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Abstract
Sequential pattern discovery is a well-studied field in data
mining. Episodes are sequential patterns that describe
events that often occur in the vicinity of each other.
Episodes can impose restrictions on the order of the events,
which makes them a versatile technique for describing com-
plex patterns in the sequence. Most of the research on
episodes deals with special cases such as serial and parallel
episodes, while discovering general episodes is surprisingly
understudied. This is particularly true when it comes to
discovering association rules between them.

In this paper we propose an algorithm that mines
association rules between two general episodes. On top of
the traditional definitions of frequency and confidence, we
introduce two novel confidence measures for the rules. The
major challenge in mining these association rules is pattern
explosion. To limit the output, we aim to eliminate all
redundant rules. We define the class of closed association
rules, and show that this class contains all non-redundant
output. To make the algorithm efficient, we use further
pruning steps along the way. First of all, we generate
only free and closed frequent episodes from which we create
candidate rules, we speed up the evaluation of the rules,
and then prune the remaining non-closed rules from the
output. Finally, we provide the user with the additional
option of using a confidence boost threshold to remove the
less informative rules from the output.

1 Introduction

Discovering frequent patterns in an event sequence is an
important field in data mining. Episodes, first defined
by Mannila et al. [16], represent a rich class of sequential
patterns, enabling us to discover events occurring in the
vicinity of each other while at the same time capturing
complex interactions between the events.

More specifically, a frequent episode is traditionally
considered to be a set of events that reoccurs in the
sequence. Gaps are allowed between the events and
the order in which the events are allowed to occur is
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specified by the episode. The frequency of an episode
is usually expressed as the number of windows of
specified length in which the episode occurs, but can
also be defined incorporating other concepts, such as
minimal windows that contain the episode. However,
it is important that the frequency is monotonically
decreasing so we can use the well-known level-wise
approach to mine all frequent episodes.

The order restrictions of an episode are described
by a directed acyclic graph (DAG): the set of events
in a sequence covers the episode if and only if each
event occurs only after all its parent events (with respect
to the DAG) have occurred (see the formal definition
in Section 3). Usually, only two extreme cases are
considered. A parallel episode poses no restrictions on
the order of the events, and a window covers the episode
if the events occur in the window, in any order. In such
a case, the DAG associated with the episode contains no
edges. The other extreme case is a serial episode. Such
an episode requires that the events occur in one, and
only one, specific order in the sequence. Clearly, serial
episodes are more restrictive than parallel episodes. If
a serial episode is frequent, then its parallel version is
also frequent. Examples of the three main types of
episodes are given in Figure 1. To avoid drawing DAGs
in trivial examples, we will use {a1, . . . , an} to denote
a parallel episode consisting of nodes a1, . . . , an, and
a1 → · · · → an to denote a serial episode consisting of
nodes a1, . . . , an and edges from node ai to node aj if
i < j.
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(c) serial

Figure 1: Episodes.
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An association rule between two episodes expresses
the fact that the occurrence of one episode implies, with
a high enough probability, that another episode can be
found nearby. Typically, association rules are defined
such that an occurrence of a smaller episode implies the
occurrence of a greater episode.

The main contribution of this paper is an algorithm
that mines association rules consisting of two episodes
represented by DAGs. On top of that, we introduce two
novel ways to define the confidence of an association
rule, based on more intuitive concepts than the tradi-
tional method using sliding windows of fixed length. To
reduce the size of the output, we adopt the traditional
concept of closed patterns to obtain only non-redundant
association rules. We present a collection of algorithms,
called Marbles, to mine all such rules, handling all
three possible approaches.

So far, very little research has gone into the search
for episodes based on DAGs and even less has gone
into the discovery of association rules between them.
In practice, such episodes have been overshadowed by
parallel and serial episodes. The main reason for this is
the pattern explosion. Consider the case of itemsets,
where a frequent itemset of size k has 2k frequent
subsets. With an episode of size k, described by a DAG,
the number of possible subepisodes is much larger, as we
also have to look at all possible subsets of its edges, the
number of which grows quadratically with the number
of nodes. On top of that, each association rule consists
of two episodes, so the number of combinations is huge,
as illustrated by the following example.

Example 1. Consider a sequence within which subse-
quence abcd occurs frequently, using a fixed window of
size 4. Assume that, outside these occurrences, events
a, b, c and d never occur. It is easy to see that episodes
G = {a, d} and H = a → b → c → d will have the
same frequency. The same, of course, is also true for
any episode X, such that G ⊆ X ⊆ H. Therefore,
the confidence of all association rules X ⇒ Y , where
G ⊆ X ⊂ Y ⊆ H, will be equal to 1. In this case, a
single simple reoccurring pattern in the sequence results
in 158 different association rules1. However, just one of
those rules is actually not redundant, namely G ⇒ H,
as all others can be derived from that one.

However, the advantage of episodes based on DAGs
is that they allow us to capture dependencies between
the events while not being too restrictive. The following
example illustrates that parallel and serial episodes may
be insufficient as a means of discovering all interesting
association rules in a dataset.

1we counted this number manually

Example 2. As an example we will use text data,
namely inaugural speeches by presidents of the United
States (see Section 7 for more details). Protocol re-
quires the presidents to address the chief justice and the
vice presidents in their speeches. Hence, we have discov-
ered association rule {chief, justic, vice, president} ⇒
{chief → justic, vice→ president}. This rule tells us
that when these four words appear near each other, then
’chief ’ precedes ’justice’ and ’vice’ precedes ’president’.
Since the actual address order varies from speech to
speech, the pattern does not impose any additional re-
strictions. The discovered rule informs us of the fre-
quent usage of phrases ’chief justice’ and ’vice presi-
dent’ in each others vicinity, something we could never
discover using only parallel or serial episodes.

A popular method of reducing the size of the output
in any pattern mining problem is to discover only
closed patterns. A pattern is closed if there exists
no superpattern with the same frequency. Some work
has gone into the discovery of closed frequent episodes,
but we go a step further, by introducing the concept
of closed association rules. We output only the rules
where the left-hand side is minimal, and the right-hand
side maximal. Defining this class of association rules
is not trivial, and we use a variety of computational
tricks to speed up the execution of our algorithm. This
allows us to output association rules consisting of two
episodes represented by DAGs, and yet keep the size of
the output well under control.

Once the redundant rules have been removed in
this way, some of the remaining rules can still be less
informative than others. We adopt the concept of
confidence boost [3], a measure of how informative a
rule is, to our setting, and allow the user to remove the
less informative rules from the output by means of a
confidence boost threshold. We experimentally confirm
that the output can be singnificantly reduced in this
way.

Apart from the traditional definition of the confi-
dence of an association rule, based on the frequencies of
the two episodes using a sliding window of fixed size, we
introduce two additional ways to define the confidence,
using either minimal windows or weighted minimal win-
dows. We show that all three methods have their merits,
and can be valuable and intuitive, depending on the na-
ture of the input sequence and the wishes of the end
user.

The rest of the paper is organised as follows: In
Section 2, we discuss the most relevant related work,
before presenting the main notations and concepts in
Section 3. Section 4 introduces the notion of associa-
tion rules using three different methods, while in Sec-
tion 5 we discuss how we can limit the size of the output



by eliminating redundant association rules. The algo-
rithms that allow us to achieve this goal are presented
in detail in Section 6. In Section 7 we show the results
of our experiments, before presenting our conclusions
in Section 8. Our implementation of the algorithm is
available online2.

2 Related Work

The first attempt at discovering frequent subsequences,
or serial episodes, was made by Wang et al. [24]. The
dataset consisted of a number of sequences, and a
pattern was considered interesting if it was long enough
and could be found in a sufficient number of sequences.
A complete solution to a more general problem was later
provided by Agrawal and Srikant [2] using an Apriori-
style algorithm [1].

Looking for frequent general episodes in a single
event sequence was first proposed by Mannila et al. [16].
The Winepi algorithm finds all episodes that occur
in a sufficient number of windows of fixed length, and
generates association rules X ⇒ Y , where X ⊂ Y and
bothX and Y are frequent episodes. Specific algorithms
were given for the case of parallel and serial episodes,
but no algorithm for detecting general episodes was
provided. Tatti and Cule [20] extend the definition of
an episode to be able to depict simultaneous events.
They provide an algorithm for generating all frequent
episodes, but not association rules.

Mannila et al. also propose Minepi [16], an alter-
native interestingness measure for an episode, where the
frequency is defined as the number of minimal windows
that contain the episode. In this context, the authors
also define association rules. Unfortunately, this fre-
quency measure is not monotonically decreasing. How-
ever, the issue can be fixed by defining frequency as
the maximal number of non-overlapping minimal win-
dows [15, 19]. Zhou et al. [26] proposed mining closed
serial episodes based on the Minepi method. However,
the paper did not address the non-monotonicity issue
of Minepi. None of these follow-up papers handled the
problem of association rules.

Méger and Rigotti [17] propose a method for mining
association rules of the form X ⇒ Y , such that X and Y
are both serial episodes, and X is a prefix of Y . Cule et
al. [9] introduce an alternative interestingness measure
for episodes, combining frequency with the cohesion of
an episode. They further extend this work to mine
association rules [8], but the method works only for
parallel episodes.

A lot of research in the field of pattern discovery
has gone into eliminating redundancy. An important

2http://adrem.ua.ac.be/implementations

way to tackle this problem is by outputting only closed
patterns. Within sequence mining, some research has
gone into outputting only closed subsequences, where a
sequence is considered closed if it is not properly con-
tained in any other sequence which has the same fre-
quency. Yan et al. [25], Tzvetkov et al. [22], and Wang
and Han [23] proposed methods for mining such closed
patterns, while Garriga [7] further reduced the output
by post-processing it and representing the patterns us-
ing partial orders. Harms et al. [14], meanwhile, exper-
iment with closed serial episodes. In another attempt
to trim the output, Garofalakis et al. [11] proposed a
family of algorithms called Spirit which allow the user
to define regular expressions that specify the language
that the discovered patterns must belong to.

Pei et al. [18], and Tatti and Cule [21] considered
restricted versions of the general problem setup of
finding frequent episodes. The former approach assumes
a dataset of sequences where the same label can occur
only once. Hence, an episode can contain only unique
labels. The latter pointed out the problem of defining a
proper subset relationship between general episodes and
tackled it by considering only strict episodes, where two
nodes having the same label had to be connected by a
path. In our work, we adopt the latter approach, extend
it by allowing events in the sequence to take place at
the same time, and build on it further in order to mine
association rules.

Further interestingness measures for episodes, ei-
ther statistically motivated or aimed at removing bias
towards smaller episodes, were made by Garriga [6],
Gwadera et al. [12,13], Calders et al. [5], and Tatti [19].
All these methods, however, were limited to finding in-
teresting episodes, and stopped short of discovering as-
sociation rules between them.

Tackling redundancy within association rules, and
not only within the patterns they consist of, has been
done within the field of frequent itemset mining, but
not within episode mining. Bastide et al. [4] define
rules as non-redundant if they consist of a minimal an-
tecedent and a maximal consequent, while Balcazar [3]
introduces the concept of confidence boost, a measure
of how informative a rule is. We incorporate both these
concepts in our approach, while dealing with the com-
plexity of terms such as minimal and maximal in the
context of episodes.

3 Preliminaries

In this section, we introduce the basic concepts that we
will use throughout the paper. First we will describe
our dataset.

Definition 1. We define a sequence event e =

http://adrem.ua.ac.be/implementations


(id(e) , lab(e) , ts(e)) as a tuple consisting of three en-
tries, a unique id number id(e), a label lab(e) coming
from an alphabet Σ, and a time stamp integer ts(e). We
will assume that if id(e) > id(f), then ts(e) ≥ ts(f). A
sequence is a collection of sequence events ordered by
their ids.

Note that we are allowing multiple events to have
the same time stamp even when their labels are equiva-
lent. For the sake of simplicity, we will use the notation
s1 · · · sN to mean a sequence ((1, s1, 1), . . . , (N, sN , N)).

Definition 2. Given a sequence s and two integers
i and j we define a subsequence s[i, j] = si, . . . , sj
containing all events occurring between i and j. We
define the length of subsequence s[i, j] as

len(s[i, j]) = ts(sj)− ts(si) + 1.

Our next step is to define the patterns we are interested
in.

Definition 3. An episode G is represented by a di-
rected acyclic graph with labelled nodes, that is, G =
(V,E, lab), where V = (v1, . . . , vK) is the set of nodes,
E is the set of directed edges, and lab is the function
lab : V → Σ, mapping each node vi to its label.

When there is no danger of confusion, we will use
the same letter to denote an episode and its graph.

Definition 4. A node n in an episode graph is a
descendant of a node m if there is a path from m to
n. In that case, node m is an ancestor of node n.

We are now ready to give a precise definition of an
occurrence of a pattern in a sequence.

Definition 5. Given a sequence s and an episode G
we say that s covers G, or G occurs in s, if there is
an injective map f mapping each node vi to a valid
index such that the node vi in G and the corresponding
sequence element sf(vi) have the same label, sf(vi) =
lab(vi), and that if there is an edge (vi, vj) in G, then
we must have f(vi) < f(vj). In other words, the parents
of vj must occur in s before vj. If the mapping f is
surjective, that is, all events in s are used, we will say
that s is an instance of G.

An example of a sequence covering an episode is
given in Figure 2.

In order to be able to discover association rules, we
must first be able to compare episodes using some sort
of a subset relationship.

a b

c d a c b a d b c d c a b d

Figure 2: An example of an episode covered by a
sequence.

Definition 6. Given two episodes G and H, we say
that G is a subepisode of H, denoted G ⊆ H, if the
DAG describing episode G is a subgraph of the DAG
describing episode H.

Definition 7. Given two episodes G and H, such that
G ⊂ H, we can express an association rule G⇒ H. We
call G the head of the rule, and H the tail of the rule.

4 Association Rules

In this section we present three possible methods to
measure the frequency of an episode and the confidence
of an association rule. The first one uses a sliding
window of fixed size, the second is based on disjoint
minimal windows, while the third one introduces the
concept of weighted minimal windows.

4.1 Using Fixed Windows We start off by defining
the frequency of an episode in the traditional manner,
based on windows of fixed length. This definition
corresponds to the definition used in Winepi [16]. The
frequency is monotonically decreasing which allows us to
do effective pruning while discovering frequent episodes.

Definition 8. Given a window size ρ and a sequence
s, we define the fixed-window frequency of an episode
G in s, denoted frf (G; s), to be the number of windows
of size ρ in s covering the episode,

frf (G; s) = |{s[i, i+ ρ− 1] | s[i, i+ ρ− 1] covers G}|.

We will use frf (G) whenever s is clear from the context.
An episode is σ-frequent (or simply frequent) if its
frequency is higher than or equal to some given threshold
σ.

Note that, as we slide a window across the sequence,
the first sliding window will contain just the first
element of the sequence, and the last window only its
last element. Thus, given a window length w and a
sequence length n, there will be w + n− 1 windows.

In this context, association rules can be defined in
the traditional manner.



Definition 9. Given a window size ρ and episodes
X and Y , such that X ⊂ Y , we define the fixed-
window confidence of the association rule X ⇒ Y ,
denoted cf (X ⇒ Y ), to be the ratio of their respective
frequencies,

cf (X ⇒ Y ) =
frf (Y )

frf (X)
.

Informally, we can interpret this definition as fol-
lows: cf (X ⇒ Y ) is the percentage of windows that
contain X that also contain Y . In other words, if we
encounter a window that contains X, cf (X ⇒ Y ) rep-
resents the probability that the window also contains
Y .

4.2 Using Minimal Windows Using a sliding win-
dow of fixed length has some drawbacks, particularly in
the context of association rules, as can be seen in the
following examples.

Example 3. Consider a sequence within which subse-
quence abcd occurs frequently, using a fixed window of
size 4. Assume that there are always at least three
other events between each two occurrences, and that out-
side these occurrences events a, b, c and d never occur.
The fact that frf ({a, d}) = frf (a→ b→ c→ d) implies
that cf ({a, d} ⇒ a → b → c → d) = 1. However,
cf ({b, c} ⇒ a → b → c → d) = 1

3 . Intuitively, though,
looking at the pattern, we note that every occurrence of
{b, c}, just like every occurrence of {a, d}, implies an
occurrence of a → b → c → d. The confidences of the
two rules do not reflect that.

Example 4. Consider sequence s1 within which subse-
quence abxycd occurs frequently, and sequence s2 within
which subsequence axbcyd occurs frequently, where x
and y are noise events and are not part of the patterns.
Assume we are using a fixed window of size 6, and that,
outside these occurrences, events a, b, c and d never oc-
cur. As in the previous example, cf ({a, d} ⇒ a → b →
c → d) = 1, but cf ({b, c} ⇒ a → b → c → d) is now
equal to 1

3 in s1 and 1
5 in s2. Once again, the confidence

values are not intuitive.

The problem with basing the definition of confi-
dence of an association rule on the fixed-window fre-
quencies of the two episodes is that this approach fo-
cuses on the occurrences of the episodes in the windows,
rather than on their occurrences in the sequence. In the
above examples, while there are some windows that con-
tain {b, c} and not a → b → c → d, it still holds that
every occurrence of {b, c} in the sequence can be found
within an occurrence of a → b → c → d. Our first step
towards addressing this issue is to consider a different
definition of the frequency of an episode in a sequence.

Definition 10. Given a sequence s and an episode
G, a window s[a, b] is called a minimal window of
G in s, if len(s[a, b]) ≤ ρ, s[a, b] covers G, and if
no proper subwindow of s[a, b] covers G. We define
b(s[a, b]) = ts(sa) as the beginning of the window, and
e(s[a, b]) = ts(sb) as its end. We denote the set of all
minimal windows of G in s with mw(G; s), or simply
mw(G), when s is known from the context. Given a set
of minimal windows W , we define a function dis(W ) to
be equal to 1 if all windows in W are pairwise disjoint,
and 0 otherwise.

An attempt was made to define the frequency of
an episode as the number of its minimal windows [16].
However, this measure proved to be non-monotonic. In
order to satisfy the downward-closed property, we need
to consider only the non-overlapping windows [15,19].

Definition 11. The disjoint-window frequency of an
episode G in a sequence s, denoted frm(G), is defined
as the maximal number of non-overlapping minimal
windows within s that contain episode G. Formally,

frm(G) = max {|W | |W ⊆ mw(G) , dis(W ) = 1} .

A näıve way to define the confidence of an associa-
tion rule X ⇒ Y in the disjoint-window context would
be to, once again, compute the ratio between the fre-
quencies of Y and X. The following example shows that
this might not be very intuitive either.

Example 5. Consider sequence s1 within which subse-
quence abcxyd occurs 100 times, and sequence s2 within
which subsequence abcbcd occurs 100 times, where x
and y are noise events and are not part of the pat-
terns. Assume that, outside these occurrences, events
a, b, c and d never occur. Denote G = {b, c} and
H = a → b → c → d. In s1, frm(G) = 100 and

frm(H) = 100. Therefore, fr(G)
fr(H) = 1. However, in

s2, frm(G) = 200 and frm(H) = 100, and fr(G)
fr(H) = 0.5.

Clearly, in both sequences, each occurrence of G implies
an occurrence of H, and the results for s2 are not sat-
isfactory.

While defining the frequency of an episode using
minimal windows solved some of the problems inherent
in the fixed-window method, we clearly still need to find
a better way to define the confidence of an association
rule. Intuitively, we wish the confidence of rule X ⇒ Y
to express the probability of encountering a minimal
window of Y having encountered a minimal window of
X. More formally, we wish to know what percentage
of minimal windows of X are contained within minimal
windows of Y . However, in order to do this, we are



forced to drop the constraint that the minimal windows
in question must be disjoint. The reasoning behind this
decision is shown in the following example.

Example 6. Consider sequence s = abcadbcbcd. De-
note G = b→ c and H = a→ b→ c→ d. The disjoint-
window frequency of H is 1, but the sequence contains
two overlapping minimal windows of H. There are three
minimal windows of G, and each of them is contained
within a minimal window of H. However, if we were
to only use non-overlapping windows of H, we would be
faced with two problems. First of all, the confidence of
rule G⇒ H would depend on our choice of disjoint min-
imal windows — if we chose the first minimal window of
H, s[1, 5], we would find two occurrences of G outside
it and the confidence of the rule would be 1

3 , whereas
if we chose the second minimal window of H, s[4, 10],
we would find just one occurrence of G outside it, and
the confidence would be 2

3 . More importantly, whichever
choice we made, we would not be able to get the correct
result, showing that every occurrence of G is contained
within an occurrence of H.

Now that we have seen that we cannot define
the confidence of an association rule using either the
disjoint-window frequencies, or the containment of the
disjoint occurrences, of the two episodes, we are ready
to present a definition that corresponds exactly to our
intuition.

Definition 12. Given episodes X and Y , such that
X ⊂ Y , and a minimal window s[a, b] of episode
X. Assume there exists a minimal window s[c, d] of
Y such that c ≤ a and b ≤ d, then we define the
minimal-extensibility of occurrence s[a, b] of X into an
occurrence of Y as

extm(s[a, b], X, Y ) = 1.

If there exists no such minimal window of Y , we define
extm(s[a, b], X, Y ) = 0.

Definition 13. Given episodes X and Y , such that
X ⊂ Y , we define the minimal-window confidence of the
association rule X ⇒ Y , denoted cm(X ⇒ Y ), to be the
proportion of minimal windows of X that are contained
within a minimal window of Y ,

cm(X ⇒ Y ) =
1

|mw(X)|
∑

w∈mw(X)

extm(w,X, Y ).

Algorithm MinWinConfidence, given in Algo-
rithm 1, computes the minimal-window confidence of
a given association rule. The algorithm takes as input
two ordered lists of minimal windows, V for the head

episode and W for the tail episode. The algorithm then
enumerates windows in V and tries to find a covering
window from W . Since W and V are ordered, we do
not need to search the covering window from beginning
but instead from the last inspected window. This brings
the run-time to O(|V |+ |W |). Note that the number of
minimal windows is bounded by the number of elements
in a sequence, and is in practice significantly lower.

Algorithm 1: MinWinConfidence. Computes
minimal-window confidence cm(X ⇒ Y ).

input : list of minimal windows
V = {v1, . . . , vN} of episode X, list of
minimal windows W = {w1, . . . , wM} of
episode Y

output: cm(X ⇒ Y )
1 u← 0; i← 1;
2 foreach v ∈ V do
3 while i ≤M and e(wi) ≤ e(v) do
4 i← i+ 1;

5 if b(wi) ≤ b(v) then u← u+ 1;

6 return u/N ;

4.3 Weighted Minimal Windows The problem
with using minimal windows is that they do not take the
cohesion of a pattern into account. A minimal window
of size 2 will make the same contribution towards the
frequency of an episode as a minimal window of size 10.
Similarly, using only minimal windows, the confidence
of the association rule X ⇒ Y would depend solely on
the inclusion of minimal windows of X inside minimal
windows of Y , regardless of how much the window would
need to be expanded in order to find the whole of Y . The
following example illustrates these problems further.

Example 7. Consider sequences s1 = axbcyd and s2 =
abxycd. Episode b→ c occurs once in each sequence, so
its disjoint-window frequency would be equal to 1 in each
sequence. However, the implied pattern an occurrence of
a b is followed by an occurence of a c is clearly stronger
in s1, where b is immediately followed by a c. In both
sequences, the minimal window of b → c is contained
within a minimal window of a → b → c → d, and
the confidence of the rule b → c ⇒ a → b → c → d
using minimal windows would therefore be equal to 1
for both sequences. However, the meaning of the rule,
an occurrence of episode b→ c is likely to be contained
within a nearby occurrence of a → b → c → d,
can be seen more clearly in s2. In s1, we must look
much further before we encounter the whole of the larger
episode.



To address these problems, we must first modify the
definition of the frequency of an episode in a sequence.

Definition 14. The total weight of a set of windows
W in a sequence s, denoted tw(W ), is defined as

tw(W ) =
∑
w∈W

1

len(w)
.

The weighted-window frequency of an episode G in
a sequence s, denoted frw (G), is defined as

frw (G) = max {tw(W ) |W ⊆ mw(G) , dis(W ) = 1} .

Informally, the shorter the window, the greater
its contribution towards the overall frequency of the
episode. Note that, once again, we need to consider
only non-overlapping windows in order to satisfy the
downward-closed property. However, this time, as the
following example illustrates, we need to be much more
careful as to which windows we choose, hence the need
to maximise the sum of the windows’ inverse lengths,
rather than simply their number.

Example 8. Consider sequence s = abxywzcbaxywzc
and parallel episode X = {a, b, c}. Sequence s contains
three minimal windows of this episode, namely s[1, 7],
s[7, 9] and s[8, 14]. Note that the second minimal
window overlaps with both the first and the third, so
the disjoint-window frequency of X would be equal to
2. The two windows that would count towards this
frequency would be s[1, 7] and s[8, 14]. However, if
we want to maximise the sum of the inverse lengths
of the windows, we cannot simply take the maximal
number of non-overlapping windows and then compute
this sum. In our example, we have two possible sets
of non-overlapping windows, s[1, 7] and s[8, 14], and
s[7, 9] alone. In the first case, we have two windows
of size 7, and the resulting sum would be 2

7 . In the
second case, we have one window of size 3, and the
sum would, therefore, be equal to 1

3 . We see that by
choosing a smaller number of non-overlapping windows,
we actually get a higher weighted-window frequency for
the episode. We conclude that frw (X) = 1

3 .

In order to compute frw (X) we use a dynamic
program given in Algorithm 2. The algorithm takes
as input a list of minimal windows for an episode G and
computes frw (G).

Given an ordered list of minimal windows V =
{v1, . . . , vN}, we need to select a subset of V , containing
disjoint windows that maximise the total weight. In
order to do that, let ci be the maximal weight of a
subset of disjoint windows of {vi, . . . , vN}. Then it is
easy to see that

ci = max(1/len(vi) + cd, ci+1) ,

Algorithm 2: WeightFrequence. Computes
weighted frequency frw (X).

input : list of minimal windows
V = {v1, . . . , vN} of episode X

output: frm(X)
1 j ← 1;
2 foreach vi ∈ V do
3 while j ≤ N and e(vi) ≥ b(vj) do
4 j ← j + 1;

5 di ← j;

6 cN+1 ← 0;
7 for i = N . . . 1 do
8 ci ← max(1/len(vi) + cdi

, ci+1);

9 return c1;

where d is the index of the next minimal window vd that
is disjoint with vi. The left side in the max corresponds
to using vi in the subset and the right side corresponds
to omitting vi from the so far best disjoint collection.

The algorithm first finds di, the index of the next
disjoint window for each vi and then constructs the
weights ci. Both steps require O(N) time and memory.

As was already shown in Example 7, we also need
to take the various lengths of the minimal windows into
account when computing the confidence of association
rules. For reasons similar to those discussed in Sec-
tion 4.2, we once again cannot take only the disjoint
minimal windows into account. Intuitively, we want the
confidence of rule X ⇒ Y to correspond to the like-
lihood of encountering the whole of Y once we have
encountered X. The nearer the whole of Y is to X on
average, the higher the confidence should be.

Definition 15. Given episodes X and Y , such that
X ⊂ Y , and a minimal window s[a, b] of episode X.
Assume there exists a minimal window s[c, d] of Y such
that c ≤ a and b ≤ d, and that this is the smallest
window that contains both Y and s[a, b], then we define
the weighted-extensibility of occurrence s[a, b] of X into
an occurrence of Y as

extw(s[a, b], X, Y ) =
len(s[a, b])

len(s[c, d])
.

If there exists no such minimal window of Y , we define
ext(s[a, b], X, Y ) = 0.

Definition 16. Given episodes X and Y , such that
X ⊂ Y , we define the weighted-window confidence of
the association rule X ⇒ Y , denoted cw(X ⇒ Y ), to be
the average weighted-extensibility of an occurrence of X



into an occurrence of Y ,

cw(X ⇒ Y ) =
1

|mw(X)|
∑

w∈mw(X)

extw(w,X, Y ).

The following example illustrates that, when ex-
tending an occurrence of X in order to find an occur-
rence of Y , it is important that we find the smallest such
occurrence.

Example 9. Consider sequence s = axybca and
episodes X = b → c and Y = {a, b→ c}. Sequence
s contains one minimal window of X, namely s[4, 5].
This occurrence of X can be extended in search of an
occurrence of Y . There are two candidate minimal win-
dows of Y that can be considered, s[1, 5] and s[4, 6]. If
we choose the former, the extensibility of s[4, 5] into Y
would equal 2

5 , and if we use the latter, this value would
rise up to 2

3 . Since we are interested in how far we need
to look in order to extend an occurrence of X into an
occurrence of Y , we clearly need to look for the smallest
minimal window of Y that satisfies the conditions.

We now show what effect the new definitions would
have on the patterns discussed in Example 7.

Example 10. Consider sequences s1 = axbcyd and
s2 = abxycd, and episodes X = b → c and Y = a →
b → c → d. First of all, we see that frw (X; s1) = 1

2 ,
while frw (X; s2) = 1

4 . However, we also see that
cw(X ⇒ Y ) equals 1

3 in s1 and 2
3 in s2. This shows

that both problems mentioned in Example 7 have been
successfully addressed.

Table 1 shows an overview of the results of applying
the three methods presented in Sections 4.1, 4.2 and 4.3
on the patterns and sequences discussed in Examples 7
and 10.

We conclude this section by presenting an al-
gorithm, given in Algorithm 3, that computes the
weighted-window confidence of a given association rule.

The WeightConfidence algorithm is similar to
the MinWinConfidence algorithm discussed earlier.
It also takes two ordered lists of minimal windows as
input, V for the head episode and W for the tail episode.
The only difference is that this time we do not need to
simply find any covering window, but the smallest such
window. This costs us an extra for-loop which brings
the run-time to O(|V | + |W | + |V |C), where C is the
average number of windows in W covering a window
v ∈ V . In practice, this number is small, making the
algorithm efficient.

5 Eliminating Redundancy

In this section, we will denote the frequency of an
episode G with fr(G), and the confidence of a rule

Pattern s1 s2

frf (X) 5 3
frf (Y ) 1 1
cf (X ⇒ Y ) 0.2 0.33

frm(X) 1 1
frm(Y ) 1 1
cm(X ⇒ Y ) 1 1

frw (X) 0.5 0.25
frw (Y ) 0.17 0.17
cw(X ⇒ Y ) 0.33 0.67

Table 1: An overview of all presented methods applied
to the sequences given in Example 7. The window size
used for the fixed-window method was 6.

Algorithm 3: WeightConfidence. Computes
weighted-window confidence cw (X ⇒ Y ).

input : list of minimal windows
V = {v1, . . . , vN} of episode X, list of
minimal windows W = {w1, . . . , wM} of
episode Y

output: cw (X ⇒ Y )
1 c← 0; i← 1;
2 foreach v ∈ V do
3 while i ≤M and e(wi) ≤ e(v) do
4 i← i+ 1;

5 j ← i;
6 l←∞;
7 while j ≤M and b(wj) ≤ b(v) do
8 if len(w) ≤ l then
9 l← len(w);

10 i← j;

11 j ← j + 1;

12 c← c+ len(w) /l;

13 return c/N ;

X ⇒ Y with c(X ⇒ Y ), regardless of which method we
are using, as what follows applies to all three methods.

5.1 Closed Association Rules It is a known fact
in episode mining that two different DAGs may actually
represent the same episode. To tackle this redundancy,
we must impose some restrictions on the types of DAGs
we will discover.

Definition 17. An episode G is called transitively
closed if for two nodes n and m, such that there exists
a path from n to m, there also exists an edge from n to
m.



Definition 18. An episode G is called strict if for any
two nodes v and w in G sharing the same label, there
exists a path either from v to w or from w to v.

As has been shown by Tatti and Cule [21], the
issue of the above mentioned redundancy is resolved
within the class of transitively closed strict episodes.
Therefore, we will mine only association rules consisting
of strict, transitively closed episodes. In the remaining
text, we consider episodes to be strict and transitively
closed, unless stated otherwise.

A traditional step towards further reducing the
output is to generate only closed episodes.

Definition 19. An episode G is closed if there exists
no episode H, such that G ⊂ H and fr(G) = fr(H).

However, we want to eliminate redundancy within
the association rules we output, and not only among the
frequent episodes. In fact, what we want to achieve is
to output only the rules that give us most information.
More precisely, we want the left-hand side to be minimal
(the most general episode) and the right-hand side
maximal (the most specific episode), among all those for
which the rule holds. To achieve this, we first need to
define what exactly we mean by minimal in this context.

Definition 20. An episode G is free if there exists no
episode H, such that H ⊂ G and fr(G) = fr(H).

If we wish to fully eliminate redundancy in the
output, we must consider only those rules that consist of
a free episode on the left-hand side, and a closed episode
on the right-hand side.

Definition 21. Given two association rules R1 =
X1 ⇒ Y1 and R2 = X2 ⇒ Y2, we say that R1 is a
subset of R2 if X2 ⊆ X1 and Y1 ⊆ Y2. In this case, we
denote R1 ⊆ R2. If X2 ⊂ X1 or Y1 ⊂ Y2, we denote
R1 ⊂ R2.

Unlike the frequency of an episode, the confidence
of an association rule is not necessarily a monotonotic
measure, given this subset relationship between rules.
The following example illustrates that, given rules R1

and R2, such that R1 ⊂ R2, the confidence of R1 could
be smaller than, greater than, or equal to the confidence
of R2.

Example 11. Consider sequence s = aacbabda, using
the minimal window method. Consider episodes G1 = a,
G2 = a → b, G3 = a → c → b and G4 = a → c → b →
d, and rules R1 = G1 ⇒ G4, R2 = G2 ⇒ G4 and R3 =
G2 ⇒ G3. Clearly, it holds that G1 ⊂ G2 ⊂ G3 ⊂ G4,
and therefore R3 ⊂ R2 ⊂ R1. To compute the minimal-
window confidence of the three rules, we first need to

identify all minimal occurrences of the four episodes in
s. There are four minimal occurrences of G1, s[1, 1],
s[2, 2], s[5, 5] and s[8, 8], two minimal occurrences of
G2, s[2, 4] and s[5, 6], one minimal occurrence of G3,
s[2, 4], and one minimal occurrence of G4, s[2, 7]. For
R1, we see that two of the four minimal occurrences of
G1 can be found within a minimal occurrence of G4,
and therefore cm(R1) = 0.5. For R2, we find that
both minimal occurrences of G2 can be found within a
minimal occurrence of G4, so cm(R2) = 1. Finally,
for R3, we see that just one minimal occurrence of
G2 can be found within a minimal occurrence of G3,
and cm(R3) = 0.5. To sum up, R3 ⊂ R2 ⊂ R1, but
cm(R1) = cm(R3) < cm(R2).

Example 11 illustrates that we cannot apply the
usual definition of closure to association rules. It is
possible for two rules, R1 and R2, such that R1 ⊂ R2,
to have the same confidence purely by coincidence.
However, in such a case, we cannot derive the confidence
of R1 using the confidence of R2, and we cannot leave
R1 out of the output. We must therefore be a little bit
more careful when defining non-redundant rules.

Definition 22. Given episodes X and Y , such that
X ⊂ Y , the association rule R = X ⇒ Y is not
closed if there exists a rule R1, such that R ⊂ R1 and
c(R) = c(R1), and there exists no rule R2, such that
R ⊂ R2 ⊂ R1 and c(R) 6= c(R2). An association rule
that does not satisfy these conditions is closed.

5.2 Confidence Boost In reality, mining only closed
rules might not be enough to sufficiently reduce the
output, as some redundant rules will still be discovered,
as illustrated by the following example.

Example 12. Assume we are given an input sequence
s, in which subsequence abcde occurs 999 times, and
subsequence abxde just once. Using the fixed window
method with the window size of 5, the frequency of all
subepisodes of a → b → c → d → e that include a and
e, but do not include c will be 1 000, while the frequency
of all subepisodes that include a, c and e will be 999.
As a result, the confidence of rule {a, e} ⇒ a → b →
c → d → e will be equal to 0.999, while the confidence
of rule {a, e} ⇒ a → b → d → e would be equal to 1.
Both rules would be closed, and both would appear in
the output. However, it could be argued that the second
rule is not very informative, given the first rule, as it,
in fact, covers just one extra occurrence in the dataset.

To solve this type of redundancy, we turn to the
concept of confidence boost, as proposed by Balcazar [3].

Definition 23. Given episodes X and Y , such that
X ⊂ Y , the confidence boost of association rule X ⇒ Y



is defined as

cb(X ⇒ Y ) =
c(X ⇒ Y )

maxX′⊆X,Y⊆Y ′c(X ′ ⇒ Y ′)
,

under the conditions that X ⇒ Y 6= X ′ ⇒ Y ′ and that
Y ′ is frequent. If the set of rules in the denominator is
empty, cb(X ⇒ Y ) =∞.

Given a certain confidence boost threshold β, the
näıve approach would be to remove all rules from the
output that have a confidence boost lower than β.
However, such an approach involves a number of risks,
as illustrated by the following example.

Example 13. Assume, once again, that we are given
an input sequence s, in which subsequence abcde occurs
999 times, and subsequence abxde just once. As seen in
Example 12, c({a, e} ⇒ a → b → c → d → e) = 0.999
and c({a, e} ⇒ a → b → d → e) = 1. However,
cb({a, e} ⇒ a → b → d → e) = 1/0.999 ≈ 1.001.
Given a confidence boost threshold of, say, 1.1, rule
{a, e} ⇒ a → b → d → e would be removed from the
output, as it is not very informative. However, if we
chose a confidence threshold of 1, we would find neither
of the two rules in the output, and important insight
into the properties of the dataset would be lost.

The informativeness of a rule clearly depends on
the other rules in the output, and removing one unin-
formative rule from the output can make another previ-
ously uninformative rule become informative. There-
fore, rather than looking at the absolute confidence
boost of an individual rule, we need to evaluate the
confidence boost of a rule relative to the other rules in
the output.

Definition 24. Given episodes X and Y , such that
X ⊂ Y , the confidence boost of association rule X ⇒ Y
with respect to a set of rules R is defined as

cbR(X ⇒ Y ) =
c(X ⇒ Y )

maxX′⊆X,Y⊆Y ′c(X ′ ⇒ Y ′)
,

under the conditions that X ⇒ Y 6= X ′ ⇒ Y ′ and
X ′ ⇒ Y ′ ∈ R. If the set of rules in the denominator is
empty, cbR(X ⇒ Y ) =∞.

The key, therefore, is to reduce the output to the
bare minimum, but no more than that.

Definition 25. Given a sequence s, a user-chosen
window size ρ, a frequency threshold σ, a confidence
threshold φ, and a confidence boost threshold β, a set
of closed association rules R is self-sufficient if the
following conditions hold:

1. for each R = X ⇒ Y ∈ R, fr(Y ) ≥ σ,
2. for each R ∈ R, c(R) ≥ φ,
3. for each R ∈ R, cbR(R) ≥ β,
4. for each R′ = X ′ ⇒ Y ′ /∈ R, either fr(Y ′) < σ,

c(R′) < φ, or cbR(R′) < β

Definition 25 states that an acceptable output set
of association rules must be minimal. Either adding or
removing a single rule would break at least one of the
conditions for the set to be self-sufficient. The following
proposition shows that a self-sufficient set of association
rules is also unique.

Proposition 5.1. Given a sequence s, a user-chosen
window size ρ, a frequency threshold σ, a confidence
threshold φ, and a confidence boost threshold β, there
exists one and only one self-sufficient set of closed
association rules.

Proof. We will prove a more general statement: Given
a set of rules B, there is a unique set of rules R ⊆ B
such that cbR(R) ≥ β for any R ∈ R and cbR(R) < β
for any R ∈ B \ R. We call R to be a self-sufficient set
with respect to B.

If we prove this, then the proposition immediately
follows if we set B to be the set of all closed rules that
satisfy the thresholds.

We will prove this using induction over the size of
B. Obviously, the result holds for |B| = 1.

Assume that the result holds for any base set of
size smaller than k and assume that |B| = k. Since the
subset relation of rules is a partial order, there must be
a rule R in B for which there is no rule R′ ∈ B such that
R ⊂ R′. This immediately implies that cbU (R) =∞ for
any subset U ⊆ B. This means that R must be included
in a self-sufficient set. Let

V = {V ∈ B | V ⊂ R, c(V )/c(R) < β} .

Since R must be in a self-sufficient set, none of the rules
in V can be in a self-sufficient set. LetW = R\(V∪{R}).
By the induction assumption, let U be the unique self-
sufficient set with respect to W and let S = U ∪ {R}.
Set S is a self-sufficient set with respect to B. To see
the uniqueness, let S ′ be a self-sufficient set w.r.t. B.
We already saw that R ∈ S ′ and that V ∩ S ′ = ∅. Let
U ′ = S ′ \ {R}. Then U ′ is a self-sufficient set with
respect to W and by the induction assumption U = U ′
which implies that S = S ′. �

Formally, given a sequence s, a user-chosen window
size ρ, a frequency threshold σ, a confidence threshold
φ, and a confidence boost threshold β we wish to find
the self-sufficient subset R of closed association rules



of the form X ⇒ Y , where X ⊂ Y , fr(Y ) ≥ σ,
c(X ⇒ Y ) ≥ φ, and cbR(R) ≥ β. However, finding the
self-sufficient set of association rules is not necessarily
trivial, as illustrated by the following example.

Example 14. Assume that our output R consists of
four confident association rules, R1, R2, R3 and R4,
such that R1 ⊂ R2 ⊂ R3 ⊂ R4. If c(R1) = 0.99,
c(R2) = 0.9, c(R3) = 0.8 and c(R4) = 0.72, then
cbR(R1) = 0.99/0.9 = 1.1, cbR(R2) = 0.9/0.8 = 1.125,
cbR(R3) = 0.8/0.72 ≈ 1.11 and cbR(R4) = ∞, as no
superrule of R4 has been found. Using a confidence
boost threshold of 1.2, only R4 would be informative
enough. However, if we removed R3 from the output
to obtain a set of rules R1 = {R1, R2, R4}, the relative
confidence boost of R2 would now be above the threshold
— cbR1

(R2) = 0.9/0.72 = 1.25. By removing R3

from the output, R2 has become informative enough
and should be kept. By then removing R1 from R1,
we would obtain a self-sufficient set of rules, {R2, R4}.
Alternatively, we may have chosen to first remove R2

from R, and thus obtain R2 = {R1, R3, R4}. Now, R1

would be informative enough, as cbR2
(R1) = 0.99/0.8 ≈

1.24. By then removing R3 from R2, we would obtain
set R3 = {R1, R4}. However, note that this set is
not self-sufficient, as condition 4. from definition 25
is not satisfied. There exists a rule R2 /∈ R3, such that
cbR3

(R2) = 0.9/0.72 = 1.25 ≥ β.

The above example shows that the order in which
the rules are removed from the output is very important,
a fact that must be taken into account when developing
an algorithm for discovering the self-sufficient set of
rules. Our algorithm, described in detail in Section 6,
first generates all closed association rules, and then in
a systematic and deterministic manner removes rules
until the set becomes self-sufficient.

5.3 Finding the self-sufficient subset Our final
step is to find the self-sufficient subset of rules from
a given set of closed association rules. The proof of
Proposition 5.1 gives us a simple approach for this: find
a maximal rule R and add it to the output, remove R
and the all the rules R′ ⊂ R with c(R′)/c(R) < β, and
repeat until there are no rules left. The pseudo-code for
the algorithm is given in Algorithm 4.

Finding a maximal rule requires O(|B|) time, hence
the algorithm requires O(|B|) time. In practice, this can
be optimized by first constructing a lattice, that is, a
directed graph where each node is a single rule and there
is an edge from R1 to R2 if and only if R1 ( R2. This
lattice can be constructed by querying all superrules for
each rule, as explained in Section 6.2. Once this lattice,
say L, is constructed we can use it to compute the self-

Algorithm 4: Boost. Computes self-sufficient
subset.

input : set of rules B, boost threshold β
output: self-sufficient subset R of B

1 R ← ∅;
2 while B 6= ∅ do
3 R← a maximal rule in B;
4 R ← R∪ {R};
5 V ← {V ∈ B | V ( R, c(V )/c(R) < β};
6 B ← B \ (V ∪ {R});
7 return R;

sufficient set in O(|V (L)| + |E(L)|) time, as shown in
Algorithm 5.

Algorithm 5: Boost. Alternative way of com-
puting self-sufficient subset.

input : set of rules B, boost threshold β
output: self-sufficient subset R of B

1 L ← lattice constructed from B.
2 foreach R ∈ B in reverse topological order do
3 if there is an unmarked rule V ) R s.t.

c(R)/c(V ) < β then
4 mark R;

5 return unmarked rules from B;

6 MARBLES

In this section, we present our algorithms. We start off
by describing the first step, mining frequent episodes,
before moving on to the algorithms we developed for
mining closed association rules.

6.1 Mining episodes In order to generate associa-
tion rules, we first need to generate frequent episodes.
As our goal is to mine only closed association rules we
do not need to consider all frequent episodes. We will
resort to i-closed episodes [21].

Definition 26. An i-closure is a function icl(G; s) =
H mapping an episode G to an episode H such that
G ⊆ H. H is constructed from G in two phases. Firstly,
if an event with a label l occurs in every minimal window
of G and there is no node in G labelled with l, then we
add a new node into G with label l. This is repeated until
no new additions are possible. In the second phase, we
add new edges. If in every instance of G a node v occurs
before a node w, then we add an edge from v to w.

Definition 27. Given a sequence s, we say that an
episode G is i-closed if G = icl(G; s). From the



fundamental properties of the closure, it follows that G
is the maximal episode for which the closure is equal
to G. Similarly, we say that G is i-free (or an i-
generator) if there is no H such that H ⊂ G and
icl(G; s) = icl(H; s). In other words, G is a minimal
episode that can produce icl(G; s).

Note that there can be several minimal episodes
that have the same i-closure but only one maximal
episode.

The reason we are using i-closed episodes is that we
can use them to generate closed association rules.

Proposition 6.1. Let X ⇒ Y be a closed association
rule. Then X is i-free and Y is i-closed.

Proof. All three confidence measures depend only on
the minimal windows of X and Y . As demonstrated
in the proof of Theorem 6 in the paper where i-closure
was originally proposed [21], if two episodes, say G and
H, have the same i-closure, i.e., icl(G; s) = icl(H; s),
then they have exactly the same minimal windows. This
implies that c(X ⇒ Y ) = c(X ⇒ icl(Y ; s)) proving
that Y must be i-closed. Similarly if we have X ′ ⊆ X
such that icl(X ′; s) = icl(X; s), then c(X ⇒ Y ) =
c(X ′ ⇒ Y ) which immediately implies that X = X ′.
Consequenly, X must be i-free. �

To mine episodes we employ the MineEpisodes al-
gorithm given in the original paper [21]. The algorithm
follows a standard BFS-approach for closed patterns by
discovering first all frequent i-free patterns and comput-
ing the closure of each i-free episode. Hence, the out-
put of this algorithm are all frequent i-free episodes and
their closures. Typically, free patterns are suppressed
from the final output but in this case we need them to
generate the left-hand side of the association rules.

MineEpisodes can either use fixed windows or
minimal windows as a frequency constraint. The algo-
rithm computes the frequency by first discovering all
minimal windows and then computing the frequency
using the discovered windows. We use WeightFre-
quence to compute whenever we use frw (G) as a fre-
quency constraint.

6.2 Mining association rules Now that we have
mined episodes, the next step is to build association
rules. In order to do that, we introduce Marbles
given in Algorithm 6. The algorithm takes as input
episodes mined in the first step and builds rules from
these episodes. We assume that episodes are provided
in specific groups. The input consists of a list of pairs,
where the first element is an i-closed episode, say X,
and the second element is a list, say G, of all i-free

episodes that have X as their closure. The reason
for this grouping is that the confidence is equal for
all rules of form G ⇒ Y , where G ∈ G. In fact,
c(G⇒ Y ) = c(X ⇒ Y ).

Of the three definitions of confidence given in Sec-
tion 4, the fixed-window confidence is the only one that
is monotonic. Confidence based on (weighted) minimal
windows is not monotonic, hence we have to resort to
an exhaustive enumeration.

Algorithm 6: Marbles. Mines closed associa-
tion rules.

input : confidence threshold φ, list X of pairs
(X,G), where X is an i-closed episode
and G are the i-free episodes having X
as their i-closure

output: list of closed association rules
1 R ← ∅;
2 foreach (X1,G1), (X2,G2) ∈ X s.t. X1 ⊆ X2 do
3 foreach G ∈ G1 do
4 add R = G⇒ X2 to R;
5 if c(R) < φ then mark R;

6 foreach R1 ∈ R do
7 S ← ∅;
8 foreach R2 ∈ R, R1 ( R2 do
9 remove any rule S from S s.t. R2 ⊆ S;

10 if there is no S ∈ S s.t. S ⊆ R2 then
11 add R2 to S;

12 if there is S ∈ S s.t. c(R1) = c(S) then
13 mark R1;

14 return unmarked rules from R;

The first loop in the algorithm discovers all confi-
dent association rules using i-free and i-closed episodes.
This set contains all closed association rules, and pos-
sibly some redundant rules. To remove the redundant
rules, for each rule R1, we first construct a set of its
minimal superrules S. If any of the rules in S has the
same confidence as R1, we mark R1 as non-closed, and
consequently purge it from the output.

In order to implement this algorithm efficiently,
we need an efficient technique for enumerating all su-
perepisodes of a given episode (used in the first loop)
and for enumerating all superrules of a given associa-
tion rule (used in the second loop). Assume that we
have a list of episodes E . We begin by partioning E into
groups

EL = {G ∈ E | G has L as labels} .

Let I = {EL | EL 6= ∅} be the collection of these groups.



We then create subsets of these groups

Il,o = {EL ∈ I | l occurs in L at least o times} .

Fix EL ∈ I. We can sort the nodes of each episode in
EL according to their labels. Since we are working only
with strict episodes, if the same label occur twice or
more, the parent node will go first. Let v1, . . . , v|L| be
the nodes of episodes in EL. Let e = (vi, vj) be an edge.
We define a set of episodes

Ie = {G ∈ EL | G contains e} .

Note that Ie depends on EL but we have supressed this
from notation.

When searching for superepisodes of a given
episode, say G, we first find episode groups EL whose
labels are a superset of or equal to the labels of G. This
is done by taking an intersection of each set Il,o, where
l occurs exactly o times in G.

After this is done, we then find a mapping between
the labels of G and L (if there are several, we test them
all). Once a mapping is found we map the nodes of G
to L and find all episodes that contain the edges of G
by taking the intersection of sets Ie, where e is an edge
of G mapped to L.

The computational complexity of intersecting two
sets of size N and M is O(N + M). Hence, computa-
tional complexity of performing a query is O(|E|K(1 +
|E(G)|)), where K is the total number of mappings of
G to label sets L we need to consider. In theory, K can
be exponentially large, but in practice it will stay small.
In addition, |Il,o| and |Ie| will typically be significantly
smaller. Hence, in practice we will need significantly
less time to perform a query.

To query association rules, we build a similar in-
dexing structure, only now we group rules by their head
episode. We index these groups using the head episode
and within each group we index each rule with its tail.

7 Experiments

In this section, we present the results of our experi-
ments. We first experimented on a synthetic dataset
containing a planted pattern to compare the results of
our three methods and to check that they do not pro-
duce spurious output. We then applied our methods to
a number of various real-life datasets, to see how they
perform in various settings applied to different types of
datasets.

7.1 Synthetic Dataset To test if our methods
recognise a pattern planted in an input sequence, and to
check how well the methods reduce the output resulting
from such a pattern, we generated a synthetic dataset.

The dataset contains 100 000 occurrences of episode G
depicted in Figure 3, interleaved with noise. Each oc-
currence of an a is followed by occurrences of b and c,
with a 50% chance of a b coming before c, and a 50%
chance of a c coming before b. After b and c have both
occurred, there follows a d. There was a 1% chance that
a noise event occurs between any two of the four events
making up the pattern. Two occurrences of G are sepa-
rated by occurrences of 10 to 15 noise events (the exact
number was randomly chosen for each gap). All noise
events were randomly chosen from a group of 100 differ-
ent noise events. The resulting sequence was 1 651 937
items long, of which 1 251 937 were noise events.

a
b

c
d

Figure 3: An episode planted into the synthetic dataset.

The fixed-window and the weighted-window meth-
ods gave similar results. With a window of size 6,
a confidence threshold of 1, and a low enough fre-
quency threshold, the output consisted of 13 closed
association rules. Among them were four rules im-
posing a total order on a set of two events, namely
{a, b} ⇒ a → b, {a, c} ⇒ a → c, {b, d} ⇒ b → d
and {c, d} ⇒ c → d. Six rules imposed a partial or-
der on sets of three events, while two rules imposed a
total order among all four events given a partial or-
der, namely {a, d, b → c} ⇒ a → b → c → d and
{a, d, c→ b} ⇒ a→ c→ b→ d. Finally, one rule stood
out, as the left-hand side was smaller than the right-
hand side, identifiying which episode implied the com-
plete occurrence of G itself. The rule was {a, d} ⇒ G.

Reducing the window size to 5 or 4 resulted in
some occurrences of G not fitting into the window,
so the frequencies of the discovered episodes dropped,
but the confidence of the rules remained unchanged,
as did the output, as long as the frequency threshold
was low enough. Due to the nature of the measures,
we had to considerably lower the confidence threshold
to find further rules. With the fixed-window method,
the next discovered rule was {b, d} ⇒ {b, c} → d
with a confidence of around 89% . Three similar rules
scored fractionally lower, while rules {b} ⇒ {c} and
{c} ⇒ {b} had a confidence of around 83%. Lowering
the confidence threshold to 0.6 resulted in 49 closed
association rules, none of which could be removed with
a 1.1 confidence boost threshold, though 16 could with
a 1.15 boost threshold. The same behaviour could be
observed with the weighted-window method, though the
confidence of the rules was different.



The results using the minimal-window method with
a window size of 6 were considerably different. Instead
of rule {a, d} ⇒ G, the minimal-window method with a
confidence threshold equal to 1 found four rules, namely
{a} ⇒ G, {b} ⇒ G, {c} ⇒ G and {d} ⇒ G. These
four rules not only fully described the implications
inherent in the planted pattern, but also constituted
the complete output, as all other rules with a high
enough frequency could be derived from these four.
Remarkably, even if we lowered the confidence threshold
to 0, these four were the only closed rules we discovered.
Lowering the frequency threshold resulted in finding
rules in which a total order was imposed on b and
c being included in the output, but really interesting
results started to come through if we lowered the size
of the window. When we lowered the window size to
5, some occurrences of G were no longer discovered,
and the four rules above no longer had a confidence
equal to 1. With a confidence threshold equal to 1,
we now discovered rule {a, d} ⇒ G, and six other rules
extending a singleton into a partially ordered set of three
events. However, lowering the confidence threshold to
0.99, we again found the four rules mentioned above,
increasing the size of the output to 11 (the seven
rules with confidence equal to 1 were now closed, and
therefore included in the output). However, applying a
confidence boost threshold of just 1.01, we could again
reduce the output to the original four rules. Again,
reducing the confidence threshold all the way to 0 could
not provide us with any more informative rules, as these
four told us all there was to know about the dataset.
Exactly the same output was generated using a window
size of 4, a confidence threshold of 0.97 or lower, and
a boost threshold of 1.03, as the confidence of the four
rules equalled just above 97% with these parametes.

These experiments confirmed that the minimal-
window method is more suited for identifying which
small patterns can be extended into greater ones, while
the fixed-window and the weighted-window methods
give more value to rules that impose a stricter order on
a pattern of a given size. The minimal-window method
provides us with no information as to how far from
the small pattern we need to look in order to find the
greater pattern (as long as it can be found within the
given window size), while the other two methods assign
a higher value to rules where this distance is relatively
smaller. Clearly, all three methods have their merits,
and which one should be used largely depends on the
dataset and the wishes of the user.

Finally, it is worth noting that the noise we intro-
duced into the dataset is only an issue in a dense dataset,
where the position of an item in the sequence acts as
its time stamp. In sparse data, with real-valued time

stamps, such noise will have no effect on either the fre-
quency of an episode or the confidence of an association
rule. Assume that events a and b occur at time stamps
t1 and t2, respectively. As long as the distance between
t1 and t2 is smaller than the window size, those two
events will be found within the window, regardless of
how many (noise) events occur between them.

7.2 Real-life Datasets We also tested our algo-
rithm on five real-world datasets, three of which were
text datasets — address, consisting of the inaugural ad-
dresses by the presidents of the United States3, merged
to form a single long sequence, moby, the novel Moby
Dick by Herman Melville4, and abstract, consisting of
the first 739 NSF award abstracts from 19905, also
merged into one long sequence. We processed the se-
quences using the Porter Stemmer6 and removed the
stop words. Our fourth dataset contained a sequence of
alarms triggered in a factory, stretching over 18 months.
An entry in the dataset consists of a time stamp and an
event type. Finally, the fifth dataset contained infor-
mation about trains delayed at departure from a Bel-
gian railway station. The dataset consists of actual
departure times of delayed trains, coupled with train
numbers, stretching over a period of one month. The
characteristics of the five datasets are summarised in
Table 2. Note that the three text datasets are dense, as
there are no time stamps involved. Implicitly, of course,
the events (words) are assumed to have “taken place”on
consecutive time stamps. The remaining two datasets,
alarms and trains, are sparse. In both datasets, times
are measured in seconds, and most time stamps are
not associated with any event. Furthermore, these two
datasets also contain events that occur at the same time,
which is never the case in the text datasets.

Sequence Size |Σ| type

address 62 066 5 295 dense
moby 105 719 10 277 dense
abstract 67 828 6 718 dense
alarms 514 502 9 595 sparse
trains 10 115 1 280 sparse

Table 2: Characteristics of the five datasets. The first
column contains the size of the sequence, the second
column the number of unique symbols in the sequence,
and the third the type of data.

3taken from http://www.bartleby.com/124/pres68
4taken from http://www.gutenberg.org/etext/15
5taken from http://kdd.ics.uci.edu/databases/nsfabs/

nsfawards.html
6http://tartarus.org/~martin/PorterStemmer/

http://www.bartleby.com/124/pres68
http://www.gutenberg.org/etext/15
http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html
http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html
http://tartarus.org/~martin/PorterStemmer/


In all our experiments, we kept the window size
and the frequency threshold fixed, while varying the
confidence and the confidence boost threshold. The
main goal of our experiments was to demonstrate how
we tackle the problem of pattern explosion. For each
set of experiments, we therefore pushed the frequency
threshold as low as possible, until the algorithm for
generating all confident association rules began to take
too long or ran out of memory. This demonstrated
the need to generate i-closed and i-free episodes as an
intermediary step, as our algorithm for mining only the
closed rules ran much faster, and could handle much
lower frequency thresholds. For the text datasets, we
used the window size of 15, while for alarms and trains
we used 10 and 30 minutes, respectively, after consulting
domain experts in each field. For both of the real-life
datasets, an average window contained approximately
10 events, but this number was considerably higher in
peak times, and regularly dropped to 0 during the night.

Figure 4 shows how the total number of confi-
dent association rules compared with the number of
closed rules we discovered in all five datasets, using the
fixed-window, minimal-window, and weighted-window
method, respectively. The results show that the reduc-
tion was significant at all thresholds. Among the text
datasets, the best reduction was obtained in the abstract
dataset, which is not surprising, keeping in mind that
this is the most structured dataset of the three. This
was particularly visible in the minimal window method,
where the reduction was smallest for the address and
moby dataset, and highest for the other three datasets.
Due to the low frequency thresholds, we found a large
number of rules with confidence equal to 1. Most of
these rules were of the form {x, y} ⇒ x → y using all
three methods, while the minimal-window method dis-
covered a number of such rules of the form x ⇒ x → y
or y ⇒ x→ y.

Figure 5 shows how the output could be further
reduced by using a confidence boost threshold. We
give results for all five datasets, using the fixed-window,
minimal-window, and weighted-window method, re-
spectively. Again, it can clearly be seen that the output
can be significantly reduced in more structured datasets,
while the results were not impressive for the more di-
verse address and moby datasets.

Finally, we give an overview of some of the more
interesting association rules discovered in the three
text datasets in Figures 6, 7 and 8. Note that our
experiments confirmed that the three methods can rank
rules differently. For example, Figures 6 (a) and (c)
give the top rules of size 2 in the address dataset for
φ = 1 using the fixed window and the weighted window
method, respectively, while Figures 7 (a) and (b) give

the top rules of size 2 in the moby dataset for φ = 1 using
the fixed window and the minimal window method,
respectively. Figure 8 (a), on the other hand, shows a
rule of size 2 that was ranked top for φ = 1 for all three
methods in the abstract dataset. Figure 6 (g) shows a
rule with cf ≈ 0.88 discovered in the address dataset.
However, due to the rule shown in Figure 6 (h) having
cf ≈ 0.87, the confidence boost of this rule is actually
smaller than 1.01. Using a confidence boost threshold of
1.1, rule shown in Figure 6 (g) would be removed from
the output. A similar example from the moby dataset
is shown in Figures 7 (c) and (d). Finally, a very large
rule is shown in Figure 8 (e). Here, the occurrence of a
general episode consisting of four words implies, with a
confidence equal to 1, the occurrence of a serial episode
consisting of six words. Unfortunately, non-disclosure
agreements prevent us from presenting similar examples
from the alarms and trains datasets.

8 Conclusions

In this paper, we present a complete association rule
miner for strict episodes, a large subclass of gen-
eral episodes, represented by directed acyclic graphs
(DAGs). We approach the problem from three angles,
defining the frequency using windows of fixed size, min-
imal windows, and weighted minimal windows. While
the first method is computationally the least demand-
ing, we show that the other two can be more intuitive
and meaningful. We define and mine association rules
within all three settings.

Furthermore, we tackle the problem of pattern
explosion. The pattern explosion is exponential already
when it comes to itemsets, it is much more of a
problem within the field of episodes, and it culminates
when we attempt to generate association rules between
general episodes. We define closed association rules,
thus eliminating all redundant rules from the output.
Our algorithms take advantage of various properties
of closed rules, such as the fact that the left-hand
side must consist of a free episode, and the right-hand
side of a closed episode, which allows us to discover
closed association rules efficiently. Our experiments
demonstrate that the reduction in the size of the output
is considerable. Further reduction can be achieved by
setting a confidence boost threshold, thus eliminating
the least informative rules.

In future work, we intend to investigate if it is
possible to extend this work to the complete class of
general episodes, dropping the constraint that they
must be strict. An interesting property of the confidence
of an association rule is that it is not always a monotonic
measure. Further research could also be dedicated to
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Figure 4: The comparison of the number of closed association rules and the total number of rules discovered
in the five datasets, using the three different methods. (a)-(e) fixed windows, (f)-(j) minimal windows, (k)-(o)
weighted windows.

examining if it would still be possible to somehow prune
some of the rules, based on some other criteria.
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