
Mining Views: Database Views for Data Mining

Hendrik Blockeel1, Toon Calders2, Elisa Fromont1,
Bart Goethals3, and Adriana Prado3

1 Katholieke Universiteit Leuven, Belgium
2 Technische Universiteit Eindhoven, The Netherlands

3 Universiteit Antwerpen, Belgium

Abstract. We propose a relational database model towards the inte-
gration of data mining into relational database systems, based on the so
called virtual mining views. We show that several types of patterns and
models over the data, such as itemsets, association rules, decision trees
and clusterings, can be represented and queried using a unifying frame-
work. We describe an algorithm to push constraints from SQL queries
into the specific mining algorithms. Several examples of possible queries
on these mining views, using the standard SQL query language, show
the usefulness and elegance of this approach.

1 Introduction

Data mining is an iterative and interactive process. During the whole discovery
process, typically, many different data mining tasks are performed, their results
are combined, and possibly used as input for other data mining tasks. To support
this knowledge discovery process, there is a need for integrating data mining with
data storage and management. The concept of inductive databases (IDB) has
been proposed as a means of achieving such integration [6].

In an IDB, one can not only query the data stored in the database, but also
the patterns that are implicitly present in these data. The main advantages of
integrating data mining into database systems are threefold: first of all, the data
is mined where the data is: in the database. Hence, the need for transforming
data into an appropriate format is completely removed. Second, in database
systems, there is a clear separation between the logical and the physical level.
This separation shields the user from the physical details, making the technol-
ogy much more accessible for a non-specialist. Ideally, the user of an inductive
database should not be involved with selecting the right algorithm and param-
eter setting, storage format of the patterns, etc., but should instead be able to
specify, in a declarative way, the patterns in which he or she is interested. The
third advantage of an inductive database is the flexibility of ad-hoc querying.
In an inductive database, the user is not limited by the functionality offered by
a limited set of tools. Instead, he or she can specify new types of patterns and
constraints. Notice that data mining suites such as, e.g., Weka [19] and Yale [11]
only share the first advantage of inductive databases by imposing one uniform
data format for a group of algorithms.



In this paper, we focus our attention on determining how such an inductive
database can be designed in practice. The solution proposed in this paper builds
upon our preliminary work in [2, 3]. In contrast to the numerous proposals for
data mining query languages [4, 7, 8, 10, 15, 17, 18], we propose to integrate data
mining into database systems without extending the query language. Instead,
we extend the database schema with new tables that contain, for instance, as-
sociation rules, decision trees, or other descriptive or predictive models.

One might argue against this approach that tables containing all possible
patterns and models over the data would in most cases be huge. These tables,
however, are in fact implemented as views, called virtual mining views. Whenever
a query is formulated that selects for instance association rules from these tables,
this triggers a run of a data mining algorithm (e.g., Apriori [1]) that computes
the result of the query, in exactly the same way that normal views in databases
are only computed at query time, and only to the extent necessary for answering
the query.

This querying approach naturally integrates constraint-based mining. Within
the query, one can impose conditions on the kind of patterns that one wants to
find. In many cases, these constraints can be pushed into the mining process.

The paper is organized as follows. Section 2 focuses on the related work.
We introduce our new framework and the mining views it uses in Section 3. In
Section 4 we illustrate how standard SQL queries on these views allow us to
search for models fulfilling certain constraints or to apply a given model to a
new dataset. In Section 5, we extend the constraint extraction algorithm from
[2] for decision trees and clusterings. We conclude in Section 6.

2 Related Work

There already exist multiple proposals for extending a query language with some
data mining primitives. The most well-known examples are the SQL-like oper-
ator MINE RULE of Meo et al. [10] for mining association rules, and the data
mining query language DMQL by Han et al. [4]. In both studies, however, the
language constructions only allow to specify the desired output, but this output
is not integrated again into the database. Our proposal goes beyond this, by also
allowing the results to be used as input for further data mining queries, as they
are treated as regular database tables.

In Microsoft’s Data Mining extensions (DMX) of SQL server [15], a classifi-
cation model can be created. This model can be trained and used afterwards to
give predictions, via the so-called prediction joins. However, this framework does
not provide any operations other than browsing and prediction for manipulating
the model, and there is no notion of composing mining operations in their frame-
work. Although the philosophy behind the predictor join is somewhat related to
our proposal, the work presented in this paper goes much further.

Siebes [14] argues in favour of making patterns and models first-class citizens,
and suggests to extend for instance the relational algebra with operations on
models. In our framework, predictive models are already first-class citizens in the



relational algebra itself, as they are simply relations. As such, the operation of
applying a predictive model M to an instance x simply corresponds to a selection
and projection from M : πY (σX=x(M)); the composition of two predictive models
is their join, etc.

The closest to the work presented in this paper are LDL++ [17] and AT-
LaS [9, 18, 20]. LDL++ and ATLaS are extensions of respectively LDL and SQL
that add the ability of defining new user defined aggregates (UDAs), making
them suitable for data mining. Especially ATLaS is very interesting with re-
spect to our proposal, as it is also based on the principles of relational databases
and query languages. In ATLaS, however, the query language is much more pow-
erful (even Turing complete). In fact, ATLaS is rather a programming language
based on SQL, enabling data mining operations, on top of relational databases.
Hence, in ATLaS, the results of mining have to be encoded into the relational
model, and subsequent queries of found patterns have to deal with decoding
and encoding the found patterns. Also, the ATLaS query language is much less
declarative, making it less attractive for query optimization.

As already pointed out in the introduction, the work presented here builds
upon our own preliminary work on the integration of association rule mining
and decision tree learning into database systems [2, 3]. This paper significantly
improves upon these works in the following way. The representations of associa-
tion rules and decision trees, as proposed in our earlier work, are fairly complex.
In this work, we propose a new unifying representation that is more elegant and
simpler than the originally proposed representations. It focuses more on the se-
mantics of learned models rather than their structure, and as such allows us to
handle conceptual models such as association rules, decision trees and cluster-
ings in a general way. For instance, applying a model to classify a new example
now amounts to a simple join operation, while involving much more complex
queries using the previous representation. Furthermore, the constraint extrac-
tion algorithm of [2] is extended to support queries about predictive models as
well.

3 Framework Representation

Given a table T (A1, . . . , An), let Dom(T ) = Dom(A1)× . . .×Dom(An) denote
the domain of T . We create a Concept Table ConceptsT (Cid , A1, . . . , An), such
that for every tuple t in T , there exist 2n unique tuples {t′1, . . . , t′2n} in ConceptsT

such that t′i.Aj = t.Aj or t′i.Aj = ′?′ for all i ∈ [1, 2n] and j ∈ [1, n]. We denote
the special value ′?′ as the wildcard value and assume it doesn’t exist in the
domain of any attribute. As each of the concepts can actually cover more than
one tuple in T , a unique identifier Cid is associated to each concept.

A tuple, or concept, (cid , a1, . . . , an) ∈ ConceptsT represents all tuples from
Dom(T ) satisfying the condition

∧
i|ai 6=′?′ Ai = ai.

Figure 1 shows a data table for the classic PlayTennis example [12], together
with a sample of its corresponding Concepts table.



PlayTennis
Day Outlook Temp Humidity Wind Play

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
. . . . . . . . . . . . . . . . . .

ConceptsPlayTennis

Cid Day Outlook Temp Humidity Wind Play

1 ? Sunny ? High ? No
2 ? Sunny ? Normal ? Yes
3 ? Overcast ? ? ? Yes
4 ? Rain ? ? Strong No
5 ? Rain ? ? Weak Yes
6 ? ? ? ? ? ?

. . . . . . . . . . . . . . . . . . . . .

Fig. 1. The PlayTennis data table and its corresponding Concepts table.

3.1 Representing models as sets of concepts

Given a data table T , and its corresponding Concepts table ConceptsT , we now
explain how a variety of models can be represented using so called virtual mining
views [2]. Although all mining views are defined over T , we omit the subscript
T when it is clear from the context.

Itemsets and association rules Obviously, as itemsets in a relational database
are conjunctions of attribute-value pairs, they can be represented as concepts.
The result of frequent itemset mining can therefore be represented by a view
Sets(cid , supp). For each itemset, there is a tuple with cid the identifier of the
itemset (concept) and supp its support. Also other attributes, such as χ2 or any
correlation measure, could be added to the view to describe the itemsets. Sim-
ilarly, association rules can be represented by a view Rules(rid , cida, cidc, cid ,
conf ), where rid is the rule identifier, cida and cidc are the identifiers for the
concepts representing the antecedent and the consequent of the rule respectively,
cid is the union (disjunction) of these, and conf is the confidence of the rule.
Again, many other attributes, such as lift, conviction, or gini index, could be
added to describe the rules.

Predictive models In association rule discovery, results typically describe the
dataset itself, but in inductive learning, one is interested in building from the
training set a model of a broader population, from which the training set is a
representative sample. Therefore, it is useful to distinguish T , the table from
which we learn (the training set), Dom(T ), the domain of that table (the set
of all conceivable instances), and P , the actual population from which T is a
random sample. P may be a strict subset of Dom(T ): not every conceivable
tuple may exist in the real world. For instance, if T (Gender ,Age,Pregnant?) is
the set of all patients currently in some hospital, which is a subset of the set
P of all possible patients, then P ⊂ Dom(T ): a tuple with Gender=male and
Pregnant?=true would be in Dom(T ) but not in P .

From this point of view, we can describe inductive learning (whether it is
descriptive or predictive) as deriving P from T . Generally, P can be described
as a probability distribution over Dom(T ), but here we will focus on the simpler
case where P is a subset of Dom(T ). P can then be represented in tabular form,
using exactly the same schema as T , since both are subsets of Dom(T ).



Trees

treeId cid

M1 1

M1 2

M1 3

M1 4

M1 5

Outlook

sunnys
ssss

sss
ss overcast rain

HHH
HH

HHH
HH

Humidity

high
��

�

��
��

normal
99

99

99
99

?>=<89:;Yes Windy

strong










 weak

55
5

55
55

?>=<89:;No ?>=<89:;Yes ?>=<89:;No ?>=<89:;Yes

Fig. 2. Decision Tree built to predict the attribute Play.

In practice, machine learning systems would obviously learn P not in tabular
format but, e.g., in the form of a decision tree. Such a tree represents a function
from some attributes of T to a target attribute; this function is a relation, it is
this relation that we call P .

Note that the term “model” may be used for both the representation of a
model and its semantics (the relation it represents). In this text, we will use both
meanings; it will usually be clear from the context what is meant.

We will now use concepts from the Concepts table to describe the seman-
tics, and where possible also part of the structure, of the models learned. For
instance, we represent all decision trees that can be learned from T , by the view
Trees(treeId , cid). A unique identifier treeId is associated to each tree and each
of the trees is described using a set of concepts (each concept describing one
leaf). Figure 2 shows a decision tree built to predict the attribute Play using
all other attributes in the data table, and its representation in the mining view
Trees, using the Concepts table from Figure 1. If the user wants to build a tree
from a subset of the attributes of the data table, he or she should first create a
view on the data table that contains exactly the attributes he or she is interested
in; a Concepts table related to this view can then be used to describe the trees.

Additionally, a view representing several characteristics of a tree learned for
one specific target attribute Ai is added: Trees Charac Ai (treeId , accuracy , size,
cost , . . .). For every tree, there is a tuple with a tree identifier treeId and its
corresponding characteristics.

Clustering In unsupervised learning (clustering), we can see T (A1, . . . , An) as a
projection of a relation T ′(A1, . . . , An, C) onto A1 . . . An (the target attribute,
indicating the class or cluster of each instance, is unobserved). P then has one
more attribute than T , and can be seen as a predictive model over Dom(T ′).

In extensional clustering, where the clusters are assumed to contain just the
elements from the training set, P can be considered to have as many tuples
as T . In intentional clustering, P would generalize over T in a similar way than
predictive models do; i.e., it also assigns previously unseen instances to a cluster.

All possible clusterings that can be learned from T are represented in the
view Clusterings(clusId , clId) and all clusters belonging to all clusterings are
represented in the view Clusters(clId , cid). A unique identifier clusId is asso-



ciated to each clustering and each of the clusterings is described by a set of
clusters. A unique identifier clId is associated to each cluster and each of the
clusters is described by a set of concepts.

Again, a view representing the characteristics of all clusterings is added:
Clusterings Charac(clusId , size, . . .), with size the number of clusters. Of course
other attributes could be added to this view.

Note that since the Concepts table has a finite number of elements (depending
on the data table), the number of partitions (for clustering) as well as the number
of trees that can be described using these concepts is also finite.

3.2 Discussion

The framework proposed in this paper is conceptually very different from the
ones given in [2, 3] since it focuses on the representation of the semantics of
the models (the function they represent) rather than on its structure (although,
through the use of wild cards, limited information about the model structure is
still available). Advantages of this approach are that it offers a unifying frame-
work for all models, and that certain operations, such as using the model for
prediction, become easier. On the contrary, queries about the structure, such as
asking which attribute is at the root of a learned tree, become cumbersome. But,
we believe that having a representation that is both suited for representing the
complete structure and the semantics of the models is unrealistic. Descriptive or
predictive models can be represented in many different formats (for example the
ones proposed in [2, 3]), and for all these formats, views describing the model
structure should be designed separately from the framework proposed here, and
according to the needs and the preferences of the user.

The views representing the characteristics of a model provide information
that may or may not be derivable from the tables that represent the models
themselves. For instance, one could extend them with a full description of a
decision tree (not just its set of leaves, as described by the Trees table). Including
redundant information in the characteristics tables may simplify the formulation
of constraints as queries.

In our current implementation, the identifiers in the mining views are “system-
generated” values that have no meaning in the real world. Only equality of these
identifiers within a query is well-defined; the same concept in different queries
may have different identifiers, and vice versa. To avoid this, a kind of canoni-
cal encoding for (sets of) concepts would be needed, which is easy if the set of
all concepts is known in advance but not when it depends dynamically on the
extension of the relation, as is the case with our definition.

4 Model Querying

In this section, we give some concrete examples of common data mining tasks
that can be expressed with SQL queries over the mining views. Compared to [2,
3], the new constructs introduced in this paper simplify the expression of queries



for prediction and allow for a more declarative description of constraints on the
desired models.

4.1 Prediction

In [3], to support decision trees in a relational database, the structure of decision
trees was coded in a relational table. To predict the class of a new example, a
query has to be written that explicitly expresses, almost in a procedural way, how
the tree stored in the relation needs to be used. In our framework, a predictive
model is stored as a set of concepts, capturing instead the semantics of the model.
In order to classify a new example using one or more of the learned classifiers,
one simply looks up the concept that covers the new example. More generally, if
we have a test set S, all predictions of the examples in S are obtained by equi-
joining S with the semantic representation of the classifier. As the concepts table
is just a compact representation of this semantic view, we join S to Concepts
using a variant of the equi-join that requires that either the values are equal, or
there is a wild card.

Consider the classic PlayTennis example. The following query predicts the
attribute Play for all unclassified examples in table Test Set, considering all
possible decision trees of size ≤ 5 in table Trees.

Test Set
Day Outlook Temp Humidity Wind

D7 Sunny Hot High Weak
D8 Rain Hot High Strong
D9 Overcast Hot High Weak
D10 Overcast Mild High Weak
D11 Overcast Cool Normal Weak
D12 Sunny Cool High Strong

select T.treeId, S.*, C.Play
from Test_Set S,

Trees T,
Concepts C,
Trees_Charac_Play D

where T.cid = C.cid
and (S.Outlook = C.Outlook or C.Outlook =’?’)
and (S.Temp = C.Temp or C.Temp = ’?’)
and (S.Humidity = C.Humidity or C.Humidity=’?’)
and (S.Wind = C.Wind or C.Wind=’?’)
and T.treeId = D.treeId
and D.size <= 5

4.2 Constraints

In this section, we discuss how typical constraints on association rules, decision
trees or clusterings can be formulated as part of an SQL query. In our frame-
work, these constraints can be expressed elegantly and more declaratively than
in previous proposals.

For association rules, we consider constraints such as minimal and maximal
support, minimal and maximal confidence, plus the constraints that a certain
item must be in the antecedent, in the consequent, and boolean combinations of
these. For decision trees, we consider the constraints size and accuracy. In addi-
tion to these, we also consider constraints posed on the concepts that describe
the trees. For clusterings, we consider their size (number of clusters) and the
popular constraints must-link (two instances must be in the same cluster) and
cannot-link (two instances must not be in the same cluster) [16]. Next to these
well-known constraints, in our approach, the user has also the ability to come
up with new, ad-hoc constraints. In contrast, other proposals in the literature



(A)
select R.rid,

C1.*, C2.*,
R.conf

from Sets S,
Rules R,
Concepts C1,
Concepts C2

where R.cid = S.cid
and C1.cid = R.cida
and C2.cid = R.cidc
and S.supp >= 30
and R.conf >= 80

(B)
select T.*
from Trees_charac_Play T
where T.accuracy =
(select max(accuracy)
from Trees_Charac_Play T1
and T1.size <= 5)

and T.size <= 5

(C)
select T1.treeId,

C1.*, C2.*
from Trees T1,

Trees T2,
Concepts C1,
Concepts C2,
Trees_Charac_Play D

where T1.treeId = T2.treeId
and T1.cid = C1.cid
and C1.Outlook= ’Sunny’
and T2.cid = C2.cid
and C2.Wind = ’Weak’
and T1.treeId = D.treeId
and D.size <= 5
and D.accuracy >= 0.8

(D)
select T.treeId, C.*
from Trees T,

Concepts C
where T.cid = C.cid

and not exists
(select *
from Concepts C1
where C1.cid = C.cid

and C1.Temp = ’?’)

(E)
select C.clusId
from Clustering C

Clusters Cl1,
Clusters Cl2,
I_Concepts I1,
I_Concepts I2

where I1.Day = ’D1’
and I2.Day = ’D2’
and C.clId = Cl1.clId
and Cl1.clId= Cl2.clId
and Cl1.cid = I1.cid
and Cl2.cid = I2.cid

(F)
select C1.clusId
from Clustering C1,

Clustering C2,
Clusters Cl1
Clusters Cl2,
I_Concepts I1
I_Concepts I2,

where I1.Day = ’D1’
and I2.Day = ’D2’
and Cl1.cid = I1.cid
and Cl2.cid = I2.cid
and C1.clusId=C2.clusId
and C1.clId = Cl1.clId
and C2.clId = Cl2.clId
and Cl1.clId <> Cl2.clId

Fig. 3. Example mining queries.

that extend the query language, in general do not allow this flexibility; only
those constraints the language designer explicitly added to the language can be
expressed.

Consider, again, the table PlayTennis. Figure 3 illustrates several mining
queries that can be posed in our inductive database. Some constraints can be di-
rectly imposed using the tables Sets, Rules, Trees Charac or Clusterings Charac
as shown in queries (A), (B) and (C). Query (A) asks for association rules having
support of at least 30 and confidence of at least 80%. Query (B) selects decision
trees having the attribute Play as the target attribute, having maximal accu-
racy among all possible decision trees of size ≤ 5. Query (C) asks for decision
trees having a test on “Outlook=Sunny” and on “Wind=Weak”, with a size of
at most 5 and an accuracy of at least 80%.

Some constraints can also be imposed independently from the tables with
the characteristics. For example, Query (D) asks for decision trees where the
attribute Temp is never a wild card.

The popular must-link and cannot-link constraints, for clusterings, can also
be expressed with SQL queries in our approach. Queries (E) and (F), respectively,
are examples of how the user can formulate such constraints. In both queries,
I Concepts(Day, cid) is a view associating every instance in the data table with
its covering concepts, which can be easily created by the user. Hence, query



(n)πT1.treeId,C1.∗,C2.∗

(m) ./T1.treeId=D.treeId

mmmmmmm

JJJJJJJJJJ

(l) ./T1.treeId=T2.treeId

mmmmmmm
QQQQQQQ

(i) ./C1.cid=T1.cid

nnnnnnn (j) ./C2.cid=T2.cid

nnnnnnn (k)σsize≤5

(f)σC1.Outlook=′Sunny′ (g)σC2.W ind=′W eak′ (h)σacc≥80%

Concepts C1 Trees T1 Concepts C2 Trees T2 Trees Charac D

(a) (b) (c) (d) (e)

Fig. 4. An equivalent relational algebra for query (C) in Figure 3.

(E) asks for clusterings in which the instances “D1” and “D2” are in the same
cluster, that is, in which both instances are covered by concepts describing the
same cluster. Query (F) is formulated by using the opposite reasoning.

Hence, many well-known and common constraints can be expressed quite
naturally in our model. In particular, queries that impose semantic restrictions,
such as queries for prediction, or semantic constraints, such as must-link and
cannot-link constraints, can be expressed more declaratively in our new frame-
work. This more declarative nature of the queries also improves the ability to
extract and exploit constraints in the queries imposed by the user for making
the underlying mining operations more efficient.

5 Constraints Extraction

In the proposed framework, the tables are virtual. This means that for answering
a query involving one or more of these views, we first need to instantiate them
with the information needed by the query. Obviously, adding all concepts to the
Concepts table, all trees to the Trees table, etc. is infeasible. However, since we
expect the user to give a reasonable amount of constraints, only a subset of all
tuples will be needed to answer the query correctly. In this section, we propose
an algorithm that extracts constraints on the models needed to be mined from a
given SQL query over the virtual views. These constraints can then be exploited
by the data mining algorithm that is going to compute the result of the query.
Consider for example query (C) in Figure 3. In order to answer that query, not
all decision trees need to be mined, but only those with a size of at most 5, an
accuracy of at least 80%, and node tests “Outlook=Sunny” and “Wind=Weak.”
In this context, the task of the constraint extraction algorithm is to extract
these constraints from the query, such that they can be exploited by the tree
inducer that has to be triggered to compute the result. Our constraint extraction
algorithm finds constraints for all tables in the from-clause of the query, hence
restricting the tuples required in the views to answer the query.

Algorithm The algorithm for extracting the constraints is an extension of
the algorithm presented in [2], which only extracts constraints for itemset and



association rule queries. It starts by building an equivalent relational algebra
tree. For the example query (C), the tree is given in Figure 4. Notice that the
views in the from-clause of the query correspond to the leaves of the expression
tree. The idea is to find a constraint for each of those nodes while traversing
the expression tree bottom-up. During the traversal, annotations expressing the
constraints are computed for each of the nodes, based on the relational algebra
operator in that node and the annotations of its children in the tree. For a node
n, the annotation expresses the set of tuples needed in order to answer the sub-
query rooted at that node. Hence, the annotation for the root node is the one
we are looking for.

Annotations Consider, e.g., node (f) in the example query given in Figure 4.
The sub-query associated with this node asks for all tuples in the table Concepts
C1 with “Outlook=Sunny”. The annotation for this node is:

C1[Outlook=’Sunny’]

C1.cid

55llllllll
C1.Outlook

OO

C1.Wind

iiSSSSSSSSS
. . .

kkWWWWWWWWWWWWWWWW

The top line in this annotation gives the views needed in order to answer
the sub-query rooted at node (f). Between the square brackets a constraint on
the tuples needed from this view is given. In the example node (f), we only
need those tuples in the view Concepts C1 that satisfy “Outlook=’Sunny’ ”.
The bottom line in the annotation lists all attribute names of the sub-query.
The arrows represent the view they originate from. Notice that an attribute can
originate from more than one view. This occurs, e.g., when two relations were
joined on this attribute. If, later on, an attribute is used in the condition of a
selection in the tree, the constraint(s) of the view(s) from which that attribute
originates will be updated.

The construction procedure of the annotations needed for association rules
and itemsets presented in [2] applies to our new framework as well. For decision
trees and clusterings, however, the rules for constructing the annotations are
more complicated. Indeed, while itemsets are described by a single concept and
association rules are described by two concepts only (i.e., the antecedent and
the consequent), decision trees and clusterings are both described by a priori
unknown sets of concepts. In fact, a tuple (treeId, cid) of the view Trees repre-
sents two objects: the tree identified by treeId and the concept with identifier
cid belonging to it. In our annotation, this is expressed by two variables, one for
the tree and one for the concept. They are connected with a dashed arrow from
the concept to the tree, expressing that this concept belongs to that tree. For
example, the annotation of nodes (b) and (d) are respectively:

C
T1[ ]

∈
((l _ R
T1[ ] C

T2[ ]

∈
((l _ R
T2[ ]

C
T1.cid

OO

T1.treeId

OO

C
T2.cid

OO

T2.treeId

OO



In node (i), C1 and T1 are joined on attribute cid, the annotation of node
(i) will express that both concepts C1 and CT1 belong to the tree T1 and that
they are actually the same concept. Every attribute of C1 also belongs to CT1

(and vice versa) and they inherit the constraints between the squared brackets.
Hence, the annotation of (i) is as follows:

C1[Outlook=’sunny’]

∈

((l i g e c a _ ] [ Y W U R P
C

T1
[Outlook=’sunny’]

∈ //___ T1[ ]

C1.cid

<<zzzzzzzzzzzz

44hhhhhhhhhhhhhhhhhhhhhhhhhhh
C1.outlook

OO 66mmmmmmmmmmmmmmmmmm
. . .

``BBBBBBBBBBBB

=={{{{{{{{{{{{
C

T1.cid

OOhhQQQQQQQQQQQQQQQQQQ
T1.treeId

OO

The annotations for the other nodes are built in the same way, resulting in
the following:

. . .

T1[α] T2[α] D[α] C
T1[β] ∈

∈
vv RTVY[]_acehjl vv UZ_di

∈vv _l
C1[β] C

T2[γ] C2[γ]

∈

uu TUVWWXYZZ[\]]^_`aabcddefgghij

T1.treeId

eeKKKKKKK

OO 99ttttttt
C1.cid

OO 77ooooooooo
C1.Outlook

ggOOOOOOOO

OO

. . .

kkWWWWWWWWWWWWWWWWWWW

ffMMMMMMMMM

α = (acc ≥ 80% ∧ size ≤ 5), β = (Outlook = ’Sunny’), γ = (Wind = ’Weak’)

To ease the readability, we did not draw all ∈-arrows, but, actually, from
every variable representing a concept, there is an arrow to T1, T2, and D.
From this final annotation, finding the final constraints on the mining views is
straightforward: for example, for the view T1, we see that not all possible trees
are needed, but only those that satisfy condition α, and, also, have concepts
that satisfy conditions β and γ. These constraints can be exploited directly by
a tree inducer. Also for the other views, constraints can be extracted. For the
Concepts table, e.g., it can be derived that not every concept should be there,
but only concepts belonging to trees in T1.

6 Conclusion and Future Work

In this paper, we proposed a framework towards the integration of (constraint-
based) data mining in a relational database, based on the so-called mining views.
A mining view is a virtual table that contains models of the data. The main
advantage over earlier proposals is that our schema elegantly covers a wider
variety of models in a more uniform way, and that it makes it easier to define
meaningful operations (e.g., predictions of new examples). A key component of



the proposed approach is the use of the virtual Concepts table, which contains
all conjunctive concepts definable over the relation that is being mined. We have
illustrated how association rules, decision trees and clusterings can uniformly be
expressed in terms of this Concepts table. Furthermore, we have shown how to
formulate constraints in a query, using this structure, and how to automatically
extract constraints from a given query for these different models.

As a proof of concept, the ideas presented in this work have been imple-
mented into PostgreSQL [5]. The system is currently linked to algorithms for
assocation rule discovery and exhaustive decision tree learning [3] (an exhaus-
tive clustering algorithm is not yet available). The prototype shows promising
results, for instance: for the UCI dataset ZOO [13], a query for all association
rules with constraints support≥30 and confidence≥80% is executed in 2.3 sec-
onds; querying for all decision trees with size≤5 (without further constraints)
takes 3.6 seconds.

We identify three directions for further work. First, in the current system,
if the database is modified between two queries, the efficiency of the system
could still be improved by investigating how to reuse the previously computed
predictive models in order to compute new predictive models for the modified
database. Second, it might also be interesting to reuse the results of related
queries posed within the same working session. Finally, the schema described so
far covers association rules, decision trees and clusterings. An obvious direction
for further research is to extend it with other models.

Acknowledgements Hendrik Blockeel is a post-doctoral fellow from the Re-
search Foundation – Flanders (FWO-Vlaanderen). This research was funded
through K.U.Leuven GOA project 2003/8, “Inductive Knowledge bases”, FWO
project “Foundations for inductive databases” and the EU project “Inductive
Queries for Mining Patterns and Models”.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
20th Int. Conf. Very Large Data Bases, VLDB, pages 487–499. Morgan Kaufmann,
12–15 1994.

2. T. Calders, B. Goethals, and A. Prado. Integrating pattern mining in relational
databases. In Proc. 10th European Conference on Principles and Practice of
Knowledge Discovery in Databases, LNCS, pages 454–461. Springer, 2006.

3. E. Fromont and H. Blockeel. Integrating decision tree learning into inductive
databases. In ECML/PKDD-2006 International Workshop on Knowledge Discov-
ery in Inductive Databases (KDID), pages 59–70, 2006.

4. J. Han, Y. Fu, W. Wang, K. Koperski, and O. Zaiane. DMQL: A data mining
query language for relational databases. In Workshop on Research Issues in Data
Mining and Knowledge Discovery (DMKD’96), Montreal, Canada, 1996.

5. http://www.postgresql.org/
6. T. Imielinski and H. Mannila. A database perspective on knowledge discovery.

Comm. Of The Acm, 39:58–64, 1996.



7. T. Imielinski and A. Virmani. Msql: A query language for database mining. Data
Min. Knowl. Discov., 3(4):373–408, 1999.

8. S. Kramer, V. Aufschild, A. Hapfelmeier, A. Jarasch, K. Kessler, S. Reckow,
J. Wicker, and L. Ritcher. Inductive Databases in the Relational Model: the Data
is the Bridge. In ECML/PKDD-2005 International Workshop on Knowledge Dis-
covery in Inductive Databases (KDID), pages 124–138, 2005.

9. Y.-N. Law, H. Wang, and C. Zaniolo. Query languages and data models for
database sequences and data streams. In Proc. VLDB Int. Conf. Very Large Data
Bases, pages 492–503, San Francisco, CA, USA, 2004.

10. R. Meo, G. Psaila, and S. Ceri. An extension to sql for mining association rules.
Data Min. Knowl. Discov., 2(2):195–224, 1998.

11. I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. Yale: Rapid
prototyping for complex data mining tasks, 2006.

12. T. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.
13. D. Newman, S. Hettich, C. Blake, and C. Merz. UCI repository of machine learning

databases, 1998.
14. A. Siebes. Data Mining in Inductive Databases. In ECML/PKDD-2005 Interna-

tional Workshop on Knowledge Discovery in Inductive Databases (KDID), pages
1–23, 2005.

15. Z. H. Tang and J. MacLennan. Data Mining with SQL Server 2005. John Wiley
& Sons, 2005.

16. K. Wagstaff and C. Cardie. Clustering with instance-level constraints. In Proceed-
ings of the 17th Int. Conference on Machine Learning, pages 1103–1110, 2000.

17. H. Wang and C. Zaniolo. Nonmonotonic reasoning in ldl++. Logic-based artificial
intelligence, pages 523–544, 2001.

18. H. Wang and C. Zaniolo. Atlas: A native extension of sql for data mining. In
SIAM Intl. Conf. Data Mining, pages 130–144, 2003.

19. I. H. Witten and E. Frank. Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, San Francisco, 2nd edition edition, 2005.

20. C. Zaniolo. Mining databases and data streams with query languages and rules. In
ECML/PKDD-2005 International Workshop on Knowledge Discovery in Inductive
Databases (KDID), pages 24–37, 2005.


