
Mining Interesting Itemsets in Graph Datasets

Boris Cule Bart Goethals Tayena Hendrickx

Department of Mathematics and Computer Science
University of Antwerp

firstname.lastname@ua.ac.be

Abstract. Traditionally, pattern discovery in graphs has been mostly
limited to searching for frequent subgraphs, reoccurring patterns within
which nodes with certain labels are frequently interconnected in exactly
the same way. We relax this requirement by claiming that a set of labels is
interesting if they often occur in each other’s vicinity, but not necessarily
always interconnected by exactly the same structures. Searching for such
itemsets can be done both in datasets consisting of one large graph, and
in datasets consisting of many graphs. We present novel methods dealing
with both possible settings. Our algorithms benefit from avoiding com-
putationally costly isomorphism checks typical for subgraph mining, as
well as from a greatly reduced search space, as we consider only itemsets,
and not all possible edges and paths that can connect them.

1 Introduction

Traditionally, searching for patterns in graphs has been almost exclusively lim-
ited to searching for frequent subgraphs. A frequent subgraph is a structure
within a graph where nodes with certain labels are frequently interconnected in
exactly the same way. We propose to relax this requirement. We claim that a
pattern, a set of node labels, is interesting if these labels often occur in the graph
near each other, not necessarily with exactly the same edges between them.

Consider the graph given in Fig. 1. It can be very easily observed that pattern
abcd clearly stands out. However, traditional approaches, even with a frequency
threshold as low as 2, will not find a single subgraph of size larger than 2,
since nodes labelled a, b, c and d are always interconnected differently. This
demonstrates the need for a new approach.

On top of being more flexible, and thus capable of finding previously unde-
tected patterns, our method also greatly reduces the search space by looking for
itemsets alone, rather than considering all possible combinations of edges and
paths connecting them. However, if the dataset does contain a frequent sub-
graph, our method will find the equivalent itemset consisting of the same labels,
but without the edges connecting them.

We consider two different problem settings, as the dataset can consist either
of a (very large) single graph, or of a set of (smaller) graphs. In the single graph
setting, the goal is to find itemsets that reoccur within the graph. We propose two
methods to achieve this goal. The first is based on the traditional approaches to

Fig. 1: A graph containing a pattern not discovered by subgraph mining.

mining frequent itemsets in transaction databases. Our main contribution here
consists of a way to transform a graph into a transaction database, after which
any existing itemset mining algorithm can be used to find the frequent itemsets.
In our second approach, we look for cohesive itemsets, whereby we insist that
for an itemset to be considered interesting, it should not only appear often, but
its items should also never appear far from each other. In the multiple graph
setting, the goal is to find itemsets that occur in many of the input graphs. Here,
the dataset cannot be transformed into a typical transaction database. However,
the cohesive itemset approach proves perfectly adaptable to this setting.

An interesting property of the cohesive itemset approach is that the proposed
interestingness measure is not anti-monotonic, which, at first glance, might rep-
resent an obstacle when generating large candidate itemsets. However, in both
the single and the multiple graph setting we managed to come up with an effi-
cient pruning method, which enables us to mine cohesive itemsets in a reasonable
amount of time.

Even though the problem setting of subgraph mining is very different to that
of mining itemsets in graphs, and therefore mostly incomparable, we do note
that our algorithm results in a massive reduction in output.

The paper is organised as follows. In Section 2, we present the main related
work. In Section 3 we propose two methods of identifying interesting itemsets
in the single graph setting. In Section 4, we extend these approaches to be able
to handle datasets consisting of multiple graphs. In Section 5, we give a sketch
of our algorithms, before presenting the results of our experiments in Section 6.
We end the paper with our conclusions in Section 7.

2 Related Work

The problem of discovering subgraphs that occur frequently in a dataset con-
sisting of either one or multiple graphs has been very popular in data mining
research. A good survey of the early graph based data mining methods is given
by Washio and Motoda [18]. The first studies to find subgraph patterns were

conducted by Cook and Holder [3] for a single graph, and by Motoda and In-
durkhya [21] for multiple graphs, both using a greedy scheme to find some of the
most prevalent subgraphs. Although this greedy search may miss some significant
subgraphs, it avoids the high complexity of the graph isomorphism problem.

Inokuchi et al. [9] and Kuramochi and Karypis [13] proposed the Agm and
Fsg algorithms, respectively, for mining all frequent subgraphs, using a level-wise
approach, similar to that of Apriori [1]. They suffer from two additional draw-
backs, however: costly subgraph isomorphism testing and an enormous number
of candidates that are generated along the way (due to the fact that both edges
and nodes must be added to the pattern). Yan and Han [19] proposed gspan,
which performs a depth-first search, based on a pattern growth principle similar
to the one used in Fp-growth [7] for mining itemsets. Nijssen et al. proposed
a more efficient frequent subgraph mining tool, called Gaston, which finds the
frequent substructures in a number of phases of increasing complexity [15]. More
specifically, it first searches for frequent paths, then frequent free trees and finally
cyclic graphs. Further attempts at mining frequent subgraphs, both in one or
many input graphs, have been made by Bringmann and Nijssen [2], Kuramochi
and Karypis [14], Huan et al. [8], Yan et al.[20] and Inokuchi et al. [10].

Up to now, however, most of the research in graph mining has gone into
finding frequent subgraphs. We focus on mining interesting itemsets in graphs,
thus relaxing the underlying structure of the pattern. By doing so, we avoid the
costly isomorphism testing, and by using a depth-first search algorithm, we avoid
the pitfalls of Apriori-like algorithms. A similar approach has been proposed
by Khan et al. [12], where nodes propagate their labels to other nodes in the
neighbourhood, according to given probabilities. Labels are thus aggregated,
and can be mined as itemsets in the resulting graph. Khan et al. also propose to
solve the problem of query-based search in a graph using a similar method [11].
Silva et al. [16, 17] and Guan et al. [6] introduce methods to identify correlation
between node labels and graph structure, whereby the subgraph constraint has
been loosened, but some structural information is still present in the output.

3 Single Graph Setting

Formally, we define a graph G as the set of nodes V (G) and the set of edges
E(G), where each node v ∈ V (G) has a label l(v). We assume that the graph is
connected, and that each node carries at most one label. In this setting, a pattern
is an itemset X, a set of node labels that frequently occur in graph G in each
other’s neighbourhood. In Sections 3.1 and 3.2 we propose two ways of defining
and finding interesting patterns in a graph. Note that we can also handle input
graphs that contain nodes with multiple labels, by transforming each such node
into a clique of nodes, each carrying one label.

3.1 Frequent Itemsets Approach

One way of defining an interesting itemset is by simply looking at its frequency.
An interesting itemset is one that occurs often in the dataset. Our challenge

therefore consists of taking a graph and converting it into a transaction database.
In essence, we are looking for items that often appear near each other in the
graph, so we propose to create a transaction database in which each transaction
would correspond to the neighbourhood of a single node in the graph. For a node
v, we define the corresponding transaction as t(v) = {l(w)|w ∈ G, d(v, w) ≤ n},
where d(v, w) is the distance from v to w and n is the neighbourhood size, a user-
defined parameter, indicating how far w can be from v and still be considered a
part of v’s neighbourhood. Typically, n should be relatively small if meaningful
results are to be obtained. In a well-connected graph, with a large n, all nodes
will be in each other’s neighbourhoods.

We define a transaction database of graph G as T (G) = {t(v)|v ∈ G}. The
frequency of an itemset X in graph G, frG(X), is defined as the number of
transactions in T (G) that contain X. An itemset is considered frequent if its
frequency is greater than or equal to a user-defined frequency threshold min freq.
Once we have converted our original dataset in this way, we can apply any one
of a number of existing frequent itemset algorithms to obtain the desired results.

Let us return to our example in Fig. 1. Given a neighbourhood size of 1, the
resulting transaction database is given in Table 1. We see that itemset abcd will
now be discovered as interesting. In fact, only its subsets of size 1 or 2 will score
higher.

vid items vid items vid items

1 efghi 8 abcdg 15 bc
2 afe 9 ab 16 cd
3 abcdf 10 bc 17 edi
4 ab 11 bd 18 abcdi
5 ac 12 ech 19 ad
6 ad 13 abcdh 20 bd
7 beg 14 ac 21 cd

Table 1: A transaction database obtained from the graph in Fig. 1 with a neigh-
bourhood size of 1.

3.2 Cohesive Itemset Approach

Another possible approach is to look for cohesive, rather than simply frequent,
itemsets. This idea was inspired by the approach Cule et al. applied in order to
find interesting itemsets in event sequences [5]. The idea is not to find items that
only occur near each other often, but items that imply the occurrence of each
other nearby with a high enough probability.

Consider, for example, the graph given in Fig. 2. We see that patterns de
and bc are both frequent, though de will score higher than bc, both in subgraph
mining and in frequent itemset mining as defined in Section 3.1. However, it can
be argued that the value of itemset de should diminish due to the fact that a d
appears in the graph without an e nearby, while each b has a c right next to it,
and vice versa. Here, we present an approach that takes this into account.

Fig. 2: A graph illustrating the intuition behind cohesive patterns.

To start with, we introduce some notations and definitions. In a graph G,
the set of nodes is denoted V (G). The number of nodes in G is denoted |V (G)|.
For an itemset X, we denote the set of nodes labelled by an item in X as
N(X) = {v ∈ G|l(v) ∈ X}. The number of such nodes is denoted |N(X)|.
Finally, we define the probability of randomly encountering a node in G labelled

by an item in X as the coverage of X in G, or P (X) = |N(X)|
|G| .

For each occurrence of an item of X, we must now look for the nearest
occurrence of all other items in X. For a node v, we define the sum of all these
smallest distances as W (v,X) =

∑
x∈X minw∈N({x})d(v, w). We then compute

the average of such sums for all occurrences of items making up itemset X,

W (X) =
∑

v∈N(X) W (v,X)

|N(X)| . This allows us to define the cohesion of an itemset X

in G as C(X) = |X|−1

W (X)
. The cohesion is a measure of how near to each other

the items in X are in G on average. If they are always right next to each other,
the sum of these distances for each occurrence of an item in X will be equal to
|X| − 1, as will the average of such sums, and the cohesion of X will therefore
be equal to 1.

Finally, the interestingness of an itemset X is defined as the product of its
coverage and its cohesion, I(X) = P (X)C(X). An itemset is considered interest-
ing if its interestingness is greater than or equal to a user-defined interestingness
threshold, min int. Unlike with frequent itemsets, where we could tell nothing
about the cohesion of the itemsets, we are now able to say that having en-
countered an item from an interesting itemset, there is a high probability of
encountering the rest of the itemset nearby.

Let us now return to the example given in Fig. 2. If we apply these measures
to itemsets bc and de, we first note that P (bc) = 5/13 and P (de) = 7/13. In order
to compute the cohesion of the two itemsets, we first have to compute W (bc) and
W (de), which are respectively 1 and 10

7 (note that all relevant minimal windows
are of size 1, except W (v5, de) = 4). Therefore, C(bc) = 1 and C(de) = 7

10 , and
I(bc) = 0.385 and I(de) = 0.377. We see that the value of itemset de has indeed
diminished due to a d occurring far from any e.

Finally, note that while our method allows us to find more flexible patterns
than subgraph mining, we do not miss out on any pattern subgraph mining can

discover. If a graph contains many occurrences of a subgraph consisting of nodes
labelled a, b and c, then we will find abc as an interesting itemset.

4 Multiple Graph Setting

In many applications, the dataset does not consist of a single graph, but of a
collection of graphs. Formally, as before, we define a graph G as a set of nodes
V (G) and a set of edges E(G), where each node v ∈ G has a label l(v). We also
define G as a set of graphs {G1, ..., Gn}, and assume that each graph in G is
connected. A pattern is now an itemset X, a set of node labels that frequently
occur in the set of graphs G in each other’s neighbourhood. In other words,
for a pattern to be interesting, it needs to appear in a cohesive form in many
graphs. Unlike the single graph setting, the multiple graph setting does not allow
us to transform the dataset into a transaction database. However, the cohesive
itemset approach, presented in Section 3.2, can be generalised to the multiple
graph setting in a relatively straightforward manner.

We first revisit the notations introduced in Section 3.2. Given a set of graphs
G, the number of graphs in G is denoted |G|. We denote the set of all graphs that
contain itemset X as Nm(X) = {G ∈ G|∀x ∈ X ∃v ∈ V (G) with l(v) = x}. The
number of such graphs is denoted as |Nm(X)|. Finally, we define the probability
of encountering a graph in G containing the whole of itemset X as the coverage

of X in G, or Pm(X) = |Nm(X)|
|G| .

Given a graph Gj in Nm(X), we must now look for the most cohesive oc-
currence of X. To find such an occurrence, we will look for a node in the graph,
labelled by an item in X, from which the sum of the distances to all other items
in X is the smallest. Given a graph Gj containing an itemset X, we define this
lowest sum as W (X, j) = minv∈N(X,Gj) W (v,X), where N(X,Gj) is the set of
nodes in Gj labelled by an item in X, while W (v,X) is defined as in Section 3.2.

We now compute the average of such smallest sums for all graphs in G con-

taining the whole of itemset X, Wm(X) =
∑

j∈Nm(X) W (X,j)

|Nm(X)| . We can then define

the cohesion of an itemset X in G as Cm(X) = |X|−1

Wm(X)
. Once again, a fully

cohesive itemset will have cohesion equal to 1.

Finally, the interestingness of an itemset X in G is defined as the product of
its coverage and its cohesion, Im(X) = Pm(X)Cm(X).

5 Algorithms

Mining frequent itemsets in graphs can be done by transforming a graph into
a transaction database, and then using an existing itemset miner to generate
the output. However, the cohesive itemset approach is less straightforward, and
we now present our algorithms, Grit and Mug, for solving this problem in the
single graph setting and the multiple graph setting, respectively.

5.1 Single Graph Setting

The fact that our interestingness measure is not anti-monotonic clearly repre-
sents a problem. We will sometimes need to search deeper even when we en-
counter an uninteresting itemset, as one of its supersets could still prove in-
teresting. Traversing the complete search space is unfeasible, so we will need a
different pruning technique to speed up our algorithm. We adapt the approach
introduced by Cule et al. for mining itemsets in sequences [5] to our setting.

We approach the problem using depth-first search, and the pseudocode of the
main Grit algorithm is provided in Algorithm 1. The first call to the algorithm
is made with X empty and Y containing all possible items. At the heart of the
algorithm is the UBI pruning function, used to decide when to prune a complete
branch of the search tree, and when to proceed deeper. Essentially, we can prune
a complete branch if we are certain that no itemset generated within this branch
can be interesting. To be able to ascertain this, we compute an upper bound for
the interestingness of all these itemsets, and prune the branch if this upper bound
is smaller than the interestingness threshold. We begin by noting that, for each
Z, such that X ⊆ Z ⊆ X ∪Y , it holds that |N(Z)| ≤ |N(X ∪Y)|, |Z| ≤ |X ∪Y |
and

∑
v∈N(X) W (v,X) ≤

∑
v∈N(Z) W (v, Z). Expanding the definition of the

interestingness, we get that I(Z) = |N(Z)|×|N(Z)|×(|Z|−1)∑
v∈N(Z) W (v,Z)×|G| . It therefore follows

that I(Z) ≤ |N(X∪Y)|×|N(X∪Y)|×(|X∪Y |−1)∑
v∈N(X) W (v,X)×|G| . We have thus found an upper bound

for the interestingness of all itemsets Z, that can be generated in a branch of the
search tree starting off with itemset X, and reaching as deep as itemset X ∪ Y .

However, while this upper bound is theoretically sound, it is also computa-
tionally very expensive. Note that we would need to compute

∑
v∈N(X) W (v,X)

at each node in our search tree. This would require traversing the whole graph
searching for the minimal distances between all items in X for all relevant nodes.
This, too, would be infeasible. Luckily, if we express these sums differently, we
can avoid these computationally expensive database scans. Adapting the ap-
proach introduced by Cule and Goethals [4] to the graph setting, we first note
that the sum of the minimal distances between items making up an itemset
X and the remaining items in X can also be expressed as a sum of sepa-
rate sums of such distances for each item individually,

∑
v∈N(X) W (v,X) =

Algorithm 1 GRIT(〈X,Y 〉) finds interesting itemsets

if UBI (〈X,Y 〉) ≥ min int then
if Y = ∅ then

output X
else

Choose a in Y
GRIT(〈X ∪ {a}, Y \ {a}〉)
GRIT(〈X,Y \ {a}〉)

end if
end if

∑
x∈X

∑
v∈N({x}) W (v,X). We then note that each such sum for an occurrence

of an item x ∈ X is equal to the sum of individual minimal distances between the
same occurrence of x and any other item y ∈ X. For the sum of such distances,
it holds that

∑
v∈N({x}) W (v,X) =

∑
v∈N({x})

∑
y∈X\{x}W (v, xy). Naturally, it

also holds that
∑

v∈N({x}) W (v,X) =
∑

y∈X\{x}(
∑

v∈N({x}) W (v, xy)). To sim-

plify our notation, from now on we will denote
∑

v∈N({x}) W (v, xy) by s(x, y).

Finally, we see that
∑

v∈N(X) W (v,X) =
∑

x∈X
∑

y∈X\{x}(s(x, y)), giving us
a much more elegant way to compute the sum of distances between an occur-
rence of an item in X and the rest of X for all nodes labelled by an item in
X. Finally, we are ready to define our upper-bound-based pruning function:

UBI (〈X,Y 〉) = |N(X∪Y)|2×(|X∪Y |−1)∑
x∈X

∑
y∈X\{x}(s(x,y))×|G| .

This pruning function is easily evaluated, as all it requires is that we store
s(x, y), the sum of minimal distances between x and y over all occurrences of x,
for each pair of items (x, y), so we can look them up when necessary. This can
be done as soon as the dataset has been read, and all entries can be computed
efficiently. Note that if Y is empty, then UBI (〈X,Y 〉) = I(X), so if we reach a
leaf node in the search tree, we can immediately output the itemset.

5.2 Multiple Graph Setting

As in the single graph setting, the interestingness measure based on cohesive
itemsets in multiple graphs is also not anti-monotonic. Here, however, the cov-
erage alone is anti-monotonic. Given itemsets X and Y , such that X ⊂ Y , it is
clear that any graph that contains Y will also contain X. Keeping in mind that
the interestingness of an itemset is never greater than its coverage, this allows us
to prune even more candidates from our search space. For any itemset Z, such
that X ⊆ Z, it holds that I(Z) ≤ P (Z) ≤ P (X). Therefore, if we encounter
an itemset X, such that its coverage is lower than the interestingness threshold
min int, we can safely discard all its supersets from the search space.

On top of this pruning criterion, we can develop a pruning function MUBI
in much the same way as we did in the single graph setting above. Once again,
it would be infeasible to compute all necessary sums of minimal windows at
each node in our search tree. However, this time we cannot express this sum
using similar sums for pairs of items as we did in Section 5.1. The reason for
this is the fact that we now define W (X, j) as the minimal occurrence of X
in graph Gj , while in Section 3.2 we defined W (v,X) as a sum of individual
minimal distances between items. Given a graph Gj and an itemset X, knowing
the individual minimal distances between the items of X in Gj would bring us
no closer to knowing the size of the minimal occurrence of X in Gj . We have
therefore decided to perform all our experiments without MUBI — pruning
less, but faster. As a result, our Mug algorithm for mining interesting itemsets
in multiple graphs is exactly the same as the one given in Algorithm 1, with line
if P (X) ≥ min int then replacing line 1.

6 Experiments

For our single graph setting experiments, we generated a number of synthetic
datasets. To start with, we generated a graph with 10 000 nodes, randomly allo-
cating labels ranging from 1 to 20. We made sure that labels 0 and 1 were more
probable than all the others, followed by labels 2 and 3, while the remaining
labels were all equally probable. We build the graph by, at each step, adding
either a new node and connecting it to a random existing node, or adding a new
edge between two existing nodes. In our first set of experiments, we set the prob-
ability of adding a new node to 60%, and the probability of adding a new edge
to 40%, resulting in a relatively sparse graph, with around 1.7 edges per node
on average. The characteristics of the input graph and the results of the experi-
ments for both the frequent itemset approach and the cohesive itemset approach
are presented in the top quarter of Table 2. For the frequent itemset approach,
the reported runtime is the sum of the time needed to transform the dataset into
a transaction database added to the time needed to run an implementation1 of
the classical Fp-growth algorithm on the transformed dataset.

Input Graph Frequent Itemset Approach Cohesive Itemset Approach
nodes edges items min freq runtime itemsets found min int runtime itemsets found
10 000 16 853 20 2 000 873 4 0.37 2 545 1

1 000 905 25 0.35 2 796 35
100 966 737 0.33 3 236 704
10 1 202 15 644 0.30 4 480 8 193
1 2 513 250 181 0.20 36 314 430 961

10 000 16 853 30 2 000 853 4 0.37 823 263 1
500 892 71 0.35 892 480 31
50 960 1 793 0.33 1 013 627 1 672
5 1 225 37 349 0.31 1 253 782 28 147

10 000 68 190 20 4 000 1 238 11 0.55 3 327 35
1 000 1 720 4 449 0.50 4 084 2 228

250 6 279 462 933 0.35 23 178 245 668
50 10 953 1 048 575 0.20 61 519 950 411

100 000 166 446 20 20 000 2 994 4 0.37 21 425 1
5 000 3 192 63 0.35 21 856 17

500 3 575 1 980 0.30 24 502 8 092
50 4 137 31 424 0.25 31 559 89 617

Table 2: Experimental results on four different single graph datasets. The run-
time is measured in milliseconds.

To examine how our methods react to different types of input, we created
three more graphs, each time changing one of the settings. In the second set of
experiments, we introduced some noise into the dataset, by randomly choosing
100 nodes in the original graph and changing their labels to a random item
ranging from 21 to 30. For the third set of experiments, we created a denser
graph, by setting the probability of adding a new node to 15%, and the proba-
bility of adding a new edge to 85%. In the fourth set of experiments, we used a
larger graph, creating 100 000 nodes, keeping the other settings as in the original
dataset. The characteristics of these three input graphs and the results of our
experiments can be seen in the bottom three quarters of Table 2.

1 taken from http://adrem.ua.ac.be/~goethals/software

In all four sets of experiments, we note that frequent itemset mining works
very fast once the transformation of the dataset has been done, while the co-
hesive itemset approach suffers from having to compute s(x, y) for each pair of
items x and y, regardless of the threshold. Grit struggles with noisy data, as
expensive computations need to be done even for very rare items and itemsets,
while transforming the graph into a transaction database takes a lot more time
when dealing with both a denser or a larger input graph. Finally, all experiments
on the four datasets produced expected results in terms of the discovered item-
sets — items 0 and 1 were ranked top amongst items, while itemset {0, 1} was
the highest ranked pair of items. Both methods discovered the same itemsets
of size 3 and 4 (itemsets made up of items 0, 1, 2 and 3), while results differed
for itemsets of size 5 or more. However, due to the anti-monotonicity of the
traditional frequency measure, Fp-growth ranked singletons higher than their
supersets, while Grit considered itemset {0, 1, 2, 3}, for example, more inter-
esting than each individual item alone. We conclude that both approaches have
their respective merits, with the frequent itemset approach being faster, and the
cohesive itemset approach more intuitive. Grit will first find large, informative
itemsets, while Fp-growth first finds singletons, and the really interesting large
itemsets can be buried beneath a pile of smaller itemsets.

In the multiple graph setting, we experimented on a dataset consisting of 340
chemical compounds, made up of 66 different atom types. However, we discov-
ered five unconnected graphs in the dataset and removed them, as the cohesive
itemset approach can only be applied to connected graphs, leaving us with 335
input graphs. We compare our algorithm for finding cohesive itemsets in multi-
ple graphs with the Gaston tool developed by Nijssen and Kok [15]. Both the
dataset and the implementation are available online2. We present the results of
our experiments in Tables 3 and 4.

min int runtime itemsets
0.50 17 5
0.20 173 17
0.10 772 53
0.05 2 196 172
0.01 21 869 1 122

Table 3: Results of the Mug algo-
rithm on the Chemical 340 dataset.

min freq runtime itemsets
200 10 11
100 16 68
50 26 427
10 376 19 237
5 9 318 447 879

Table 4: Results of the Gaston al-
gorithm.

By comparing our Mug algorithm to a frequent subgraph miner, we are in
fact comparing apples and oranges. While Mug uses an interestingness measure,
Gaston uses a frequency threshold. Mug searches for itemsets, Gaston dis-
covers subgraphs. Mug discards structure and focuses on items in each other’s
neighbourhoods, while Gaston focuses on structure. Clearly, Mug results in a
massive reduction in output, as, for a typical interesting itemset discovered by

2 http://www.liacs.nl/~snijssen/gaston/download.html

Mug, Gaston will find a number of combinations of edges (and their subsets)
that are frequent. Furthermore, the actual patterns discovered by the two algo-
rithms differ greatly. To name but one example, the most interesting itemset of
size 4 that we discovered was {0, 1, 4, 5}, while the most frequent subgraph of
size 4 was 0 – 0 – 0 – 0. On the other hand, if we compare only patterns of size
2, Gaston finds graph 1 – 9 as the most frequent, while we also found {1, 9}
as highest ranked itemset of size 2. However, it is also important to note that
itemset {0, 1, 4, 5} ranked as one of the best itemsets overall in our output, while,
due to the nature of frequent subgraph mining, graph 0 – 0 – 0 – 0 was ranked
below all its subgraphs. As with Grit, Mug has the advantage of ranking the
larger interesting itemsets above all other, while Gaston will always rank a
large pattern below a number of smaller patterns.

7 Conclusion

In this paper we presented a number of new methods to identify interesting
itemsets in one or many input graphs. For one graph, such itemsets consist
of items that often occur close to each other. Unlike previous approaches that
typically look for structures connecting these items, we only look at the distances
between the items themselves. This enables us to avoid the typical pitfalls of
subgraph mining — costly isomorphism checks and a huge number of candidates.
On top of the classical frequent itemset approach that we adapted to mining
itemsets in a large graph, we propose a second method, mining cohesive itemsets,
consisting of items that appear close to each other frequently enough. This second
approach proved perfectly adaptable to the multiple graph setting, too.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in
large databases. In Proc. of the 20th Int. Conf. on Very Large Data Bases,
pages 487–499, 1994.

[2] B. Bringmann and S. Nijssen. What is frequent in a single graph? In
Proc.of the 12th Pacific-Asia Conf. on Knowledge Discovery and Data Min-
ing, pages 858–863, 2008.

[3] D. J. Cook and L. B. Holder. Substructure discovery using minimum de-
scription length and background knowledge. Journal of Artificial Intelli-
gence Research, 1:231–255, 1994.

[4] B. Cule and B. Goethals. Mining association rules in long sequences. In
Proc. of the 14th Pacific-Asia Conf. on Knowledge Discovery and Data
Mining, pages 300–309, 2010.

[5] B. Cule, B. Goethals, and C. Robardet. A new constraint for mining sets
in sequences. In Proc. of the 9th SIAM Int. Conf. on Data Mining, pages
317–328, 2009.

[6] Z. Guan, J. Wu, Q. Zhang, A. Singh, and X. Yan. Assessing and ranking
structural correlations in graphs. In Proc. of the 2011 ACM SIGMOD Int.
Conf. on Management of Data, pages 937–948. ACM, 2011.

[7] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In Proc. of the 2000 ACM SIGMOD Int. Conf. on Management
of Data, volume 29, pages 1–12, 2000.

[8] J. Huan, W. Wang, J. Prins, and J. Yang. Spin: mining maximal frequent
subgraphs from graph databases. In Proc. of the 10th ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining, pages 581–586, 2004.

[9] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for
mining frequent substructures from graph data. In Principles of Data Min-
ing and Knowledge Discovery, pages 13–23, 2000.

[10] A. Inokuchi, T. Washio, and H. Motoda. Complete mining of frequent
patterns from graphs: Mining graph data. Machine Learning, 50:321–354,
2003.

[11] A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, and S. Tao. Neighbor-
hood based fast graph search in large networks. In Proc. of the 2011 ACM
SIGMOD Int. Conf. on Management of Data, pages 901–912. ACM, 2011.

[12] A. Khan, X. Yan, and K.-L. Wu. Towards proximity pattern mining in large
graphs. In Proc. of the 2010 ACM SIGMOD Int. Conf. on Management of
Data, pages 867–878. ACM, 2010.

[13] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proc. of
the 2001 IEEE Int. Conf. on Data Mining, pages 313–320, 2001.

[14] M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse
graph. Data Mining and Knowledge Discovery, 11:243–271, 2005.

[15] S. Nijssen and J.N. Kok. The gaston tool for frequent subgraph mining.
Electronic Notes in Theoretical Computer Science, 127:77–87, 2005.

[16] A. Silva, Jr. W. Meira, and M. J. Zaki. Structural correlation pattern mining
for large graphs. In Proc. of the 8th Workshop on Mining and Learning with
Graphs, pages 119–126. ACM, 2010.

[17] A. Silva, Jr. W. Meira, and M. J. Zaki. Mining attribute-structure corre-
lated patterns in large attributed graphs. Proc. of the VLDB Endowment,
5(5):466–477, 2012.

[18] T. Washio and H. Motoda. State of the art of graph-based data mining.
ACM SIGKDD Explorations Newsletter, 5:59–68, 2003.

[19] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In
Proc. of the 2002 IEEE Int. Conf. on Data Mining, pages 721–724, 2002.

[20] X. Yan, X. Zhou, and J. Han. Mining closed relational graphs with con-
nectivity constraints. In Proc. of the 11th ACM SIGKDD Int. Conf. on
Knowledge Discovery in Data Mining, pages 324–333, 2005.

[21] K. Yoshida, H. Motoda, and N. Indurkhya. Graph-based induction as a uni-
fied learning framework. Journal of Applied Intelligence, 4:297–316, 1994.

