|N(X)|+Nmax(X,Y))∑

t∈N(X) Wt(X) + min(max size, |X ∪ Y |)Nmax(X,Y)
,

where
Nmax(X,Y) = max

Yi⊆Y,
|Yi|≤ max size−|X|

|N(Yi)|.

For |X | = 0, we define Cmax(X,Y) = 1.
Note that if Y = ∅, Cmax(X,Y) = C(X), which is why we do not need to

evaluate C(X) before outputting X in line 4 of Algorithm 2.
Before proving that the above upper bound holds, we will first explain the

intuition behind it. When we find ourselves at node 〈X,Y 〉 of the search tree,
we will first evaluate the cohesion of itemset X . If X is cohesive, we need to
search deeper in the tree, as supersets of X could also be cohesive. However, if
X is not cohesive, we need to evaluate how much the cohesion can still grow
if we go deeper into this branch of the search tree. Logically, starting from

C(X) = |X|

W (X)
= |X||N(X)|∑

t∈N(X) Wt(X) , the value of this fraction will grow maximally

if the nominator is maximised, and the denominator minimised. Clearly, as we
add items to X , the nominator will grow, and it will grow maximally if we add as
many items to X as possible. However, as we add items to X , the denominator
must grow, too, so the question is how it can grow minimally. In the worst case,
each new window added to the sum in the denominator will be minimal (i.e., its
length will be equal to the size of the new itemset), and the more such windows
we add to the sum, the higher the overall cohesion will grow.

For example, given sequence acb and a cohesion threshold of 0.8, assume we
find ourselves in node 〈{a, b}, {c}〉 of the search tree. We will then first find
the smallest windows containing {a, b} for each occurrence of a and b, i.e.,
W1({a, b}) = W3({a, b}) = 3. It turns out that C({a, b}) = 2×2

3+3 = 2
3 , which

is not cohesive enough. However, if we add c to itemset {a, b}, we know that the
size of the new itemset will be 3, we know the number of occurrences of items
from the new itemset will be 3, and the nominator will therefore be equal to 9.
For the denominator, we have no such certainties, but we know that, in the worst
case, the windows for the occurrences of a and b will not grow (i.e., each smallest
window of {a, b} will already contain an occurrence of c), and the windows for
all occurrences of c will be minimal (i.e., of size 3). Indeed, when we evaluate

the above upper bound, we obtain Cmax({a, b}, {c}) =
3×(2+1)
6+3×1 = 9

9 = 1. We see

that even though the cohesion of {a, b} is 2
3 , the cohesion of {a, b, c} could, in

the worst case, be as high as 1. And in our sequence acb, that is indeed the case.

7

The above example also demonstrates the tightness of our upper bound, as the
computed value can, in fact, turn out to be equal to the actual cohesion of a
superset yet to be generated.

We now present a full formal proof of the soundness of the proposed upper
bound. In order to do this, we will need the following lemma.

Lemma 1. For any six positive numbers a, b, c, d, e, f , with a ≤ b, c ≤ d and

e ≤ f , it holds that

1. if a+c+e
b+e

< 1 then a+c+e
b+e

≤ a+d+f

b+f
.

2. if a+c+e
b+e

≥ 1 then a+d+f

b+f
≥ 1.

Proof. We begin by proving the first claim. To start with, note that if a+c+e
b+e

< 1,

then a+c
b

< 1. For any positive number f with e ≤ f , it therefore follows that
a+c+e
b+e

≤ a+c+f
b+f

. Finally, for any positive number d, with c ≤ d, it holds that
a+c+f

b+f
≤ a+d+f

b+f
, and therefore a+c+e

b+e
≤ a+d+f

b+f
. For the second claim, it directly

follows that if a+c+e
b+e

≥ 1, then a+c
b

≥ 1, a+d
b

≥ 1, and a+d+f

b+f
≥ 1. �

Theorem 1. Given itemsets X and Y , with X∩Y = ∅, for any itemset Z, with

X ⊆ Z ⊆ X ∪ Y and |Z| ≤ max size, it holds that C(Z) ≤ Cmax(X,Y).

Proof. We know that C(Z) ≤ 1, so the theorem holds if |X | = 0. Assume now

that |X | > 0. First recall that C(Z) = |Z|

W (Z)
= |Z||N(Z)|∑

t∈N(Z) Wt(Z) . We can rewrite

this expression as

C(Z) =
(|X |+ |Z \X |)(|N(X)|+ |N(Z \X)|)∑

t∈N(X) Wt(Z) +
∑

t∈N(Z\X) Wt(Z)
.

Further note that for a given time stamp in N(X), the minimal window contain-
ing Z must be at least as large as the minimal window containing only X , and
for a given time stamp in N(Z \X), the minimal window containing Z must be
at least as large as the size of Z. It therefore follows that

∑

t∈N(X)

Wt(Z) ≥
∑

t∈N(X)

Wt(X) and
∑

t∈N(Z\X)

Wt(Z) ≥ |Z||N(Z \X)|,

and, as a result,

C(Z) ≤
|X ||N(X)|+ |Z \X ||N(X)|+ |Z||N(Z \X)|∑

t∈N(X)Wt(X) + |Z||N(Z \X)|
.

Finally, we note that, per definition, |Z \X | ≤ min(max size,|X ∪Y |)−|X |, and,
since Z is generated by adding items from Y to X , until either |Z| =max size

or there are no more items left in Y , |N(Z \X)| ≤ Nmax(X,Y).
At this point we will use Lemma 1 to take the proof further. Note that, per

definition, C(X) = |X||N(X)|∑
t∈N(X) Wt(X) ≤ 1. We now denote

a = |X ||N(X)| and b =
∑

t∈N(X)

Wt(X).

8

Furthermore, we denote

c = |Z \X ||N(X)|, d = (min(max size, |X ∪ Y |)− |X |)|N(X)|,

e = |Z||N(Z \X)|, and f = min(max size, |X ∪ Y |)Nmax(X,Y).

Since a, b, c, d, e and f satisfy the conditions of Lemma 1, we know that it holds
that

1. if |X||N(X)|+|Z\X||N(X)|+|Z||N(Z\X)|∑
t∈N(X) Wt(X)+|Z||N(Z\X)| < 1 then

|X||N(X)|+|Z\X||N(X)|+|Z||N(Z\X)|∑
t∈N(X) Wt(X)+|Z||N(Z\X)| ≤

|X||N(X)|+(min(max size,|X∪Y |)−|X|)|N(X)|+min(max size,|X∪Y |)Nmax(X,Y)∑
t∈N(X) Wt(X)+min(max size,|X∪Y |)Nmax(X,Y) .

2. if |X||N(X)|+|Z\X||N(X)|+|Z||N(Z\X)|∑
t∈N(X) Wt(X)+|Z||N(Z\X)| ≥ 1 then

|X||N(X)|+(min(max size,|X∪Y |)−|X|)|N(X)|+min(max size,|X∪Y |)Nmax(X,Y)∑
t∈N(X) Wt(X)+min(max size,|X∪Y |)Nmax(X,Y) ≥ 1.

Finally, note that
|X||N(X)|+(min(max size,|X∪Y |)−|X|)|N(X)|+min(max size,|X∪Y |)Nmax(X,Y)∑

t∈N(X) Wt(X)+min(max size,|X∪Y |)Nmax(X,Y) =

min(max size,|X∪Y |)(|N(X)|+Nmax(X,Y))∑
t∈N(X) Wt(X)+min(max size−|X|,|Y |)Nmax(X,Y) = Cmax(X,Y).

From the first claim above, it follows that if |X||N(X)|+|Z\X||N(X)|+|Z||N(Z\X)|∑
t∈N(X) Wt(X)+|Z||N(Z\X)| <

1, then C(Z) ≤ Cmax(X,Y). From the second claim, it immediately follows that

if |X||N(X)|+|Z\X||N(X)|+|Z||N(Z\X)|∑
t∈N(X) Wt(X)+|Z||N(Z\X)| ≥ 1, then Cmax(X,Y) ≥ 1, and since, per

definition C(Z) ≤ 1, C(Z) ≤ Cmax(X,Y). This completes the proof. �

Since an important feature of computing an upper bound for the cohesion is
to establish how much cohesion could grow in the worst case, we need to figure
out which items from Y should be added to X to reach this worst case. As
has been discussed above, the worst case is actually materialised by adding as
many as possible items from Y , and by first adding those that have the most
occurrences. However, if the max size parameter is used, it is not always possible
to add all items in Y to X . In this case, we can only add max size −|X | items
to X , which is why we defined Nmax(X,Y) as

Nmax(X,Y) = max
Yi⊆Y,

|Yi|≤ max size−|X|

|N(Yi)|.

Clearly, if |X∪Y | ≤ max size, Nmax(X,Y) = N(Y). If not, at first glance it may
seem computationally very expensive to determine |N(Yi)| for every possible
Yi. However, we solve this problem by sorting the items in Y on support in
ascending order. In other words, if Y = {y1, . . . , yn}, with sup(yi) ≤ sup(yi+1)
for i = 1, . . . , n− 1, then we can compute Nmax(X,Y) as

Nmax(X,Y) =
∑

i∈{1,..., max size−|X|}

|N({yn−i+1})|.

As a result, the only major step in computing Cmax(X,Y) is that of computing∑
t∈N(X)Wt(X), as the rest can be computed in constant time. The procedure

for computing
∑

t∈N(X) Wt(X) is explained in detail in Section 3.3.

9

3.3 Computing the sum of minimal windows

The algorithm for computing the sum of minimal windows is shown in Algo-
rithm 3. For a given itemset X , the algorithm keeps a list of all time stamps
at which items of X occur in the positions variable. The nextpos variable keeps
a list of next time stamps for each item, while lastpos keeps a list of the last
occurrences for each item. Since we need to compute the minimal window for
each occurrence, we keep on doing this until we have either computed them all,
or until the running sum has become large enough to safely stop, knowing that
the branch can be pruned (line 7). Concretely, by rewriting the definition of
Cmax(X,Y), we know we can stop if we are certain the sum will be larger than

Wmax(X,Y) =
min(max size, |X ∪ Y |)(|N(X)|+ (Nmax(X,Y)(1 −min coh)))

min coh
.

When a new item comes in (line 14), we update the working variables, and
compute the first and last position of the current window (line 17). If the smallest
time stamp of the current window has changed, we go through the list of active
windows and check whether a new shortest length has been found. If so, we
update it (line 21). We then remove all windows for which we are certain that
they cannot be improved from the list of active windows (line 23), and update
the overall sum (line 24). Finally, we add the new window for the current time
stamp to the list of active windows (line 25).

Note that the sum of minimal windows is independent of Y , the items yet to
be enumerated. Therefore, if the branch is not pruned, the recursive DFS pro-
cedure shown in Algorithm 2 will be called twice, but X will remain unchanged
in the second of those calls (line 9), so we will not need to recompute the sum of
windows, allowing us to immediately evaluate the upper bound in the new node
of the search tree.

We illustrate how the algorithm works on the following example. Assume we
are given the input sequence aabccccacb, and we are evaluating itemset {a, b, c}.
Table 1 shows the values of the main variables as the algorithm progresses. As
each item comes in, we update the values of nextpos and lastpos (other variables
are not shown in the table). In each iteration, we compute the current best
minimal window for the given time stamp as max(lastpos)−min(lastpos)+1. We
also update the values of any previous windows that might have changed for
the better (this can only happen if min(lastpos) has changed), using either the
current window above if it contains the time stamp of the window’s event, or
the window stretching from the relevant time stamp to max(lastpos). Finally,
before proceeding with the next iteration, we remove all windows for which we
are certain that they cannot get any smaller from the list of active windows.

In the table, windows that are not active are marked with ‘-’, while defini-
tively determined windows are shown in bold. We can see that, for example, at
time stamp 4, we have determined the value of the first four windows. Window
w1 cannot be improved on, since time stamp 1 has already dropped out of last-
pos, while the other three windows cannot be improved since 3 is the absolute
minimum for a window containing three items. At time stamp 8, we know that

10

Algorithm 3: Sum Min Wins(〈X,Y 〉) sums minimal windows of X

1 smw← 0; index← 0;
2 positions← position for every item in X;
3 nextpos← {positions[i1][0], positions[i2][0], positions[i3][0], ...};
4 lastpos← {−∞,−∞,−∞, ...};
5 prev min← −∞; active windows← ∅;
6 while index < |N(X)| do
7 if smw + (|N(X)|+ |active windows| − index)× |X| > Wmax(X,Y) then
8 return ∞;

9 current pos←∞;
10 current item← ∅;
11 for i in X do

12 if current pos > nextpos[i] then
13 current pos← nextpos[i];
14 current item← i;

15 lastpos[current item]← current pos;
16 nextpos[current item]← next(positions[current item], current pos);
17 minpos←min(lastpos); maxpos←max(lastpos);
18 if minpos 6= −∞ and minpos > prev min then

19 for window ∈ active windows do

20 newwidth← maxpos−min(minpos,window.pos) + 1;
21 window.width←min(window.width, newwidth);
22 if window.pos < minpos or window.width == |X| or

window.width < (maxpos− window.pos + 1) then
23 active windows← active windows \ {window};
24 smw← smw + window.width;

25 active windows←
active windows ∪ {window(current pos,maxpos−minpos+ 1)};

26 prev min← minpos; index← index+ 1;

27 smw← smw+sum(window.width|window ∈ active windows);
28 return smw;

the length of w5 must be equal to 4, since any new window to come must stretch
at least from time stamp 5 to a time stamp in the future, i.e., at least 9. Finally,
once we have reached the end of the sequence, we mark all current values of still
active windows as determined.

4 Experiments

In order to demonstrate the usefulness of our method, we chose datasets in
which the discovered patterns could be easily discussed and explained. We used
two text datasets, the Species dataset containing the complete text of On the

11

Table 1. Computation of minimal windows.

time item nextpos lastpos w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

0 - (1, 3, 4) (−∞,−∞,−∞) - - - - - - - - - -
1 a (2, 3, 4) (1,−∞,−∞) ∞ - - - - - - - - -
2 a (8, 3, 4) (2,−∞,−∞) ∞ ∞ - - - - - - - -
3 b (8, 10, 4) (2, 3,−∞) ∞ ∞ ∞ - - - - - - -
4 c (8, 10, 5) (2, 3, 4) 4 3 3 3 - - - - - -
5 c (8, 10, 6) (2, 3, 5) - - - - 4 - - - - -
6 c (8, 10, 7) (2, 3, 6) - - - - 4 5 - - - -
7 c (8, 10, 9) (2, 3, 7) - - - - 4 5 6 - - -
8 a (∞, 10, 9) (8, 3, 7) - - - - 4 5 6 6 - -
9 c (∞, 10,∞) (8, 3, 9) - - - - - 5 6 6 7 -
10 b (∞,∞,∞) (8, 10, 9) - - - - - 5 4 3 3 3

Origin of Species by Means of Natural Selection by Charles Darwin3, and the
Moby dataset containing Moby Dick by Herman Melville4. We processed both
sequences using the Porter Stemmer5 and removed the stop words. After pre-
processing, the length of the Species dataset was 85 450 items and the number
of distinct items was 5 547, and the length of Moby was 88 945 and the number
of distinct items was 10 221.

We performed two types of experiments. In Section 4.1, we qualitatively com-
pare our output to that of three existing methods, while in Section 4.2, we provide
a performance analysis of our FCIseq algorithm. To ensure reproducibility, we
have made our implementations and datasets publicly available6.

4.1 Quality of Output

In the first set of experiments, we compared the patterns we discovered to
those found by three existing pattern mining algorithms — Winepi, Laxman7

and Marblesw
8. As discussed in Section 1, these algorithms use a variety

of frequency-based quality measures to evaluate the patterns. Since the avail-
able implementations were made with the goal of discovering partially ordered
episodes, we had to post-process the output in order to filter out only item-
sets. Therefore, making any kind of runtime comparisons would be unfair on
these methods, since they generate many more candidates. Consequently, in this
section we limit ourselves to a qualitative analysis of the output.

3 taken from http://www.gutenberg.org/etext/22764
4 taken from http://www.gutenberg.org/etext/15
5 http://tartarus.org/~martin/PorterStemmer/
6 https://bitbucket.org/len_feremans/sequencepatternmining_public
7 the algorithm was given no name by its authors
8 the implementations of all three methods were downloaded from
http://users.ics.aalto.fi/ntatti/software/closedepisodeminer.zip

12

For all methods, we set the relevant thresholds low enough in order to gen-
erate tens of thousands of patterns. We then sorted the output on the respec-
tive quality measures — the sliding window frequency for Winepi, the non-
overlapping minimal window frequency for Laxman, the weighted window fre-
quency for Marblesw, and cohesion for FCIseq. We used pattern size to break
any ties in all four methods, and the sum of support of individual items making
up an itemset as the third criteria for FCIseq. Patterns that were still tied were
ordered alphabetically. The frequency threshold was set to 30 for Winepi in
both datasets, 5 for Laxman in Origin and 4 in Moby, and 1 for Marblesw in
both datasets, with the sliding window size set to 15. We ran FCIseq with the
cohesion threshold set to 0.01, and the support threshold to 5 for Origin and 4
for Moby. Since none of the existing methods produced any itemsets consisting
of more than 5 items, we limited the max size parameter to 5.

The top 5 patterns discovered by the different methods are shown in Table 2.
We can see that there are clear differences between the patterns we discovered
and those discovered by the existing methods, which all produced very similar
results. First of all, the patterns ranked first and second in our output for the Ori-

gin dataset are of size 3, which would be theoretically impossible for Winepi and
Marblesw, and highly unlikely for Laxman, since all three use anti-monotonic
quality measures. Second, we observe that the patterns we discover are in fact
quite rare in the dataset, but they are very strong, since all occurrences of these
patterns are highly cohesive. Concretely, the phrase tierra del fuego occurs seven
times in the book, and none of these words occur anywhere else in the book.
The value of this pattern is therefore quite clear — if we encounter any one of
these three words, we can be certain that the other two can be found nearby.
However, the only other method that ranked this pattern in the top 10 000 was
Marblesw, which ranked it 8 357th. On the other hand, pattern mobi dick is
both cohesive and frequent, and was ranked 14th by Winepi, 22nd by Laxman

and 7th by Marblesw. None of the other patterns in our top 5 in either dataset
were ranked in the top 3 000 patterns by any of the other algorithms. We con-
clude that in order to find the very strong, but rare, patterns, such as tierra

del fuego or vinegar cruet, with the existing methods the user would need to
wait a long time before a huge output was generated, and would then need to
trawl through tens of thousands of itemsets in the hope of finding them. Our
algorithm, on the other hand, ranks them at the very top.

The patterns discovered by other methods typically consist of words that
occur very frequently in the book, regardless of whether the occurrences of the
words making up the itemset are correlated or not. For example, words speci and
varieti occur very often, and, therefore, also often co-occur. In fact, this pattern
was ranked 82 261st by FCIseq, with a cohesion of just over 0.01, indicating that
the average distance between nearest occurrences of speci and varieti was close
to 100, which clearly demonstrates that this pattern is spurious. Clearly, while
the very top patterns seem very different, there was still some overlap between
the output generated by the various methods. For example, pattern natur select,
ranked first in the Origin dataset by the existing methods, was ranked 17th by

13

Table 2. Top 5 patterns discovered by the different methods.

dataset FCIseq Winepi Laxman Marblesw

tierra del fuego natur select natur select natur select
natura facit saltum speci varieti speci form speci varieti

Species del tierra speci form speci varieti speci distinct
del fuego speci natur speci natur speci form
natura facit speci distinct speci distinct life condit

mobi dick whale sperm whale boat whale sperm
vinegar cruet whale boat ship whale whale white

Moby deuteronomi deacon ship whale whale sperm ship whale
defend plaintiff whale white head whale whale boat
erskin defend plaintiff head whale sea whale head mast

FCIseq, which shows that our method is also capable of discovering very frequent
patterns, as long as they are also cohesive. Similarly, pattern life condit ranked
66th in our output, and pattern speci distinct 129th.

Table 3 shows the size of the overlap between the patterns discovered by
FCIseq and those discovered by the other three methods. We compute the size
of the overlap within the top k patterns for each method, for varying values of
k. We note that, in relative terms, the overlap actually drops as k grows, since
our method ranks many large patterns highly, which is not the case for the other
three methods. For example, the top 500 patterns discovered by FCIseq on the
Species dataset contain 388 patterns of size larger than 3, while the top 500
patterns produced by the other three methods do not contain a single pattern of
size larger than 3. Even in the top 100 patterns we discovered in both datasets
less than half were of size 2, while the top 100 produced by all other methods on
either dataset always contained at least 96 patterns of size 2. This demonstrates
the benefit of using a non-anti-monotonic quality measure, which allows us to
rank the best patterns on top regardless of size, while frequency-based methods
will, per definition, rank all subpatterns of a large pattern higher than (or at
least as high as) the pattern itself.

Table 3. Overlap in the top k patterns discovered by FCIseq and other methods.

dataset k Winepi Laxman Marblesw

100 12 13 11
Species 500 28 35 25

2 500 80 102 68

100 11 13 11
Moby 500 27 28 26

2 500 56 66 49

14

4.2 Performance Analysis

We tested the behaviour of our algorithm when varying the three thresholds.
The results are shown in Fig. 1. As expected, we see that the number of patterns
increases as the cohesion and support thresholds are lowered. In particular, when
the cohesion threshold is set too low, the size of the output explodes, as even
random combinations of frequent items become cohesive enough. However, as
the support threshold decreases, the number of patterns stabilises, since rarer
items typically only make up cohesive itemsets with each other, so only a few
new patterns are added to the output (when we lower the support threshold to
2, we see another explosion as nearly the entire alphabet is considered frequent).
In all settings, it took no more than a few minutes to find tens of thousands
of patterns. With reasonable support and cohesion thresholds, we could even
set the max size parameter to ∞ without encountering prohibitive runtimes,
allowing us to discover patterns of arbitrary size (in practice, the size of the
largest pattern is limited due to the characteristics of the data, so output size
stops growing at a certain point). Since existing methods use a relevance window,
defining how far apart two items may be in order to still be considered part of
a pattern, the existing methods can never achieve this. For example, using a
window of size 15 implies that no pattern consisting of more than 15 items can
be discovered. Finally, while we kept both min sup and min coh relatively high
in the presented experiments with max size set to ∞, it should be noted that
a much lower min sup could be used in combination with a higher min coh in
order to quickly find only the most cohesive patterns, including the rare ones.

5 Related Work

We have examined the most important related work in Section 1, and experi-
mentally compared our work with the existing methods in Section 4. Here, we
place our work into the wider context of sequential pattern mining.

At the heart of most pattern mining algorithms is the need to reduce the
exponential search space into a manageable subspace. When working with an
anti-monotonic quality measure, such as frequency, the Apriori property can be
deployed to generate candidate patterns only if some or all of their subpatterns
have already proved frequent. This approach is used in both breadth-first-search
(BFS) and depth-first-search (DFS) approaches, such as Apriori [1] and FP-

growth [5] for itemset mining in transaction databases, GSP [2], SPADE [12]
and PrefixSpan [9] for sequential pattern mining in sequence databases, or
Winepi [8] and Marbles [4] for episode mining in event sequences.

For computational reasons, non-anti-monotonic quality measures are rarely
used, or are used to re-rank the discovered patterns in a post-processing step.
Recently, Tatti proposed a way to measure the significance of an episode by
comparing the lengths of its occurrences to expected values of these lengths if
the occurrences of the patterns’ constituent items were scattered randomly [10].
However, the method uses the output of an existing frequency-based episode
miner [11], and then simply assigns the new values to the discovered patterns.

15

0.10 0.05 0.02 0.01

min_coh (log scale)

101

102

103

104

105

#
p
a
tt
e
rn
s
(l
o
g
 s
ca

le
)

101

102

103

104

ru
n
ti
m
e
 (
lo
g
 s
ca

le
)

#patterns

runtime (s)

(a) min sup = 4, max size = 5

0.10 0.05 0.02 0.01

min_coh (log scale)

101

102

103

104

#
p
a
tt
e
rn
s
(l
o
g
 s
ca

le
)

101

102

103

104

ru
n
ti
m
e
 (
lo
g
 s
ca

le
)

#patterns

runtime (s)

(b) min sup = 4, max size = 5

470 100 25 7 2

min_sup (log scale)

103

104

105

#
p
a
tt
e
rn
s
(l
o
g
 s
ca

le
)

100

101

102

103

ru
n
ti
m
e
 (
lo
g
 s
ca

le
)

#patterns

runtime (s)

(c) min coh = 0.01, max size = 4

360 100 25 7 2

min_sup (log scale)

102

103

104

#
p
a
tt
e
rn
s
(l
o
g
 s
ca

le
)

100

101

102

103

ru
n
ti
m
e
 (
lo
g
 s
ca

le
)

#patterns

runtime (s)

(d) min coh = 0.01, max size = 5

2 4 8 16 32 ∞
max_size (log scale)

100

101

102

103

104

105

#
p
a
tt
e
rn
s
(l
o
g
 s
ca

le
)

100

101

102

103

104

ru
n
ti
m
e
 (
lo
g
 s
ca

le
)

#patterns

runtime (s)

(e) min sup = 350, min coh = 0.015

2 4 8 16 32 ∞
max_size (log scale)

101

102

103

104

105

106

#
p
a
tt
e
rn
s
(l
o
g
 s
ca

le
)

100

101

102

103

104

ru
n
ti
m
e
 (
lo
g
 s
ca

le
)

#patterns

runtime (s)

(f) min sup = 250, min coh = 0.01

Fig. 1. Impact of various thresholds on output size and runtime. (a) Varying min coh

on Species. (b) Varying min coh on Moby. (c) Varying min sup on Species. (d) Varying
min sup on Moby. (e) Varying max size on Species. (f) Varying max size on Moby.

In this way, the rare patterns, such as those discussed in Section 4 will once
again not be found. Our FCIseq algorithm falls into the DFS category, but the
proposed quality measure is not anti-monotonic, and we have had to rely on an
alternative pruning technique to reduce the size of the search space. We believe
the additional computational effort to be justified, as we manage to produce

16

intuitive results, with the most interesting patterns, which existing methods
sometimes fail to discover at all, ranked at the very top.

6 Conclusion

In this paper, we present a novel method for finding valuable patterns in event
sequences. We evaluate the pattern quality using cohesion, a measure of how far
apart the items making up the pattern are on average. In this way, we reward
strong patterns that are not necessarily very frequent in the data, which allows us
to discover patterns that existing frequency-based algorithms fail to find. Since
cohesion is not an anti-monotonic measure, we rely on an alternative pruning
technique, based on an upper bound of the cohesion of candidate patterns that
have not been generated yet. We show both theoretically and empirically that
the method is sound, the upper bound tight, and the algorithm efficient, allowing
us to discover large numbers of patterns reasonably quickly. While the proposed
approach concerns itemset mining, most of the presented work can be applied
to mining other pattern types, such as sequential patterns or episodes.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Interna-
tional Conference on Very Large Data Bases. pp. 487–499 (1994)

2. Agrawal, R., Srikant, R.: Mining sequential patterns. International Conference on
Data Engineering 0, 3–14 (1995)

3. Cule, B., Goethals, B., Robardet, C.: A new constraint for mining sets in sequences.
In: SIAM International Conference on Data Mining. pp. 317–328 (2009)

4. Cule, B., Tatti, N., Goethals, B.: Marbles: Mining association rules buried in long
event sequences. Statistical Analysis and Data Mining 7(2), 93–110 (2014)

5. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate gen-
eration: A frequent-pattern tree approach. Data Mining and Knowledge Discovery
8(1), 53–87 (2004)

6. Hendrickx, T., Cule, B., Goethals, B.: Mining cohesive itemsets in graphs. In:
International Conference on Discovery Science. pp. 111–122 (2014)

7. Laxman, S., Sastry, P.S., Unnikrishnan, K.: A fast algorithm for finding frequent
episodes in event streams. In: ACM SIGKDD Conference on Knowledge Discovery
and Data Mining. pp. 410–419 (2007)

8. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery 1(3), 259–289 (1997)

9. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu,
M.C.: Mining sequential patterns by pattern-growth: The prefixspan approach.
IEEE Transactions on Knowledge and Data Engineering 16(11), 1424–1440 (2004)

10. Tatti, N.: Discovering episodes with compact minimal windows. Data Mining and
Knowledge Discovery 28(4), 1046–1077 (2014)

11. Tatti, N., Cule, B.: Mining closed strict episodes. Data Mining and Knowledge
Discovery 25(1), 34–66 (2012)

12. Zaki, M.J.: Spade: An efficient algorithm for mining frequent sequences. Machine
Learning 42(1-2), 31–60 (2001)

