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Abstract. In this paper we propose a calculus that can be used to
describe the semantics of collection-oriented scientific workflow systems
such as the Taverna workbench. Typically such systems focus on the
specification and execution of workflows with a relatively simple control
flow and a more complex data flow that involves large nested collections
of data. An essential operation in such workflows is the instantiation of a
certain nested workflow for each element of a collection. We argue that if
such workflows call external services, their semantics must be described
not only in terms of input-output behavior but also take side effects into
account. Based on this assumption a trace semantics is defined that cor-
responds to the observational equivalence of two workflow specifications.
We show that under such a semantics a relatively small calculus with a
structural semantics can be defined and used to describe such workflows.
This is demonstrated by giving a translation of Taverna workflows in
terms of this calculus.

1 Introduction

In many life sciences like chemistry, meteorology, geology, astrology and espe-
cially bioinformatics data processing experiments are conducted with the help
of the Internet by using services made available by scientific institutions. Such
services include databases with information that has been collected and verified
by the scientific community, and state of the art domain specific data analysis
algorithms. This way hypotheses can be verified before engaging in often expen-
sive and time consuming traditional experiments. For example, in bioinformatics
the effectiveness of a new drug or the possibility of mutating of a certain living
organism like the budding yeast (saccharomyces cerevisiae) so that it produces
desirable chemical substance can be tested in silico and then, only if the prob-
ability of success is high, proven in vitro.

Traditionally services provided on the Internet had interfaces intended for
human users and were operated by coping and pasting data between HTML
forms. For example, the FASTA Sequence Comparison at the University of Vir-
ginia [1] and the Basic Local Alignment Search Tool at NCBI [2] can be used in
this way. Yet, nowadays specialized workbenches with simple graphical notations
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and integrating many useful tools and services like Taverna [3] and Kepler [4]
are popular. Once designed in such a workbench, experiments can be conducted
several times with different input data or verified and repeated by independent
reviewers.

The notations and languages used in workbenches are similar and sometimes
based on the ones known from business process modeling and workflow model-
ing as well as database research. This is because on one hand control flow and
data flow dependencies of the used services have to be specified, and on the
other hand nested collections of data are processed, e.g., are iterated upon or fil-
tered. Because of the combination of those two aspects — workflow organization
and processing of nested collections of data — such workflows are sometimes
distinguished as Collection-Oriented Scientific Workflows or COSWs.
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Fig. 1. A collection-oriented scientific workflow

An example COSW defined in Taverna is presented in Figure 1. It defines
a simple yet often needed experiment. The pin input port on the left hand
side can be initiated with a list of nucleotide sequence identifiers. Then, the
Get Nucleotide FASTA processor implicitly iterates on this list and with the use
of an external service that searches the GenBank database [5] returns FASTA for-
mated nucleotide sequences that correspond to the identifiers. The next processor
merges those sequences into one long string, on which the emma processor per-
forms a sequence alignment. This latter processor is a wrapper for the ClustalW
operation of the EMBOSS [6] package. The final two processors, showalign and
prettyplot are used to present the output respectively in a textual and graphical
manner.

In this work we are interested in the study of formal models and languages
used in COSW tools and Taverna in particular. A formal definition of their
semantics is important for several reasons. First, during its definition the consis-
tency of the language design, and to some extent perhaps also its implementation,
is verified. Second, it is required for automatic translation of workflows to other
models and for research on enactment optimization techniques. Finally, formal
semantics is also necessary for the study of the expressive power of such lan-
guages. In earlier work by Turi, Missier, Goble, De Roure and Oinn [7] a general
syntax and operational semantics were defined formally for Scufl — the COSW
definition language of Taverna. However, we feel that this work ignores some
aspects of Scufl which we argue can be important in certain circumstances. One
of these aspects is the fact that the workflow might produce partial results in the



sense that not for all output ports a result value is produced. Another aspect is
the failure of a processor, which is used in Scufl as a way of achieving conditional
branching. Finally, the aspect of side effects is ignored, since the semantics are
described only in terms of input-output behavior, which makes for example the
use of control flow links meaningless. The main contribution of this work is that
we show that it is possible to define a calculus with a relatively simple syntax
and semantics, that does take all these aspects into account.

A fundamental assumption of the calculus is that for some external functions
it matters (1) how often they are called, because for example they represent a
web service that costs money, and (2) in which order they are called, because for
example they are part of the protocol for a stateful web service. Therefore we will
model the semantics of workflows in terms of traces that contain function calls of
the form f(t1)t2 where f is the name of the function, t1 the input value that was
supplied and t2 the value that was returned by the function. In case the function
call fails and returns no value, which we would like to take into account explicitly
in the formalism, it is of the form f(t1)⊥. In addition we register in the trace
separate events for consuming values from input ports and producing values on
output ports. These are denoted as ina(v), which consumes value v on port a, and
outb(w), which produces value w on port b. An execution of a workflow might
then look for example like the lists [ina(1), inb(3), f(〈a = 1, b = 4〉)〈c=5〉,outc(5)]
or [f(〈a = 3, b = 6〉)〈c=8〉,outa(3), inb(5)]. There are no restrictions on the order
of the events, so traces do not necessarily begin with input events or end with
output events. We also explicitly allow that there are no input and output events
for certain input and output ports of a workflow, respectively, but there can be
at most one such event for each port. Based in this notion of trace we can then
define the semantics of a workflow simply as the set of all traces that describe a
possible complete run of the workflow.

These fundamental assumptions set this work apart from other related work
on describing workflows. The formal semantics of Ptolemy and Kepler [8, 9] ig-
nore side effects. Work on event algebras [10] and interaction expressions [11]
that does take side effects into account, ignores the dataflow aspects such as
iteration over lists. Finally, formalisms based on process algebra [12] generally
define a kind of bisimulation semantics, which we argue is not appropriate here
since only trace semantics corresponds to observational equivalence.

The remainder of this paper is organized as follows. In Section 2 we present
the syntax of the calculus. In Section 3 we present the formal semantics of the
calculus. In Section 4 we describe informally Scufl and discuss how it can be
mapped to the calculus. Finally, in Section 5 we present the conclusion.

2 Formal syntax and informal semantics

2.1 Preliminary definitions

We begin with postulating a countably infinite set of port names P and a set
of function names F , and each name in F represents an external function or



service that can be called by a workflow. Variants of the variables a, b, c, d and
e are used to denote port names, and f and g to denote function names.

For the purpose of this paper we define only a very rudimentary type system
that consists of a single basic type s and a list type constructor.

Definition 1 (port type). The set of port types T is defined by the abstract
syntax rule T ::= s | [T ].

Here s denotes the basic type and [τ ] the type of lists of elements of type τ . We
will use variants of the variables τ , σ and ρ to denote port types. We define an
ordering < over port types that compares the nesting depth, i.e., τ < σ iff the
nesting depth of τ is smaller than the nesting depth of σ. The type of a workflow
consists of an input type and an output type which both indicate for each port
the expected type. Such a type is called an interface type.

Definition 2 (interface type). An interface type is defined as a partial func-
tion ι : P → T that is defined for a finite subset of P. Such an interface type is
denoted as 〈a1 : τ1, . . . , an : τn〉 and the empty type is allowed and denoted as 〈〉.
The set of all interface types is denoted as Θ.

We will use variants of the variables ι and κ to denote interface types. The dis-
joint union of two interface types ι and κ is denoted as ι, κ. For partial functions
and other binary relations t such as interface types the domain of t is defined
as dom(t) = {x | (x, y) ∈ t}. We assume that for all function names in F an
input interface type ι and output interface type κ are given, which is denoted as
f : ι → κ. Finally we introduce the notion of interface in order to describe the
input and output ports of workflow without referring to their port type.

Definition 3 (interface). An interface is a finite set I ⊂ P.

We will use variants of the variables I and J to denote interfaces.

2.2 The syntax of the calculus

The syntax of the calculus is defined by inference rules for propositions of the
form P : ι1 ⇒ ι2 which indicates that P is a valid expression with input type ι1
and output type ι2. The set of all rules is given in Figure 2. In the following we
briefly explain each rule and the operator it defines.

The function name f denotes the workflow that reads on its input ports the
required inputs for f , calls the external function that is represented by f and
if this call does not fail, returns the results on its output ports. The function
is only called if the values in the input ports make up a tuple for which f is
defined.

The following four rules define list manipulation operations. The list wrap-
ping workflow wrapa�b reads a value v from input port a, and returns the list
[v] on output port b. The list concatenation workflow conca;b�c reads a list on
input ports a and b, concatenates the list on a with the list on b and returns
the result on output port c. The ports a and b are separated by a semicolon



f : ι→ κ

f : ι⇒ κ wrapa�b : 〈a : τ〉 ⇒ 〈b : [τ ]〉 conca;b�c : 〈a : [τ ], b : [τ ]〉 ⇒ 〈c : [τ ]〉

flata�b : 〈a : [[τ ]]〉 ⇒ 〈b : [τ ]〉

P : ι1 ⇒ κ1, κ2 Q : κ2, ι2 ⇒ κ3

I = dom(κ2) dom(ι1) ∩ dom(ι2) = ∅ dom(κ1) ∩ dom(κ3) = ∅
(P .I Q) : ι1, ι2 ⇒ κ1, κ3

ι = 〈b1 : τ, . . . , bn : τ〉 I = dom(ι)

lna�I : 〈a : τ〉 ⇒ ι

ι = 〈a1 : τ, . . . , an : τ〉 I = dom(ι)

firstI�b : ι⇒ 〈b : τ〉

P : ι⇒ κ I = dom(ι) J = dom(κ)

nestJ
I (P ) : ι⇒ κ

P : 〈a1 : τ1, . . . , an : τn〉, ι⇒ 〈b1 : σ1, . . . , bm : σm〉
I = {a1, . . . , an} n ≥ 1 J = {b1, . . . , bm}

�J
I (P ) : 〈a1 : [τ1], . . . , an : [τn]〉, ι⇒ 〈b1 : [σ1], . . . , bm : [σm]〉

Fig. 2. The syntax for the basic calculus

to indicate that their order matters, since conca;b�c 6≡ concb;a�c. Finally, the
list flattening workflow flata�b reads a list of lists on port a, concatenates the
elements of this list, and returns the result on port b.

The composition operator .I denotes the composition of two workflows such
that they are connected through interface I. When I is enumerated we will
usually omit the brackets and write P .b,cQ in stead of P .{b,c}Q. The meaning
of P .I Q is that the output ports of P that are in I, are connected with the
synonymous input ports of Q. The output ports of P that are not in I become
output ports of the result, and the input ports of S that are not in I become
input ports of the result. In Figure 3 (a) the result of P .b,c Q is illustrated,
assuming that P : ι1 ⇒ κ1 with dom(ι1) = {a, b} and dom(κ1) = {a, b, c}, and
Q : ι2 ⇒ κ2 with dom(ι2) = {b, c, d} and dom(κ2) = {b, c}. The requirements
for a valid composition of P and Q are that (1) the connected ports in I have
the same port type in P and Q, (2) the output ports of P that are not in I must
not also be output ports of Q, and (3) input ports of Q that are not in I must
not also be input ports input ports of P . The latter two constraints ensure that
every port of the total workflow is connected to exactly one port of P or Q. To
reduce the number of brackets in expressions we will assume that the operator
is left associative.

The linking workflow lna�I copies a value of its input port a to all its output
ports in I, as is illustrated in Figure 3 (b). It’s purpose is to copy values to
multiple ports and rename ports. The latter is required if we want to connect
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Fig. 3. Illustrations of P .b,c Q and lna�a,b,c

output ports to differently named input ports with the composition operator.
Together with the composition operator it allows the representation of acyclic
workflow graphs such as shown in Figure 4 where the global input ports and
local output ports can have arbitrary many leaving edges, but the global output
ports and the local input ports have always exactly one incoming edge. Such
workflow graphs can be mapped by introducing a specific port label for each
edge, indicated in the drawing by a number i and represented as label ei. Then,
the graph can be represented as:
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Fig. 4. An acyclic workflow graph and a corresponding calculus expression

The select-first workflow firstI�b has input ports I and copies the value that
arrives first on one of its input ports to the b output port, and ignores any
values that may or may not arrive on the other input ports. The purpose of this
operation is to allow the definition of the corresponding incoming links strategy
as defined in Taverna, as is discussed in Section 4.1.

The nesting constructor nestJI (P ) defines a workflow that behaves as a single
function, i.e., it first waits until on all ports in I a value has arrived, then executes
P , and after P has finished and has produced on all output ports in J a value,
then these are copied to the output ports of the total workflow. Since I and J
are determined by the type of P , we can omit them in expressions. Note that
a workflow P can be unfinished although it has already produced values on all
its output ports, because, for example, it still needs to do a function call that
has no output ports. This constructor is introduced to describe the behavior of
a nested workflow in Scufl.



The iteration constructor �JI (P ) expresses the iteration of workflow P over
the lists that are received in the ports in I. The interface J indicates the set
of output ports, which must be the same as that of P , and therefore can be
omitted in expressions. As an example, consider f such that f : 〈a : s〉 ⇒ 〈b : s〉,
then �ba(f) is of type 〈a : [s]〉 ⇒ 〈b : [s]〉 and applies f to each element of
the list received on port a. If multiple ports are mentioned in I then it iterates
over the lists received on these ports simultaneously. For example, if g : 〈a :
s, b : s〉 ⇒ 〈c : s〉 and �ca,b(g) receives as input 〈a = [1, 2, 3], b = [4, 5]〉 then
it executes the function calls g(〈a = 1, b = 4〉) and g(〈a = 2, b = 5〉). If P
has input ports that are not mentioned in I then the values on these ports
are simply copied for each iteration. For example, if �ca(g) receives as input
〈a = [1, 2], b = 3〉 then it executes g(〈a : 1, b : 3〉) and g(〈a : 2, b : 3〉). This
operator can also be used to iterate over the Cartesian product of two lists:
�ca(�cb(g)) executes g for all combinations of elements of the lists received on port
a and b. Note, however, that if P = (lna�a .∅ lnb�b) then the result of applying
�a,ba (�a,bb (P )) to 〈a = [1, 2], b = [3, 4]〉 is 〈a = [[1, 1], [2, 2]], b = [[3, 4], [3, 4]]〉 and
not 〈a = [1, 1, 2, 2], b = [3, 4, 3, 4]〉.

3 Formal semantics

3.1 Preliminary definitions

Lists play a central role in the semantics of the calculus since traces are lists
and also the values that are manipulated by the workflows are lists. They are
denoted as [v1, . . . , vn], with the empty list denoted as [ ]. The concatenation of
two lists v and w is denoted as v · w. If w = [w1, . . . , wn] then we write v ∈ w
to denote that v appears in w, i.e., there exists an 1 ≤ i ≤ n such that wi = v.
We will use the list comprehension notation, such as [v | v ← w, v > 5], which
constructs the sublist of list w that consists of all elements larger than 5. The
length of a list v is denoted as |v|.

In order to define the semantics of port types we postulate the set of string
values S which will be semantics of the basic type s. In our examples we will
assume that S also includes numbers.

Definition 4 (type semantics). The semantics of a port type τ , denoted as
[[τ ]], is defined with induction on the structure of τ such that (1) [[s]] = S and (2)
[[[τ ]]] is the set of all lists [v1, . . . , vn] with n ≥ 0 and vi ∈ [[τ ]] for all 1 ≤ i ≤ n.
The set of all possible port values is the union of all semantics of all port types
and is denoted as V, i.e., V =

⋃
τ∈Θ[[τ ]].

We will use variants of the variables v, w, x and y to range over port values.
The semantics of interface types is based on the notion of tuples over port

values.

Definition 5 (interface value). An inteface value is a partial function t :
P → V that is defined for a finite subset of P. Such a value is denoted as
〈a1 = v1, . . . , an = vn〉.



The semantics of interface types is then roughly defined as the interface values
that match the interface type. However, since we want to allow that workflows
can run without values on all input ports or can can finish without producing
values on all output ports, we allow that some fields of the tuples are undefined.
This leads to the following definition.

Definition 6 (interface type semantics). The semantics of an interface type
ι = 〈a1 : τ1, . . . , an : τn〉, denoted as [[ι]], is defined as the set of all interface
values t = 〈b1 = v1, . . . , bm = vm〉 such that {b1, . . . , bm} ⊆ {a1, . . . , an} and
vi ∈ [[ι(bi)]] for all 1 ≤ i ≤ m .

For the function names f in F which represent external services that can
be called by workflows, we postulate that if f : ι1 ⇒ ι2 then their semantics is
defined by a binary relation [[f ]] ⊆ [[ι1]] × [[ι2]]. Note that these binary relations
are not necessarily total or functional, as might be expected for functions. We
allow them to be partial in order to model that the associated service is only
called if the input values satisfy certain preconditions, apart from belonging to
the input types. We allow them to be non-functional to model the fact that the
result of a call may be non-deterministic from the point of view of the workflow.
Also note that, because of the chosen semantics of interface types, it depends on
the semantics of the function name whether it is allowed to call a service without
all input ports having a value and if it can return a result on only some output
ports.

Finally, we define the traces that represents a particular run of a workflow.

Definition 7 (workflow trace). A workflow trace is a list of events where an
event is either

– a successful function call: f(t1)t2 where (t1, t2) ∈ [[f ]],
– a failed function call: f(t1)⊥ where (t1, t2) ∈ [[f ]] for some t2,
– an input event: ina(v) with a ∈ P and v ∈ V, or
– an output event: outa(v) with a ∈ P and v ∈ V,

and for each port label a there is at most one ina(v) and outa(v) in the list.

We will use variants of the variables α, β and γ to denote traces. In function
calls we will often omit the angular brackets and write f(〈a = 1, b = 3〉)〈a=4,b=5〉

as f(a = 1, b = 3)a=4,b=5.
Given a trace α we define the input value of α as the interface value valin(α) =

{(a, v) | ina(v) ∈ α}. In a similar fashion the output value of α is defined as
the interface value valout(α) = {(a, v) | outa(v) ∈ α}. For example, if α =
[ina(1), inb(3), f(c = 3)a=4, inc(4),outd(5), g(a = 1)〈〉,oute(6)] then valin(α) =
〈a = 1, b = 3, c = 4〉 and valout(α) = 〈d = 5, e = 6〉. The function call content
or body of α is defined as body(α) = [E | E ← α, (∃f, v, w : E = f(v)w ∨ E =
f(v)⊥)], i.e., the sublist of α that contains all successful and failed function calls.
For example, if α is as before then body(α) = [f(c = 3)a=4, g(a = 1)〈〉].

We define for two traces α and β the interleaving set, denoted as (α 9 β),
such that (α 9 β) = {α1 · β1 · . . . · αn · βn | n ≥ 1, α = α1 · . . . · αn, β =



β1 · . . . · βn}. Note that this indeed defines all possible interleavings of the
events in α and β since αi and βj can be the empty trace. For example, the
interleaving set of α = [ina(3),outb(9)] and β = [inc(2),outd(3)]) contains
[inc(2), ina(3),outb(9),outd(3)] since α = [ ] · [ina(3),outb(9)] and β = [inc(2)] ·
[outd(3)]. We generalize the interleaving set for more than two traces, denoted
as (α1 9 . . .9αn), such that β ∈ (α1 9 . . .9αn) iff there is a γ ∈ (α2 9 . . .9αn)
and β ∈ (α1 9 γ). For n = 1 we define (α1 9 . . . 9 αn) as {α1}, and for n = 0 as
{[ ]}, i.e., the singleton set containing the empty trace.

3.2 Semantical inference rules

The semantics are defined by inference rules for deriving propositions of the form
P ⇓ α where P is a workflow expression and α a valid trace of P . A valid trace
gives a possible sequence of events that might occur between the moment the
workflow becomes scheduled and the moment it stops. This not only includes the
successful runs, but also the unsuccessful ones, and the ones where it received a
few input values but not enough to be enabled.

The presented inference rules follow the recursion of the definition of valid
expression and in that sense define the semantics in a structural way, i.e., the
traces of an expression are defined in terms of traces of subexpressions.

Function calls The semantics of a function call is defined by the following three
rules:

(t1, t2) ∈ [[f ]] t1 = 〈a1 = v1, . . . , an = vn〉 t2 = 〈b1 = w1, . . . , bm = wm〉
f ⇓ [ina1(v1), . . . , inan

(vn), f(t1)t2 ,outb1(w1), . . . ,outbm
(wm)]

t1 = 〈a1 = v1, . . . , an = vn〉 t1 ∈ dom([[f ]])

f ⇓ [ina1(v1), . . . , inan
(vn), f(t1)⊥]

t1 = 〈a1 = v1, . . . , an = vn〉 t1 6∈ dom([[f ]])
f ⇓ [ina1(v1), . . . , inan

(vn)]

The first rule defines the run of a successful function call. First the arguments
are read in an arbitrary order, then, if the input events define a tuple in the
domain of the function, the function is called, and finally the resulting interface
value is returned by output events. The second rule defines the run of a failed
function call. It starts like a successful one, but after the function call fails it
stops and does not return any output. The final rule defines the trace for the
case where not enough ports receive an input value to make the function call.
Whether this is the case is determined by the domain of [[f ]].

Note that the actual function call and the production of its result on the
output ports are distinct events and there may therefore be other events that
happen between them. So if two function calls for f and g happen in parallel it
can happen that the function call event of f is first but that g produces results
on its ports earlier.



List wrapping The semantics of the list wrapping workflow is defined by the
following rules:

wrapa�b ⇓ [ina(v),outb([v])] wrapa�b ⇓ [ ]

The first rule defines a successful run where the input value from port a is
consumed, wrapped in a list and produced on output port b. Note that contrary
to function calls there is no function call event in the trace and only input and
output behavior is shown. The second rule defines the empty trace as a possible
trace, to cover the case where no input value is present on the input port a.

List concatenation The semantics of the list concatenation workflow is defined
by the following rules:

w = v1 · v2 γ ∈ ([ina(v1)] 9 [inb(v2)])
conca;b�c ⇓ γ · [outc(w)]

d ∈ {a, b}
conca;b�c ⇓ [ind(v)]

conca;b�c ⇓ [ ]

The first rule derives successful runs where first both input ports a and b
are read in arbitrary order and then the result of the concatenation is produced
on c. The second rule defines the traces for the case where only one input port
contains a value, and here no output is produced. Finally, the last rule defines
the trace for the case where no input port contains a value.

List flattening The semantics of the list flattening workflow is defined by the
following rules:

w = [v1, . . . , vn] w′ = v1 · . . . · vn
flata�b ⇓ [ina(w),outb(w′)] flata�b ⇓ [ ]

The first rule defines the trace where a list of lists is read from the input port
a and the flattened result is produced on output port b. The second rule again
defines the trace for when no input is supplied.

Composition For the composition operation the semantics is defined by

P ⇓ α Q ⇓ β
{b1, . . . , bm} = dom(valout(α)) ∩ I = dom(valin(β)) ∩ I

α = α1 · [outb1(v1)] · . . . · αm · [outbm
(vm)] · αm+1

β = β1 · [inb1(v1)] · . . . · βm · [inbm(vm)] · βm+1 {γi ∈ (αi 9 βi)}i=1..m+1

(P .I Q) ⇓ γ1 · . . . · γm+1



Recall that the intended meaning of P .I Q with I = {a1, . . . , an} is that for
each port name ai ∈ I the output port of P with that name is connected with
the input port of Q with that name. We explain the rule with an example where
P : 〈a : s〉 ⇒ 〈a : s, b : s, c : s, d : s〉 and Q : 〈b : s, c : s, d : s, e : s〉 ⇒ 〈d : s〉. We
consider now the expression P .b,c,d Q.

The first line of the rule says that α and β must be traces of P and Q,
respectively. Let us assume that
α = [ina(3), f(t1)t2 ,outb(2), inb(8), g(t3)t4 ,outc(4), h(t5)t6 ,outa(3), f(t7)t8 ]
β = [ine(4), g(t4)t3 , inb(2), inc(4), g(t6)t1 ,outd(7)].

The second line of the rule says that the subset of I for which there are output
events in α is the same as the subset of I for which there are input events in
β. In this case this set is in both cases {b, c} and the concerning events, which
we will call here the synchronization events, are underlined in the traces. The
third line and the beginning of the fourth line require that these events appear
in both traces in the same order, in this case first b then c, and with the same
port value, in this case 2 for port b and 4 for port c. Moreover, the traces are
split into parts according to these events:
α1 = [ina(3), f(t1)t2 ], α2 = [inb(8), g(t3)t4 ], α3 = [h(t5)t6 ,outa(3), f(t7)t8 ]

β1 = [ine(4), g(t4)t3 ], β2 = [ ], β3 = [g(t6)t1 ,outd(7)].
Finally the corresponding parts are interleaved and concatenated, i.e., we

construct the traces in the language (α1 9 β1) · . . . · (α3 9 β3). This can also be
described as interleaving α and β while synchronizing on the synchronization
events and removing them. For example, in the given example a possible trace
for P .b,c,d Q is γ1 · γ2 · γ3 where γ1 = [ina(3), ine(4), f(t1)t2 , g(t4)t3 ], γ2 =
[inb(8), g(t3)t4 ] and γ3 = [g(t6)t1 , h(t5)t6 ,outa(3),outd(7), f(t7)t8 ].

Note that in the previous result trace the events of α and β occur in each
interleaved part. It is not the case that in P .I Q first P executes, and when
it is finished, then Q starts executing. Rather, P and Q execute in parallel but
the parts of Q that need input on the ports in I will wait until this input is
produced by P . In the extreme case where I = ∅ the workflows run completely
in parallel. Only if I contains all the output ports of P and input ports of Q and
Q cannot start any activity until it has received an input on all its ports, then the
composition is truly sequential. So the composition operation is a generalization
of both the sequential composition and the parallel composition as is usually
found in process algebra[12].

Linking The semantics of the linking workflow is defined by:

{c1, . . . , cn} = I

lna�I ⇓ [ina(v),outc1(v), . . . ,outcn
(v)] lna�I ⇓ [ ]

The first rule states that there is a valid trace in which the input port a is read
and the result is written to the output ports in I in arbitrary order. The second
rule deals with the case where no input value is supplied.



Select-first The semantics of the select-first workflow is defined by:

{a1, . . . , am} ⊆ I m > 0
firstI�b ⇓ [ina1(v1),outb(v1), ina2(v2), . . . , inam

(vm)] firstI�b ⇓ [ ]

The first rule describes a run where at least one of the input ports has an input
value. As soon as the first input value is read, it is copied to the output port,
and then the other input values are read. Note that not all input ports need
to have an input value for this. The second rule again describes the case where
there are no input values at all.

Nesting The semantics of the nesting constructor is defined by:

P ⇓ α I = {a1, . . . , an} J = {b1, . . . , bm}
γ1 = [ina1(v1), . . . , inan

(vn)] valin(γ1) = valin(α)
γ2 = [outb1(w1), . . . ,outbm(wm)] valout(γ2) = valout(α)

nestJI (P ) ⇓ γ1 · body(α) · γ2

P ⇓ α I = {a1, . . . , an} γ1 = [ina1(v1), . . . , inan
(vn)]

valin(γ1) = valin(α) dom(valout(α)) ( J

nestJI (P ) ⇓ γ1 · body(α)

P ⇓ α
γ1 = [inc1(v1), . . . , incn(vn)] valin(γ1) = valin(α) {c1, . . . , cn} ( I

nestJI (P ) ⇓ γ1

The first rule describes the case where on all input ports input values are
available and on all output ports a value is produced. It does this by taking a
trace α of P for which this holds. It then takes all input and output events out
of the trace, and places them in arbitrary order respectively at the beginning
and at the end of the trace. The resulting trace is then a valid trace of the total
workflow. The second rule describes the case where there are sufficient input
values, but P does not produce a value on all its output ports. In that case the
resulting trace produces no output events at all. The final rules describes the
case where not all input ports have a value available. In that case the input
values are consumed, but P is not executed.

The nesting operation can also express synchronization. For I = {a1, . . . , an}
with n > 0 we define the workflow syncI = nestII(lna1�a1.∅. . ..∅lnan�an

) which
waits until all input ports have an input value, and then copies these values to
the synonymous output ports. The semantics of nesting is not exactly the same
as synchronizing the input and output, i.e, for P of type ι⇒ κ with dom(ι) = I
and dom(κ) = J it is not always true that nestJI (P ) ≡ syncI .I P .J syncJ . For
example if P : 〈a : s〉 ⇒ 〈b : s〉 has a valid trace α = [ina(1),outb(2), f(a = 2)c=3]
then this is not a valid trace of nestba(P ) but it is a valid trace of synca .a P .b
syncb.



Iteration The semantics of the iteration constructor is defined by:

I = {a1, . . . , an} γ1 ∈ ([ina1(v1), . . . , inan(vn)] 9 [inc1(w1), . . . , incp(wp)])
{vj = [vj,1, . . . , vj,rj ]}j=1..n q = min(r1, . . . , rn) > 0 {P ⇓ αi}i=1..q

{〈a1 = v1,i, . . . , an = vn,i, c1 = w1, . . . , cp = wp)〉 = valin(αi)}i=1..q

γ2 ∈ (body(α1) 9 . . . 9 body(αq)) {d1, . . . , ds} = ∩i=1..qdom(valout(αi))
{〈d1 = x1,i, . . . , ds = xs,i〉 ⊆ valout(αi)}i=1..q

{xk = [xk,1, . . . , xk,m]}k=1..s γ3 = [outd1(x1), . . . ,outds
(xs)]

�JI (P ) ⇓ γ1 · γ2 · γ3

I = {a1, . . . , an} J = {b1, . . . , bm}
γ1 ∈ ([ina1(v1), . . . , inan

(vn)] 9 [inc1(w1), . . . , incp
(wp)])

min(|v1|, . . . , |vn|) = 0 γ3 = [outb1([ ]), . . . ,outbm
([ ])]

�JI (P ) ⇓ γ1 · γ3

I 6⊆ {c1, . . . , cp}
�JI (P ) ⇓ [inc1(w1), . . . , incp

(wp)]

The three rules deals with the cases of an iteration with at least one iteration
step, an iteration with zero iteration steps, and a failed iteration where not all
lists over which we want to iterate are available. We explain each of the rules in
more detail below.

In the first rule the condition for γ1 established that the trace begins with
reading a value from each iteration port in I plus perhaps some extra ports. The
condition {vj = [vj,1, . . . , vj,rj

]}j=1..n then ensures that all values on the iteration
ports are lists and that the length of the list on port aj is rj . Note that vj,i
denotes the ith element of the list on port aj . Then in q = min(r1, . . . , rn) > 0
the minimum length of these lists is determined and required to be non-zero.
This will be the number of iteration steps in this run. Since we simultaneously
iterate over these lists, we can indeed iterate only as often as the length of the
shortest list. The condition {P ⇓ αi}i=1..q defines the separate traces for each
iteration step. The condition {〈a1 = v1,i, . . . , an = vn,i, c1 = w1, . . . , cp = wp)〉 =
valin(αi)}i=1..q ensures that each of these traces has the right interface input
value, i.e., the value on each port aj is the ith element of the list read on this
port in the global trace, and each port cj contains the same value as read on this
port in the global trace. The condition γ2 ∈ (body(α1)9 . . .9body(αq)) states
that the body of the global trace is equal to an interleaving of the bodies of
the traces of each iteration step, i.e., all iteration steps are executed in parallel.
Then {d1, . . . , ds} = ∩i=1..qdom(valout(αi)) determines the set of output ports
for which each iteration step has produced an output, and {〈d1 = x1,i, . . . , ds =
xs,i〉 ⊆ valout(αi)}i=1..q computes for each iteration step the output interface
value restricted to these ports. This is done because we will only generate an
output value for the ports for which each iteration step returned a value. Note
that xj,i denotes the output of port dj after the ith iteration step. Then in
{xk = [xk,1, . . . , xk,m]}k=1..s the output value xk for port dk is determined by



enumerating the results of each iteration step on port dk. Finally, the condition
for γ3 translates the output value to a trace with output events.

The second rule for �JI (P ) begins with a similar condition for γ1 as the
first rule, but the condition min(|v1|, . . . , |vn|) = 0 establishes that there are no
elements to iterate over, and so the global trace immediately finishes with output
events that produce an empty list on all output ports.

The third rule defines the traces that describe the case where not all itera-
tion ports in I have a value, so there can be no iteration and the trace stops
immediately after reading the input ports.

The semantics of the iteration constructor is similar to the nesting construc-
tor in several ways: it also synchronizes the input events and the output events,
and it does not produce an output until the nested workflows are completely
finished. It is however different in that it does not necessarily require for a suc-
cessful run that all input ports are supplied with a value, except for the ports
in I, and it may produce an output on only some of the output ports.

4 Representing Taverna workflows in the calculus

In the section we discuss informally how to describe the semantics of Taverna
by mapping Scufl graphs to calculus expressions.

4.1 Scufl graphs

We briefly sketch here the core features of Scufl. Workflows are expressed in this
language by an annotated Scufl graph such as is shown in Figure 5.
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Fig. 5. A Scufl workflow graph with conditional branching and nesting

A Scufl graph contains zero or more workflow inputs and workflow outputs
that indicate the input ports and output ports of the workflow. In the Scufl
graph in Figure 5 there is a workflow input condition and a workflow output
result. The components of a Scufl graph are basic processors such as Fail if true
and foo, and nested processors such as Add end whose behavior is specified by a
nested Scufl graph. A processor can have zero or more input and output ports.



For example, Fail if true has an input port test and no output ports, and Conca-
tentate two string has two input ports, string1 and string2, and one output port
output. The ports of a nested processor are defined by the workflow inputs and
outputs of the associated Scufl graph, so Add en has input port string1 and out-
put port output. Each processor waits until all its input ports have received a
value, then executes and either returns a value on all its output ports or fails.
This also holds for nested processors, and so, if the nested workflow does not pro-
duce a value on all its workflow outputs, the nested processor fails and produces
no output values at all.

Basic processors can represent calls to external web services or local functions
and their input and output interface type is specified. In this case the basic
processors Fail if true and Fail if false either fail or succeed depending on the
value read on port test. The basic processors foo, bar and end always succeed
and produce their name as a string on their output ports. The basic processor
Concatenate two strings concatenates the strings it receives on its input ports.

The links in Scufl graphs are either data links, which connect workflow inputs
and processor output ports with workflow outputs and processor input ports, or
control links, which connect a processor with another processor. The data links
are indicated by arrows with a solid head, and their meaning is that the value
produced on its source port is copied to its destination port. The control links
are indicated by a gray edge ending with a circle, and their meaning is that
the processor at the end of the control link cannot start execution unless the
processor at the beginning of the link has finished execution without failure.
These edges, when all seen as edges from processors to processors, must define
an acyclic graph, and all input ports and workflow outputs must have at least
one incoming data link. In Taverna it is possible to specify a default value for
an input port, in which case no incoming data link is required, but since default
values can be straightforwardly simulated in the presented fragment we will not
consider them here.

In the example in Figure 5 it is clear that although port string1 of Add end
as two incoming data links, only one value will be copied to it. In order to
deal with the case where there are multiple incoming data links and therefore
multiple values are copied to the same input port or workflow output an incoming
links strategy must be specified for each input port and workflow output, which
is either the select-first strategy, which says that the first value that arrives is
kept and the rest ignored, or the merge strategy, which waits until through each
incoming data link a value has arrived, and collects these as elements into a single
list. Although this is not possible in Taverna, we will assume that the merge
strategy also indicates the order over the incoming data links that determines
the order of the values in the resulting list. In Taverna the order is determined by
the order in which the values arrive. Although it is not hard to define a special
merge operator with this semantics, our version seems equally valid and can be
described with the given operators. Note that if the merge strategy is specified
for the string1 port of Add end then this processor would never execute.



If a received value is more deeply nested then the expected type, then it
will solve this by applying the so-called implicit iteration strategy. This means
that if a processor expects values of a certain type τ on an input port a but
is offered a value of type [τ ], then it deals with these values by iterating over
each element. More precisely, if its normal behavior is described by the calculus
expression P then it will behave in that case as workflow �a(P ). If the processor
has two or more ports then it can be indicated with an iteration strategy how
these lists will be combined for the iteration. The strategy is specified by an
expression such as (a ⊗ b) � c, which is a combination of the input ports of
the processor, each appearing exactly once, and two binary operators, the dot
product � which indicates simultaneous iteration, and the cross product ⊗ which
indicates iteration over all possible combinations.

4.2 Mapping Scufl graphs

As was indicated in the discussion of iteration strategies, the semantics of a
Scufl graph and therefore the calculus expression to which it is mapped depends
on the type of the offered input values. In Scufl, ports of different port types
can be connected by data links, and this is solved by adapting the semantics
of the receiving processor. Very loosely speaking this adaption can be described
by saying that if the received value is nested too deeply then the processor will
iterate according to the iteration strategy and if the value is nested not enough
then it is wrapped in a singleton list.

A crucial notion for the mapping is that of the expected input type of the ports
of a processor. For a basic processor these are the port types in the specified input
interface type. For a nested processor this is determined by determining for each
workflow input the maximum of the expected types of the input ports to which
it is connected in the nested workflow. So, if a workflow input a is connected in
the nested workflow to port b with expected type [s] and c with expected type
s, then the expected type of a is [s].

For the mapping of the merge strategy we define a macro collecta1;...;an�b
with induction on n such that collecta�b = wrapa�b and collecta1;a2;...;an�b =
wrapa1�a1

.∅ collecta2;...;an�a2 .a1,a2 conca1;a2�b. Now consider the Scufl graph
in Figure 6 and assume that the incoming links strategy for workflow output b is
the merge strategy that places the output of R before that of S. If no iteration or
coercion is necessary then this can be mapped to lna�c,e .c P .e Q .d lnd�h,k .g
lng�l .f lnf�i .h,i R .k,l S .j,m collectj;m�b where S is mapped to nestmk,l(T ).

There can be two reasons to insert operations to coerce values to a greater,
i.e., more deeply nested, type. The first is that a processor receives a value that
is nested less deeply then the expected type. For example, P.d has type s but R.h
expects [s], then R is mapped not to R but to wraph�h .hR. The second reason
is that the operator for the incoming links strategy does not receive values of
the same type. In that case wrapping operations are inserted to coerce all the
incoming values to the same type. For example, if R.j has type s and T.m has
type [s] then the incoming link strategy is not mapped to collectj;m�b but to
wrapj�j.jcollectj;m�b. In the current implementation of Taverna, this coercion
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is not done, which in the case of the merge strategy can lead to heterogeneous
lists such as [1, [2]], which strictly speaking are not legal port values. For the
select-first strategy there is no such risk, but in a strictly typed calculus as ours
it is necessary.

For the translation of an iteration strategy s we define the macro iss(P )
such that isa(P ) = �a(P ), iss1�s2 = iss1(idΣ(s1)) .∅ iss2(idΣ(s2)) .Σ(s1�s2)
�Σ(s1�s2)(P ) and iss1⊗s2 = iss1(iss2(P )) where Σ(is) is the set of port names
used in is and ida1,...,an = lna1�a1 .∅ . . . .∅ lnan�an . Then, if processor R with
iteration strategy h ⊗ i expects on both h and i values of type s but receives
values of type [s], it is mapped to nesth,i(ish⊗i(P )) = nesth,i(�h(�i(P ))).
Unfortunately the mapping is more difficult and probably not possible for some
other combinations of expected and received types. For example, if the product
strategy of R is h�i and the received values on h and i are [[1, 2], [3]] and [4, 5, 6, 7]
then in Taverna the processor iterates over the combinations (1, 4), (2, 5) and
(3, 6), and if these result in the values 8, 9 and 10, then the final result is nested
like the deepest input list, i.e., [[8, 9], 10]. This does not seem expressible in the
current basic calculus and requires the addition of extra operators.

Finally we briefly discuss the mapping of control links. Their semantics de-
pends on the notions of failed and successful execution. In Taverna a failed exe-
cution of a processor is in general defined as an execution which, after finishing,
has not produced values on all output pots. The only exception is made for basic
processors without output ports, such as Fail if true and Fail if false, which could
otherwise not fail. For simplicity we will assume that such basic processors are
simulated by a processor with a dummy output port, and so all basic processor
will have at least one output port. Then, we can describe the semantics of the
control links as a transformation of the Scufl graph as follows. Assume there is
a control link from P to Q. Then P is nested in a nested processor P’ with an
extra freshly named output port a on which an additional basic processor with
no input ports and one output port produces a dummy value. Moreover, Q is
nested in a nested processor Q’ with an extra freshly named input port b which
is not connected to anything inside Q’. Finally a data link is added from port a



of P’ to port b of Q’. Note that the calculus currently has no operator to describe
the semantics of a processor that produces a dummy value, but it is not hard to
see how it could be added.

5 Conclusion

In this paper we have presented a calculus that can be used to describe the
semantics of collection-oriented scientific workflows such as can be defined in
systems like Taverna. The syntax and the semantics have been formally defined,
with the semantics being defined in a structural way and in terms of traces that
contain input and output events and function calls. The usability of the calcu-
lus is shown by discussing informally how the semantics of the Scufl workflow
language can in principle be described in terms of the calculus.
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