
Mining Association Rules of Simple Conjunctive Queries

Bart Goethals Wim Le Page
University of Antwerp,

Belgium

Heikki Mannila
HIIT, Helsinki University of Technology

University of Helsinki

Abstract
We present an algorithm for mining association rules in ar-
bitrary relational databases. We define association rules over
a simple, but appealing subclass of conjunctive queries, and
show that many interesting patterns can be found. We pro-
pose an efficient algorithm and a database-oriented imple-
mentation in SQL, together with several promising and con-
vincing experimental results.

1 Introduction
The discovery of recurring patterns in databases is one of the
main topics in data mining and many efficient solutions have
been developed for relatively simple classes of patterns and
data collections. Indeed, most frequent pattern mining or
association rule mining algorithms work on so called trans-
action databases [2]. Not only for itemsets, but also for more
complex patterns such as trees [20], graphs [13, 15, 19],
or arbitrary relational structures [8], databases consisting
of a set of transactions are used. For example, in the tree
case [20], every transaction in the database contains a tree,
and the presented algorithm tries to find all frequent subtrees
occurring within all such transactions. For all these pattern
classes, specialized algorithms exist to discover them effi-
ciently. The motivation for these works is the potentially
high business value of the discovered patterns [8].

Unfortunately, many relational databases are not suited
to be converted into a transactional format and even if this
would be possible, a lot of information implicitly encoded in
the relational model would be lost after conversion. In this
paper, we consider association rule mining on arbitrary rela-
tional databases by combining pairs of queries which could
reveal interesting properties in the database. Intuitively, we
pose two queries on the database such that the second query
is more specific than the first query. Then, if the number of
tuples in the output of both queries is almost the same, this
could reveal a potentially interesting discovery.

To illustrate, consider the well known Internet Movie
Database [12] containing almost all possible information
about movies, actors and everything related to that, and
consider the following queries: first, we ask for all actors
that have starred in a movie of the genre ‘drama’; then,
we ask for all actors that have starred in a movie of the

genre ‘drama’, but that also starred in a (possibly different)
movie of the genre ‘comedy’. Now suppose the answer to
the first query consists of 1000 actors, and the answer to
the second query consists of 900 actors. Obviously, these
answers do not necessarily reveal any significant insights on
themselves, but when combined, it reveals the potentially
interesting pattern that actors starring in ‘drama’ movies
typically (with a probability of 90%) also star in a ‘comedy’
movie. Of course, this pattern could also have been found by
first preprocessing the database, and creating a transaction
for each actor containing the set of all genres of movies he
or she appeared in. Similarly, a pattern like: 77% of the
movies starring Ben Affleck, also star Matt Damon, could
be found by posing the query asking for all movies starring
Ben Affleck, and the query asking for all movies starring
both Ben Affleck and Matt Damon. Again, this could also
be found using frequent set mining methods, but this time,
the database should have been differently preprocessed in
order to find this pattern. Furthermore, it is even impossible
to preprocess the database only once in such a way that the
above two patterns would be found by frequent set mining as
they are essentially counting a different type of transactions.
Indeed, we are counting actors in the first example, and
movies in the second example.

Also truly relational patterns can be foundwhich can not
be found using typical set mining techniques, such as, 80%
of all movie directors that have ever been an actor in some
movie, also star in at least one of the movies they directed
themselves. This can be easily expressed by two simple
queries of which one asks for all movie directors that have
every acted, and the second one asks for all movie directors
that have ever acted in one of their own movies.

In general, we are looking for pairs of queries Q1, Q2,
such that Q1 asks for a set of tuples satisfying a certain
condition and Q2 asks for those tuples satisfying a more
specific condition. When it turns out that the size of the
output Q2 is close to the size of the output of Q1, we
learned that most of the tuples in the output of Q1 actually
satisfy a more specific condition, as specified inQ2. Clearly,
such findings could reveal interesting patterns in the given
database. Towards this goal, we consider a new pattern class
consisting of conjunctive queries over relational databases

and define associations using the well known notion of query
containment [1, 7].

The organization of the rest of the paper is as follows.
In Section 2, we give a formal description of the model
and the considered problem. In Section 3, we present
our algorithm for mining association rules. In Section 4,
we present a technique to remove a substantial amount of
redundancies within the discovered associations. In Section
5, we present experimental results showing the effectiveness
of our algorithm, based on applying this algorithm to data
from two real databases. In Section 6, we discuss related
work. Section 7 gives an overview of our future work and
we conclude with a summary in Section 8.

2 Formal Model
Assume we are given a relational database consisting of a
schemaR(R1, . . . , Rn) and an instance I ofR.

DEFINITION 1. (Simple Conjunctive Query) A simple
conjunctive query Q over R is a relational algebra expres-
sion of the form

πXσF (R1 × · · · ×Rn),

withX a set of attributes fromR1, . . . , Rn, andF a conjunc-
tion of equalities of the form Ri.A = Rj .B or Rk.A = c,
with 1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ n, A and B attributes from
Ri and Rj respectively, and c a constant from the domain of
Rk.A.

The only simplification, although drastic, over general con-
junctive queries, is that every relation fromR occurs exactly
once in a simple conjunctive query. Essentially, we could
loosen the definition to allow every relation at most once,
but this would unnecessarily complicate matters. After all,
under the assumption that all relations are non-empty, both
definitions are equivalent.

Throughout this paper, we use the set semantics for all
queries, and hence, duplicates are not taken into account and
are removed from the output of all queries. As will soon
be shown, this choice is important in order to differentiate
between queries having a different set of projected attributes.

Although such simple conjunctive queries can hardly be
interesting on themselves, they can be very interesting when
two queries are compared to each other.

EXAMPLE 1. Consider the following two queries.

Q1 : πA,BR
Q2 : πA,BσA=BR

Now suppose Q1 returns 100 tuples, and Q2 returns 90 tu-
ples. Suddenly, these queries become potentially interesting
as they represent the pattern that for 90% of the tuples inQ1,
the value of attribute A equals the value of attribute B.

In general, we are interested in association rules between
pairs of simple conjunctive queries Q1 and Q2 stating that
a tuple in the result of Q1 is also in the result of Q2 with a
given probability p, denoted byQ1 ⇒ Q2.

Without loss of generality, we only need to consider
those pairs Q1 and Q2 such that Q2 is contained in Q1.
Therefore, we recall the definition of query containment [1,
7].

DEFINITION 2. (Containment) For two conjunctive
queries Q1 and Q2 over R, we write Q1 ⊆ Q2 if for every
possible instance I of R, Q1(I) ⊆ Q2(I) and say that Q1

is contained in Q2. Q1 and Q2 are called equivalent if and
only if Q1 ⊆ Q2 andQ2 ⊆ Q1.

Although deciding containment for general conjunctive
queries is known to be NP-complete, it can be easily verified
in linear time for the simple conjunctive queries defined here.

Besides this classical form of containment, also a second
containment relationship between conjunctive queries can be
identified.

EXAMPLE 2. Consider the following two queries.

Q1 : πA,BR
Q2 : πAR

Now suppose Q1 returns 100 tuples, and Q2 returns 90
tuples (due to duplicate elimination in the set semantics).
Then, again, these queries become potentially interesting as
they represent the pattern that for 90% of the (unique) tuples
inQ1, have a unique value for attributeA. Note however, we
do not know if the remaining 10% have the same value for
A, or whether they all have different values also occurring
in the other 90%.

As illustrated in this example, there exists a second type
of containment, which we will call vertical containment.
Indeed, when projecting on a subset of the attributes in the
projection of a query, the result is vertically contained in the
result of the original query. As we will show later, also other
interesting, and even well known associations can be found
using this vertical containment.

When both types of containment are combined, we
arrive at our formal containment definition which we will
use throughout this paper.

DEFINITION 3. A conjunctive query Q1 is diagonally con-
tained in Q2 if Q1 is contained in a projection of Q2 (Q1 ⊆
πXQ2). We write Q1 ⊆Δ Q2.

Finally, we are ready to formally define association rules
over simple conjunctive queries.

DEFINITION 4. (Association Rule) An association rule is of
the form Q1 ⇒ Q2, such that Q1 and Q2 are both simple
conjunctive queries and Q2 ⊆Δ Q1.

Obviously, we are not interested in all possible associa-
tion rules, but only in those that satisfy certain requirements.
The first requirement states that an association rule should be
supported by a minimum amount of tuples in the database.

DEFINITION 5. (Support) The support of a conjunctive
query Q in an instance I is the number of distinct tuples in
the answer of Q on I. A query is said to be frequent in I if
its support exceeds a given minimal support threshold. The
support of an association rule Q1 ⇒ Q2 in I is the support
ofQ2 in I, an association rule is called frequent in I if Q2 is
frequent in I.

DEFINITION 6. (Confidence) An association rule Q1 ⇒
Q2 is said to be confident if the support of Q2 divided by the
support ofQ1 exceeds a givenminimal confidence threshold.

Even if we only consider association rules over frequent
simple conjunctive queries, it might still result in approxi-
mately all possible association rules, due to cartesian prod-
ucts.

EXAMPLE 3. Consider the following simple conjunctive
queries.

Q1 : πR1.A,R2.BR1 ×R2

Q2 : πR1.AσR2.B=′c′R1 ×R2

As can be seen, Q1 is a simple cartesian product of two
attributes from different relations, and hence, its support is
simply the product of the number of unique values of the
two attributes. Now, whenever a simple conjunctive query
is not frequent, there most probably exist also several other
versions of that query including a cartesian product with
another attribute which contains enough tuples to make the
product exceed the minimum support threshold.

Similarly, also almost every frequent query will be du-
plicated many times due to cartesian products. This case is
illustrated byQ2. Here, the output equals πR1.A only if there
exists a tuple in R2 containing the value ′c′ for attribute B.
Obviously, almost every frequent query could be combined
like that with every possible value in the database.

As illustrated in this example, it is of no use to consider
queries containing cartesian products.

Similarly, it does not make any sense to compare at-
tributes of incomparable types, or also, the user might see no
use in comparing addresses with names. Therefore, we allow
the user to provide the most specific selection to be consid-
ered. That is, a partition of all attributes, such that only the
attributes in the same block are allowed to be compared to
each other.

The goal is now to find, for a given database, all frequent
and confident association rules over, cartesian product free,
simple conjunctive queries with a given minimum support
threshold, a minimum confidence threshold, and a most
specific selection.

3 Conqueror: the algorithm
The proposed algorithm, Conqueror (Conjunctive Query
Generator), is divided into two phases. In a first phase,
all frequent simple conjunctive queries are generated. Then,
in a second phase, all confident association rules over these
frequent queries are generated. Essentially, the second phase
is considerably easier, as most computationally intensive
work is performed in the first phase. After all, for every
generated simple conjunctive query, we need to compute its
support in the database, while association rule generation
merely needs to find couples of previously generated queries
and compute their confidence. Consequently, most of our
attention will go to the first phase, starting with the candidate
generation procedure.

3.1 Candidate Generation As in most frequent pattern
mining algorithms, it is impossible to generate the complete
search space of all simple conjunctive queries and compute
their support, as there are simply too much of them.

Apart from being able to discover interesting relation-
ships among simple conjunctive queries, our definition of di-
agonal containment also has the following interesting prop-
erties.

PROPERTY 3.1. Given a relational database D, the diago-
nal containment relation⊆Δ is a partial order, which defines
a lattice over the simple conjunctive queries on D.
Additionally, the lattice also has the desirable monotonicity
property.

PROPERTY 3.2. Let Q1 and Q2 be two simple conjunctive
queries. If Q2 ⊆Δ Q1, then support(Q1) ≥ support(Q2).

This allows us to use a level-wise (Apriori) strategy [3, 17,
16] and prune all simple conjunctive queries contained in an
infrequent query.

Essentially, we generate all possible instantiations of X
and F in πXσF (R1 × · · · × Rn). An overall outline of our
algorithm is the following:

Selection loop: Generate all instantiations of F , without
constants, in a breadth-first manner.

Projection loop: For each generated selection, generate all
instantiations of X in a breadth-first manner, and test
their frequency.

Constants loop: For each generated query in the projection
loop, add constant assignments to F in a breadth-first
manner.

Next, we describe each of these loops in detail, after
which we describe our implemented techniques to efficiently
evaluate each query on the database.

3.1.1 Selection loop A selection in a simple conjunctive
query consists of a conjunction of equalities between at-
tributes. Hence, it defines a partition of all attributes. Gen-
erating all partitions of a set is a well studied problem for
which efficient solutions exist. We will use the so called re-
stricted growth string for generating all partitions [18].

A Restricted Growth string is an array a[1 . . .m] where
m is the total number of attributes occurring in the database,
and a[i] is the block identifier of the block in the partition
in which attribute i occurs. Obviously, a partition can be
represented by several such strings, but in order to identify
a unique string for each partition, the so called restricted
growth string satisfies the following growth inequality (for
i = 1, 2, . . . , n− 1, and with a[1] = 1):

a[i + 1] ≤ 1 + maxa[1], a[2], . . . , a[i].

EXAMPLE 4. Let A1, A2, A3, A4 be the set of all attributes
occurring in the database. Then, the restricted growth
string 1221 represents the conjunction of equalities A1 =
A4, A2 = A3.

The algorithm to generate all selection queries is shown
in Algorithm 1. In order to efficiently generate all partitions
without generating duplicates, we start initially with the
singleton string “1”, representing the first attribute belonging
to block 1, and all remaining attributes belong to their own
unique block (although this is not explicitly represented).
Then, given such a string representing a specific partition, all
more specific partitions are generated by adding one of the
remaining attributes to an existing block (line 7). To make
sure no duplicates are generated, we assume an order over
all attributes and do not add an attribute to an existing block
if any of the attributes coming after that have already been
assigned to an existing block.

Algorithm 1 SelectionLoop()
1: σ(Q)← “1” {initial restricted growth string}
2: push(Queue, Q)
3: while not Queue is empty do
4: SQ← pop(Queue)
5: if rgs does not represent a cartesian product then
6: ProjectionLoop(SQ)
7: children← RestictedGrowth(σ(SQ), m)
8: for all rgs in childeren do
9: if selection defined by rgs is not more specific than

the user most specific selection then
10: σ(SQC)← rgs
11: push(Queue, SQC)

This traversal of the search space for four attributes is
illustrated in Figure 1. Essentially, our algorithm performs a
breadth-first traversal over this tree. The actual generation of
the restricted growth string is shown in Algorithm2.

Algorithm 2 RestrictedGrowth(String prefix, Length m)
1: list← {}
2: last← length(prefix)
3: if last < m then
4: for i = last tom− 1 do
5: max← max({prefix[j] | 0 ≤ j < last})
6: nprefix← prefix
7: if i > last then
8: for k = last to i− 1 do
9: max← max+ 1
10: nprefix[k]← max
11: for l = 1 to max do
12: nprefix[i] := l
13: add(list, nprefix)
14: return list

Of course, as a special case, initially we consider the
queries consisting of each relation separately without any
selection.

Before generating possible projections for a given se-
lection, we first determine whether the selection represents
a cartesian product (line 5). If so, we skip generating pro-
jections for this selection and continue the loop, adding new
attributes until the selection is no longer representing a carte-
sian product.

Intuitively, to determine whether a selection represents
a cartesian product, we interpret each simple conjunctive
query as an undirected graph, such that each relation or
constant is a node, and each equality in the selection of the
query is an edge between the nodes occurring in that equality.
Then, we only allow those queries for which all edges are in
the same single connected component. All other queries are
cartesian products. This is also illustrated in Figures 2(a)
and 2(b). That is, Figure 2(a) represents the selection

R1.C = R2.D, R2.E = R3.H, R2.F = R2.G,

resulting in a single connected component, while Figure 2(b)
represents the query

R1.B = R1.C, R2.E = R3.H, R2.F = R2.G,

resulting is two disconnected components. Hence, indepen-
dent of the projected attributes, any simple conjunctive query
using the second selection will always contain a cartesian
product.

3.1.2 Projection loop For each selection, all allowed pro-
jections are generated, consisting of those attributes that are
part of the single connected component (line 6, Algorithm 1).
Indeed, projecting on any other attribute would result in a
cartesian product. Therefore, our algorithm (Algorithm 3)
starts with the set of all allowed attributes for the given se-
lection, and generates subsets in a breadth-first manner w.r.t.

[1]

[11]

[111]

[1111]

[1121] [1122]

[121]

[1211] [1212]

[122]

[1221] [1222]

[1231] [1232] [1233]

Figure 1: Restricted Growth Expansion

(a) a single connected component

(b) disconnected components

Figure 2: Cartesian Products

diagonal containment. Not all subsets are generated, how-
ever, as this might result in many duplicate queries. Indeed,
when we remove an attribute from the projection while there
might still be other attributes from its block in the selection
partition, we obtain an equivalent query. Therefore, we im-
mediately remove all attributes from a single block of the
selection partition.

For every generated projection, we first check whether
all more general queries are known to be frequent (line
5), and if so, the resulting query is evaluated against the
database (line 6). If the query turns out to be infrequent, then
none of its subsets are considered anymore, as they must be
infrequent too.

Algorithm 3 ProjectionLoop(ConjunctiveQueryQ)
1: π(Q)← all connected blocks of σ(Q)
2: push(Queue,Q)
3: while not Queue is empty do
4: PQ← pop(Queue)
5: if all queries⊇Δ PQ have support> minsup then
6: if support(PQ)> minsup then
7: ContantsLoop(PQ)
8: removed← connected blocks of σ(PQ) /∈ π(PQ)
9: torem ← connected blocks of σ(PQ) > last of

removed {order on blocks is supposed in order
to generate uniquely}

10: for all pi ∈ torem do
11: π(PQC)← π(PQ) with block pi removed
12: push(Queue,PQC)

3.1.3 Constants loop Every block of attribute equalities
of the selection can also be set equal to a constant. Again,
this is done in a level-wise, breadth-first manner as shown in
Algoritm 4. First, we assign a constant to a single block in
the selection partition of the query (line 5). Then, we assign
constants to two different blocks, only if these constants
were already resulting in frequent queries separately. This is

repeated until no more combinations can be generated s(line
8). Again, there is one exception. We do not allow constants
to be assigned to blocks that are in the projection. Indeed,
also these would be equivalent to queries in which this block
is not in the projection.

For every generated assignment of constants, the result-
ing query is evaluated against the database (line 11). If the
query turns out to be infrequent, then no more specific con-
stant assignments are generated, as they must be infrequent
too.

Algorithm 4 ConstantsLoop(Conjunctive QueryQ)
1: push(Queue,Q)
2: while not Queue is empty do
3: CQ← pop(Queue)
4: if c(CQ) = ∅ then
5: toadd← all connected blocks of σ(CQ) /∈ π(CQ)
6: else
7: uneq ← connected blocks of σ(CQ) /∈ (c(CQ) ∪

π(CQ))
8: toadd← blocks in uneq > last of c(CQ) {order on

blocks is supposed in order to generate uniquely}
9: for all Bi ∈ toadd do
10: c(CQC)← c(CQ) with Bi added
11: if exist frequent constant values for c(CQC) in the

database then
12: push(Queue,CQC)

3.2 Candidate Evaluation In order to get the support
of each generated query, they are evaluated against the
database by translating each query to SQL. For efficiency
reasons, however, this query translation and evaluation is
only performed for queries with the most general projection
and no constant equalities. The result of such a query is
then stored in a temporary table (τ). We can now rewrite
more specific queries to use these temporary tables resulting
in a more efficient evaluation as we are now querying just
a specific part of the database and we no longer have to
perform a possibly expensive join operation for each more
specific query. All more more specific projections X ′,
having the same selection, are evaluated by the query πX′τ .

To evaluate the more specific conjunctive queries con-
taining constant equation we developed some additional op-
timisations. It is hard and inefficient to keep the constant
values in main memory, therefore we will also use tempo-
rary tables to store them. Creating the SQL queries for these
conjunctive queries will involve combining the various tem-
porary tables from previous loops using the monotonicity
property.

We first encounter more specific queries that contain one
constant equation (e.g. A). These queries are rewritten as
follows.

EXAMPLE 5.

SELECT A, COUNT(*) AS sup
FROM τ GROUP BY A

The result of these queries is stored in a new temporary
table (τA) holding the constant values together with their
support. Queries containing more constant equations will
then use these tables to generate these combinations and will
be stored in temporary tables of their own as illustrated in
the examples below.

EXAMPLE 6. Let τA and τB be the temporary tables hold-
ing the constant values for the attributes A and B together
with their support (generated previously). We can now gen-
erate the table τA,B using the results of the following query

SELECT A, B, COUNT(*) FROM
(SELECT A,B, X ′ FROM

τ NATURAL JOIN
(SELECT * FROM

(SELECT A FROM τA)
NATURAL JOIN
(SELECT B FROM τB)

)
)

GROUP BY A,B
HAVING COUNT(*) >= minsup

In this case we are using the values already obtained for
A and B in generating the combinations, and using a join
with the temporary table τ to evaluate against the database,
immediately using the minimal support value minsup to
only get frequent queries.

In the previous example the join actually was a simple
product but as one advances more levels (i.e. more blocks
are equal to constants) it becomes a real join on the common
attributes as illustrated in the example below.

EXAMPLE 7. This is the generated query for getting the
values for τA,B,C using the temporary tables τ , τA,B , τA,c,
τB,C .

SELECT A, B, C, COUNT(*) FROM
(SELECT A,B,C, X ′ FROM

τ NATURAL JOIN
(SELECT * FROM

(SELECT A,B FROM τA,B)
NATURAL JOIN
(SELECT A,C FROM τA,C)
NATURAL JOIN
(SELECT B,C FROM τB,C)

)
)

GROUP BY A,B,C
HAVING COUNT(*) >= minsup

3.3 AssociationRule Generation The generation of asso-
ciation rules is performed in a straightforward manner. For
all queries Q1 the algorithm finds all queries Q2 such that
Q2 ⊆Δ Q1, it computes the confidence of the ruleQ1 ⇒ Q2

and tests whether it is confident. As already explained in the
beginning of this section, the time and space consumption of
this phase is negligible w.r.t. the query generation phase.

4 Eliminating Redundancies
Using the algorithm as described in the previous section,
many association rules can be discovered. Unfortunately,
they contain a lot of redundancies.

EXAMPLE 8. Consider the following association rules,
each based on a vertical containment:

(4.1) πR.A,R.B,S.EσR.C=S.F(R × S)⇒
πR.A,S.EσR.C=S.F(R × S)

(4.2) πR.A,S.EσR.C=S.F(R × S)⇒
πR.AσR.C=S.F(R × S)

(4.3) πR.A,R.B,S.EσR.C=S.F(R × S)⇒
πR.AσR.C=S.F(R × S)

Now suppose the first association rule has a confidence
of 100%. Then, the confidence of the second and third
association rule must be equal, and hence, one of them can
be considered redundant. We choose to retain those rules
using the most general queries, and thus, in this case, the
third rule.

Now suppose the second association rule has a confi-
dence of 100%. Then, the confidence of the first and third
association rule must be equal, and one of them can be con-
sidered redundant. Again, we choose to retain the rule with
the most general queries, and thus, in this case, the first rule.

More formally, we have the following Lemma.

LEMMA 4.1. An association rule Q1 ⇒ Q2 is redundant if

1. there exists an association rule Q3 ⇒ Q1 with confi-
dence 100%, or

2. there exists an association rule Q4 ⇒ Q2 with confi-
dence 100%, and Q4 ⊆Δ Q1.

It is easy to see that in the first case, there exists an associa-
tion rule Q3 ⇒ Q2 having the same confidence and support
asQ1 ⇒ Q2, and in the second case, there exists an associa-
tion rule Q1 ⇒ Q4 having the same confidence and support
as Q1 ⇒ Q2. Together with the rule having 100% condfi-
dence, the confidence of Q1 ⇒ Q2 can be easily deduced.

ACTORS.* 45342
ACTORS.AID 45342
ACTORS.NAME 45342
GENRES.* 21
GENRES.GID 21
GENRES.NAME 21
MOVIES.* 71912
MOVIES.MID 71912
MOVIES.NAME 71906
ACTORMOVIES.* 158441
ACTORMOVIES.AID 45342
ACTORMOVIES.MID 54587
GENREMOVIES.* 127115
GENREMOVIES.GID 21
GENREMOVIES.MID 71912

Table 1: Number of tuples per attribute in the IMDB
database

This lemma provides a powerful tool to remove many re-
dundant association rules. In practice, before outputting an
association rule, it is first checked whether there already ex-
ists such 100% confident association rule as described in the
lemma. Fortunately, such rules must have been generated al-
ready before as both Q3 and Q4 are more general than Q1

andQ2 respectively.

5 Experiments
We performed several experiments using our prototype on
a snapshot of a part of the Internet Movie Database [12],
and on a database that is the backend of an online quiz
website [4]. A summary of the characteristics of these
databases can be found in Table 1 and Table 2 respectively.

The experiments were performed on a 2.19 GHz AMD
Opteron processor with 2GB of internal memory, running
Linux 2.6. The prototype algorithmwas written in Java using
JDBC to communicate with a PostgreSQL 8.0.12 relational
database.

What follows are some examples of interesting patterns
discovered by our algorithm. We will abbreviate the relation
names to improve readability.

5.1 IMDB The IMDB snapshot consist of three tables
ACTORS (A), MOVIES (M) and GENRES (G), and two
tables that represent the connections between them namely
ACTORMOVIES (AM) and GENREMOVIES (GM).

EXAMPLE 9. The following rule, has 100% confidence and
represents a functional dependency, which in this case is a
key dependency.

SCORES.* 868755
SCORES.SCORE 14
SCORES.NAME 31934
SCORES.QID 5144
SCORES.DATE 862769
SCORES.RESULTS 248331
SCORES.MONTH 12
SCORES.YEAR 6
QUIZZES.* 4884
QUIZZES.QID 4884
QUIZZES.NAME 4674
QUIZZES.MAKER 328
QUIZZES.CATEGORY 18
QUIZZES.LANGUAGE 2
QUIZZES.NUMBER 539
QUIZZES.AVERAGE 4796

Table 2: Number of tuples per attribute in the Quiz database

πM.MID,M.NAME(M)⇒ πM.MID(M)

Interestingly enough the rule

πM.MID,M.NAME(M)⇒ πM.NAME(M)

has 99.99% confidence, so we can derive that in our
database snapshot there are different movies which have the
same name (although not a lot). This type of association
rules is also known as approximate functional dependen-
cies [14].

We also find more complex patterns, as illustrated in the
following examples.

EXAMPLE 10. We can conclude that every movie has a
genre because of the following association rule with 100%
confidence

πM.MID(M)⇒ πM.MIDσGM.MID=M.MID(M ×GM)

It is easy to see that this type of rules describe inclusion
dependencies occurring in the database.

On the contrary, in our database, not every movie has
to have an actor associated with it as the following rule only
has 75.91% confidence

πM.MID(M)⇒ πM.MIDσAM.MID=M.MID(M ×AM)

This last rule may be counter intuitive, but these kind of
rules occur due to the fact that we are working in a partial
(snapshot) database.

EXAMPLE 11. We can find ‘frequent’ genres in which actors
play. The rule

πAM.AID(AM)⇒ πAM.AIDσAM.MID=GM.MID,

GM.GID=G.GID,G.GID=′3′(AM ×GM ×G)

has 40.44% confidence, so 40.44% of the actors play in a
‘Documentary’ (genre id 3) while the same rule for ‘Drama’
has 49.85% confidence.

But also other types of interesting patterns can be
discovered. For instance, the following rule has 81.60%
confidence.

πAM.AID,AM.MIDσAM.MID=GM.MID,

GM.GID=G.GID,G.GID=′16′(AM ×GM ×G)⇒
πAM.AIDσAM.MID=GM.MID,

GM.GID=G.GID,G.GID=′16′(AM ×GM ×G)

While for example the same rule for genre ‘Crime’ has only
49.87% confidence. Intuitively it could indicate that 81.60%
of the actors in genre ‘Music’ (genre id 16) only play in one
movie. But this rule could just as well indicate that one actor
plays in 18.4% of the movies. Examining constant values
for actor id (under a low confidence) could allow us to find
patterns like the latter.

5.2 Quiz Database The quiz database consists of two
relations QUIZZES (Q) and SCORES (S), containing
the data about the quiz (who made it, the category,...) and
data about the participants (name, result,...) respectively.

Similarly to the IMDB snapshot database we are able to
find functional dependencies.

EXAMPLE 12. We find that the rule

πQ.QID,Q.MAKER(Q× S)⇒ πQ.QUIZID(Q× S)

has 100% confidence and represents a functional depen-
dency. The rule

πS.NAME(Q× S)⇒ πS.NAMEσQ.QID=S.QID(Q× S)

however only has 99% confidence and thus again it repre-
sents an approximate inclusion dependency. It means that
at least one player played a quiz that is not present in the
QUIZZES table. Rules like this could indicate that there
might be errors in the database, and are therefore very valu-
able in practice.

We also discovered a lot of more complex and structured
patterns of which some examples are given below.

EXAMPLE 13. To our surprise, the following rule has only
86% confidence.

πQ.QIDσQ.MAKER=S.NAME,Q.QID=S.QID(Q× S)⇒
πQ.QIDσQ.MAKER=S.NAME,Q.QID=S.QID,

S.SCORE=′9′(Q× S)

This rule expresses that only in 86% of the cases where a
maker plays his own quiz he gets the maximum score of 9.

EXAMPLE 14. We discovered a rule about a particular
player, Benny in this case. We can see that he only has the
maximum score in 70% of the quizzes he made.

πQ.QIDσQ.MAKER=S.NAME,Q.MAKER=′Benny′

Q.QID=S.QID(Q× S)⇒
πQ.QIDσQ.MAKER=S.NAME,Q.MAKER=′Benny′,

Q.QID=S.QID,S.SCORE=′9′(Q× S)

For this same player we also discover the following rule
having 76% confidence.

πQ.QIDσQ.CATEGORY=′music′(Q× S)⇒
πQ.QIDσQ.CATEGORY=′music′,Q.QID=S.QID,

S.NAME=′Benny′(Q× S)

This rule tells us that of all the quizzes in the category music,
Benny has played 76% of them.

Next, we discovered the following rule having 49%
confidence.

πS.NAMEσQ.QID=S.QID(Q× S)⇒
πS.NAMEσQ.QID=S.QID,Q.MAKER=′Benny′(Q× S)

This rule tells us that 49% of all players have played a quiz
made by Benny.

We also found that Benny has some real fans as the
following rule has 98% confidence.

πS.NAMEσQ.QID=S.QID,Q.MAKER=′Benny′(Q× S)⇒
πS.NAMEσQ.QID=S.QID,Q.MAKER=′Benny′,

S.NAME=′Raf′(Q× S)

It tells us that the player Raf has played 98% of Benny’s
quizzes.

5.3 Performance Using our implemented prototype, we
conducted some performance measurements using the
IMDB snapshot and quiz databases. The results can be seen
in Figures 3 and 4. Looking at Figure 3(b) we can see that
for a lower minimal support the number of patterns generated
increases drastically. This is due to the fact that an exponen-
tial number of combinations of constants come in to play at
this lower support thresholds. The IMDB snapshot database
has a higher number of unique constant values compared to
the quiz database which results in a much smoother curve in
Figure 3(a). In this figure we can also see that in the case of
the quiz database the time scales with respect to the number
of patterns.

In Figure 4 we can see the number of rules generated for
varying confidence and two different support values (1000
and 200 respectively). Here we clearly see the impact of the

use of pruning the redundancies. The number of patterns is
reduced by more than an order of magnitude.

Essentially, these basic experiments show the feasibility
of our approach and the value of our pruning efforts.

6 Related Work
Towards the discovery of association rules in arbitrary rela-
tional databases, Deshaspe and Toivonen developed an in-
ductive logic programming algorithm, WARMR [8], that dis-
covers association rules over a limited set of conjunctive
queries on a transactional database in which every transac-
tion consists of a small relational database itself. We ex-
tended their framework to a more general setting working
on a single arbitrary relational database, by considering con-
junctive queries as patterns [10]. Unfortunately, the search
space of all conjunctive queries is infinite and there exist no
most general or even a most specific pattern, with respect
to query containment and a frequency measure based on the
number of tuples in the output of a query [10]. Additionally,
deciding whether two conjunctive queries are equivalent is
an NP-complete problem. Therefore, we restricted again to
subclasses of conjunctive queries allowing more efficient al-
gorithms. Towards that goal, we considered the special sub-
class of tree-shaped conjunctive queries defined over a sin-
gle binary relation representing a graph [9, 11]. We showed
these tree queries are powerful patterns, useful for mining
graph-structured data. In this paper, we consider a second
class of queries over several relations, but allow them to oc-
cur at most once. Additionally, we introduce the novel notion
of diagonal containment providing an excellent tool to com-
pare and interpret queries having a different set of projected
attributes. To the best of our knowledge, we are not aware of
any other work considering this class of patterns. Neverthe-
less, we show that this class still allows efficient discovery of
a wide range of very interesting association rules.

If the database consists of a Boolean transaction
database, such that an item can be represented by a single
unary relation in which each tuple is a transaction identifier
of the transaction in which the item occurs, then every non-
empty frequent itemset {i, . . . , j} can be represented by the
conjunctive query

πRi.AσRi.A=Ri+1.A,··· ,Rj−1.A=Rj .AR1 × · · · ×Rn,

with 1 ≤ i ≤ j ≤ n. Furthermore, in that specific case, our
algorithm reduces to the well known Apriori algorithm [3],
which we believe is a major advantage of this approach.

7 Future Work
In this work, we have considered one class of conjunctive
queries showing very promising results. In previous work,
also another class of conjunctive queries, considering only
a single binary relation, has shown its usefulness [9, 11].

1 10
3

1 10
4

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
1 10

5

1 10
5

1 10
5

2 10
5

2 10
5

2 10
5

2 10
5

2 10
5

2 10
5

2 10
5

#
q
u
e
ri
e
s

ti
m

e
 (

m
s
e
c
)

minimal support

quiz (#queries)
quiz (time)

(a) Quiz database

1 10
3

1 10
4

1 10
5

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
1 10

6

1 10
6

1 10
6

1 10
6

1 10
6

1 10
6

1 10
6

1 10
6

2 10
6

2 10
6

#
q

u
e

ri
e

s

ti
m

e
 (

m
s
e

c
)

minimal support

IMDB (#queries)
IMDB (time)

(b) IMDB database

Figure 3: Support variation

1 10
3

1 10
4

1 10
5

1 10
6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

#
ru

le
s

minimal confidence

quiz without pruning sup 1000
quiz without pruning sup 200

quiz with global pruning sup 1000
quiz with global pruning sup 200

(a) Quiz database

1 10
3

1 10
4

1 10
5

1 10
6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

#
ru

le
s

minimal confidence

IMDB without pruning sup 1000
IMDB without pruning sup 200

IMDB with pruning sup 1000
IMDB with pruning sup 200

(b) IMDB database

Figure 4: Confidence variation

It would be interesting to see how well these two can be
combined, but also other new classes could be considered.

Although our pruning technique drastically reduces the
number of patterns, many still remain. We plan to study
alternate or additional interestingness measures and ranking
techniques to be able to present the user with a compact and
easy to interpret set of useful patterns.

Furthermore it is the case that the generated patterns are
dependant of the database decomposition provided by the
user. For example, if our algorithm is presented with the
relation R(A, B, C) it will generate different patterns than
when presented with a decomposition of that, say R(A, B)
and R(A, C). The impact and potential use of different
decompositions is also subject to further study.

8 Conclusion
This research is motivated by the fact that many relational
databases can not always be simply transformed to datasets
for typical frequent pattern mining algorithms, as these re-
quire some kind of transactions to be counted. As illustrated,
possible transformations immediately strongly bias the type
of patterns that can still be found, and hence, a lot of poten-
tially interesting information gets lost. We have presented
a new and appealing type of association rules, by pairing
simple conjunctive queries. As already illustrated in the ex-
amples, next to many different kinds of interesting patterns,
our algorithm is also able to discover functional dependen-
cies, inclusion dependencies, but also their variants, such as
the very recently studied conditional functional dependen-
cies, which turn out to be very useful for data cleaning pur-
poses [5]. Also associations having a lower confidence than
100% are discovered, revealing so called approximate de-
pendencies [14]. We presented a completely novel algorithm
efficiently generating and pruning the search space of all
simple conjunctive queries, and we presented promising ex-
periments, showing the feasibility of our approach, but also
its usefulness towards the ultimate goal of discovering pat-
terns in arbitrary relational databases.

Acknowledgments
We would like to thank Jan Van den Bussche for many
interesting and educating discussions on this work.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] R. Agrawal, T. Imielinski, and A.N. Swami. Mining associa-
tion rules between sets of items in large databases. In Bune-
man and Jajodia [6], pages 207–216.

[3] R. Agrawal, T. Imielinski, and A.N. Swami. Mining associa-
tion rules between sets of items in large databases. In Bune-
man and Jajodia [6], pages 207–216.

[4] R. Bocklandt. http://www.persecondewijzer.net.
[5] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsiet-

sidis. Conditional functional dependencies for data cleaning.
In Proceedings of the International Conference on Data En-
gineering, 2007.

[6] P. Buneman and S. Jajodia, editors. Proceedings of the 1993
ACM SIGMOD International Conference on Management of
Data, volume 22:2 of SIGMOD Record. ACM Press, 1993.

[7] A. Chandra and P. Merlin. Optimal implementation of con-
junctive queries in relational data bases. In Proceedings 9th
ACM Symposium on the Theory of Computing, pages 77–90.
ACM Press, 1977.

[8] L. Dehaspe and H. Toivonen. Discovery of frequent datalog
patterns. Data Mining and Knowledge Discovery, 3(1):7–36,
1999.

[9] B. Goethals, E. Hoekx, and J. Van den Bussche. Mining tree
queries in a graph. Conference on Knowledge Discovery in
Data, pages 61–69, 2005.

[10] B. Goethals and J. Van den Bussche. Relational Associ-
ation Rules: Getting WARMeR. Proceedings of the ESF
Exploratory Workshop on Pattern Detection and Discovery,
pages 125–139, 2002.

[11] E. Hoekx and J. Van den Bussche. Mining for Tree-Query
Associations in a Graph. In Proceedings IEEE International
Conference on Data Mining, 2006.

[12] IMDB. http://imdb.com.
[13] A. Inokuchi, T. Washio, and H. Motoda. An Apriori-based

algorithm for mining frequent substructures from graph data.
In D.A. Zighed, H.J. Komorowski, and J.M. Zytkow, editors,
PKDD, volume 1910 of Lecture Notes in Computer Science,
pages 13–23. Springer, 2000.

[14] J. Kivinen and H. Mannila. Approximate inference of func-
tional dependencies from relations. Theoretical Computer
Science, 149(1):129–149, 1995.

[15] M. Kuramochi and G. Karypis. Frequent subgraph discovery.
In N. Cercone, T.Y. Lin, and X. Wu, editors, Proceedings
of the 2001 IEEE International Conference on Data Mining
(ICDM 2001), pages 313–320. IEEE Computer Society Press,
2001.

[16] H. Mannila and H. Toivonen. Levelwise search and borders
of theories in knowledge discovery. Data Mining and Knowl-
edge Discovery, 1(3):241–258, 1997.

[17] H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algo-
rithms for discovering association rules. In Proceedings AAAI
Workshop on Knowledge Discovery in Databases, pages 181–
192. AAAI Press, 1994.

[18] E. W. Weisstein. Restricted growth string.
From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/RestrictedGrowthString.html.

[19] X. Yan and J. Han. gSpan: Graph-based substructure pattern
mining. In Proceedings of the 2002 IEEE International
Conference on Data Mining (ICDM 2002), pages 721–724.
IEEE Computer Society Press, 2002.

[20] M.J. Zaki. Efficiently mining frequent trees in a forest. In
Proceedings of the 8th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 71–
80. ACM Press, 2002.

